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Chapter 5

The supersymmetric model on two

dimensional lattices

5.1 Superfrustration

In the previous chapter we studied the supersymmetric model on the chain in great detail.
In particular, we investigated the continuum limit properties of the system. For two-
dimensional systems this kind of analysis is still out of reach, however, one can obtain
(exact) results for the Witten index and the total number of ground states for various
two-dimensional systems. In recent years, there has been quite some activity in this �eld,
both in the physics as well as the mathematics literature. On the physics side, these
questions arise not only in the context of the supersymmetric lattice model, but also in
the context of statistical mechanics. In the latter case one studies the partition sum of, for
example, hard squares or hard hexagons [74, 36, 37, 38, 40]. For negative activity there
is a direct relation with the Witten index of the supersymmetric model on the square
and triangular lattice respectively (see section 2.2.1 for the details). On the mathematics
side, these questions arise in the studies of partition sums, (co)homology and homotopy of
independence complexes [39, 75, 76, 77]. In sections 2.2.1 and 2.2.2 we discuss the relation
between these studies and the supersymmetric lattice model in some detail.

In this chapter we will summarize the results that have been obtained for the supersym-
metric model on two-dimensional lattices [21, 36, 78, 37, 38, 35]. These results all show
that ground state degeneracy is a generic feature of the model. In fact, in two spatial
dimensions the number of ground states typically grows exponentially with the system
size. This characteristic of having an extensive ground state entropy SGS goes under the
name of superfrustration [21].

A heuristic way of understanding the superfrustration is from the �3-rule�: to minimize the
energy, fermions prefer to be mostly 3 sites apart (with details depending on the lattice).
For generic two-dimensional lattices the 3-rule can be satis�ed in an exponential number
of ways.

Superfrustration, in particular if it leads to an extensive ground state entropy, is in con-
tradiction with the third law of thermodynamics, which says that as the temperature goes
to zero, the entropy vanishes. A well-known counter example is formed by glasses, which
have a frozen-in disorder that can lead to a zero temperature entropy of the order of the
number of atoms. More recently this feature has also been observed experimentally in
highly pure Sr3Ru2O7 single crystals at magnetic �eld strengths for which the compound
is believed to have a zero temperature quantum critical point [79] (see also [80] for a nice
perspective). For the supersymmetric model, the exact ground state degeneracy is an arti-
fact of the imposed supersymmetry. That is, all parameters in the hamiltonian are tuned,
such that the ground states have zero energy precisely and are thus exactly degenerate.
The frustration, however, arises due to a subtle interplay between the kinetic and inter-
action terms and could persist even for modest perturbations around the supersymmetric
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point. We expect that the exact degeneracy will be lifted, but that for su�ciently small
perturbations the ground states will form a low lying band with a non-trivial contribution
to the entropy at small temperatures. We thus like to take the point of view that �ne
tuning to the supersymmetric point allows us to analyze the model, but that the features
of the supersymmetric system may well be exhibited by more generic strongly correlated
itinerant fermion systems.
On a side note, the term superfrustration also arises in the context of frustrated spin
models [81], which also exhibit an extensive ground state entropy. For the spin models,
however, the term superfrustration is reserved for models in which the frustration is so
strong that it explicitly causes all correlations to decay exponentially at any temperature.
For the models discussed here, we believe that this is typically not the case. Apart from
explicit examples such as the chain and various ladder models (chapters 4 and 7), the
intuition is in general that the supersymmetry is not only related to superfrustration but
also to quantum criticality.
In this chapter we aim at giving an up to date overview of the known results for the super-
symmetric model on two-dimensional lattices and graphs. Exact results for the number
of ground states were obtained for various lattices [21, 35], which will be summarized in
sections 5.2 and 5.4. Numerical studies of the Witten index have shown that even this
lower bound is typically extensive [78] (see section 5.3.1). For certain two-dimensional
lattices it was proven that zero-energy ground states exist at various �llings [39] (see sec-
tion 5.3), indicating a �at band in the energy as a function of the fermion density. The
�lling is de�ned as the number of particles per lattice site. For the square, triangular and
hexagonal lattice there exist zero-energy ground states for all rational �llings ν within the
range [1/5, 1/4], [1/7, 1/5] and [1/4, 5/18], respectively.
The �nal section discusses the square lattice [37, 35]. The solution of the cohomology
problem for this lattice on the torus is one of the main results of this thesis. We �nd a
theorem that relates elements of the cohomology to tilings of the lattice [35]. This relation
between ground states and tilings seems to be more generic [39]. The implications of the
theorem are discussed here, the proof, however, is postponed to chapter 6.

5.2 Exact results for the cohomology of Q on two-

dimensional lattices

In chapter 2, we discussed the relation between ground states of the supersymmetric
model and elements of the cohomology of the supercharge Q. In particular, we stated
the 'tic-tac-toe'-lemma for a double complex (2.2.3). This lemma is very powerful for
the supersymmetric model, since one can easily construct a double complex by dividing
the lattice into two sublattices. Using this method, Fendley and Schoutens computed the
cohomology and thus the number of ground states analytically for various two-dimensional
lattices [21]. In �gure 5.1 we show the enneagon-triangle lattice, also known as the martini
lattice, the octagon-square lattice and the square lattice with two additional sites on every
link. In the following sections, we will explicitly compute the cohomology of Q for these
lattices. Here we �rst summarize the results. For the martini lattice, the number of ground
states is found to grow exponentially with the number of lattice sites. For the octagon-
square lattice with 4MN sites, the number of ground states grows as 2M + 2N − 1. For
the square lattice with two additional sites on every link, one �nds that there are just
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Figure 5.1: From left to right we show the martini lattice, the octagon-square lattice
and the square lattice with two additional sites per link.

two ground states. Finally, in section 5.4 we will see that for the square lattice of MN
sites, for which an exact solution of the cohomology of Q also exists, the ground state
degeneracy roughly grows as 2M+N .
It follows that for all lattices, for which the exact ground state degeneracy was found, only
the martini lattice has an extensive ground state entropy. This may seem in contradiction
with our claim, at the start of this chapter, that an extensive ground state entropy is a
generic property of two-dimensional lattices. However, solving the cohomology problem is
in general very di�cult and the fact that an exact solution can be found for these lattices
is probably related to the fact that they have a relatively simple ground state structure.
For the martini lattice and the octagon-square lattice, for example, all ground states have
the same particle number. The square lattice with two additional sites on every link has
ground states at di�erent �llings, but there are just one or two at each �lling. A way
to interpret these simpli�cations is that the lattices for which an exact solution exists,
typically accommodate the 3-rule better. This property, in turn, often leads to a reduction
in the frustration.

5.2.1 Martini lattice

For the martini lattice, which is formed by replacing every other site on a hexagonal lattice
by a triangle (see 5.1), the number of zero-energy ground states was found to equal the
number of dimer coverings of the hexagonal lattice [21]. The argument is as follows. Let us
de�ne sublattice S1 as the collection of sites on the corners of the triangles. The remaining
sites belong to sublattice S2. We de�ne Q = Q1 + Q2, where Q1 and Q2 act on di�erent
sublattices S1 and S2. The 'tic-tac-toe'-lemma says that the cohomology, HQ, is the same
as the cohomology of Q1 acting on the cohomology of Q2, that is HQ = HQ1(HQ2), given
that all non-trivial elements of H12 have the same fermion-number, f2, on S2. To compute
the cohomology of Q2 we consider a single site on S2. If both of the adjacent S1 sites are
empty, HQ2 is trivial: Q2 acting on the empty site does not vanish, while the �lled site is
Q2 acting on the empty site. Thus HQ2 is non-trivial only when every site on S2 is forced
to be empty by being adjacent to an occupied site. Note that there can be at most one
particle on each triangle in S1 and that there are as many sites in S2 as there are triangles
in S1 (for appropriate boundary conditions). It follows that an element in HQ2 must have
precisely one particle per triangle, each adjacent to a di�erent site in S2. The number
of such con�gurations equals the number of dimer coverings on the original hexagonal
lattice. This can be seen by thinking of the dimers as stretching between the S2 site and
the site replaced by the triangle whose occupied site is adjacent to the S2 site. A dimer
covering is such that each site is connected to precisely one link containing a dimer. This



62 The supersymmetric model on two dimensional lattices

is equivalent to having precisely one particle per triangle in the martini lattice. Since all
elements in HQ2 have the same number of particles on S1, they are automatically also
in H12. Finally, since all elements have f2 = 0, we �nd that HQ = H12. The number
of ground states for the supersymmetric model on the martini lattice, thus equals the
number of dimer coverings on the original hexagonal lattice. This problem was solved in
the context of statistical mechanics [82, 83]. For large systems (number of sites N →∞)
this gives a closed expression for the ground state entropy, SGS, per site

SGS
N

=
1

π

∫ π/3

0

dθ ln[2 cos θ] = 0.16153 . . .

We conclude that the ground state entropy is an extensive quantity. This is closely related
to the fact that for the martini lattice, due to its structure, the 3-rule can be implemented
in many ways.

5.2.2 Octagon-square lattice

TheM×N octagon-square lattice is obtained from theM×N square lattice by replacing
every site by a square (see �gure 5.1). The M × N octagon-square lattice thus contains
4MN sites. For this lattice the total number of ground states can be obtained analytically
[21], again by using the 'tic-tac-toe' lemma. We will consider the case with doubly periodic
boundary conditions. For this case, we take S1 to consist of all left-most sites of the squares.
Consequently, S2 is a collection of N periodic chains of length 3M . Now remember that
the periodic chain of length 3M has two ground states with M fermions. It follows that
if we leave S1 completely empty, we obtain 2N non-trivial elements of H2 at grade MN ,
that is, with MN fermions. To �nd the other elements of H2 we note that if we occupy
a site on S1, we block two sites on the S2 chain to its right. Consequently, the S2 chain
e�ectively reduces to an isolated site and an open chain of length 3(M − 1). It follows
that a con�guration with a single site on S1 occupied, does not belong to H2, since it
will contain an isolated site that can be both empty and occupied. Upon inspection of
the lattice, one quickly sees that if all S1 sites on a row are occupied, the S2 sublattice
e�ectively becomes a collection of open chains of length 3(M − 1). Consequently, this
gives an element of H2 at grade N(M − 1) +N = MN . It follows that H2 is trivial unless
all S1 sites on a row are either empty or occupied. This gives 2N − 1 non-trivial elements
of H2 corresponding to the con�gurations with at least one row of S1 sites occupied and
�nally 2M non-trivial elements of H2 corresponding to the con�guration with all S1 sites
empty. One easily checks that all non-trivial elements in H2 are at grade MN and thus
with MN fermions. From this it follows that all elements in H2 are automatically also in
H12. Finally, the fact that all elements in H12 have the same fermion number f = MN ,
implies that Q cannot map one element to another. From this it follows that HQ = H12,
even though, the condition that all elements have equal f2, does not hold for this case. We
conclude that the supersymmetric model on the octagon-square lattice has 2N + 2M − 1
zero energy ground states with MN particles.

For completeness, we mention that using the same arguments as above, we �nd that the
number of ground states for the octagon-square lattice with periodic boundary conditions
only in the horizontal (vertical) direction is 2N (2M). For open boundary conditions in
both directions the ground state is unique.



5.2 Exact results for the cohomology of Q on two-dimensional lattices 63

5.2.3 Graphs with extra sites on the links

In the previous two examples, we clearly saw that the 'tic-tac-toe' lemma could be ex-
ploited because the lattices naturally break up into sublattices. In this section, we discuss
a class of graphs where this property is again crucial. We introduce graphs of type Λn,
which are obtained from the original graph Λ by adding n−1 additional vertices on every
link. In the following the only restriction on the graph Λ is that it does not contain any
isolated sites. This is because for that type of graph the cohomology of Q is always trivial.

Let us start with the case Λ3, which was discussed in [21]. That is, we put two additional
sites on every link. Now consider the original graph Λ as the subgraph S1 and the ad-
ditional sites as the subgraph S2. The graph S2 is a collection of two site chains. The
non-trivial elements in H2 have the S1 sites neighboring a two site chain on S2 either both
empty or both occupied. It follows that there are only two non-trivial elements in H2, one
with S1 completely empty and one with S1 completely �lled. If we leave S1 completely
empty, we obtain one non-trivial element of H2 at grade LΛ, where LΛ denotes the num-
ber of links in the original graph Λ. The element with S1 completely �lled, clearly sits at
grade NΛ, where NΛ denotes the number of vertices in the original graph Λ. It now quickly
follows that these two elements are also in H12 and in HQ provided that NΛ 6= LΛ ± 1.

As an example consider the square lattice with doubly periodic boundary conditions as
the original graph Λ. The lattice Λ3 is shown in �gure 5.1. We �nd that LΛ = 2NΛ and the
total number of sites in Λ3 is N = 2LΛ + NΛ. Consequently, this lattice has one ground
state at 1/5 �lling and one at 2/5 �lling.

We can extend this result for the graphs of type Λ3 to the general case of Λ3m, with m
integer, using the cohomology results for the chain with open boundary conditions (see
section 4.4). Remember that open chains of length 3m and 3m− 1 have one ground state
with f = m fermions and an open chain of length 3m+1 has no zero-energy ground state.
If we take S2 again to consists of all the added sites in Λ3m, it is a collection of chains
of length 3m − 1. It follows that there are again two non-trivial elements in H2, one at
grade mLΛ and one at grade NΛ + (m− 1)LΛ. Again we �nd that these two elements are
also in H12 and in HQ provided that NΛ 6= LΛ ± 1.

For graphs of type Λ3m±1 there is no general solution to the cohomology problem, however,
one can relate it to the cohomology problem of the original lattice Λ.

For the graph Λ3m+1 the subgraph, S2, is a collection of chains of length 3m. For this case,
two S1 sites that are neighbors in the original graph, cannot be both occupied, because
then the S2 chain between these two sites e�ectively reduces to an open chain of length
3m − 2, which has no zero-energy ground state. However, if the two S1 sites are both
empty or if one of them is occupied, the S2 chain accommodates one ground state with
m fermions in all cases. It follows that all allowed con�gurations on the original graph Λ
are non-trivial elements of H2. Clearly, we then �nd that H12 is directly related to the
cohomology of the original graph. Finally, since all elements in H12 have f2 = mLΛ we
�nd that HQ = H12 holds. We thus �nd that the cohomology of Q on Λ3m+1 at grade
n + mLΛ is directly related to the cohomology of Q on Λ at grade n. In particular, we
�nd that the Witten indices are related via WΛ3m+1 = (−1)mLΛWΛ.

For the graph Λ3m−1 the subgraph, S2, is a collection of chains of length 3m− 2. For this
case, two S1 sites that are neighbors in the original graph, cannot be both empty, because
then the S2 chain between these two sites has no zero-energy ground state. However, if the
two S1 sites are both occupied or if one of them is occupied, the S2 chain accommodates
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Figure 5.2: The M × N triangular (left) and hexagonal (right) lattice with periodic
boundary conditions along the directions of the two arrows.

one ground state withm−1 fermions in all cases. We can again relate all the elements inH2

to con�gurations on the original graph Λ, but now we have to use a particle-hole symmetry.
Following the same arguments as for the previous case, we conclude that the cohomology
of Q on Λ3m−1 at grade n+mLΛ is directly related to the cohomology of Q on Λ at grade
NΛ − n. In particular, the Witten indices are related via WΛ3m−1 = (−1)mLΛ−NΛWΛ.
The results we derived in this section for graphs of type Λn with general n were also
obtained on a homotopy level using Alexander dualities in [77].

5.3 Triangular and hexagonal lattice

In this section, we discuss the triangular and hexagonal lattice. For these lattices, the
ground state structure is not fully understood. Nevertheless, it is clear that ground states
occur in a �nite window of �lling fractions ν = f/L [39] and that there is extensive ground
state entropy [78]. The latter result, stems from a numerical analysis of the Witten index
for �nite size systems (see 5.3.1). The former result, is an analytic result, which we discuss
in section 5.3.2, where we also discuss an analytic upper bound on the number of ground
states [76].

5.3.1 Numerical results for Witten index

In tables 5.1 and 5.2 respectively, we show the Witten indices for the M ×N triangular
and hexagonal lattices, with periodic boundary conditions applied along two axes of the
lattice [78] (see �gure 5.2). The exponential growth of the index is clear from the table.
To quantify the growth behavior, one may determine the largest eigenvalue λN of the
row-to-row transfer matrix for the Witten index on size M ×N . For the triangular lattice
this gives [78]

|WM,N | ∼ (λN)M + (λ̄N)M , λN ∼ λN

|λ| ∼ 1.14 , arg(λ) ∼ 0.18× π

leading to a ground state entropy per site of

SGS

MN
≥ 1

MN
log |WM,N | ∼ log |λ| ∼ 0.13 .
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The argument of λ indicates that the asymptotic behavior of the index is dominated
by con�gurations with �lling fraction around ν = 0.18. Similarly, one obtains for the
hexagonal lattice [78]

SGS

MN
& 0.18 .

For this case the data is insu�cient to determine the argument of λ.

Table 5.1: Witten index for M ×N triangular lattice (taken from [78]).

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 1 -3 -5 1 11 9 -13 -31 -5 57
3 1 -5 -2 7 1 -14 1 31 -2 -65
4 1 1 7 -23 11 25 -69 193 -29 -279
5 1 11 1 11 36 -49 211 -349 811 -1064
6 1 9 -14 25 -49 -102 -13 -415 1462 -4911
7 1 -13 1 -69 211 -13 -797 3403 -7055 5237
8 1 -31 31 193 -349 -415 3403 881 -28517 50849
9 1 -5 -2 -29 881 1462 -7055 -28517 31399 313315
10 1 57 -65 -279 -1064 -4911 5237 50849 313315 950592
11 1 67 1 859 1651 12607 32418 159083 499060 2011307
12 1 -47 130 -1295 -589 -26006 -152697 -535895 -2573258 -3973827
13 1 -181 1 -77 -1949 67523 330331 -595373 -10989458 -49705161
14 1 -87 -257 3641 12611 -139935 -235717 5651377 4765189 -232675057
15 1 275 -2 -8053 -32664 272486 -1184714 -1867189 134858383 -702709340

Table 5.2: Witten index for M ×N hexagonal lattice (taken from [78]).

2 4 6 8 10 12 14 16 18
2 -1 -1 2 -1 -1 2 -1 -1 2
4 3 7 18 47 123 322 843 2207 5778
6 -1 -1 32 -73 44 356 -1387 2087 2435
8 3 7 18 55 123 322 843 2215 5778
10 -1 -1 152 -321 -171 7412 -26496 10079 393767
12 3 7 156 1511 6648 29224 150069 1039991 6208815
14 -1 -1 338 727 -5671 1850 183560 -279497 -4542907
16 3 7 1362 12183 31803 379810 5970107 55449303 327070578

5.3.2 Bounds on the size and dimension of the homology of Q

There are two main results for bounds on the full cohomology problem for the triangular
and hexagonal lattices. Here we brie�y sketch how they were obtained. The �rst result,
obtained by Jonsson [39], is a certain type of homology cycle for these lattices called
cross-cycles. The size of a cross-cycle refers to the number of vertices in the cycle, that
is the number of occupied sites. A bound on the size of these cross-cycles is obtained
and this results in a bound on the grade of the vector spaces for which the homology is
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non-vanishing. That is, there is a set of rational numbers r, such that there exist cross-
cycles of size rN , where N is the number of vertices of the two-dimensional lattice. For the
triangular lattice it is found that r ∈ [1

7
, 1

5
]∩Q and for the hexagonal lattice r ∈ [1

4
, 5

18
]∩Q

(and r ∈ [1
5
, 1

4
] ∩Q for the square lattice, see section 5.4). Let us give the speci�c form of

a cross-cycle z of size k:

• z =
∏k

i=1(|ai〉 − |bi〉) such that z ∈ Ck, that is the ai and bi obey the hard-core
condition.

• Furthermore, there is at least one con�guration in z such that all sites in the lattice
are either occupied or adjacent to at least one occupied site. This is called a maximal
independent set.

• Finally, ai is adjacent to bi.

Note that, in this case, we consider the homology and not the cohomology. It is easily
veri�ed that z belongs to the kernel of Q†, since Q† gives zero on each term in the product:

Q†(|ai〉 − |bi〉) = |∅〉 − |∅〉 = 0.

The latter two conditions ensure that z is not exact. The second condition ensures that
there is no site c such that Q†|c〉

∏k
i=1(|ai〉−|bi〉) = z and the third condition ensures that

|aj〉|bj〉
∏

i 6=j(|ai〉 − |bi〉) violates the hard-core condition.
Clearly, the latter two conditions, combined with the hard-core condition, also impose
certain bounds on the size of a cross-cycle. For the triangular lattice the size of the cross-
cycles is at most a �fth of all the sites in the lattice and at least a seventh [39]. In fact,
the cross-cycles are found to induce tilings of the triangular lattice with paralellogram-
shaped tiles of area 5 and area 7. See �gure 5.3 for a speci�c tiling and its corresponding
cross-cycle. The black dots are the ai sites, whereas the white dots are the bi sites. Note
that both {ai} and {bi} are a maximal independent set. For the square lattice the cross-
cycles also induce a tiling (see �gure 5.7). This will be discussed in more detail in the
next section. For further details and the speci�c form of the cross-cycles for the hexagonal
lattice we refer to [39].
The second result that imposes a bound on the (co)homology on the triangular and
hexagonal lattices, was obtained by Engström [76]. He �nds an upper bound to the total
dimension of the cohomology and thus to the Euler characteristic for general graphs G
using discrete Morse theory: if G is a graph and D a subset of its vertex set such that G\D
is a forest, then

∑
i dim(H

(n)
Q ) ≤ |Ind(G[D])|. Here H(n)

Q is the n-th cohomology class of Q
on the independence complex on the graph G and Ind(G[D]) is the induced independence
complex on the subset D. Thus �nding the minimal set of vertices that should be removed
from G to obtain a forest, gives an upper bound on the total dimension of HQ and thus
on the total number of zero energy ground states for the supersymmetric model on the
graph G.
As an example we show the hexagonal lattice of size 2m× 2n. The subset D contains mn
disconnected sites (see �gure 5.4). Each site can be empty or occupied in Ind(G[D]) and
thus |Ind(G[D])| = 2mn. Finally, also the triangular lattice is shown (�gure 5.5). For the
triangular lattice of size 2m × n the upper bound was found to be approximately φmn,
with φ = 1

2
(1 +

√
5), the golden ratio.
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Figure 5.3: An example of a cross-cycle on the triangular lattice (taken from [39]). The
black dots are the ai sites, the white dots are the bi sites. Both sets {ai} and {bi} are
maximal independent sets. Notice the induced tiling.

Figure 5.4: For the hexagonal lattice we show from left to right: the graph G, the forest
G \D and the subset D (taken from [76]).

Figure 5.5: For the triangular lattice we show from left to right: the graph G, the forest
G \D and the subset D (taken from [76]).
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Table 5.3: Witten Index for M × N square lattice with periodic boundary conditions
along the horizontal and vertical direction (taken from [36]).

1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 -1 1 3 1 -1 1 3 1 -1 1 3
3 1 1 4 1 1 4 1 1 4 1 1 4
4 1 3 1 7 1 3 1 7 1 3 1 7
5 1 1 1 1 -9 1 1 1 1 11 1 1
6 1 -1 4 3 1 14 1 3 4 -1 1 18
7 1 1 1 1 1 1 1 1 1 1 1 1
8 1 3 1 7 1 3 1 7 1 43 1 7
9 1 1 4 1 1 4 1 1 40 1 1 4
10 1 -1 1 3 11 -1 1 43 1 9 1 3
11 1 1 1 1 1 1 1 1 1 1 1 1
12 1 3 4 7 1 18 1 7 4 3 1 166
13 1 1 1 1 1 1 1 1 1 1 1 1
14 1 -1 1 3 1 -1 -27 3 1 69 1 3
15 1 1 4 1 -9 4 1 1 4 11 1 4

5.4 Square lattice

In this section, we discuss the square lattice which plays a central role in this thesis. For
this lattice we really tried to push our understanding of both the ground state properties
as well as the low lying excitations for the two-dimensional system. In this section we
summarize the results that were obtained for the ground state counting. For the square
lattice with various types of boundary conditions the cohomology problem can be fully
solved [35, 75, 84], however, the proofs, especially for the square lattice wrapped around
the torus, are rather involved and are presented separately in chapter 6. The discussion
of the low lying excitations is postponed to chapter 8.
A �rst study of the Witten index for the square lattice with doubly periodic boundary
conditions revealed various interesting properties [36]. First of all, numerical studies of
the Witten index does not show the exponential growth as was found for various other
lattices. Instead, at �rst glance it clearly shows a very di�erent behavior (see table 5.3).
A more detailed investigation of these results led to two conjectures [36] for which a proof
was found by Jonsson [37].
We state these results here:

• The eigenvalues of the transfer matrix with periodic boundary conditions are all
roots of unity.

• For an M ×N square lattice with periodic boundary conditions in both directions,
W = 1 when M and N are coprime.

Extending this work, Jonsson found a general expression for the Witten index Wu,v of
hard-core fermions on the square lattice with periodic boundary conditions given by the
vectors u = (u1, u2) and v = (v1, v2). TheM ×N square lattice is now a speci�c case with
u = (M, 0) and v = (0, N) [37]. A crucial step in [37] is the introduction of rhombus tilings
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Figure 5.6: Tilings of the 2D square lattice. Above: the four di�erent rhombi. Below:
mapping between tiles and hard-core fermions.

of the square lattice. It is shown that the trace in the Witten index can be restricted to
con�gurations that can be mapped to coverings of the plane with the four rhombi or tiles
shown in �gure 5.6. A rhombus tiling is obtained by tiling the plane with the rhombi
depicted in �gure 5.6, such that the entire plane is tiled and the rhombi do not overlap
(they can have only a corner or a side in common). We call the tiles with area 4 diamonds
and the ones with area 5 squares. Note that the sides of these rhombi, which connect the
hard-core fermions, are in agreement with the heuristic 3-rule.
To state Jonsson's results for the Witten index we introduce the following notations.
We denote by Ru,v the family of tilings of the plane with boundary conditions given by
u = (u1, u2) and v = (v1, v2). Furthermore |R+

u,v| and |R−u,v| are the number of tilings of
this plane with an even and an odd number of tiles, respectively. Finally, we de�ne

θd ≡
{

2 if d = 3k, with k integer
−1 otherwise.

Jonsson's result then reads

Theorem 1 (Jonsson, 2006) The Witten index for the square lattice with periodicities
u = (u1, u2) and v = (v1, v2) is given by

Wu,v = −(−1)dθdθd∗ + |R+
u,v| − |R−u,v|,

where d ≡ gcd(u1 − u2, v1 − v2) and d∗ ≡ gcd(u1 + u2, v1 + v2).

It can be shown that the Witten index grows exponentially with the linear size (not the
area) of the 2D lattice. Detailed results for the case of diagonal boundary conditions have
been given in [38]. Further studies of the Witten index transfermatrix for the square lattice
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Figure 5.7: An example of a tiling on the square lattice and its corresponding cross-cycle.
The black dots are the ai sites, the white dots are the bi sites. Both sets {ai} and {bi}
are maximal independent sets. (Figure source: [39])

with diagonal and free boundary conditions by Baxter [74] have led to an additional set
of conjectures.
We should stress that this result was obtained by studying the purely combinatorial
problem of con�gurations of hard-core fermions or, equivalently, of hard squares with
negative activity. For the square lattice the condition that two particles cannot occupy
two adjacent sites readily translates to the hard square condition if we de�ne the squares
to be tilted by 45◦ and to have a particle at their center. It follows that the squares cannot
overlap, however they can have a corner or a side in common.
In a follow-up study Jonsson presents the �rst results on the homology problem for the
square lattice with doubly periodic boundary conditions [39]. He shows that at certain
grades the homology must be non-vanishing since there exist non-trivial elements of the
homology. These cross-cycles were discussed in section 5.3.2. Jonsson �nds that for the
square lattice the size of the cross-cycles is at most a quarter of all the sites in the lattice
and at least a �fth. In fact, he �nds that all the possible cross-cycles are one-to-one with
the tiling con�gurations of the rhombi of �gure 5.6. See �gure 5.7 for a speci�c tiling and
its corresponding cross-cycle z =

∏k
i=1(|ai〉−|bi〉). The black dots are the ai sites, whereas

the white dots are the bi sites. Note that both {ai} and {bi} are a maximal independent
set.
A natural extension of the results by Jonsson, is to relate the full cohomology problem
to tiling con�gurations. This relation was �rst conjectured by Fendley [34]. Using the
'tic-tac-toe' lemma and a spectral sequence, we were able to prove this relation explicitly
when ~u = (m,−m) and v1 + v2 = 3p [35] (see chapter 6).

Theorem 2 For the square lattice with periodicities ~v = (v1, v2), v1 + v2 = 3p with p a
positive integer and ~u = (m,−m), we �nd for the cohomology HQ

Nn = dim(H
(n)
Q ) = tn + ∆n (5.1)

where Nn is the number of zero energy ground states with n fermions, tn is the number of
rhombus tilings with n tiles, and

∆n =

{
∆ ≡ −(−1)(θm+1)pθdθd∗ if n = [2m/3]p
0 otherwise,

(5.2)
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with [a] the nearest integer to a. Finally, d = gcd(u1−u2, v1−v2), d∗ = gcd(u1+u2, v1+v2)
and

θd ≡
{

2 if d = 3k, with k integer
−1 otherwise.

(5.3)

Although, the proof is restricted to a certain set of periodicities, the theorem is expected
to hold for general ~u and ~v. Compelling evidence stems, on the one hand, from the fact
that Jonsson's result for the Witten index holds for general periodicities and on the other
hand, from numerical and analytic results for small systems (see chapter 7).
Clearly, as an immediate consequence of this theorem, we obtain for the Euler character-
istic, or equivalently, the Witten index

χ ≡
∑
n

[
(−1)ndimH

(n)
Q

]
=
∑
n

(−1)n(tn + ∆n).

which is precisely the result obtained by Jonsson for the hard squares at activity z = −1
[37].
Another direct consequence follows from the area of the tiles. The diamonds have area
4, and thus a tiling with solely diamonds will contain L/4 tiles. This corresponds to an
element in the L/4-th cohomology and a ground state with L/4 particles. Conversely, a
tiling consisting of squares only corresponds to an element in the L/5-th cohomology and
a ground state with L/5 particles. Continuing this argument for general tilings with the
diamonds and squares, we �nd on the in�nite plane that for all rational numbers r ∈ [1

5
, 1

4
]∩

Q the cohomology at grade rL is non vanishing, or, equivalently, there exists a zero energy
ground state with rL particles. Clearly, this nicely agrees with the bounds on the size of
the homology of Q† obtained by Jonsson using the cross-cycles. However, for the cross-
cycles it was an open question whether they are independent, i.e. in di�erent homology
classes, and whether they constitute a basis. A comparison with our result, theorem 2,
suggests that the cross-cycles are indeed independent and span the full homology with
the exception of ∆n elements at the n-th grade.
Finally, the theorem provides insight in the growth behavior of the number of ground
states, since this is now directly related to the growth behavior of the number of tilings.
In [38] various results on the number of tilings on the doubly periodic square lattice are
reported (see also section 6.6). Here we mention two of these results for the case that
~u = (m,−m) and ~v = (k, k).

1 For m and k such that gcd(m, k) = 1, there are no rhombus tilings that satisfy the
periodicities given by ~u and ~v.

2 For m = 3µq and k = 3λq, with µ and λ positive integers and q large, the total
number of rhombus tilings t grows as

t ≡
∑
n

tn ∼
9

2

4µq+λq

πq
√
µλ
. (5.4)

In the �rst case, it follows that the number of ground states with n particles is given
by ∆n, which is non-zero only for n = [2m/3]p given that 2k = 3p. In the second case,
the number of ground states shows the same growth behavior as the number of tilings.
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This number turns out to be dominated entirely by the number of tilings with 2L/9 tiles.
Furthermore, it is noteworthy that the number of tilings grows exponentially with the
linear dimensions, instead of the area, of the system. It follows that, even though the
system is highly frustrated, this leads only to a sub-extensive ground state entropy. This
is in contrast with results discussed in the previous sections for the triangular, hexagonal
and martini lattices, for which the ground state entropy was found to be extensive.
We �nish this chapter by stating the results for the square lattice on the plane and
on the cylinder. For open boundary conditions in either one or both of the diagonal
directions along the square lattice ((m,−m) and (n, n)) the number of ground states
reduces dramatically [37, 75, 34]. One �nds that it is either one or zero, except for the
cylindrical case periodic in the (m,−m)-direction with m = 3p and n = 3q + 2 or n =
3q + 3. In that case the number of ground states is 4(q+1). These results are fairly easily
obtained using the 'tic-tac-toe' lemma. The proofs are given in section 6.4. Finally, there is
a result for the Witten index for the square lattice ofM ×N sites with periodic boundary
conditions along the (N, 0)-direction and N odd [84]. It was proven that for odd N

W =

{
2 if 3 divides gcd(M − 1, N)
−1 otherwise.


