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Abstract
Background: We generalized penalized canonical correlation analysis for analyzing microarray
gene-expression measurements for checking completeness of known metabolic pathways and
identifying candidate genes for incorporation in the pathway. We used Wold's method for
calculation of the canonical variates, and we applied ridge penalization to the regression of pathway
genes on canonical variates of the non-pathway genes, and the elastic net to the regression of non-
pathway genes on the canonical variates of the pathway genes.

Results: We performed a small simulation to illustrate the model's capability to identify new
candidate genes to incorporate in the pathway: in our simulations it appeared that a gene was
correctly identified if the correlation with the pathway genes was 0.3 or more. We applied the
methods to a gene-expression microarray data set of 12, 209 genes measured in 45 patients with
glioblastoma, and we considered genes to incorporate in the glioma-pathway: we identified more
than 25 genes that correlated > 0.9 with canonical variates of the pathway genes.

Conclusion: We concluded that penalized canonical correlation analysis is a powerful tool to
identify candidate genes in pathway analysis.

Background
A molecular genetic pathway is a hypothesis or model on
how the expression of different genes in a series of bio-
chemical relationships influence each other and eventu-
ally lead to a specific phenotypical expression [1]. A
reconstruction of a pathway breaks down metabolism
pathways into their respective reactions and enzymes, and
analyzes them within the perspective of the entire net-
work. In simplified terms, a reconstruction involves col-
lecting all of the relevant metabolic information of an
organism and then compiling it in a way that makes sense
for various types of analyses to be performed. The correla-
tion between the genome and metabolism is made by

searching gene databases, such as KEGG [2], GeneDB [3],
etc., for particular genes by inputting enzyme or protein
names [4]. Validity of pathways are often tested by con-
trolled experiments, for instance by knocking-out or by
overstimulation of specific genes, and then comparing the
observed changes of enzymes and metabolites to what
was predicted on the basis of the pathway.

Few pathways are thoroughly established, and many path-
ways are incomplete [5]. Since knock-out experiments are
extremely expensive and time-consuming, genome wide
gene-, protein-, and metabolite-expression studies are
used for searching for genes, enzymes, and proteins that
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have a specific function in pathways of particular interest
[6,7]. Pathways vary in size but usually contain a limited
number of genes or enzymes, say up to a few hundreds, or
thousands for middle-sized pathways [2]. When in a
genome wide expression study microarrays are used to
find new genes, then there might be easily tens of thou-
sands of new candidates, causing a huge statistical multi-
ple testing problem.

Recently we and others developed penalized canonical
correlation analysis (PCCA) to quantify the association
between two sets of genomic data [8,9]. We now general-
ized PCCA to identify genes/enzymes from a large set of
candidates to complement the set of genes comprising a
hypothesized pathway. The analysis is based on the avail-
ability of expression data of genes in a specific pathway
measured in a sample of patients and the availability of
expression data of a large set of candidate genes measured
in the same samples. In this paper we will first describe
PCCA. Next we will discuss different penalties which are
needed to make the inference feasible, and how to esti-
mate optimal values for the penalty-parameters involved.
With a few simulations we will illustrate that our method
is capable of identifying the correct genes. Finally, we will
apply our methods on assessing the glioma-pathway [2]
in 45 samples from patients with glioblastoma.

Methods
Penalized Canonical Correlation Analysis
Our objective is to extract groups of variables that capture
common features out of two sets of variables, one con-
taining information about expression of genes known to
be in the same pathway and one containing expression of
genes, some of which are candidates to be part of the same
pathway. Consider the n × m matrix Y, containing m (gene
expression) variables and the n × k matrix X, containing k
variables, obtained from n individuals. Canonical correla-
tion analysis (CCA) seeks for linear combinations of all
the variables in Y which correlate maximally with linear
combinations of all the variables in X. These linear com-
binations are the so-called canonical variates ω and ξ,
such that ω = Yu and ξ = Xv, with the weight vectors u' =
(u1,..., um) and v' = (v1,..., vk). The optimal weight vectors
are obtained by maximizing the correlation between the
canonical variate pairs, which is also known as the canon-
ical correlation:

The number of variables (greatly) exceeds the number of
subjects, and there is often presence of multicollinearity
within both sets of variables. In the regression context sev-
eral penalization methods have been presented to deal
with such problems and by converting the CCA problem

into a regression framework, we can adapt those penaliza-
tion methods for CCA. This conversion can be obtained
by the two-block Mode B of Wold's original partial least
squares algorithm [10,11].

Wold's algorithm is an iterative process that begins by esti-
mating an initial canonical variate pair based on an initial
guess of the weights assigned to the original variables. The
objective is to maximize the canonical correlation, there-
fore the initial canonical variate pair ξ and ω are regressed
on respectively Y and X to estimate a new set of weights.
With this new set of weights, a new pair of canonical var-
iates is determined, which are in their turn regressed on Y
and X. This process is repeated until the weights converge,
resulting in the first pair of maximally correlating canoni-
cal variates. Hereafter the residual matrices of Y and X are
determined and the algorithm is repeated for the residual
matrices to obtain the remaining pairs of canonical vari-
ates. This process can be repeated until the residual matri-
ces contain no more information or until the decision is
made that further analysis is no longer useful.

Previously we proposed penalized CCA [8] where we per-
formed the same penalization method on both sets of var-
iables. The elastic net [12] was used as a basis of the
penalization since it solves the multicollinearity due to
co-regulated and co-expressed genes, and overfitting
caused by the small number of subjects and the large
number of variables. Furthermore reduction of the large
number of variables within the canonical variates can be
obtained, such that interpretation of the results becomes
easier. Elastic net combines the advantages of ridge regres-
sion (grouping effect) and the lasso [13] (built-in variable
selection). Ridge regression shrinks the weights by impos-
ing a penalty on their size, such that highly correlated var-
iables get similar weights. The lasso is also a shrinkage
method, it also shrinks the weights by imposing a penalty
on their size, however where ridge regression does not
shrink the coefficients to zero lasso does, resulting in var-
iable selection. By combining the two, groups of highly
correlated variables are in or out of the model. For the
present situation the set of X variables contains usually a
limited number and we therefore do not require reduction
of the number of variables within the canonical variates of
the X variables. We therefore propose an asymmetric
penalization scheme: we use a ridge penalty for the set of
X variables, thus ensuring that all X variables are included,
and the elastic net penalty for the set of Y variables.

When applying the ridge penalty to the set of X variables
and the elastic net to the set Y variables, the estimations of
the weight vectors look as follows:

r =
′ ′

′ ′ ′ ′
v X Yu

v X Xv u Y Yu
.

ˆ arg min ˆv v X X I v Xv
v

= ′ ′ +( ) −l w2 2x
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with λ2x the ridge penalty for the X variables, and λ2y the
ridge penalty and λ1y the lasso penalty for the Y variables.

The optimal penalty parameters can be chosen with cross-
validation, but because the computation time is very large
due to the large number of Y variables, we simplified the
computations. Zou and Hastie [12] suggested to fix the
ridge penalty in the elastic net to infinity, resulting in uni-
variate soft-thresholding (UST):

with f+ = f if f > 0 and f+ = 0 if f ≤ 0. Although UST disre-
gards the dependency between variables within the same
set, the grouping effect from the ridge penalty is main-
tained. By employing UST for the Y variables we only have
to choose λ2x and λ1y by cross-validation.

A second pair of canonical variates can be obtained via the
residual matrices of X and Y, therefore the part of the var-
iables that explains the first pair of canonical variates is
removed from the sets.

Xresidual = X - ξγ ′ and Yresidual = Y - ωθ ′, where γ and θ are the
vectors of linear regression weights of all X-variables on ξ
and Y-variables on ω, respectively. Further canonical vari-
ate pairs can be obtained in similar way, until the residual
matrix contains no more information or until the decision
is made that further analysis is no longer useful.

Cross-validation and Permutation
Optimization of the penalty parameters for each canoni-
cal variate pair is determined by p-fold cross-validation.
The data-set is divided into p subgroups of patients, of
which p - 1 subgroups form the training set and the
remaining subgroup forms the validation set. The weight
vectors u and v are estimated in the training set and are
used to obtain the canonical correlations in the training
and validation sets. This is repeated p times, such that each
subgroup has functioned both as a validation set and part
of the training set.

Instead of determining the lasso penalty(λ1y), it is for sake
of interpretation and to reduce computation time easier to
determine the number of Y-variables to be included in the
final model. This approach is also used by Lê Cao et al.
[14] and Shen and Huang [15]. The optimal number of
variables were then obtained for those values of λ2x and

λ1y where the mean difference between the canonical cor-
relation of the training and validation sets is minimized:

with  and  the weight vectors estimated by the
training sets X-j and Y-j in which subset j was deleted.

If the number of variables is very large, there is a high
probability that a random pair of variables has a very high
correlation by chance. Since the canonical correlation is at
least as large as the largest correlation between any two
variables from the two sets, canonical correlations are
often very large even when correlations are zero in the
population. To identify a canonical correlation that is
large by chance only, we performed a permutation-analy-
sis on the validation sets. We permuted the canonical var-
iate ξ and kept the canonical variate ω and then
determined the difference between the canonical correla-
tion of the training and the permuted validation sets, this
was compared with the difference between the canonical
correlation of the training and of the non-permuted vali-
dation sets. In the permuted validation sets the variates
will have zero correlation, while this is not the case for the
non-permuted validation set.

Results
Simulations
We simulated data of 50 individuals of a pathway consist-
ing of 50 standard normally distributed X-variables,
whose covariances were determined by two weakly corre-
lated components (r = 0.1). The first 25 X-variables were
correlated with the first component and the other 25 X-
variables were correlated with the second component: all
correlations of the X-variables with the two components
were sampled from the beta(0.5, 0.5) distribution. In
addition, 999 Y-variables were sampled for the 50 individ-
uals from the multivariate normal distribution with mean
zero and identity covariance matrix. Next, one randomly
selected variable from the X-set of pathway variables was
removed and put in the set of Y-variables. This process
simulated a situation where we consider 1, 000 variables
as candidates for a role in the pathway that already con-
sists of 49 variables, and with only one variable that is
truly part of the pathway. In such a case we considered 49,
000 correlations of which 48, 951 (99.9%) were expected
to be zero. We performed penalized canonical correlation
analysis using ridge penalization for the 49 X-set of varia-
bles in the pathway and using the soft-threshold penalty
for the 1, 000 variables in the Y-set. Optimal values of the
two penalty parameters (λ2x and λ1y) were estimated by

ˆ arg min ˆ | |,u u
Y Y I

u Yu
u

= ′
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+
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10-fold cross-validation, and we selected the values mini-
mizing the average absolute difference between the
canonical correlations of the 10 training-sets and the vali-
dation-sets. All simulations were repeated 100 times, and
we counted the number of simulations in which the cor-
rect variable (i.e. the X-variable that was put in the Y-set)
was selected in the first pair of canonical variates.

In a typical simulation the absolute correlations of the X-
variables in the pathway varied between zero and unity
with mean 0.25, and the absolute correlations between
any X-variable and any Y-variable varied between zero and
0.6 with mean 0.1. Since the canonical correlation is at
least as large as the largest bivariate correlation it was not

surprising that the probability that the discarded pathway
variable was identified in the first pair of canonical vari-
ates, depended on its correlation with the other pathway
variables. This relation is illustrated in Figure 1: if the cor-
relation was larger than 0.3 the discarded variable was cor-
rectly identified.

Glioma pathway in Glioblastoma Samples
As an example we analyzed the expression of 12,209
genes in 45 patients with glioblastoma [8,16]: the data are
available in the Stanford University Microarray Database
[17]. In an earlier paper we identified the insulin growth
factor receptor type I gene (IGF1R) as important in the
development of glioblastoma, and therefore we concen-

Detection of the discarded pathway variable versus its multiple correlation with the remaining variables in the pathwayFigure 1
Detection of the discarded pathway variable versus its multiple correlation with the remaining variables in the 
pathway. Indication of the relation between the likelihood of identifying correctly a discarded pathway variable and the size of 
the multiple correlation of the discarded pathway variable with the remaining pathway variables.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

correlation of discarded network variable with the network

di
sc

ar
de

d 
va

ria
bl

e 
id

en
tif

ie
d 

by
 P

C
C

A

Page 4 of 9
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:315 http://www.biomedcentral.com/1471-2105/10/315
trated on the Glioma-pathway which is highly depended
on IGF1R as an example. According to KEGG (November
2008) this pathway consists of 57 genes (see Figure 2) and
55 of these were present in the set of genes available. The
X-set consisted therefore of the expression values of the 45
patients on the 55 genes and the Y-set consisted of the
expression values of the 45 patients of all 12, 154 other
genes. Absolute correlations between the expression val-
ues of the 55 genes in the Glioma-pathway varied between
zero and 0.81 with mean 0.17, and the absolute correla-
tions between any of the 55 Glioma-pathway genes and
any of the remaining 12, 154 gene expression variables
varied between zero and 0.89 with mean 0.19. Principal
components analysis of X indicated 16 components with
eigenvalue > 1. We calculated nine pairs of canonical var-
iates with PCCA and we used nine-fold cross-validation to
estimate the optimal penalty-values (see Figure 3 for the
first pair of canonical components). The averaged canon-
ical correlations in the training-sets, in the validation-sets

and after permutations are given in Figure 4: the canonical
correlations after cross-validation were slightly smaller
than the correlations in the training sets, but all were sub-
stantial larger than the correlations after permutations.

Cross-correlations between genes in the Glioma-pathway
and canonical components of the genes not-in-the-Gli-
oma-pathway are reported in Table 1, and cross-correla-
tions between genes not-in-the-pathway and canonical
components of the Glioma-pathway are reported in Table
2: in the latter table we only report those genes that have
correlation > 0.9. Mapping these 32 genes on Gene Ontol-
ogy using Fatigo [18] we found that this series contained
a significantly (p = 0.00092) increased number of genes
involved in immunoglobulin binding (GO: 0019865):
FCGR2A, FCGR2B, and FCGR3A. IgG binding has been
implicated in brain cancer by others, eg. [19] and has ther-
apeutic consequences [20,21]. Other genes are known to
be involved in glioma cells function [22-25].

Glioma pathway (from KEGG, November 2008)Figure 2
Glioma pathway (from KEGG, November 2008). Graphical description of the Glioma pathway as given by the Kyoto 
Encyclopedia of Genes and Genomes.
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Discussion
We generalized penalized canonical correlation analysis
(PCCA) for a situation where different penalty-schemes
are preferred for the two data-sets involved in PCCA. We
focussed this application of PCCA on checking the com-
pleteness of known metabolic pathways using microarray
gene-expression measurements, and to identify candidate
genes for incorporation in the pathway. We used Wold's
[10] method for calculation of the canonical variates,
because this algorithm was easily extended with penalty
terms to deal with the situation where the number of var-
iables is larger than the number of samples, or to perform
variable selection. We applied ridge penalization to the
regression of pathway genes on canonical variates of the
non-pathway genes, and the elastic net to the regression of
non-pathway genes on the canonical variates of the path-
way genes. With ridge penalization we dealt with the mul-
ticollinearity in the data-set and with the elastic net we
also performed variable selection.

We performed a small simulation to illustrate the model's
capability to identify new candidates genes to incorporate
in the pathway. We simulated a pathway of 50 genes and
999 unrelated genes measured in 50 patients. We dis-
carded one pathway-gene and combined it with the set of
unrelated genes, and then we performed PCCA. The prob-
ability to identify the discarded gene depended on the size
of the multiple correlation of the discarded gene with the
49 other genes in the pathway, in our simulation we iden-

tified the gene correctly if the correlation was larger than
0.3.

We applied the method to a gene-expression microarray
data set of 12, 209 genes measured in 45 patients with
glioblastoma [16], and we considered genes to incorpo-
rate in the Glioma-pathway involved in the development
of glioblastoma. We identified a large set of candidate
genes that had very large correlations (> 0.9) with the
canonical components of the Glioma-pathway genes.
None of these were known to be associated with the gliob-
lastoma according to PubMed, but some are known to be
involved in glioma cells function [22-25].

In this application we start from existing knowledge on
metabolic pathways available in knowledgebases such as
KEGG [2] or Reactome [26]. We used the pathway uncrit-
ically, as it was present in the database. Reliability and
completeness of pathways may vary between different
knowledgebases [27], and this will influence the results to
some degree. In the present case, the Glioma pathway was
present in KEGG only. Although prior knowledge is often
less systematic for clinical research, similar methods may
be used in modeling clinical data [28].

There are few alternative methods for finding new genes as
candidates for inclusion in an existing pathway. The most
simple approach would be to calculate the bivariate corre-
lations between all genes in the pathway and all genes not
in the pathway, or to develop independent regression
models for each gene in the pathway as a function of all
genes not in the pathway. In our example of the glioma-

First nine canonical correlationsFigure 4
First nine canonical correlations. Canonical correlations 
in the training data set, in the validation data set and after 
permutations.
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Table 1: Cross-correlations of pathway genes with canonical variates of the remaining genes.

C1 C2 C3 C4 C5 C6 C7 C8 C9

AKT1 -0.15 -0.06 0.30 0.72 0.21 0.06 -0.12 0.00 0.16
AKT2 -0.03 -0.18 0.08 0.46 0.25 -0.24 -0.05 -0.24 0.17
ARAF -0.53 0.28 0.23 -0.01 0.12 -0.07 0.32 -0.14 0.05
CCND1 -0.16 -0.28 0.14 -0.15 0.20 0.05 -0.05 -0.36 -0.18
BRAF 0.10 0.15 0.14 0.02 0.01 -0.22 -0.13 0.17 -0.25
CAMK2A 0.89 0.00 0.08 -0.09 -0.02 0.02 0.04 0.03 0.07
CAMK2D -0.16 0.23 0.26 -0.01 0.39 0.05 -0.08 -0.04 0.26
CAMK2G 0.44 -0.16 -0.27 0.12 -0.18 0.05 -0.20 0.12 -0.12
CDK6 -0.28 -0.09 0.31 0.06 0.51 0.12 -0.18 -0.19 0.14
CDKN1A -0.10 0.63 0.04 0.03 0.52 0.13 0.13 0.09 -0.10
CDKN2A -0.21 0.74 0.29 -0.22 0.11 0.04 -0.03 0.02 -0.10
E2F1 -0.11 -0.24 0.87 0.01 -0.11 0.01 -0.03 -0.01 -0.02
E2F3 -0.21 -0.16 0.61 0.22 -0.18 -0.02 0.23 0.04 -0.12
EGF -0.16 0.38 -0.31 -0.16 0.06 -0.04 0.06 0.07 -0.13
EGFR -0.17 -0.38 0.06 0.04 0.11 -0.16 0.02 0.43 0.32
PTK2B -0.06 0.15 -0.09 0.71 0.03 0.08 0.11 0.18 -0.01
FRAP1 0.33 -0.13 0.05 0.07 -0.28 0.05 0.10 0.51 -0.14
GRB2 0.01 0.10 -0.02 0.30 0.17 -0.12 0.04 -0.14 0.63
HRAS 0.28 0.22 0.03 -0.40 0.26 -0.25 -0.06 0.28 0.04
IGF1 -0.01 0.73 -0.17 -0.14 -0.05 0.11 -0.07 0.30 0.14
IGF1R -0.16 -0.39 -0.13 -0.01 0.12 0.74 -0.04 -0.18 -0.05
KRAS2 0.09 0.08 0.09 -0.02 -0.01 -0.41 0.11 0.13 -0.07
MDM2 -0.18 0.24 0.10 -0.04 0.11 0.01 0.61 -0.01 -0.12
PDGFA -0.05 0.49 0.20 -0.23 0.61 0.10 0.04 -0.08 0.19
PDGFB 0.24 0.24 0.13 -0.01 0.19 0.05 -0.11 -0.02 0.02
PDGFRA -0.01 -0.36 0.26 0.04 -0.05 -0.05 0.12 -0.25 -0.24
PDGFRB -0.03 0.35 0.15 0.39 0.27 0.11 -0.12 0.21 0.13
PIK3CA -0.19 -0.23 -0.09 0.14 0.33 -0.39 0.06 0.05 -0.21
PIK3CB 0.25 -0.01 -0.12 0.29 -0.10 0.07 0.05 0.08 0.20
PIK3CG 0.00 0.24 0.08 -0.10 0.17 0.16 0.00 0.12 0.15
PIK3R1 0.46 -0.26 -0.25 -0.02 -0.29 -0.02 -0.03 0.24 0.07
PLCG1 -0.18 -0.33 0.40 -0.06 0.15 0.19 -0.32 0.35 -0.06
PLRG1 0.00 -0.30 -0.17 0.07 0.15 -0.31 0.15 0.02 -0.12
PRKCA 0.23 -0.29 -0.25 0.61 0.17 -0.07 0.02 -0.18 -0.21
PRKCB1 0.91 0.19 -0.15 0.09 0.08 0.10 0.00 -0.04 0.07
PRKCD 0.20 0.80 -0.13 -0.07 -0.07 0.00 0.02 0.09 -0.09
PRKCG 0.83 0.26 -0.10 0.01 -0.05 0.00 -0.01 0.01 -0.02
PRKCI 0.31 0.11 0.31 0.07 -0.05 -0.11 0.02 0.36 -0.24
MAPK1 -0.02 -0.21 -0.24 0.23 -0.13 -0.13 -0.18 -0.06 0.16
MAP2K1 0.36 0.05 -0.05 -0.40 -0.09 -0.02 0.18 -0.29 -0.11
MAP2K2 -0.21 0.20 0.14 0.04 0.27 0.25 0.03 0.25 0.33
PTEN 0.13 -0.01 -0.48 0.00 0.13 0.14 -0.09 -0.25 -0.12
RAF1 -0.31 -0.29 -0.06 0.06 -0.39 -0.12 -0.12 -0.17 0.10
RB1 -0.47 0.36 0.18 -0.01 0.27 -0.05 0.06 -0.03 0.01
SHC1 -0.29 0.58 0.20 0.11 0.38 0.12 -0.11 -0.03 -0.02
SOS1 0.16 -0.20 -0.14 0.18 0.02 -0.11 0.12 -0.13 -0.05
SOS2 -0.37 -0.20 -0.26 0.02 0.04 0.03 -0.04 -0.21 -0.07
TGFA 0.22 0.13 -0.23 0.05 0.44 -0.23 0.31 -0.31 0.13
TP53 -0.40 0.20 0.35 0.02 0.23 -0.06 -0.16 -0.10 0.02
SLC4A4 0.30 -0.34 -0.37 0.11 0.12 -0.11 -0.16 0.60 0.00
AKT3 0.40 -0.37 -0.30 0.21 -0.13 0.04 -0.12 0.00 0.10
RASSF1 -0.32 0.53 0.17 -0.36 0.11 -0.07 0.04 0.12 -0.24
SHC2 0.04 -0.49 -0.06 -0.10 0.08 -0.02 -0.08 -0.22 -0.19
SHC3 0.38 0.14 0.04 0.04 0.28 0.07 0.14 0.15 0.00
RaLP 0.08 0.12 -0.24 -0.03 0.42 0.30 0.10 0.08 -0.08
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pathway this yielded 55 × 12, 154 = 668, 470 correlations
of which 1, 008 were significant after Bonferroni multiple
testing correction, and this concerned 696 different genes.
Application of independent regression model in combi-
nation with elastic net penalization yielded 3, 294 regres-
sion weights that were ≠ 0 and this concerned 2, 724
different genes. Thus these approaches provided far too
many candidate genes in comparison to the penalized
CCA approach.

Conclusion
In conclusion, we developed penalized canonical correla-
tion analysis (PCCA) for assessing the multivariate associ-
ation of the expressions of genes in a known metabolic
pathway with the expressions of a large set of candidate
genes to be involved in that pathway. We used asymmetric
Ridge and elastic penalization to handle the situation
where the number of variables is larger than the number
of samples and to perform variable selection. In a simula-
tion study the method showed that it was capable to select
relevant variables, and we applied it to microarray data of
over 12, 000 genes in 45 patients with glioblastoma.
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