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We investigate the possibility to control the s-wave scattering length for the interaction between cold bosonic
atoms by using a microwave field. Our scheme applies to any atomic species with a ground state that is split by
hyperfine interaction. We discuss more specifically the case of alkali-metal atoms and calculate the change in the
scattering length for 7Li, 23Na, 41K, 87Rb, and 133Cs. Our results yield optimistic prospects for experiments with
the four latter species.
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Cold atomic gases constitute model systems to investigate
a wealth of collective quantum phenomena, ranging from
few-body physics [1,2] to condensed matter problems [3,4].
In particular one can control the strength of the interparticle
interactions using scattering resonances that occur in a col-
lision between two atoms with low energy. These so-called
Fano-Feshbach resonances (FFR’s) arise when the entrance
collision channel, with an energy threshold Eth, is coupled to
another channel that supports a molecular bound state b at
an energy Eb close to Eth [1,5–7]. The scattering length that
characterizes the s-wave scattering between the two atoms has
a dispersive variation with Eth − Eb, and can, in principle, be
tuned to a value with arbitrary sign and magnitude.

In practice, FFR’s are generally obtained by adjusting the
external magnetic field. One takes advantage of the degenerate
structure of the lowest electronic energy level of the atoms. In
the case of alkali-metal atoms that are widely used in cold
atom experiments, the degeneracy emerges from the spins
of the valence electron and of the nucleus. If the magnetic
moment of the bound level b is different from that of the
entrance channel, the energy difference Eth − Eb can be tuned
by scanning the external field. This leads to a resonant variation
of the scattering length, with a width that depends on the
coupling between the two channels and hence on the details of
the interaction between the colliding atoms. For some atomic
species, such as Li, K, or Cs, these magnetic FFR’s have
been an invaluable tool for many studies related to atom-atom
interactions [1–4]. However, the absence of external control
on the width of magnetic FFR’s and their occurrence only for
fixed values of the magnetic field may constitute a serious
drawback. For Na atoms (23Na), for example, the identified
resonances are in the 1000 G region with a width around
1 G or less [8,9]. Similar values are found for polarized
Rb atoms (87Rb) [10]. These large field values and narrow
widths severely limit the use of FFR’s for these species.

In this Rapid Communication we study an alternative to
magnetic FFR’s, where the entrance channel is resonantly
coupled by a microwave (mw) field to a bound state in
another collision channel. All relevant states correspond to
the electronic ground level of the atoms, and the resonance
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is reached by adjusting the frequency of the mw. The width
of the resonance is related to the strength of the magnetic
dipole coupling between the two channels and is proportional
to the mw intensity. Our scheme is reminiscent of optical
FFR’s, as proposed in [11] and experimentally demonstrated in
[12,13]. There, the bound state b was an electronically excited
dimer. Although optical FFR’s, which rely on electric rather
than magnetic dipole coupling, allow, in principle, stronger
resonances, their practical use is limited by the unavoidable
losses due to spontaneous emission processes. One can also use
a pair of laser beams to coherently couple two states from the
ground electronic level [14]. However, for a given change of
the scattering length this method leads to a similar spontaneous
emission rate as in the case of a single-photon excitation [15].
So far the lifetimes of atomic samples submitted to optical
FFR were limited to tens of milliseconds, which is likely to be
too short to reach a many-body equilibrium state. By contrast
mw-FFR’s do not suffer from any spontaneous emission
process and the associated loss rates should be comparable
to those observed with magnetic FFR’s.

So far the use of mw or rf fields has been discussed
in relation to manipulating existing FFR’s [16–18]. Zhang
et al. [17] proposed considering magnetic FFR’s for atomic
states dressed by a two-color Raman process or by an rf field.
The idea was to provide an independent control of different
scattering lengths in multicomponent gases. The rf coupling
of several magnetic FFR’s has been studied experimentally
and theoretically in [18]. The analysis showed that the main
role of rf is to couple the bound states that give rise to these
resonances. Our idea of inducing new FFR’s by using mw
fields brings in a novel physical context. We focus on the
case of zero static magnetic field, which is presently put
forward in the studies of ground-state properties and quantum
phase transitions in spinor Bose gases. Such experiments
require extremely low magnetic fields (<10 mG), and the
manipulation of the interatomic interactions becomes crucial
for the observation of quantum transitions and their dynamics.
Our scheme is also different from [16] where a resonant
oscillating magnetic field was used to enhance the production
of diatomic molecules near an existing FFR. In our case
the bound state that is coupled to the entrance channel is
only virtually populated, and no molecule is produced in the
collision.
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FIG. 1. (Color online) Fano-Feshbach resonance in a collision
between two atoms, induced by an oscillatory magnetic field. If
the mw frequency ω approaches the energy difference between the
incident scattering state and a weakly bound dimer state, the pair of
atoms undergoes virtual spin-flip transitions which cause a resonant
variation of the scattering length with ω.

For simplicity we study in the following a collision between
two identical bosonic atoms prepared in the same internal state.
Our treatment can be straightforwardly extended to fermionic
particles and to mixtures of atoms in different internal states.
More specifically, we consider alkali-metal atoms whose
ground level is split by the hyperfine interaction into two
sublevels with total spins f+ = i + 1/2 and f− = i − 1/2,
where i is the nuclear spin. The frequency ω of the mw field is
chosen close to the hyperfine splitting �Ehf between these two
sublevels (see Fig. 1). The various collision channels can then
be grouped into three categories corresponding to asymptotic
states with (i) both atoms in f+, (ii) one atom in f+ and one in
f−, and (iii) both atoms in f−. We consider in the following the
case of a f−f− collision and the mw induces a quasiresonant
transition to a bound state in a potential from the f+f− group
as shown in Fig. 1.

We describe the system in the center-of-mass frame of the
atom pair. Neglecting the weak coupling between the atomic
spins, the atom-atom interaction is spatially isotropic. We
limit our analysis to s-wave collisions governed by the radial
Hamiltonian (see [19] and references therein)

H = p2

2µ
+ Vc(r) + Vhf + h̄ω a†a + W = H0 + W, (1)

where r is the interatomic distance, p is its conjugate
momentum, and µ = m/2 is the reduced mass of the atom pair.
The central part Vc(r) of the interaction is given by Vc(r) =
VS(r)PS + VT (r)PT , where PS and PT are the projection
operators onto the electronic-singlet and triplet subspaces. The
term Vhf = ahf(s1i1 + s2i2) is the hyperfine interaction, where
sj and ij stand for the spin operators of the electron and nucleus
of atom j . We use a quantum description for the mw field and
a† is the creation operator for an mw photon in the relevant
mode. The magnetic dipole interaction between the atoms and
the mw is W = −MB, where M is the total magnetic dipole
operator of the atom pair and B = b0(εa + ε∗a†)/

√
2 is the

magnetic field operator for the mode of polarization ε. As usual

in the dressed-atom approach [20], the amplitude b0 and the
number of photons N in the mw mode are arbitrary. The only
relevant physical quantity is the amplitude of the applied mw
field B0 = b0

√
N (with N � 1). We assume that the magnetic

field is σ+ polarized with respect to the quantization axis ez.1

The valence electron in each atom has zero angular momentum
and W reduces to2

W = W1 (S+ a + S− a†), (2)

where W1 =µBb0/h̄, µB is the Bohr magneton and S± =Sx ±
iSy , with S= s1+s2 being the total electron spin.

We study the scattering properties of H using two different
methods: (i) if the mw Rabi frequency µBB0 is much smaller
than the binding energy |ET | of the dimer and the level spacing
in the closed channel, the scattering is well described by a
single-resonance two-channel model; (ii) for µBB0 � |ET |, a
more general description is obtained through a full coupled-
channel calculation.

We first describe method (i). We consider H as a two-
channel model [1] where H0 is the bare Hamiltonian and
W is the coupling operator. The symmetries of H0 allow
the choice of bare open- and closed-channel wave functions
which have well-defined photon numbers N , total spin F ,
and total spin projection MF along the quantization axis (F =
s1 + i1 + s2 + i2), whereas W directly couples subspaces with
�MF = −�N = ±1. The coupling term W does not vanish
in the limit of infinitely separated atoms. Hence, there is a
difference � in the scattering threshold energy of H compared
to that of H0. If the detuning δ of the mw with respect to the
single-atom hyperfine splitting �Ehf is greater than µBB0, then
� ∼ (µBB0)2/δ. Method (i) is applicable when � � |ET |
and can be neglected. Near resonance, where |δ| ∼ |ET |, this
condition requires µBB0 � |ET |.

We start by stating a selection rule associated with
W . All internal states in the MF = 2i + 1 and MF =
2i subspaces are electronic-triplet states. More precisely,
the MF = 2i + 1 subspace has dimension one, with
|S = 1, I = 2i, F = 2i + 1,MF = 2i + 1〉 as a basis vector
(I determines the modulus of the total nuclear spin I =
i1 + i2). The MF = 2i subspace has dimension two,3 and
it is spanned by |η1〉 = |S = 1, I = 2i, F = 2i,MF = 2i〉
and |η2〉 = |S = 1, I = 2i, F = 2i + 1,MF = 2i〉. The spa-
tial components of the eigenfunctions of H0 in these subspaces
decouple from the internal states and are all eigenfunctions of
the triplet Hamiltonian HT = p2/2µ + VT (r). The bare open-
and closed-channel spatial wave functions are thus orthogonal.
The operator W does not act on the spatial parts of the wave
functions. Hence, its matrix element between an open-channel
state with MF = 2i and a bound state with MF = 2i + 1 is

1This restriction leads to simpler algebra, but is not essential: any
polarization can be decomposed into σ± components and, for a given
ω, only one of the components will induce the desired resonant
coupling to a bound state.

2In Eq. (2) we omit a small coupling of the mw to the nuclear spins
which does not affect the results.

3For s-wave collisions between bosons, only symmetric internal
states are relevant.
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zero. Therefore, W cannot induce any resonance between these
two subspaces.

We now consider a resonance between the MF = 2i −
1 subspace (dimension five) and the MF = 2i subspace.
For the bare open-channel wave function we choose the
MF = 2i − 1 threshold-energy scattering state |�(2i−1)

k=0 〉, in
the presence of N photons. For large interatomic sep-
arations, this state corresponds to the two-particle state
|f−f−, F = 2i − 1,MF = 2i − 1〉 in which both atoms have
f = mf = i − 1/2 (see Fig. 1). The bare closed-channel wave
function is chosen in the form |�(2i)

0 〉 = |ϕT , η1〉, where ϕT (r)
is a bound state of HT and |η1〉 is defined previously (see
Fig. 1).

The single-resonance two-channel model leads to the usual
behavior for the scattering length as a function of the frequency
ω close to an FFR resonance

a(ω) = abg

(
1 + �ω

ω − ωres

)
. (3)

The background scattering length abg corresponds to a col-
lision in the absence of mw, between two atoms in the
state |f = i − 1/2,mf = i − 1/2〉. The resonance position
is given by h̄ωres ≈ �Ehf − |ET | + αB2

0 , where αB2
0 is a

small shift due to the coupling between the open and closed
channels [1]. The width �ω of the mw FFR is

h̄�ω = 1

2π

µ

abgh̄
2 (µBB0)2

∣∣ 〈�(2i)
0

∣∣S+∣∣�(2i−1)
k=0

〉 ∣∣2
. (4)

It is proportional to the mw intensity B2
0 and to the spin-flip

Franck-Condon factor |〈�(2i)
0 |S+|�(2i−1)

k=0 〉|2.
For a given atomic species, method (i) requires the

calculation of �
(2i−1)
k=0 (r) and ϕT (r). We account for the

spin-recoupling phenomenon [1] through the coupled-
channel method [21], encode the short-range physics in
the accumulated-phase boundary condition [19,22], and use
the relaxation method [23] to solve the resulting two-point
boundary-value differential systems.4

We performed calculations for 7Li, 23Na, 41K, 87Rb,
and 133Cs. We use the hyperfine splittings reported in [24]
and the singlet and triplet potentials from [10,25–34]. The
accumulated-phase boundary condition is applied at the radii
r0 = 10 a0 for 7Li, r0 = 16 a0 for 23Na, 41K and 87Rb, and
r0 = 20 a0 for 133Cs. We calculate the initial phases of the
zero-energy scattering wave functions at r0 through back-
integration using the singlet and triplet scattering lengths
[10,27–29,32,35]. The energy derivatives of these phases are
taken from [19,28] for 87Rb and 23Na, and are calculated
for the other species using the triplet and singlet potentials.
Our results are given in Table I. In practice we find that
the broadest resonance widths �ω, as given by Eq. (4) are
obtained by choosing ϕT (r) as the highest bound state of
the triplet potential. For all considered atomic species except
133Cs, this is the resonance we report in Table I. However,
in the case of 133Cs, the highest-energy bound state is so
weakly bound (|ET | = h5 kHz) that the hyperbolic behavior
of a [Eq. (3)] is not valid for B0 � 1 mG, and we therefore

4The same approaches were used for method (ii).

TABLE I. Characteristics of the mw-FFR in 7Li, 23Na, 41K, 87Rb,
and 133Cs involving the triplet bound states with energies ET . The
width �ω scales as B2

0 and is given for B0 = 1 G.

7Li 23Na 41K 87Rb 133Cs

|ET|/h (MHz) 12,000 200 140 25 110
ωres/2π (GHz) 12 1.6 0.12 6.8 9.1
α (kHz/G2) 0.33 6.8 21 120 30
�ω/2π (Hz) 6 1400 350 60 −4500

report the resonance obtained with the second-highest bound
state of VT (|ET | = h110 MHz).

The largest resonance width is obtained for 133 Cs
(−4500 Hz for B0 = 1 G). Relatively large widths are also
obtained for 23Na and 41K. In the case of 87Rb, the singlet
and triplet scattering lengths differ by less than 10% [10].
Hence, the near-threshold properties of the singlet and triplet
Hamiltonians are similar. The open- and closed-channel wave
functions are thus nearly orthogonal, which leads to a reduction
of their overlap and to a narrower resonance. For 7Li the
triplet scattering length is negative [35] and HT does not
support weakly bound molecular states [1]. The last bound
state has a small spatial extent, which leads to an even narrower
resonance.

We now turn to method (ii), where we take into account that
colliding atoms are asymptotically in dressed atomic states.
This method can be used for larger Rabi frequencies, such
that µBB0 � �. We restrict the full Hamiltonian H to the
eight-dimensional subspace spanned by all internal states in
the MF = 2i + 1, 2i, and 2i − 1 subspaces. For given values
of B0 and ω, we calculate the eight-component scattering state
|�B0,ω〉 of H corresponding, for large interatomic separations,
to dressed-state atoms with zero kinetic energy. The scattering
length a(B0, ω) is extracted from the asymptotic behavior of
this wave function. For a given µBB0 � |ET |, we checked
that we recover the hyperbolic behavior of Eq. (3). We also
evaluated the coefficient α giving the shift of the resonance
position ωres (see Table I).

Method (ii) allows us to investigate the mw-FFR in 133Cs
involving the highest bound state of VT , where Eq. (3) is
not applicable for B0 � 1 mG. To avoid inelastic processes
we assume that the atoms are asymptotically in the lowest
atomic dressed state. For large δ < 0, this state corresponds
to the two-particle state |f−f−, F = 2i − 1,MF = 2i − 1〉,
and therefore a = abg = −2500 a0. For large δ > 0 it corre-
sponds to |f+f+, F = 2i + 1,MF = 2i + 1〉, with a = aT =
2400 a0. For B0 � 1 mG the resonance is hyperbolic, as
predicted by method (i) [see Eq. (3)]. For larger B0 the
scattering length becomes very large for h̄ω ≈ �Ehf , but a(ω)
no longer satisfies Eq. (3). Figure 2 shows how the dependence
a(ω) evolves when B0 increases from 0.1 mG to 1 G. In the
δ > 0 region, collisions between atoms in the “stretched”
state f+ = mf = i + 1/2 = 4 occur with a large inelastic
rate because of dipole-dipole interactions [36]. Therefore, one
should operate in the δ < 0 region, where the contamination
of the collision state by the stretched state is small. A detailed
modeling of the large-B0 FFR’s will be presented elsewhere.
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FIG. 2. (Color online) Resonance in 133Cs involving the bound state with energy |ET | = h5 kHz = µB4 mG, for B0 ranging from 0.1 mG
to 1 G, calculated using method (ii). The scattering length a is expressed in units of 1000 a0.

Our results draw optimistic prospects for modifying the
scattering length in atomic gases using a mw field. Using
small resonant transmitting loop antennas in the near-field
regime, it is possible to reach mw magnetic field amplitudes
B0 ∼ 10 G in the desired frequency range, while keeping
a reasonable incident electromagnetic power (below 10 W).
The resonance widths obtained for the hyperbolic resonances
in all atomic species except 7Li are then well above 1 mG,
and thus notably exceed typical magnetic field fluctuations in
setups with an efficient magnetic shielding. The nonhyperbolic
resonance obtained with 133Cs has a width of the order of
1 G for B0 = 1 G. Our scheme can be readily transposed to
fermionic atoms, multicomponent gases, and heteronuclear

mixtures, and it can allow for a fine tuning of interspecies
interactions in all three cases.
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