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1.1. Problem domain and objectives 

Healthcare is constantly changing and becoming more complex. We live in an era of 
growing concern with regards to the quality and costs of healthcare. The rapid 
technology advances since the 1990s have made it possible for (computerized) Clinical 
Decision Support Systems to play an important role in healthcare improvement, and 
such improvements have already been shown in many occasions [1]. Most clinical 
decision support systems described in the literature interact with the healthcare provider 
(usually a physician) about a specific patient and concern computer applications running 
at the same location where decision support is provided.  
 
This thesis has two parts, each addressing a form of decision support that deviates from 
this mainstream scenario and which has been less investigated. In the first form, 
decision support is aimed at health care managers, aiding them in scrutinizing and 
improving healthcare practice by finding “interesting” patient subgroups. These are 
patients whose behavior deviates markedly from the rest. In the second form, decision 
support is embedded within a larger telemedicine system. We dub such systems with the 
term “Decision Support Telemedicine Systems” (DSTS). Below we describe each of 
these two forms and state the respective objectives and research questions. 

1.1.1 Part 1: Subgroup discovery 

Clinical decision support systems operate on a knowledge base. Knowledge can be 
elicited from experts or extracted from the literature. Knowledge can also be derived 
from large databases. In this case we speak of knowledge discovery. CDSSs that use 
knowledge obtained by knowledge discovery are often referred to as intelligent decision 
support systems. However, communicating the discovered knowledge itself to the user 
(without using it for further reasoning) can often be very useful, for example by focusing 
the user’s attention to interesting phenomena thereby aiding them in generating 
hypotheses or taking actions for improving health care practice.  
 
Many methods of knowledge discovery exist. Most of them aim at obtaining knowledge 
in the form of a global predictive model where an outcome of interest (e.g. survival 
status) or its probability can be predicted for any subject in the population. For certain 
applications, however, one searches for interesting subgroups that stand out in a certain 
sense, think for example of a subgroup of patients with an extremely high probability of 
dying, or a subgroup of patients with a very high or very low blood glucose level. Instead 
of fitting a global model to the whole population, one may directly investigate which 
characteristics of subjects are responsible for this behavior. 
 
There are various subgroup discovery methods discussed in the literature. Of particular 
interest in this thesis is the Patient Rule Induction Method (PRIM) [2]. In contrast to other 
methods, PRIM is patient (in the sense that it is not greedy) with using the observations 
in the provided sample: to find a subgroup the algorithm removes a very small proportion 
of the observations in each step. This allows PRIM, which is in essence a hill climbing 
algorithm, to have sufficient data in subsequent steps to correct possible suboptimal 
earlier choices. PRIM was introduced in 1999 and is gaining popularity as a tool in 
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applied research, although its use in clinical medicine is still minimal. The objective of 
the first part of this thesis is to investigate the merits and limitations of applying PRIM to 
medical data. Specifically the following research objectives were pursued: 
 

� To assess the value of PRIM and compare it to the logistic regression model in the 
ability to discover subgroups of old intensive care patients with very high in-
hospital mortality (Chapter 2). Mortality is represented as a binary variable.  

� To identify and assess PRIM subgroups of intensive-care patients with very high 
values of blood glucose, in spite of being on an intensive insulin therapy (Chapter 
3). The blood glucose measurements are continuous and are ordered in time. 

� To compare the capabilities of PRIM with the established Classification and 
Regression Trees (CART) algorithm in subgroup discovery (Chapter 4).  

These three studies together are the most comprehensive attempt in medical informatics 
to shed light on the applicability of PRIM to clinical medical applications in static and 
temporal domains. 

1.1.2 Part 2: Decision Support Telemedicine Systems 

In Decision Support Telemedicine Systems (DSTS), which is the topic of the second part 
of the thesis, one may leave the clinical decision support system (CDSS) at the site 
where it was developed and provide the services of the system at a distance e.g. via the 
web. This not only eases the maintenance problem of the system, but the decision 
support services can also be provided to a wide range of users, most notably patients. 
 
We investigated the literature to understand what kinds of systems have already been 
described. Of specific interest were recurrent properties of such systems such as the 
type of communication used (e.g. store-and-forward such as email, or continuous such 
as teleconferencing), the type of decision support, and the types of medical processes 
that were relevant in a DSTS (e.g. monitoring, diagnosis or treatment). 
 
We assumed that the combination of telemedicine systems and decision support 
systems would also lead to a number of emerging properties that are not present in 
these systems separately. The value of one property often has implications for other 
properties. For example, when a low frequency store-and-forward form of 
communication is used (communication is carried out e.g. only 1 time every day), it will 
be impossible to provide decision support related to monitoring of data where rapid 
intervention is required in case of an abnormal measurement. An example in practice is 
an intensive care unit in a remote/rural area, with only minimal expert staff available at 
all times [3]. In this case a DSTS could be of assistance by relaying data of the remote 
Intensive Care Unit (ICU) to an ICU that does have enough resources available. The 
decision support task in such a system, would be to alert the staff of the assisting ICU of 
abnormal values observed in the monitored ICU and presenting the data in a way that 
facilitates the staff of the assisting ICU in making decisions and taking action. The types 
of available data may also have implications for its communication and what input data is 
available for the decision support system part of a DSTS.  
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It is probable, due to such relationships among properties, that we may find certain 
recurring structures in the DSTSs described in the literature. In the second part of this 
thesis we seek to conceptualize these recurring structures in a conceptual framework for 
DSTSs.  
 
Although conceptualizations are available for clinical decision support systems and 
telemedicine separately, the main advantage of using a single conceptualization for 
DSTSs is that it will focus on DSTS-related properties while leaving out information that 
may be relevant for only telemedicine systems or only clinical decision support systems. 
Such a conceptualization has many potential benefits. By focusing on a 
conceptualization unique for DSTSs, its elements will be relevant for stakeholders 
involved in DSTSs. Essentially these stakeholders include 1) clinicians looking for 
opportunities for DSTSs. Clinicians may be relatively unaware of telecommunication 
technology and clinical decision support technology. A unifying conceptualization can 
help clinicians to fill in blanks in their knowledge and may make them aware of certain 
important things when they consider a DSTS to support a medical process that they are 
knowledgeable about; 2) information communication technology (ICT) specialists 
(project managers, developers) responsible for implementing a DSTS. They are not 
necessarily knowledgeable about medical care processes and clinical decision support 
systems, and a unifying conceptualization will assist them in understanding these topics. 
Of course ICT specialists are generally very knowledgeable about telecommunication 
technology and integration of systems; 3) decision support system developers who seek 
to embed their system within a telemedicine environment. A unifying conceptualization 
may assist them in understanding important relevant elements involved in extending the 
(geographical) reach of their systems.  
 
A unifying conceptualization also has other advantages. Investigation of the DSTS 
literature made clear that in many cases descriptions of DSTSs were lacking some 
essential properties, and thus made it impossible to really understand what type of 
DSTS was being described. A unifying conceptualization can serve as a checklist of 
important properties that require description. Furthermore, a unifying conceptualization 
can also be used as a way of categorizing and comparing DSTSs. 
 
Our aims in obtaining DSTS conceptualization are: 

� To formulate a set of characterizing DSTS properties based on the literature that 
are important to describe and categorize a DSTS (Chapter 5). 

� To provide, aside from a general conceptual DSTS model and a definition of the 
term DSTS, a number of specific DSTS types (Chapter 6). 

1.2. Preliminaries 

The following paragraphs provide some background information on important topics 
related to the research in this thesis.  
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1.2.1 Intensive Care 

All chapters of the first part of this thesis are concerned with research within the medical 
domain of intensive care. This is not a coincidence as this environment is data and 
information intensive and there is a need to make sense of these data.  
 
Intensive care has been defined as “a service for patients with potentially recoverable 
conditions who can benefit from more detailed observation and invasive treatment than 
can safely be provided in general wards or high dependency areas” [4]. Detailed 
observation of the patients often involves a plethora of monitoring devices at the 
patient’s bedside. These devices produce large amounts of data being continuously 
generated over time, which are often stored in Patient Data Management Systems 
(PDMS).  
 
In many cases these data overwhelm clinicians and nurses responsible for interpreting 
and acting upon them. In addition there is evidence that doctors have difficulty to deal 
with temporal information [5]. Hence knowledge discovered from the data could 
potentially help intensive care physicians to get insight in the phenomena generating 
these data. This insight can support decisions about the management of health care, 
such as about withholding treatment or revising clinical guidelines. 
 
In the first part of this thesis we focus on two kinds of subgroups: patients with a high 
risk of mortality and patients with hyperglycemia (very high blood glucose levels). Below 
we describe the current approaches for mortality prediction and for blood glucose 
regulation in intensive care. 

Mortality prediction models in Intensive Care  

An important application of prognostic models of mortality in intensive care is to compare 
quality of care among different intensive care units. Survival status is easy to determine, 
it is linked to the effectiveness of an Intensive Care Unit (ICU), and mortality in the ICU 
has a relatively high frequency. However, when comparing ICUs one needs to adjust 
their mortality to the severity of illness in each ICU: some ICUs may have more severely 
ill patients than others. Prognostic models are used to correct for these case-mix 
differences as they provide a statement of the probability of death for each patient given 
patient characteristics that together determine the severity of illness.   
 
A valid prognostic comparison is conducted as follows: for a given ICU the prognostic 
model is applied to predict mortality of each patient. The predicted number of deaths is 
the average of these probabilities multiplied by the number of patients. This predicted 
number is compared to the actual number of deaths in the ICU by calculating the 
Standard Mortality Ratio (SMR). SMR is the ratio of the actual observed number of 
deaths and the predicted mortality by the model. The SMR can be calculated for a given 
probability range (e.g. between .1 and .2). When an ICU’s SMR = 1, the ICU is 
performing as predicted (in the given probability range); when SMR > 1, the ICU is 
performing worse than predicted; and when SMR < 1, the ICU is performing better than 
predicted.  
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Examples of well-known prognostic models are APACHE [6], SOFA [7] and SAPS [8]. 
These are logistic regression models that provide a probability of mortality for an 
individual patient based on a severity of illness score. A severity of illness score is 
calculated as the sum of “penalty points” assigned to some variables (such as age) and 
for deviations from normality for other variables (e.g. too high or too low blood pressure). 
 
Another important emerging type of prediction does not concern the prediction of 
mortality of every patient and it is not directly concerned with comparison between ICUs. 
This type concerns the discovery of subgroups with very high mortality. The rationale 
behind this approach is that for these patients answers to a set of clinical management 
questions is particularly important.  
 
The first question is whether such patients will still benefit from intensive care treatment; 
a clinician may share this information (about the elevated risk of dying) with the patient 
or his family to consider whether to pursue treatment. A second question is whether this 
information can be used to avoid admission to the ICU in the first place (e.g. to decide 
whether to perform surgery or not). Although the conventional (logistic regression) 
models are not specifically meant for subgroup discovery, they have been used to 
identify high-risk patients and it is natural to investigate their ability to perform this task 
and to compare them to a subgroup discovery algorithm.  

Hyperglycemia in Intensive Care 

Critically ill patients, even those without diabetes, often develop hyperglycemia (high 
blood glucose levels) in the ICU. Normally, when blood glucose is high the body 
produces insulin to decrease its concentration in the blood. However, trauma effects 
resulting from surgery often disturb the glucose homeostasis and can cause insulin 
resistance. Until recently, it was common practice to treat only marked hyperglycemia in 
these patients, since hyperglycemia was considered to be an adaptive response to 
critical illness. The landmark study of van den Berghe, however, showed that so–called 
“intensive insulin therapy” (IIT) aiming at normoglycemia (i.e., blood glucose level (BGL) 
between 4.4 – 6.1 mmol/l [80–110 mg/dl]) decreases mortality and morbidity of intensive 
care unit patients [9,10]. 
 
Since then, various variants of the IIT guidelines have been developed and implemented 
around the world, especially in Europe. Interestingly, although the mean blood glucose 
values for all patients has indeed decreased (as intended), it was still often the case that 
many patients suffered from hyperglycemia. It is true that hypoglycemia is more life-
threatening than hyperglycemia as the brain cannot last long without glucose, but 
hyperglycemia is harmful in the longer run. Research described in [10] suggests a 
significant difference in mortality of patients in the intensive care unit with normal 
glucose values compared to those with hyperglycemia. The question that the ICU we 
worked with has posed was: which patients do not seem to respond to therapy, that is, 
which patient characteristics can predict an elevated risk for hyperglycemia even when 
IIT is applied?  
 



15 

 

This is again a subgroup discovery problem. It is more complex than the problem of 
finding subgroups with very high mortality because the glucose measurements are time-
ordered (with no fixed sampling time) requiring design choices for representing these 
data and performing a sensitivity analysis of the performance of the discovered groups 
over time. 

1.2.2 Clinical Decision Support Systems 

When asked to describe the concept of Clinical Decision Support Systems, many will 
describe computers playing the role of a doctor in determining a diagnosis, or robots 
performing surgery. But in practice various types of CDSSs are used in many different 
medical domains supporting a wide range of medical processes. 

Short history of CDSSs 

In the early days (the early 1970s) researchers developed Bayesian and rule-based 
CDSSs that would support the process of diagnosis. Famous CDSSs from this period 
are the AAPHelp diagnostic system for acute abdominal pain [11], Internist-1, a 
diagnostic program for internal medicine [12] and MYCIN, a system for diagnosing and 
treating severe infections such as bacteremia and meningitis [13]. Although sometimes 
the clinical accuracy of these systems was reported to be better than that of (human) 
medical experts, most of these systems with a few exceptions, did not find successful 
implementation for several reasons and were approached with skepticism [14]. 
 
Over time this skepticism has declined, as described by Musen et al. [14] because of: 

� Increased pressure on cost-effectiveness. 
� The practice of evidence based medicine in a world of increased information 

availability. 
� Technology becoming cheaper, more efficient, more effective and user-friendly. 
� The availability of more physicians educated in the use of technology.  

There has been a shift in focus in CDSSs from diagnosis to reminder systems, guideline 
implementation, and knowledge discovery approaches. Finally, there is heightened 
awareness that such systems must be well integrated into clinical workflow processes 
(an important reason for not accepting these systems in the past). 

Classification of different types of CDSSs 

A CDSS can be characterized by the level of support, the consultation mode, and the 
communication style. The level of support ranges from general to patient specific, and 
includes: 

� Tools for information management: tools that provide an environment in which 
relevant information can easily be found and stored. Although these systems 
support healthcare, they are not directly involved in the actual decision making 
process, which is left to its users. An example is a system that merely displays 
protocol charts on the screen. 
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� Tools for focusing attention: systems that, based on some patient data (e.g. which 
medications they are using, or a lab value), alert healthcare professionals when 
‘abnormal’ circumstances are detected or may occur. These systems are generally 
used to alert the user of potential problems that may be overlooked. A typical 
example of this kind of system is a pharmacy system alerting for drug interactions. 
In this example the knowledge in the system is primarily about drugs. 

 

� Tools for providing patient specific recommendations, which provide advice based 
on the data of a specific patient. Examples of the type of advice these systems 
provide are suggestions for diagnosis, or lab tests that need to be performed to 
narrow the differential diagnosis, or systems that suggest therapy (e.g. the exact 
amount of antibiotics for a female patient with renal failure). 

 
The boundaries between these levels are not crisp but existing systems tend to fall in 
one of them. Aside from the level of support, systems differ in their consultation mode: 
some systems are passive providing advice only on demand, while others are active, 
providing feedback to the healthcare worker without being asked for it. Finally, 
regardless of the level of support and the consultation mode, a CDSS may operate in 
two communication styles: in the critiquing mode the system provides advice which is 
dependent on the adherence of clinical practice to a standard or a protocol (e.g. notifying 
the nurse that a BGL measurement was expected but not performed), whereas in the 
non-critiquing mode it provides advice regardless of whether a protocol is followed or 
not.  
 
The research presented in the first part of this thesis, related to subgroup discovery in 
intensive care, does not concern decision support systems in the classical sense. It is 
not a bedside system providing advice about a specific patient to a clinician. However, 
subgroup discovery can be perceived as decision support for the management of care. 
 
The user is typically a clinician responsible for improving the quality of care in the ICU. 
The level of support belongs to the “focusing attention” type. In particular, the system 
focuses attention on patient subgroups that behave “differently” from the rest. The “alert” 
is not triggered by a specific value of a lab result or a drug-drug interaction for a specific 
patient, but is rather a description of a group responding markedly differently than the 
rest. The user must decide on the subsequent steps to take (e.g. revise policy of 
admissions or refine a guideline).  
 
In terms of consultation mode, our “system” is passive: subgroup discovery is performed 
on demand. In contrast to mainstream CDSSs this demand may be very infrequent. 
However, it is conceivable to use the system in an active mode by allowing it to run 
regularly and to alert the user about changes in the subgroup definitions over time. 
Finally, our systems (as we apply them) have a non-critiquing mode in the strict sense at 
the process level: they do not compare what physicians do with a guideline. However, at 
the outcome level, the subgroup discovery approach for seeking hyperglycemia patients 
can be perceived as a critiquing system: in spite of implementing a protocol meant to 
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maintain blood glucose within a narrow range for any patient, some are not responding 
well to therapy. In this specific sense it is a critiquing system providing alerts on patients 
not conforming to the intention of the guideline. 

1.2.3 Telemedicine 

Telemedicine can simply be described as medicine at a distance. A more extensive 
definition (from Chapter 5) is that telemedicine is a process involving the remote 
communication of medical information by healthcare professionals and/or patients, using 
any electronic medium to facilitate clinical care. 
 
Telemedicine is often confused with telehealth, which is similar to telemedicine but also 
incorporates non-clinical care provision such as education of patients. There is also the 
term e-health, which is generally used as an umbrella term to encompass telemedicine, 
telehealth, electronic patient records, mobile health and consumer health informatics. 
 
The main advantage of telemedicine is that the care provider and receivers do not have 
to be at the same location. This can be useful when either of the communicating parties 
is in a hard to reach location, e.g. rural areas, war territory, sub-marines, or outer space. 
Telemedicine may also have other advantages in that it can lift certain social barriers, 
and in some cases can reduce costs of healthcare. 
 
Examples of common forms of telemedicine are teledermatology: sending of 
dermatologic images across a distance, and teleradiology: sending radiographic images 
across a distance.  

1.2.4 Telemedicine and decision support 

With the growing need for decision support and the need to have clinical data available 
at all times and places, the future will likely see more integration of telemedicine 
initiatives and decision support systems. To make this integration successful there is a 
need for standards. At OSI Layer 6 (the presentation layer), a good example of a 
valuable standard is XML. SOAP (XML over http/https) is a common way of exchanging 
information nowadays, e.g. in web service oriented architectures. If SOAP is used, the 
only thing that is necessary to get data from one system into another is to convert the 
data to be communicated to XML format. Of course we still require mappings between 
the shared XML data to a form that is acceptable for the data source and the receiving 
system. 
 
If OSI Layer 7 (the application layer) standards are used across many systems, 
information exchange is facilitated even more. An example of an OSI level 7 standard is 
Health Level 7 (HL7) [15]. If both the data source and decision support system represent 
their data using HL7, information exchange becomes trivial (assuming they use a 
standard or shared terminology). Our framework presented in this thesis does not focus 
on these standards and on integration, these issues are covered in other frameworks 
such SANDS [16], which focuses on interfaces between decision support systems and 
data sources (at a distance). 
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2.1. Abstract 

2.1.1 Purpose 

To apply the Patient Rule Induction Method (PRIM) to identify very elderly Intensive 
Care (IC) patients at high risk of mortality, and compare the results with those of a 
conventional logistic regression model.  

2.1.2 Methods 

A database containing all 12,993 consecutive admissions of patients aged at least 80 
between January 1997 and October 2005 from intensive care units (n=33) of mixed type 
taking part in the National Intensive Care Evaluation (NICE) registry. Demographic, 
diagnostic, physiologic, laboratory, discharge and prognostic score data were collected. 
After application of the SAPS II inclusion criteria 6,617 patients remained. In this data we 
searched PRIM subgroups requiring at least 85% mortality and coverage of at least 3% 
of the patients. Equally-sized subgroups were derived from a recalibrated (second level 
customization) Simplified Acute Physiology Score II model. Subgroups were compared 
on an independent validation set using the Positive Predictive Value (PPV), equaling the 
subgroup mean mortality.  

2.1.3 Results 

We identified four subgroups with a positive predictive value (PPV) of 92%, 90%, 87% 
and 87%, covering respectively 3%, 3.5%, 7% and 10% of the patients in the validation 
set. Urine production, lowest pH, lowest systolic blood pressure, mechanical ventilation, 
all measured within 24 hours after admission, and admission type and Glasgow Coma 
Score were used to define these subgroups. SAPS and PRIM subgroups had equal 
PPVs. 

2.1.4 Conclusions 

PRIM successfully identified high-risk subgroups. The subgroups compare in 
performance to SAPS II, but require less data to collect, result in more homogenous 
groups and are likely to be more useful for decision makers. 
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2.2. Introduction 

Aging of the population has increased the proportion of very elderly (80+) patients being 
admitted to the ICU. These patients form an important group with high resource usage 
and a relatively low probability of survival [1]. However, old age alone is not a good 
predictor for patient survival [2-6]. It is important to discern subgroups within this 
population with very high chances of not surviving IC treatment. 
 
There are various reasons for seeking such groups. First, subgroups may reveal 
determinants that provide insight into the patient subpopulations. Some of these 
determinants may be risk factors that can be acted upon. Second, much research on the 
efficacy and efficiency of therapeutic interventions relies on the enrolment of high-risk 
patients to maximize the likelihood of finding a beneficial treatment effect. Third, the 
groups can be used to improve case-mix adjustments in order to better compare the 
quality of care of different ICUs. Fourth, information about the patient’s probability of 
survival can be communicated with the patients and their families. Lastly, such 
information can support informed decisions about (withholding) treatment e.g. when the 
expected quality of life is very low and the therapy the patient is receiving is very 
aggressive. This is especially relevant for the very elderly. It should be noted, however, 
that the unconditional use of models for this latter reason has raised much resistance in 
the intensive care community [7]. 
 
The most commonly used models in IC for predicting hospital mortality include the Acute 
Physiology and Chronic Health Evaluation (APACHE) II, III and IV [8], and the Simplified 
Acute Physiology Score (SAPS) II and III [9-10]. These are parametric models that rely 
on severity of illness scores: the higher the score, the higher the associated mortality. 
The scores are based on demographic and diagnostic information, and also on 
physiological data from the first 24 hours after ICU admittance. Although these models 
were originally designed for case-mix adjustments, they have also been used for high 
risk-group detection, e.g. in [11]. A disadvantage of using these models for subgroup 
identification is that the subgroups are not homogeneous in terms of patient 
characteristics and hence provide less insight into the makeup of the patient risk groups. 
 
In this paper we apply a relatively new non-parametric method for subgroup discovery 
called the Patient Rule Induction Method (PRIM) [12] for the identification of subgroups 
at very high risk of dying. We compare it to the SAPS II conventional parametric logistic 
regression model. PRIM was chosen because it was designed to work with high 
dimensional data, is parsimonious with data, handles missing values in a non adhoc 
manner, is based on solid statistical ideas, and has a computer implementation available 
to the public. We compared the PRIM subgroups with subgroups derived using SAPS II, 
as SAPS II is the prognostic model of preference of NICE. We also made use of 
APACHE II, but only to categorize our continuous variables into scores, that were also 
used as input for PRIM sub-group discovery. APACHE II was chosen for this because it 
covered most of the variables we needed to categorize. 
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It should be noted that subgroups that are discovered using PRIM are always specific for 
the data used to find them. The factors used to define a subgroup are thus specific for 
the specific ICU’s tools, staff etc. from which data have been obtained. As an example, 
consider a staff pre-conception that a certain patient will not be saved and a decision 
might be made to stop treatment. This group of patients might be recognized as a high-
risk group by PRIM and as such, will be a self-fulfilling prophecy. Of course this is true 
for most research concerning prognostic models. The problem can be partly alleviated 
when the data is a good reflection of the total population. 
 
To our knowledge this is the first time that PRIM is applied within our domain and the 
results are therefore also of theoretical interest. In this paper we compare PRIM to a 
logistic regression model. Below we provide preliminaries required for understanding 
these approaches. 

2.2.1 Subgroup discovery 

Subgroup discovery [13-14] aims at finding patterns, corresponding to subgroups with 
interesting properties, in the data. This is in contrast to developing a global model, such 
as a classification tree or logistic regression model, aiming at a global good 
performance. Subgroup discovery approaches can be characterized by the type of the 
target variable and covariates, subgroup description language, subgroup quality 
function, and search strategy. Algorithms originating from the Machine Learning and 
Data Mining literature tend to focus on discrete variables. These algorithms use search 
heuristics and they often employ a beam search to mitigate the consequences of greedy 
choices. The PRIM algorithm is an example of a subgroup discovery algorithm. 

2.2.2 Patient Rule Induction Method (PRIM) 

The Patient Rule Induction Method suggested by Friedman and Fisher [12] is referred to 
as a “bump-hunting” algorithm. Bump-hunting algorithms are used to find regions in the 
input variable space (or covariate space) that are associated with a relatively high or low 
mean value for the outcome. This is unlike regression models, which seek to model the 
whole population by optimizing a likelihood function or a human function such as patient 
utility. A region is described by conjunctive conditions using the input variables and is 
associated with the mean value of the output in that region. These rules have the 
following form:  
 
 If condition1 and … and conditionk, then predicted mean outcome value. 
 
These conditions can use numeric (e.g. age) or categorical (admission type) attributes. 
For continuous attributes a condition will have the following form: 
 
 variable < value, or  
 variable > value, or  
 value1< variable < value2 
 
For categorical attributes, conditions have the following form: 
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 variable = value 
 variable = value1 or … or valuem 
 
A rule defined using such conditions corresponds to a hypercube in the input variable 
space and is often called a box. It will be a simple rectangle in two-dimensional space.  
 
Rules discovered using PRIM can be applied to a new dataset. To validate a rule one 
could compare the expected mean associated with the rule to the observed mean on a 
validation set. 
 

PRIM Rule induction 

When many input variables are considered, it is not feasible to consider all possible rules 
in order to choose the best one. Hence, PRIM uses heuristics to constrain the search for 
the rules. PRIM starts with a box containing all given observations. For each continuous 
variable it considers removing (“peeling”) a small portion of observations with the highest 
and, separately, lowest values of the variable. For example if the dataset consists of the 
attributes age and height then PRIM will consider 4 operations corresponding to 
removing the observations with the highest and lowest values of each variable. It 
chooses the peel that results in the remaining box with the highest outcome mean. In 
this research we are not interested in finding regions with a low outcome value, but to 
achieve this one would simply have to inverse the outcome and perform the same 
analysis. The other candidate peels are discarded. The process is reiterated on the 
obtained sub-box until no additional peels seem to improve the outcome mean or until a 
resulting sub-box would include too few observations, where this minimum threshold is 
specified by the analyst. 
 
For continuous variables the amount of data to be removed in each peel can be 
controlled by the data analyst and is specified as a percentage (alpha), usually 5%, of 
the observations in the current box. Choosing a high alpha risks missing an optimal box: 
in each iteration, PRIM makes a choice to remove a big chunk of data based only on one 
variable in that iteration. If this choice is not the optimal one, then PRIM may not be able 
to recover from this mistake. Choosing a small alpha makes PRIM more “patient”: it will 
need more steps to arrive at an answer but it is much less at risk to get a suboptimal 
result. For categorical attributes, PRIM considers removing observations corresponding 
to one value of the variable at a time. 
 
The final box after peeling may not be optimal because of past greedy suboptimal 
choices. PRIM aims to recover from these mistakes by trying to expand the box in a 
process inverse to ‘peeling’ called ‘pasting’, in which the box is iteratively enlarged as 
long as the outcome’s mean increases. The result of peeling and pasting is a sequence 
of boxes, consisting of all the boxes obtained in the process: from the initial box 
containing all the data to the box that is obtained after pasting. 
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As any non-parametric algorithm that learns from data, the boxes derived with PRIM 
may overfit the data. To avoid overfitting, PRIM uses cross-validation: it reports the 
mean for each obtained box not only on the data that was used to derive the box but 
also on a held-out set obtained from the developmental set itself, and is thus not part of 
the independent testset. A significant difference in the outcome mean on the held-out set 
usually indicates overfitting and the analyst is advised not to trust such boxes. 
 
When a box is finally chosen and noted, its associated observations are removed and 
the search for a new box can be started by repeating the whole peeling and pasting 
process in the remaining data. Sub-boxes are always conditioned on those obtained 
earlier: to estimate a mean outcome of a box, one should first remove the data 
corresponding to the earlier boxes. 
 
PRIM provides a number of tools to post-process the rules that were discovered, such 
as the removal of redundant variables, assessment of inter-box dissimilarity and plotting 
relative frequency ratio plots, but these are outside the scope of this paper. The 
interested reader is referred to [12]. 

2.2.3 Related work 

Besides PRIM, other subgroup discovery algorithms exist. The Data Surveyor algorithm 
for subgroup discovery by Holsheimer et al. [15] considers one variable at a time and 
seeks the value interval having the highest target mean. Directly targeting the (at that 
iteration) optimal interval can potentially make it much more greedy than PRIM, as a final 
box can be reached after only very few iterations. A subgroup is expressed as a 
conjunction of interval-based constraints. The CN2-SD [16] algorithm resembles Data 
Surveyor in the subgroup description language and the search strategy. It is an 
adaptation of the CN2 classification rule learner to subgroup discovery. The algorithm 
develops constraints on the value ranges of variables and uses a quality function which 
is a tradeoff between the generality of the rules and the relative accuracy of the rules. 
CN2 requires both the outcome and the covariate variables to be discrete. The SD-Map 
algorithm [17] is an extension of the FP-tree algorithm (frequent pattern discovery) for 
subgroup discovery. It is efficient because it bypasses the generate-and-test hypotheses 
cycle. It is one of the few subgroup discovery algorithms explicitly dealing with missing 
data. However, it only works with discrete attributes (covariates and target variable). 
 
We chose to use PRIM, as opposed to the other algorithms, because we valued its 
patience and its ability to deal with continuous attributes, as well as it being publicly 
available. The following section introduces logistic regression models. 

2.2.4 Logistic regression models in Intensive Care 

A logistic regression model (LRM) is a probabilistic parametric model.  For a given set of 
covariate values, the model predicts the probability of a binary outcome variable Y. Y=1 
indicates the occurrence of the event, such as death. The model has the following form:  
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where 
  
 

 denotes the covariate vector. The  function is called the logit function 
and is linear in the  coefficients. LRMs are used in most IC predictive 
models where x commonly includes one or more severity of illness scores and 
sometimes also diagnostic categories. For example the logit of the SAPS II model is: 
  
 
where  quantifies the severity of illness score (the higher the score, the worse the 
patient’s condition is). 
 
One reason for the popularity of the LRM is the interpretation that is given to a covariate 
coefficient  in terms of an odds ratio. For an event with probability  its odds are  

. The odds ratio is defined as the ratio of the odds of an event occurring in one 
group (e.g. smokers) to the odds of it occurring in another group (e.g. non-smokers).  
For a binary covariate with coefficient ,  turns out to be equal to the odds ratio of the 
groups that the covariate defines. For a continuous variable such as SAPS the quantity 

 is equal to the odds ratio of a group of individuals having a SAPS of one unit more 
than the other group. 

2.3. Materials and methods 

The Dutch National Intensive Care Evaluation (NICE) comprises a continuous and 
complete registry of all patients admitted to the intensive care units (ICUs) of the 
participating hospitals in the Netherlands. This NICE is not to be confused with the 
(British) National Institute for Health and Clinical Excellence. The data used in this study 
consisted of all 12,993 consecutive admissions of patients 80 years and older between 
January 1997 and October 2005. The data originated from all 33 adult ICUs, of mixed 
type, that were participating in NICE when the research project was initiated (January 
2004). To facilitate comparison with the SAPS II model we applied the SAPS II exclusion 
criteria: no readmissions, no cardio-surgical patients, and no patients with burns, 
resulting in 6,617 patients. The dataset was split randomly in a developmental set 
containing 66% of the patients and a validation set containing the rest. Fig. 1 shows the 
number of patients in the exclusion, inclusion, developmental, and validation sets. 
Details concerning the quality of the data used in this study were published elsewhere 
[18]. 
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Figure 1. Flowchart showing the number of patients in the exclusion, inclusion, developmental, and 
validation sets. 

 
The database included the following variables, all related to the first 24 hours of stay: 
age, gender, length, weight, Body Mass Index (BMI), admission type (medical, 
scheduled, unscheduled), cardiopulmonary resuscitation, gastrointestinal bleeding, 
intracranial mass effect, dysrhythmia, cerebrovascular accident, acute renal failure at 
admission to the ICU, chronic renal insufficiency, chronic dialysis, metastasized cancer, 
aids, hematological malignancy, cirrhosis of the liver, cardiovascular insufficiency, 
respiratory insufficiency, immunological insufficiency, confirmed infection, burns, sepsis, 
mechanical ventilation at 0/24 hours, Glasgow Coma Score (GCS) and sub-scores, 
urine, vasoactive drugs, arterial partial oxygen pressure (PaO2), fraction inhaled oxygen 
(FiO2), arterial CO2 pressure (PaCO2), PaO2/FiO2 ratio, alveolar-arterial oxygen 
difference (AaDO2), prothrombin time, urea, bilirubin, severity of illness score (SAPS II), 
predicted mortality probability (SAPS II); lowest and highest value of respiratory rate, 
blood pressure, temperature, white blood cell count, creatinin, potassium, sodium, 
bicarbonate, hematocrit, albumin, glucose; the admission, lowest, highest value of heart 
rate and systolic blood pressure, the lowest pH value, and ICU- and hospital mortality. 
Description of these variables can be found on the NICE website (unpublished data, 
http://www.stichting-nice.nl). 
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Patient group Developmental set (n = 4413) Validation set (n = 2204) 

Age, yrs 81-85 (83) 81-86 (83) 

Admission type, %   

Medical 46.0 44.2 

Surgical unscheduled 23.2 21.8 

Surgical scheduled 30.7 34.0 

Male, % 46.5 45.3 

SAPS II Score 30-53 (40) 30-53 (40) 

APACHE II Score 14-23 (18) 14-23 (17) 

GCS 24 hrs after admission 15-15 (15) 15-15 (15) 

CPR, % 8.3 7.7 

ICU LOS 0.8-3.7 (1.3) 0.7-3.5 (1.2) 

ICU mortality, % 20.4 21.1 

Hospital LOS 6.2-28 (14) 7.0-27.0 (14) 

Hospital mortality, % 34.5 34.5 

Table 1. Description of the patient population. Data are reported as interquartile range (median). 
Interquartile range is the range between the 25th to 75th percentile. SAPS = Simplified Acute Physiology 

Score, APACHE = Acute Physiology And Chronic Health Evaluation, GCS = Glasgow Coma Score, CPR = 
Cardiopulmonary resuscitation, ICU = Intensive Care Unit, LOS = Length Of Stay. 

PRIM considers only conjunctive rules on continuous variables and hence cannot 
generate a condition using disjunctions, such as “blood pressure > 90 or heart rate > 
110” nor on the same continuous variable “blood pressure < 70 or > 90”. However, the 
latter type of conditions represents a relevant variable-outcome relationship in which a 
low and a high value of a variable, such as body temperature or blood pressure, are 
associated with a high risk. PRIM can in principle discover two high risk subgroups in 
different runs, one for the low and one for the high values of the variable, but this would 
be unintuitive. To capture such a covariate-outcome relationship in a single rule we also 
include severity of illness scores associated with each continuous variable. Such a score 
will receive a high value for low as well as for high values of the variable under 
consideration. The scores were obtained by applying the APACHE III scoring scheme [8] 
because it covers most used variables and discerns relatively many score values. 
Variables in our data that were not included in the APACHE III scoring scheme were 
scored according to the APACHE II or SAPS II schemes, in this order. Following 
common practice, we scored missing values as 0 (i.e. the value is assumed to be normal 
in the normal range). An example of a rule that PRIM can discover using a continuous 
variable that is scored using the APACHE III scoring scheme is: if APACHE3_heartrate 
score > 15, then predicted mortality is 0.80. It should be noted that this means the actual 
heartrate would be equal to or higher than 155 beats per minute. Scores are used in 
addition to the original (continuous) variables. This means that both continuous variables 
as well as their scored counterparts can be part of the same subgroup definition.  
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To make the comparison between PRIM and the SAPS II logistic regression model we 
recalibrated the SAPS II model on our developmental set using second-level 
customization (the coefficients of the model are fitted anew) [19-20]. 
 
In this study we used the SuperGEM™ 1.0 software that implements PRIM (unpublished 
data: http://www-stat.stanford.edu/~jhf/SuperGEM.html).  Using the developmental set, 
we searched for the largest subgroups having (a mean of) at least 85% hospital mortality 
on the developmental set and the held-out set. Furthermore, we required that each 
subgroup should include at least 3% of the patients in the training set. To allow for 
alternative overlapping subgroups, we applied PRIM with different parameter settings, 
each time starting with the whole developmental set. Searching for new subgroups was 
stopped when the total number of unique patients covered by the subgroups approached 
our pre-determined threshold of 10% of the population in the developmental set. For 
comparison, each PRIM group was compared to an equally sized group containing 
patients with the highest SAPS II scores and consequently, the highest SAPS II 
predicted mortality. 

2.3.1 Statistics 

We calculated the positive predictive value (PPV) of the PRIM and corresponding 
(equally-sized) SAPS II subgroups on an independent validation set. For each subgroup 
we constructed 1000 bootstrap samples to calculate the 95% Confidence Interval (CI) for 
the difference between the PPVs obtained by PRIM and SAPS II. Statistical analysis 
was performed with S-PLUS® 6.2 (Insightful, Seattle, WA). Data are reported as 
interquartile range and median. The level of significance was set at p < 0.05. 

2.4. Results 

Using PRIM we found three subgroups in the developmental set, that we refer to as A, B 
and C. Subgroup A is defined as patients having: 
 

� 24 hour urine production < 0.83 l 
� mechanical ventilation at 24 hours after admission 
� lowest systolic blood pressure during the first 24 hours < 75 mmHg 
� lowest pH during the first 24 hours < 7.3 and 
� medical or unscheduled surgical reason for admission. 

The mean outcome for group A on the developmental set was: 94.8%. Subgroup B is 
defined as patients having: 
 

� lowest systolic blood pressure during the first 24 hours < 70 mmHg 
� 24 hour urine production < 0.9 l and 
� lowest pH value during the first 24 hours < 7.3 or > 7.6. 

The mean outcome for group B on the developmental set was:  91.2%. 
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Subgroup C is defined as patients having a Glasgow Coma Score < 5. It is associated 
with mean outcome on the developmental set of 86.6%. 
 
Observe that in Subgroup A, only the original continuous variables turned out to be 
selected in the definition although both the scores and original variables were available 
for use. In the definition of Subgroup B, scores of continuous variables were selected, 
which have been converted back to their approximate original values, as reported above, 
for readability. 
 
Table 2 provides a description of Subgroups A, B, and C on the validation set in terms of 
coverage, group makeup and performance. The table also describes a new subgroup 
obtained by the union of patients covered by Subgroups A, B and C. 
 
The subgroups of PRIM and SAPS II all have a high PPV in the validation set (Table 2). 
Note that PPV (the proportion of the event within a subgroup) is equivalent to the 
hospital mortality mean. It is quite coincidental that the mortality means of the PRIM 
subgroups turned out to be equal to the means in their corresponding SAPS II groups. 
However, as can be seen in the table, the PRIM and corresponding SAPS II subgroups 
only partially overlap and hence consist of different patients. Slightly changing the 
definition of a subgroup would lead to non-identical results. For example, if we would 
have used the value 0.7 l instead of 0.83 l in the “24 hour urine production” condition in 
PRIM subgroup A, then it would have lead to a mean mortality of 0.91 and 0.93 for the 
PRIM and SAPS II subgroups respectively. 
 
Combining the patients contained in any of the three subgroups in one composite group 
also results in a high PPV while at the same time including considerably more patients 
than the individual subgroups. This means that although the subgroups may overlap (as 
a single patient can belong to multiple subgroups), they still differ sufficiently to provide 
added value when combined. PRIM and SAPS II consider different patients as the 
highest risk patients, as seen by the low overlap between Subgroups A and B and the 
corresponding SAPS II subgroups. 
 
The difference in PPV between the PRIM and corresponding SAPS II subgroups was not 
statistically significant (95% confidence interval -0.015 – 0.076). Although the patients 
with the highest SAPS II model probability are indeed at high risk, the original (un-
recalibrated) SAPS II model greatly overestimates the actual risk, as seen by the SAPS 
II predicted mortality in Table 2, and is thus not suited for identifying patients with a risk 
of death exceeding a pre-specified threshold. 
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Subgroup A B C A or B or C 

 PRIM  SAPS II  PRIM  SAPS II  PRIM  SAPS II  PRIM  SAPS II  

PPV (Hospital mortality), 

% 

91.8* 91.8* 89.5* 89.5* 87.3* 87.3* 87.3 84.4 

Patients covered by 

subgroup, % 

2.8 3.5 6.8 9.6 

SAPS II Score 70-95 (80) 91-100 

(95) 

70-94 

(80.5) 

88-99.25 

(93) 

64-91 (77) 79-93 (85) 64-88.25 

(76) 

74-89.25 

(80) 

SAPS II predicted 

mortality, % 

83.8-97.8 

(92.5)89.1 

96.9-98.5 

(97.8)97.8 

83.8-97.6 

(92.8)88.4 

96.1-98.4 

(97.4)97.2 

75.3-96.9 

(90.5)83.7 

91.9-97.4 

(95.0)94.5 

75.3-96.2 

(89.7)83.9 

88.0-96.5 

(92.5)91.9 

Recalibrated SAPS II 

predicted mortality, % 

72.6-91.2 

(82.3)80.7 

89.3-93.1 

(91.2)91.4 

72.6-90.8 

(82.7)79.9 

87.7-92.8 

(90.3)90.3 

65.1-89.3 

(79.7)75.6 

81.4-90.3 

(85.9)85.9 

65.1-87.9 

(78.8)75.4 

76.9-88.4 

(82.3)82.5 

Age, yrs 81-85 (83) 81-85 (82) 81-85 (83) 81-85 (82) 81-86 (83) 81-85 (83) 81-86 (83) 81-86 

(83) 

Male, % 49.2 47.5 46.1 43.4 45.6 49.0 45.3 49.5 

Admission type, %         

Medical 73.8 85.2 73.7 82.9 83.9 79.2 78.8 75.9 

Surgical unscheduled 22.6 13.1 22.4 13.2 12.1 16.8 17.0 19.3 

Surgical scheduled 0 1.6 3.9 3.9 4.0 4.0 4.2 4.7 

GCS 24 hrs after 

admission 

3-15 (15) 3-3 (3) 3-15 (15) 3-4.5 (3) 3-3 (3) 3-10.5 (3) 3-4 (3) 3-15 (4) 

CPR, % 29.5 34.4 23.7 36.8 40.9 35.6 35.4 31.6 

ICU LOS 0.2-1.3 

(0.5) 

0.2-1.3 

(0.5) 

0.2-0.9 

(0.4) 

0.2-1.4 

(0.6) 

0.2-3.0 

(0.9) 

0.2-3.5 

(0.9) 

0.2-2.7 

(0.7) 

0.3-4.3 

(1.2) 

ICU mortality 88.5 85.3 84.2 82.9 77.2 79.2 78.8 75.0 

Hospital LOS 1.4-8.0 

(2.5) 

1.3-6.1 

(2.0) 

1.2-7.7 

(2.5) 

1.3-7.2 

(2.5) 

1.2-6.6 

(2.9) 

1.5-10.0 

(3.8) 

1.3-7.8 

(2.9) 

1.6-12.2 

(4.7) 

Overlap, % 37.7 36.8 55.7 66.5 

Intersection PPV 

(Hospital mortality), % 

91.3 92.9 91.6 89.4 

Intersection, Patients at 

risk, % 

1.0 1.3 3.8 6.4 

Table 2. Description of the subgroup population and estimates on the validation set. Data are reported as 
interquartile range (median), and if after this another number is present, it is the mean value. Interquartile 
range is the range between the 25th to 75th percentile. PPV = Positive Predictive Value, SAPS = Simplified 
Acute Physiology Score, In the table SAPS II always refers to the original/un-recalibrated SAPS II model 

unless noted otherwise, GCS = Glasgow Coma Score, CPR = Cardiopulmonary Resuscitation, ICU = 
Intensive Care Unit, LOS = Length Of Stay. *That the PPV of the PRIM subgroups and the corresponding 

SAPS group is equal is coincidental. 
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2.5. Discussion 

Using PRIM, we found and validated subgroups of patients at a very high risk to die 
before hospital discharge within the population of very elderly IC patients. The 
subgroups are described by conjunctions of simple conditions based on data which are 
routinely collected for virtually all ICU patients during the first 24 hours after admission. 
Almost 10% of elderly ICU patients were identified as having a risk greater than 85% to 
die before hospital discharge and, in an independent sample of patients, the positive 
predictive value of this prediction was 87%. Our subgroups had a similar positive 
predictive value as the SAPS II model after recalibration for Dutch very elderly ICU 
patients. However, a major advantage of the PRIM generated rules is that they are easy 
to interpret and, more importantly, they describe homogenous populations in terms of 
patient characteristics, which can be beneficial in therapeutic efficacy research and are 
likely to be more intuitive for decision makers. As an example, consider a subgroup of 
what are high-risk patients according to the SAPS II model. The makeup of this group 
can be very diverse (compared to one derived using PRIM) because the total SAPS II 
score is composed of many small sub-scores for different risk related factors. It is 
therefore hard for a decision maker to get insight into the general cause for patients 
being in this subgroup, whereas with PRIM subgroups, a subgroup consists of a number 
of conditions that are linked with “AND” and in that sense all patients within the subgroup 
are ‘alike’.  
 
In comparing the characterization of the PRIM to the SAPS groups, the following 
differences clearly stand out. The SAPS II scores of the PRIM groups are markedly 
lower than those assigned to the SAPS II groups. This means that the SAPS II mean 
predicted probabilities assigned to the PRIM groups will be lower than the observed 
mortality mean. This is even more pronounced for the recalibrated SAPS II model. For 
example while the mean probability (which is equal to PPV) found in PRIM group A is 
91.8%, the mean predicted probability according to the recalibrated SAPS II is only 
89.1%. This is evidence that PRIM is arriving at "bumps" at different regions of the 
feature space than those found by the models based on SAPS II, or for similar scoring 
systems in general. The make-up of patients in the PRIM and SAPS groups are 
different: the SAPS groups generated by accumulating the patients at most risk will tend 
to first exhaust all patients with the feature associated with the maximum penalty (this is 
GCS of value below 6, contributing 26 points to the SAPS II score). This is easily seen in 
SAPS groups A and B (note that the worst value of GCS is 3). PRIM can discover 
patients corresponding to subranges of features that are not penalized heavily enough 
by SAPS. One way to capitalize on our observations on the differences between PRIM 
and SAPS is adding dummy variables in the SAPS model corresponding the the PRIM 
groups. 
 
The most important prognostic factors in our model were GCS, admission type, blood 
pressure, urine production and acidosis. Interestingly, in another prognostic model 
based on recursive partitioning [21], aiming at predicting the likelihood of survival for all 
elderly ICU patients, similar risk factors were found, although there were differences in 
the cut-off values, and the risk was not required to be as high as in our study. Few other 
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models have been published that predict mortality specifically in elderly ICU patients. 
However, they were either specialized for pneumonia patients only and not validated in 
an independent patient population [22], or used data on functional status prior to ICU 
admission that are not available in our data set [23].  
 
Our study has some limitations. First, PRIM requires some user-interaction and is not 
exhaustive in its search for subgroups and other adequate subgroup definitions are likely 
to exist. Second, the developmental and validation sets were randomly selected samples 
from the same population. This kind of validation eliminates the effects of changes in 
population and treatment over time. We cannot exclude that our model will be less 
accurate in identifying high risk patients in the future if therapeutic options may be 
improved. It should also be noted that our dataset was obtained solely from ICUs in the 
Netherlands. Third, we compared our high-risk subgroups to those derived from the 
SAPS II model. SAPS II was developed for patients of all ages. We recalibrated the 
SAPS II model for an elderly Dutch population and only included patients fulfilling the 
SAPS II inclusion criteria, however, a completely new model based on logistic regression 
specifically developed for elderly patients is likely to have higher predictive accuracy 
than SAPS II. 
 
Although this study was part of a research project on prognosis and preferences of 
elderly ICU patients aged 80 years and older, the methodology used in this paper can be 
used for other patient groups. A model such as PRIM might also be used to find regions 
in the data where logistic regression models perform poorly by finding regions where the 
difference between the predicted probability and the outcome is high.  

2.6. Conclusion 

In sum, we successfully identified non-parametric descriptions of subgroups with very 
high probability of death in the very elderly ICU population. These descriptions are 
comparable in performance to SAPS II, but require less information, are easier to 
understand, and result in groups of relatively homogenous patients. Future research will 
focus on comparing PRIM to other subgroup discovery algorithms and using the same 
approach on other patient populations. 
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3.1. Abstract 

3.1.1 Objective 

Despite the wide use of blood glucose management guidelines in Intensive Care (IC), 
hyperglycemia is still common. The aim of this study was the discovery of possible 
hyperglycemia determinants by applying the Patient Rule Induction Method (PRIM) to 
routinely collected data within the first 24 hours of admission, and to relate them to the 
literature. 

3.1.2 Methods 

PRIM was applied in two setups to data of 2,001 IC patients including 50,021 records of 
blood glucose levels and other variables. The independent predictors of blood glucose 
measurements were variables whose value is known before the time of the 
corresponding measurement, summarizing its “past”. These variables are candidates for 
inclusion in subgroup definitions and may constitute hyperglycemia determinants. 
Subgroups were validated using a random split design, and time-sensitivity of 
performance was analyzed. We compared our results to the literature.  

3.1.3 Results 

PRIM was able to identify relatively large subgroups having markedly high mean glucose 
values. Besides well-known determinants (e.g. the previous glucose value), PRIM also 
discovered possible determinants of which less is known about their relationship to 
hyperglycemia. Some possible determinants reported in the literature were not found by 
PRIM. 

3.1.4 Conclusions 

We demonstrated for the first time the utility of using subgroup discovery to uncover 
possible determinants for non-responsiveness to treatment. This implies the possible 
use of this technology to scrutinize the effects of various guidelines in clinical medicine 
on patient outcomes without requiring the development of a global predictive model. We 
hypothesize that by focusing on the identified subgroups, clinical guidelines may be 
improved. Further research is required to test this hypothesis. 
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3.2. Introduction 

Glucose regulation is an increasingly important topic in Intensive Care (IC) where ways 
for improving guidelines to manage the blood glucose level are constantly sought. The 
landmark study by van den Berghe [1], which showed that normalization of the plasma 
glucose level of IC patients resulted in decreased morbidity and mortality, has been 
influential in setting up new guidelines for intensive-insulin therapy. Guidelines are 
however not always beneficial to all patients at all times, and providing tools to 
investigate the effects of guideline-based therapy on clinical outcomes is an important 
contribution of medical informatics research towards the improvement of guidelines. 
 
The underlying biological mechanisms of glucose regulation are complex. The stress 
reaction of the body, in response to an injury, induces a release of hormones which 
increases hepatic glucose production [2]. The same hormones will inhibit insulin 
mediated glucose uptake to skeletal muscle [3]. Pre-existing diseases such as diabetes 
mellitus may contribute to hyperglycemia. Other factors to which hyperglycemia may be 
attributed, either reflect the severity of illness (e.g. acidosis, low potassium) or pertain to 
the treatment of the patient (e.g. the use of corticosteroids, diuretics, induced 
hypothermia) [2; 4-6]. An overview of important risk factors and determinants is given in 
[7]. 
 
To steer therapy, most recently suggested guidelines such as those described in [1; 8-
13] rely primarily on the last measured glucose measurement, and sometimes the trend 
in previous glucose values and nutritional feed rates, but disregard other available 
clinical data. Although as a result of these guidelines the mean blood glucose level of the 
patient population as a whole might decrease, hyperglycemia is still often found in 
critically ill patients.  A natural question to pose is which patients are at high risk of 
hyperglycemia despite having a blood glucose management guideline in place. 
 
In this work we focused the search for such subgroups within glucose measurements 
from the first 24 hours because hyperglycemia is a prevalent problem in this period. This 
also means that a relatively large group of patients will be available. 
 
The research presented in this paper is innovative for a number of reasons. First, we are 
not aware of efforts to apply the subgroup discovery algorithm PRIM to glucose data; our 
dataset is quite large, it contains time-oriented data, and is derived from guideline-based 
treatment. In addition, our research aims to help bridging the gap between a data-mining 
approach and the actual improvement of care whereas other work in the literature, 
focuses mainly only on one of these two. 
 

3.3. Objectives 

This paper is concerned with scrutinizing an intensive-insulin therapy guideline based on 
time-oriented data. The nature of time requires adequate representation of the data and 
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the validation of the acquired knowledge. The primary aim of this study was the 
identification of determinants of hyperglycemia, by means of the Patient Rule Induction 
Method (PRIM) [14], using commonly available clinical data residing in an Intensive Care 
Information System (ICIS), including laboratory results, vital signs and drug orders. 
Unlike current approaches for direct glucose level prediction based on modeling the 
underlying biological processes and the insulin resistance dynamics themselves [15] 
ours is aimed at focusing attention on observations that markedly deviate from the “rest” 
of the observations (in this case, ones with no hyperglycemia). The interpretation of 
these subgroups can provide insight into why some patients do not respond well to 
therapy and contribute to the improvement of treatment, e.g. by adjusting current 
guidelines to timely prevent the occurrence of these observations. A secondary aim was 
to investigate how our results relate to the literature on hyperglycemia risk factors and 
determinants. 

3.4. Methods 

3.4.1 Data 

Between January 2005 and February 2006 data were prospectively collected in an 18-
bed mixed general-surgical Intensive Care Unit (ICU) of a teaching hospital. All data 
were routinely collected for direct patient care in the ICIS (MetaVision®, iMD-soft, Tel 
Aviv Israel) and due to the design and the observational character of the study, obtaining 
informed consent was waived. Glucose regulation was performed through an algorithm 
incorporated in the ICIS as previously described [13]. The data included a total of 50,021 
measurements of 2,001 patients collected during the patients’ entire length of ICU stay.  
 
 

dataset
50,021 measurements

first 24 hours no

yes

18,826 measurements
of 2,001 patients

patient in

validation set
no developmental data

12,581 measurements
of 1,330 patients

validation data
6,245 measurements

of 671 patients

yes

yes

31,195 measurements

 
 

Figure 1. Flowchart showing the number of glucose measurements within the first 24 hours, and the 
developmental and validation sets. 
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We used a split-sample design in which two thirds of the patients were randomly 
selected and all their measurements were assigned to the developmental set, and the 
measurements of the remaining patients were assigned to the validation set. See Fig. 1 
for the respective set sizes. Characteristics of the patients in the developmental and 
validation sets are shown in Table 1.  
 
The data included variables which were known at admission time to the ICU, among 
which were: admission type (medical, scheduled, unscheduled), acute renal failure, 
chronic renal insufficiency, chronic dialysis, cirrhosis, cardiovascular insufficiency, 
respiratory insufficiency, immunological insufficiency, burns, and whether the patient has 
pre-existing diabetes mellitus.  
 
In addition to the data obtained at admittance we also included temporal variables that 
were repeatedly measured for each patient during the patient’s ICU stay. The outcome 
variable in our study is the measured plasma glucose, which is a temporal variable 
repeatedly sampled with an interval between two measurements ranging between 15 
minutes and 4 hours. The independent variables include static variables and temporal 
variables whose value is known prior to the glucose measurement: For each glucose 
measurement taken at some time t we include values of other temporal variables 
obtained at times prior to t. 
 
Based on expert opinion (of the second author of this paper) these temporal variables 
included: 

� Glucose-related variables: the previous glucose value, the glucose trend based on 
the last two previous glucose measurements (mean change in concentration/min), 
and the average of the last three previous glucose measurements 

� The most recent value during the last 6 hours of: bicarbonate, sodium and 
potassium 

� The average value of: urine rate/hour, central temperature (both variables 
measured during the last 6 and also 2 hours), blood pressure, respiratory rate 
(both during the last 2 and 6 hours) 

� The most recent value during the last 24 hours (that is, anytime prior to the 
measurement) of: albumin, white blood count, prothrombin time (PTT), 
thrombocyte count, and C-Reactive Protein (CRP) 

� The binary variables corresponding to: whether renal replacement therapy was 
used during the last 12 hours, and whether corticosteroids were administered 
during the last 12 hours  

� The insulin drip setting between previous and last glucose measurement. 
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Patient group Total (n = 2001) Developmental set 
(n = 1330) 

Validation set        
(n= 671) 

Age, yrs 64.9 ± 13.6 (67) 57-
74 

64.7 ± 13.7 (67) 56-
74 

65.3 ± 13.4 (67) 57-74 

Male, % 64.5 64.2 65.0 

Pre-existing diabetes, 
% 

12.1 12.1 12.2 

Admission type, %    

Medical 25.7 25.6 25.9 

Surgical unscheduled 8.6 8.9 8.0 

Surgical scheduled 65.7 65.5 66.0 

SAPS II score 35.6 ± 16.1 (31) 25-
42 

35.6 ± 16.2 (31) 25-
42 

35.6 ± 15.9 (31) 25-43 

APACHE II score 17.5 ± 7.4 (16) 13-20 17.6 ± 7.5 (16) 13-21 17.31 ± 7.2 (16) 13-20 

ICU length of stay 
(days) 

2.36 ± 5.1 (0.96) 
0.79-1.92 

2.37 ± 5.5 (0.96) 
0.75-1.92 

2.34 ± 4.3 (0.96) 0.79–
1.98 

ICU mortality, % 13.7 13.8 13.7 

Hospital mortality, % 14.1 14.1 14.2 

First day glucose, 
mmol/l 

8.1 ± 3.7 (7.4)  5.9-
9.4 

8.1 ± 3.9 (7.4) 5.8-9.4 8.0 ± 3.3 (7.5) 5.9-9.4 

First day # glucose 
measurements 

18826 12581 6245 

Measurements prior to 
which cortico-steroids 
were administered 
during the previous 12 
hours 

5222 3324 1898 

Actrapidpump setting 
(IU/hr) 

3.12 ± 4.7 (2) 0-4 3.17 ± 4.85 (2) 0-4 3.02 ± 4.43 (2) 0-4 

Table 1. Patient characteristics in the total sample, the developmental set, and the validation set. Data are 
reported as mean +- SD, (median), interquartile range (25th to 75th percentiles). SAPS = Simplified Acute 

Physiology Score, APACHE = Acute Physiology and Chronic Health Evaluation, ICU = Intensive Care Unit 

 
It should be noted that in addition to these temporal data preceding a glucose 
measurement, the static variables known at admission time are used as well. The static 
data and summaries of temporal data are dealt with in the same manner during the 
subgroup discovery procedure described below.  
 
All data were collected in accordance to the Dutch National Intensive Care Evaluation 
(NICE) registry definitions [16]. To increase data quality, it was checked whether 
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variables were within their value domains. A report on the quality of the data used in this 
study appeared in [17], although it should be noted that [17] reports on data from an 
earlier time-period. 
 
For reasons to be described shortly, we also included a score variable reflecting the 
associated severity of illness for each of the continuous variables, with the exception of 
PTT, thrombocyte count and CRP, which could not be converted in the same way. Most 
of the scores were obtained by categorizing the continuous variables, using the Acute 
Physiology and Chronic Health Evaluation (APACHE) IV cut-off criteria [18]. Variables 
not included in the APACHE IV model were categorized according to criteria from 
APACHE II or Simplified Acute Physiology Score II (SAPS) [19], in this order. An 
example of categorization is converting a patient’s maximum body temperature value of 
40 °C into a severity score of 4 units by using the APACHE IV categorization criteria. 
These categorizations, which result in ordered numeric scores, allow us to group very 
high and very low values together in a single condition. For uncovering the determinants 
of hyperglycemia, the algorithm has a choice between using a severity score and the 
raw data on which it is based, and although unlikely, it can also choose to use both.  
 
We also had data needed to describe the patient sample and/or the subgroups such as 
mortality, length of stay, and scoring systems (APACHE II and SAPS II scores). These 
variables reflect outcome measures or, as in the case of scoring systems, their values 
can be calculated only after 24 hours of stay have elapsed.  
 

3.4.2 Subgroup discovery 

The Patient Rule Induction Method (PRIM) is a method proposed by Friedman and 
Fisher [14] that seeks subgroups in a high dimensional dataset having a markedly higher 
(or lower) value of an outcome than in the total sample. Initially PRIM includes all 
available observations (in our case the individual glucose measurements) in what is 
referred to as a box. It then attempts to shrink the box iteratively at either one side of the 
box, by peeling off a percentage ( ) of the data of one of the variables, such that there is 
maximum increase in the mean at each successive sub-box (this is the procedure for 
continuous variables, it is slightly different for categorical variables). That is, at each step 
it considers the tails at the  and  quantiles of each variable’s distribution and 
removes the data under the tail rendering the highest mean sub-box. ‘Peeling’ continues 
until a user-specified minimum number of observations in the box is reached. At this 
point the PRIM algorithm performs a local inverse procedure to ‘peeling’ called ‘pasting’ 
aiming at recovering from possible sub-optimal choices made during the ‘peeling’ 
process. The term ‘patient’ in the algorithm refers to the fact that ‘peeling’ removes only 
a small proportion of the observations in each step. 
 
The algorithm is formally described in [14] and the following example aims to illustrate its 
use in our application: Consider 100 patient records describing the weight and gender of 
100 patients. Over a period of 24 hours body temperature is recorded at various times, 
say each hour. Similarly each patient’s BGL is recorded 10 times (for the sake of 
simplicity) over this period. Each glucose value will be associated with a glucose record, 
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resulting in 1000 glucose records in total. Each glucose record is described by the 
corresponding BGL measurement (the outcome) and by the weight, gender and a 
summary (e.g. mean in the last 6 hours) of all temperature measurements prior to the 
time of obtaining the BGL value. Let us configure PRIM to peel 1% of the data ( = 0.01). 
The whole data comprises the initial box, and at the outset PRIM considers all the 
following candidate peeling operations: removing 1% of the records having the lowest 
weight; removing 1% of the records having the highest weight; removing 1% of the 
records with the lowest mean temperature; removing 1% of the records with the highest 
mean temperature; removing all records of male patients (operations on binary and 
categorical variables do not consider ); and removing all records of the female patients. 
For each of the obtained subgroups PRIM calculates the mean BGL of the resulting box 
and it will retain the box with the maximum BGL value. The procedure is repeated 
recursively, with the peeling parameter still set to 1% (but now of the observations 
remaining after the peeling operation). 
 
PRIM was used on the developmental data to find subgroups of high glucose 
measurements. Recall that only variables whose values are known prior to a glucose 
measurement, such as the previous glucose measurement, are considered. Subgroups 
that PRIM generates are described using conjunctive conditions. For example, a 
subgroup of measurements with a predicted glucose value > 11 mmol/l may be 
described by “temperature < 36 °C and the admission type is medical”. It cannot 
however, generate a rule using disjunctions on continuous variables such as “blood 
pressure > 90 or heart rate > 110”, nor “blood pressure < 70 or > 90”. However, the latter 
type of composite condition represents a variable-outcome relationship that is common 
in medicine in which a low and a high value of a variable is associated with adverse 
outcomes, while values in-between are associated with a normal value of the outcome. 
In order to generate conditions implicitly capturing this typical variable-outcome 
relationship, we included the categorizations of the continuous variables as described 
above. For example PRIM is able to generate a condition such as: “the 
severity/abnormality score of body temperature is greater than 4” which implicitly covers 
the respective high and low values of body temperature.  
 
PRIM does not require the imputation of missing values. They are treated as illustrated 
in the following example: If the subgroup definition is: “bicarbonate < 26 mmol/l and 
temperature > 30 °C” it would include glucose measurements where bicarbonate and/or 
temperature are missing. The idea behind this is that if it really mattered for the 
subgroup to exclude missing values of a variable, PRIM would generate a rule explicitly 
excluding the missing value, e.g. “bicarbonate < 26 mmol/l and bicarbonate is not 
missing”. However, to avoid uncertainty, in our calculation of subgroup performance in 
both the developmental and validation sets, we excluded glucose measurements having 
missing values for variables defining a subgroup. 
 
The implementation of PRIM that was used is called SuperGEM™ 1.0 [20]. PRIM was 
applied on the developmental dataset in two different setups. In Setup 1 PRIM was 
applied on the measurements in the developmental dataset using all input variables but 
excluding the glucose-variables: the previous glucose measurement, the mean of the 
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previous three glucose measurements and the glucose trend. Setup 1 is aimed at the 
discovery of determinants other than glucose. 
 
In Setup 2 PRIM was applied on the same dataset as in Setup 1 but with the inclusion of 
the glucose-variables. Comparison of subgroups from Setup 1 and Setup 2 can provide 
insight in the relative strength of the determinants. In both setups PRIM was run multiple 
times, each time after the exclusion of measurements that were part of previously found 
subgroups. In each run of PRIM we searched for a subgroup in the (remaining) 
measurements in the developmental set covering at least 5 percent of the 
measurements, and having a mean glucose value of at least 9 mmol/l, as chosen by the 
clinical expert. Recall that in the developmental as well as the validation sets we exclude 
missing values when reporting the number of measurements and their mean glucose 
values in a subgroup. Hence, the percentage of the measurements considered for the 
calculation of the mean may turn out to be slightly less than 5% of the developmental or 
for the validation set. 
 
For Setup 2, only the first two subgroups are reported in this paper, even though more 
subgroups meeting the prerequisite minimum coverage of 5% and the minimum glucose 
concentration of 9 mmol/l could be found. This is because the primary goal of Setup 2 
was to understand the role of previous glucose, as a determinant, on the current BGL 
when compared to Setup 1. It turned out that the third and later subgroups (that are not 
shown in this paper) repeatedly rendered the previous glucose measurement as the 
most important variable for the current glucose level, with a lower cut-off value in each 
successive rule – no new variables of interest were hence discovered. 
 

3.4.3 Validation 

We validated the subgroup descriptions, in terms of size and mean, which were 
generated from the developmental set on an independent validation set. In addition, we 
performed an analysis to investigate the time-dependency of a subgroup’s mean 
because we wanted to inspect whether observations in a subgroup have consistently 
markedly higher glucose values over the whole period of a day, and not only in an 
arbitrary interval thereof. We therefore applied the subgroup description to the validation 
set within a sliding window of 4 hours width: all the measurements falling in the subgroup 
in these four hours are obtained and their mean is calculated. The window was then slid 
forward one hour and the procedure reapplied to the measurements falling between the 
2nd and 5th hour after admission. This procedure was repeated 20 times covering the 
first 24 hours of stay. Note that sliding the window may alter the composition of patients 
corresponding to the measurements in the subgroup. The proportion of patients whose 
measurements are part of the subgroup, with respect to the total number of patients 
which had at least one measurement during the chosen window was also calculated. 
Consider the following example. There might be a total of 100 patients staying at the ICU 
between 6 and 10 hours after admission. Of these 100 patients, 80 had measurements 
in this timeframe and only 40 of them had measurements falling within the subgroup in 
this timeframe. This will result in a “subgroup to total” proportion in that timeframe of 
50%. 
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3.5. Results 

This section describes the subgroups discovered using PRIM, their validation, analysis 
of variable strength, and time-sensitivity investigation of the mean blood glucose level. 
When scores were part of the definition, the scores have been translated to the matching 
real attribute values. The only time a score was used to define a subgroup was in 
subgroup 2 of Setup 1. 
 
In Setup 1 the first identified subgroup of glucose measurements had a mean of 12.5 
mmol/l and was defined as follows: 
 

Condition Variable description 

Temperature < 35.5 ºC Mean body temperature during the last 6 hours 

Bicarbonate < 14.9 mmol/l Most recent bicarbonate measurement during the last 6 hours 

 
The second identified subgroup in Setup 1, after removing the glucose measurements 
that were part of subgroup 1, had a mean of 9.1 mmol/l and was defined as: 
 

Condition Variable description 

Bicarbonate < 20.5 mmol/l The most recent bicarbonate measurement during the last 6 
hours 

Admission type = medical Medical reason for admission 

Urine  < 2 l OR Urine > 4 l The amount of urine after 24 hours after extrapolation from 
average urine rate from the last 12 hours  

21.5 < Albumin < 38.5 g/l The most recent albumin during the last 24 hours 

Temperature < 36.85 ºC The mean body temperature during the last 6 hours 

 
This is the only subgroup with a definition containing a score attribute (Urine severity 
score > 0), this can be deduced from the ‘OR’ in the definition (a definition using the 
actual score would be something like ‘score > x’).  
 
The first identified subgroup in Setup 2 had a mean of 15.1 mmol/l and was defined as 
follows: 
 

Condition Variable description 

Previous glucose > 13.2 
mmol 

The previous glucose measurement 

Bicarbonate <26 mmol/l The most recent bicarbonate measurement during the last 6 
hours 

 
The second identified subgroup in Setup 2, after removing the glucose measurements 
that were part of subgroup 1, had a mean of 10.5 mmol/l and was defined as: 
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Condition Variable description 

Previous glucose > 9.3 
mmol/l 

The previous glucose measurement 

Admission type = medical Medical reason for admission 

Glucose history > 10.7 
mmol/l 

The mean of the 3 previous glucose measurements 

Bicarbonate < 24.8 mmol/l The most recent bicarbonate measurement during the last 6 
hours 

 
Table 2 characterizes the subgroups discovered. Table 3 displays the relative strength of 
each of the variables in the subgroup definitions by showing what the subgroup glucose 
mean would become if they were to be removed from the subgroup definition. In 
addition, Table 3 shows the percentages of missing values in the total dataset for the 
variables used to form the subgroups.  
 

  Setup 1 Setup 2 

  Development Validation Development Validation 

Subgroup 
1 

Mean Glucose 14.0 12.5 16.3 15.1 

Measurements, 
% 

3.5 3.3 5.3 5.1 

Patients, % 5.6 5.2 16.6 16.2 

Subgroup 
2 

Mean Glucose 9.3 9.1 10.3 10.5 

Measurements, 
% 

4.4 4.3 1.8 2.0 

Patients, % 6.8 8.5 6.5 5.7 

Table 2. Outcomes (average Glucose mmol/l) of the subgroups discovered. Subgroup 1 refers to the first 
subgroup discovered by PRIM while Subgroup 2 refers to the second group discovered after removing 

measurements belonging to Subgroup 1.  Setup 1 refers to subgroups generated by excluding variables 
directly related to previous glucose measurements, while Setup 2 refers to subgroups based on all variables 

including variables directly related to the previous glucose measurements. 

 
Fig. 2 displays the results of the time-sensitivity investigation of the mean glucose value 
based on the sliding window approach. In both setups, as time progresses, fewer 
measurements are available, and a negative trend can be seen. It can also be seen that 
the second subgroup of Setup 1 does not differ much from the mean of the remaining 
measurements (after excluding the measurements in subgroup 1).  
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3.6. Discussion 

One of our clinical findings, based on the experiments in Setup 1, is that low bicarbonate 
and low body temperature form important physiological candidate determinants for 
hyperglycemia during insulin therapy. The performance of glucose management 
guidelines, may perhaps improve as a result of considering the values of these 
additional variables. Further research is necessary to investigate this. It is however 
unclear to us, given the available data, which of the patients have received hypothermic 
therapy, and as such we cannot make strong statements regarding the influence of this 
therapy on our results. 
 
Another clinical finding, based on the results of Setup 2 is that a very high last value of 
the glucose level (> 13 mmol/l) is a main predictor for having a very high value of 
glucose in the next measurement. This is evidence for the utility of the common current 
use of the last glucose value as indicator to steer glucose regulation.  
 
 

 Setup 1 ( Glucose variables 

excluded) 

Setup 2 (Glucose variables 

included) 

 Variable removed 
(% missing in total 

data) 

Resulting 
Glucose mean 

Variable removed 
(% missing in total 

data) 

Resulting 
Glucose mean 

Subgroup 1 none 12.5 none 15.1 

 Body temperature 
(7%) 

11.0 Glucose (11%) 8.2 

 Bicarbonate (12%) 9.4 Bicarbonate (12%) 14.9 

Subgroup 2 none 9.1 None 10.5 

 Bicarbonate (12%) 8.5 Glucose (11%) 10.2 

 Admission type 
(0%) 

8.8 Admission type 
(0%) 

10.2 

 Urine (1%) 9.1 Glucose history 
(31%) 

9.9 

 Albumin (50%) 8.7 Bicarbonate (7%) 10.6 

 Body temperature 
(7%) 

8.8   

Table 3. The relative importance of variables defining a subgroup. The outcome values (glucose mmol/l) 
adjacent to a variable are obtained when the variable is removed from the definition of a subgroup. As an 

example, if the second variable of the second subgroup of Setup 1 would be removed (admission type), the 
mean glucose of the subgroup in the validation set would be 8.8 mmol/l. The statistics concerning the 

second subgroups in both setups are based on the measurements remaining after removing measurements 
belonging to the first subgroups. 
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The investigation of time-dependency of the subgroups showed that subgroups 
remained interesting during the first 24 hours of admission when related to the total 
sample mean. However, a negative trend could be discerned. This can be partly 
explained because the frequency of performing glucose measurements is generally 
higher near admission time. Because the mean glucose value of subgroup 2 in Setup 1 
is only slightly higher than the mean of all glucose measurements, the added value of 
variables defining it as determinants should be further scrutinized.  
 
How do our results relate to the medical literature? The use of the previous glucose in 
most of the glucose management guidelines is advocated in the literature [1, 8-13]. As 
indicated, this is also supported by our results. Our results are also concordant with the 
literature on temperature and bicarbonate [5, 21]. Surprisingly the glucose trend and the 
average of a number of previous glucose measurements, as we chose to represent 
them, did not provide much added value. Strangely, the often reported relation of 
hyperglycemia with the use of corticosteroids was not confirmed in our results [22]. This 
may be explained because, in accordance with the guideline used, most of the patients 
in this ICU received corticosteroids before - or in the first hours of ICU admission. Also, 
the levels of steroids in the sample were already quite high, perhaps explaining why the 
use of steroids was not found to be a possible determinant. 

 

Figure 2. The results of sliding a 4-hour window across time. The aim is to investigate whether subgroups 
are interesting during the entire 24 hours period from which the measurements were obtained. The centre 

and size of a circle represent, respectively, the mean glucose values and the number of measurements in a 
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subgroup in the corresponding timeframe. The height of a bar represents the number of patients 
corresponding to these measurements. The number appearing above a bar denotes the proportion of these 

patients among all patients having any measurement within the same time window. The dotted line, 
stretching from left to right, shows the mean of all glucose measurements within a timeframe; including 
those not part of a subgroup.  The statistics on the second subgroups, in both setups, are based on the 
measurements remaining after excluding those belonging to the first subgroups. To help understand the 

figures, consider the timeframe labeled A at the top-left figure. The timeframe corresponding to A consists of 
all measurements between 9 and 13 hours after admission, the mean glucose within the subgroup is 12.9 

mmol/l. There are 37 measurements in the subgroup of a total of 13 patients, amounting to 2 percent of the 
patients that had glucose measurements during this timeframe. 

 
We found no relation between renal replacement therapy and glucose levels. Pre-
existing diabetes mellitus was also not found to be an important determinant of 
hyperglycemia at the ICU. Factors which did have (a small) influence in our results and 
have not been reported before are albumin and the admission type to the ICU. Lower 
albumin serum levels related to (blood) loss and dilution due to fluid resuscitation are 
routinely found in intensive care patients. 
 
Unlike many other statistical methods, PRIM is non-parametric, that is, it does not 
assume a pre-specified form of the association between predictors and outcomes, nor 
does it make distributional assumptions about the variables. Another non-parametric 
method, which in theory could be used to find subgroups of high glucose, is 
Classification and Regression Trees (CART) [23]. PRIM focuses, in our application, on 
discovery of only groups having a markedly higher glucose value. CART would fit a 
model for the whole sample (of observations). It might show all interesting subgroups at 
once but at the risk of sacrificing the quality of high-risk subgroups in favor of the quality 
of the whole model. A concrete example of this is when CART would not further split a 
set of observations which would have resulted in one small but interesting group when 
the quality of the other large group is not sufficiently improved.  
 
Two other relevant subgroup discovery algorithms are typified by the work described in 
[24] and [25]. In [24], Lavrac and colleagues present the CN2-SD algorithm. It is an 
adaptation of the CN2 classification rule learner [26] to search for statistically deviant 
groups. That idea has also been applied to adapting association rule learning to 
subgroup discovery in the APRIORI-SD algorithm after the categorization of the input 
variables [27]. CN2-SD, which works on a binary outcome, performs a beam search in 
which Boolean conditions are combined with the AND operator to arrive at a subgroup 
description. For continuous variables such a condition is of the form: attribute < cut-off-
value or attribute > cut-off-value. The cut-off values in these conditions are calculated 
from the data by first sorting the attribute values and then finding those values in which 
the associated class alters its value (i.e. switches from 0 to 1 or from 1 to 0). Aside from 
the focus in CN2-SD on binary outcomes, the main difference between PRIM and CN2-
SD is in the search procedure. While PRIM makes only small steps toward the final 
subgroup definition only allowing small adjustments to its condition in each step, CN2-
SD attempts to find the "best" cut-off point for an attribute. This makes CN2-SD 
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“greedier” in its search. However, to compensate, CN2-SD uses a beam-search in which 
multiple preliminary rules are stored for further evaluation although it is unclear which 
beam width is reasonable and perhaps it should be found by experimentation. 
Furthermore, CN2-SD does not apply the "pasting procedure" of PRIM that attempts to 
locally optimize the box to alleviate earlier sub-optimal choices made in the vicinity of the 
box. While PRIM removes subgroups before searching for new ones, CN2-SD provides 
a weighting mechanism to discourage the inclusion of old observations found in new 
subgroups. The Data Surveyor algorithm described in [25] is similar to CN2-SD in terms 
of the search algorithm, however, it seeks conditions of the form: lower-value < attribute 
< upper-value making the algorithm even “greedier” than CN2-SD. Data Surveyor and 
CN2-SD will in general be much faster than PRIM to arrive at a result but run a higher 
risk of missing an interesting subgroup. Further work consists of comparing CN2-SD, 
Data Surveyor and PRIM in various circumstances. 
 
Formalisms, such as CART, that are able to express a split in “the middle of a box” 
would result in representational economy (one split would correspond to finding more 
than one subgroup in PRIM). However this representational economy comes at the 
expense of data fragmentation. Interestingly, extensions of the basic PRIM algorithm 
have also been described in [14] where regions of observations, other than the side of 
the current box, are also allowed to be removed. We have however not attempted this 
strategy. 
 
Using PRIM is not new in itself although it is surprising that there are only very few 
applications described in the literature, most of them in Bioinformatics such as that 
described in [28]. In earlier work [29] we applied PRIM to identify patients having a high 
risk of mortality from an elderly IC population from a large dataset originating from 
various intensive care units in The Netherlands. The current work is different in at least 
two main aspects to [29]. First, we use PRIM to scrutinize clinical guidelines searching 
for non-responsive groups, indicating how medical informatics methods might be applied 
toward improvement of clinical guidelines. Second, the use of time-oriented data 
necessitates data abstractions and time-sensitivity analysis of subgroups as shown in 
Fig. 2. Our current abstractions of time-variant monitoring variables have focused on 
simple statistical summaries (like the mean of body temperature in the last 6 hours or the 
most recent albumin value) obtained from each variable separately. Such summaries 
may overlook relevant temporal characteristics of the signals such as trends, and the 
inter-relationships between them. Further work consists hence of investigating 
multivariate temporal patterns and the use of more expressive temporal abstractions. A 
good starting point for conducting such research is the framework described in [30].  
 
This study has a number of limitations. First, the non exhaustive search for subgroups is 
not guaranteed to find the best subgroups, and adjustment of the parameter settings of 
the algorithm may further improve results. The results should therefore be considered as 
a set of validated subgroups associated with very high glucose value but does not 
necessarily include the set of the best possible subgroups. 
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Second, blood glucose measurements of the same patient are treated as independent 
observations without adjusting for their inter-correlations. This means that a patient may 
have more than one measurement (adjacent or not) in a subgroup and in this sense 
biases the results. However there is an important mitigating circumstance in this 
application: a measurement implies action (insulin provision) and hence if a problem 
persists (high BGL) even after the provision of more insulin then the seemingly “over-
representation” of patients might be beneficial, depending on the goal of the analysis.  
 
Third, the results are obtained from data generated during the glucose management of 
all consecutive patients of only a single ICU. The glucose management guideline used in 
this ICU, which is described in [13], shows a strong resemblance to the guideline 
suggested by van den Berghe [1] and is adopted in many ICUs. Though clinicians are 
expected to follow the guideline; it is unlikely that it was always followed. Adherence to 
the guideline may be a confounder in the analysis. If data are available on adherence 
one could first stratify the sample into a group where adherence was high and another in 
which it was not, and then perform PRIM analysis on each of them separately to try to 
isolate the effect of adherence on the results. It should also be noted that we only used 
data originating from the first 24 hours of stay; our results may not apply to periods 
beyond the first 24 hours.  

3.7. Conclusions 

As far as we know this is the first time the idea of subgroup discovery is linked to the 
identification of determinants of inadequate response to therapy. This is a powerful link 
as an increasing number of therapies are governed by guidelines, and this link allows 
one to investigate the effectiveness and/or efficiency, e.g. over time, of guidelines in 
terms of clinical outcomes. We demonstrated this idea in the identification of 
determinants which may be of use to further understand the glucose metabolism and 
possibly improve the current glucose management guidelines. PRIM proved to be useful 
in discovering subgroups whose interpretability agrees with clinical intuition and its 
application deserves much more attention than it is currently given in the literature. Our 
application should, however, be seen as an exploratory effort to understand the 
determinants of hyperglycemia, and further research is needed to investigate how 
guidelines can be  improved in light of the discovered subgroups and what the benefits 
are in terms of patient outcomes. 
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4.1. Abstract 

4.1.1 Context 

CART (Classification and Regression Trees) and PRIM (Patient Rule Induction Method) 
represent two well-established statistical machine learning algorithms. Preliminary 
comparison between their performances found PRIM to be advantageous over CART in 
subgroup discovery tasks, a finding that has been attributed to PRIM’s patience. There 
are no reported studies dedicated to comparing them on real world datasets.  

4.1.2 Objective 

To systematically compare PRIM with CART on a real-world clinical database, and 
inspect circumstances in which the PRIM algorithm is at a disadvantage. 

4.1.3 Methods 

We used a large multicenter dataset consisting of 41,183 records of intensive care 
patients with 86 input variables and one binary output variable (target) denoting survival 
status of a patient at hospital discharge. Subgroups were sought with markedly high 
mortality. Ten different scenarios for discovering subgroups were applied to the dataset. 
The scenarios differed in the number of subgroups sought and whether support or the 
target means of subgroups were constrained to match those of CART. Subgroups were 
evaluated in a split-sample design on coverage (a summary measure based on the 
subgroups’ support and target mean) and odds ratios of mortality within and outside a 
subgroup. Confidence intervals and statistical significance of differences in performance 
measures were obtained by 100 bootstrap samples with Laplace smoothing to avoid the 
zero-frequency problem.  

4.1.4 Results 

The best CART subgroup had a (bootstrapped) mean coverage of 419 and odds ratio of 
7.9. Depending on the analytical scenario, PRIM’s best subgroup gave usually 
statistically significantly worse coverage (range 206 to 393) and always significantly 
worse odds ratios (range 5.0 to 7.0). When the algorithms were allowed to find multiple 
subgroups, CART’s coverage was 627 which is statistically significantly worse than 
PRIM’s 693 but CART’s odds ratio with 6.3 was significantly better than PRIM’s 4.7. 
When matching PRIM’s subgroups, once by support and once by target mean, to those 
of CART, PRIM’s coverage (614 and 566) was, respectively, worse (but not statistically 
significantly so) and statistically worse than CART. With odds ratios of 5.0 and 5.5, 
PRIM’s performance was in both cases statistically worse than that of CART.  

4.1.5 Conclusions 

On the whole PRIM’s performance was, unexpectedly, inferior to CART’s: it performed 
worse in terms of coverage (except in the scenario where it was allowed to collect many 
subgroups) and always in terms of odds ratios. This inferiority is ascribed to PRIM’s 
failure to find a large contiguous subgroup that was found by CART at once and which is 
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fairly simple to describe involving a discrete ordinal variable. The culprit is PRIM’s 
reliance on patience without a true backtracking mechanism: it made peeling off a large 
chunk of data at a value of a discrete ordinal variable look less attractive than peeling off 
a smaller amount of many other variables, ultimately missing an important subgroup. 
This finding has considerable significance in clinical medicine where ordinal scores are 
ubiquitous. Many clinical scores, such as the Glasgow Coma Scale, have a dominant 
mode in their distribution. Although such scores are relevant for defining subgroups, 
PRIM will underestimate the effect of peeling them off in particular at their mode, 
rendering the search suboptimal especially if the mode is located at the variable’s 
minimum or maximum value. PRIM’s utility in clinical databases will increase when 
global information about (ordinal) variables is better put to use when a backtracking 
mechanism such as a beam-search to keep track of alternative solutions is created.  
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4.2. Introduction 

Many data-analytic problems in Biomedical research necessitate finding a function 
 that approximates the value of an output variable y, with some unknown 

probability density , for any value of x in input space. For example, one may want 
to predict the probability of survival of a patient based on patient and treatment 
variables. Various models, such as logistic regression and regression trees, and 
associated procedures have been described in the literature to induce such functions. 
Often, however, the interest is not in the approximating function itself but in finding 
minima or maxima of y. Instead of seeking a global model to predict the output variable 
for any subject in the population, one may be interested in regions in input space with a 
very high (or low) value of y. For example, one might want to identify a subgroup of 
patients who do not respond well to therapy, or a subgroup of genes that exhibit 
markedly different expression patterns. To identify these regions and/or the maximum or 
minimum values of y in these regions one can first induce  and then optimize this 
function. An alternative approach to determine such regions bypasses finding an 
approximating function (which may be a formidable problem itself) and directly seeks 
these regions. A well-established representative of this latter approach is PRIM (Patient 
Rule Induction Method), which has been gaining more ground since its introduction in 
[1]. PRIM is a patient bump-hunting (or subgroup discovery) algorithm. PRIM initially 
starts with all given data and iteratively discards observations of seemingly unpromising 
regions. In this manner it gradually zooms into regions with high values of y (bumps). In 
contrast to greedy or semi-greedy algorithms, PRIM is patient in the sense that in its 
heuristic search it attempts at each step to exclude only a small portion of the data. This 
is an attempt to guard against hasty initial decisions. By keeping enough observations 
for subsequent decisions, initial suboptimal choices may be recuperated from. 
 
It is only natural to compare PRIM to approaches that, in contrast to PRIM, induce an 
approximating function first, such as CART. Because CART and PRIM share the same 
symbolic IF-THEN representation (and, curiously, one co-inventor) it is important to 
compare their performances and understand their strengths and limitations. Indeed, in 
[1], where PRIM was introduced, a provisional comparison with CART was also provided 
in two domains: geology and marketing. From this comparison it appeared that PRIM 
performed better than CART in subgroup discovery tasks. This superior performance 
was attributed to PRIM’s patience. No other studies were dedicated to comparing them 
on real world datasets. We are only aware of a RAND working paper [2] that compared 
the two algorithms in the field of scenario discovery (for supporting decision analysis) on 
simulated data. Both algorithms were found to perform the required task. The study does 
however propose additional statistical tests to help evaluate the subgroups and suggests 
simple modifications that might enhance their scenario-discovery abilities. Other 
subsequent publications on PRIM, and indeed the papers appearing in [3] discussing the 
original paper of Friedman and Fisher often referred to this evidence of superiority of 
PRIM over CART.  
 
The objective of this paper is to systematically compare PRIM with CART on a large 
clinical database and inspect whether there are circumstances common to real-world 
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clinical databases in which PRIM is less effective than CART in a subgroup discovery 
task. 

4.3. Materials and Methods 

In this section we describe the two algorithms, the data set used in the comparison, and 
the comparison design. 

4.3.1 PRIM and CART 

CART [4] has been extensively described and investigated in the literature; tree 
induction has indeed become a mainstream topic and virtually any book on machine 
learning dedicates at least one chapter to this topic. PRIM has been well described in [1] 
but it is less likely to be known to researchers than CART. Our intention here is to 
provide an intuitive explanation and illustration of the subgroup discovery problem and 
the procedure that PRIM follows. 
 

4.3.2 Patient Rule Induction Method 

The optimization problem can be stated as follows. A sample is given of N observations 
 from some joint distribution with unknown probability density  where y 

denotes the output variable and x a vector consisting of p input variables, 
. The domain (set of all possible values) of each  is denoted by , thus 

. We seek a region B (called a box) in input space, in which the mean of the 

output variable, denoted as , is much larger than the population’s mean, , for 
example at least twice this mean. A box is described by intersections of some input 
variables’ sub-domains. For real and discrete ordinal input variables the domain subsets 
are represented by contiguous intervals. For example for input variable  denoting 
“blood pressure” the interval  describes a sub-domain . For categorical 
variables the specific sub-domain values are explicitly stated, e.g. if the variable  
denotes “reason of admission” and = {elective-surgery, planned-surgery, emergency}, 
then  = {elective-surgery, planned-surgery}  describes a sub-domain. The sub-
domains correspond to simple logical conditions, in our example  corresponds to “80 < 
blood-pressure < 120” and  to “reason-for-admission  {elective-surgery, planned-
surgery}”.  A box corresponds to the conjunction of its logical conditions. If there was no 
constraint on a variable  (that is ) then no constraint will appear for this variable 
in the definition of the subgroup. If among all input variables in our example there were 
constraints only for  and  then the rendered box corresponds to the condition “80 < 
blood-pressure < 120  reason-for-admission  {elective-surgery, planned-surgery}”. Let 
us define  as the expectation of y at x,  
 
 
 

Then of interest are boxes for which  is large. 
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When y is binary then  which is also the mean of y. 
 
 
PRIM can return a set of boxes (this whole set is called a rule in PRIM) by continuing the 
search for more boxes after removing the observations belonging to the last discovered 
box. Although these observations are removed, definitions of subsequent boxes may 
overlap with earlier discovered ones. The boxes may in fact be nested. The probability 
estimates for a box, e.g. for prediction, are calculated only after the observations of 
earlier boxes are removed. For example if there are two boxes  and  discovered in 
this order, then when regarding them as sets then the first is interpreted as  and the 
second as . 
 

An important property of a box  is its “support” . One prefers high 
support subgroups with high , but higher support usually causes lower , hence one 
should strike a balance between support and target mean (“target” refers to the output 
variable). The statistics  and  are estimated, respectively by: 
 

, and , where the function 1(condition) returns 1 

when condition is true, and otherwise 0. 
 
To find these boxes PRIM applies a procedure, which is first explained for continuous 
variables. PRIM includes the entire sample in an initial box, which is a rectangle in two 
dimensions and a hypercube in general. It then considers each face of the hypercube for 
shrinking by considering removing a user-specified percentage ( ) of the observations 
for the variable at that face. It selects the “peel” that results in the box with the maximum 
mean of the output variable. That is, at each step it considers two options for a variable: 
removing the data below the  quantile or above the 1 –  quantile of the variable’s 
distribution in the current box. Peeling follows essentially a hill-climbing search strategy 
in which each variable is considered in isolation. This peeling process continues by 
removing the proportion  of the remaining observations until a user-specified minimum 
proportion ( ) of the initial sample is reached in the box. The meta-parameters  
(peeling fraction) and  (support) control the induction process. At this point the PRIM 
algorithm performs a local inverse procedure to ‘peeling’ called ‘pasting’ aiming at 
recovering from possible sub-optimal choices made during the ‘peeling’ process. Pasting 
means expanding the current box with  of the observations that were removed earlier 
along the face that, if at all, improves the target mean until no further improvement can 
be found. Pasting is not likely to change the location of a box, it only refines its borders.  
 
For discrete ordinal variables the algorithm has no absolute control on the number of 
removed observations as all observations with identical values are considered together. 
For a categorical variable, PRIM inspects the removal of observations belonging to each 
one of the possible categories separately. For example, if the reason-for-admission 
variable in the current box has the domain {elective-surgery, planned-surgery, 
emergency} then only the sub-boxes corresponding to {planned-surgery, emergency}, 
{elective-surgery, emergency}, and {elective-surgery, planned-surgery} are evaluated, 
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but not {emergency} as this would imply removing in one step observations with the 
values elective-surgery or planned-surgery for this variable.  
 
PRIM does not require the imputation of missing values, it considers ‘missing’ as a 
legitimate value. When a variable, regardless of its type, has missing values in the 
current box, one of the additional possible candidates for peeling is removing the 
missing values. This allows for representing ‘not missing’ in a logical condition. When a 
condition does not explicitly exclude missing values for some variable then the condition 
is considered true for observations with missing values for that variable. The idea behind 
this design choice is that if it really mattered for the subgroup to exclude missing values 
of a variable, PRIM would generate a condition explicitly excluding the missing value 
such as “80 < blood-pressure  not-missing(blood-pressure)”. 
 
As with any model fitting procedure, especially for non-parametric models, one should 
guard against overfitting. Translated to PRIM, overfitting occurs when a subgroup 
appears to have a high target mean on the (idiosyncratic) sample but in the population 
this mean is actually lower. The smaller the subgroup, the higher the risk of overfitting 
(imagine finding a subgroup consisting of only one observation which had a high y 
value). To this end PRIM provides the possibility to randomly draw an “internal holdout” 
set that is not used for defining the boxes but solely to measure the target mean in the 
holdout observations belonging to various subgroups. By comparing the target mean in 
the training and the holdout sets, the analyst can assess the risk of overfitting and reject 
subgroups with lower performance on the holdout sets falling in the respective 
subgroups.  
 
Figure 1 illustrates the initial steps taken by PRIM to discover a subgroup with a high 
density of mortality in a two-dimensional space for continuous variables. The variable  
denotes the maximal creatinine value in micromol/l and  the urine production in litres, 
both within the first 24 hours of admission to an Intensive Care Unit (ICU). The solid 
circles denote non-survivors and the hollow ones survivors. The figure shows the first 
two steps in the algorithm. In the first step, the proportion  of observations with the 
highest values of variable  are removed. In the second step the proportion  of the 
remaining observations with the highest value of variable  are removed. The final 
subgroup is shown as a rectangle, here defined by observations with “120 < < 650  
0.5 < < 1.5”. The number of observations in the subgroup should be at least  of the 
total sample.  

4.3.3 Differences between PRIM and tree induction with CART 

PRIM’s guiding principle in the search for boxes is patience in terms of the observations 
it removes in each step. For a continuous variable, PRIM peels off  observations at 
each step. In the case of a discrete ordinal variable the number of peeled observations 
cannot be tightly controlled (it may exceed  observations) and is chosen as the one 
closest to  observations. For a categorical variable no more observations at one step 
can be removed than those belonging to one single value of that variable. 
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Figure 1. An illustration of the first two steps in PRIM and the final discovered subgroup with high density of 
mortality in a two-dimensional space. The solid and hollow circles denote non-survivors and survivors, 

respectively. 

Let  denote the improvement in the target mean when the sub-box rb is considered 
for removal from the current box B, . Because, due to the various 
variable types, different numbers of observations are considered for removal at a given 
step, PRIM can also evaluate, as an additional strategy, the improvement in the target 
mean per unit of removed support. In this case PRIM provides an adjusted measure of 
improvement:  where  is a penalty function for the lost 
support. Two options for this function are operational in the SuperGEM implementation 
of PRIM [5]:  and . The lost support is penalized 
more in . In the discussion on peeling in [1] these strategies are still considered to 
have greedy components and a more proactive strategy to combat greed is discussed 
as well, which can be applied in addition to the earlier strategies (each strategy results in 
its corresponding peeling trajectory as described below). In this latter strategy, for each 
variable and for each of its possible m sub-boxes (m varies per variable, especially for 
categorical ones) that are allowed for removal we calculate . One implementation 
of this strategy, referred to here as the “input variable criterion” is to first select the 
variable for peeling for which  is largest, and only then 
to make the best peel for that variable. This strategy selects variables that have the 
potential to peel more observations in subsequent steps. Consider for example a 
categorical variable with 10 values for which the largest and smallest improvements are 
I1 and I2, respectively. This variable will become more attractive than, say, another 
variable with two possible peels corresponding to I3 and I4 when I1 - I2 > I3 – I4 even 
though I1 may be much smaller than I3. Selecting the categorical variable with the many 
values will likely leave more observations for subsequent steps.    

Aside from patience, another difference between CART and PRIM is handling missing 
values. Unlike PRIM, CART does not consider missing values as separate legal values. 
When confronted with the dilemma of sending a subject to the left or right child of a 
parent node, CART relies on variables, called surrogate variables, that best mimic the 
“left-right dispatch” behavior of the variable at the parent node. 
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Figure 2. An illustration of one peeling trajectory showing box mean versus support obtained by top-down 
peeling. The point with the bold outline marks the initial box (including all observations with a global target 

mean). Using different strategies for peeling will result in multiple trajectories on the same graph. 

 
Aside from patience, another difference between CART and PRIM is handling missing 
values. Unlike PRIM, CART does not consider missing values as separate legal values. 
When confronted with the dilemma of sending a subject to the left or right child of a 
parent node, CART relies on variables, called surrogate variables, that best mimic the 
“left-right dispatch” behavior of the variable at the parent node. 
 
There is also a conceptual difference between the expected usage mode of the 
algorithms. Although both require a good understanding of data analysis and the 
(clinical) problem at hand, PRIM usually requires more interaction with the user 
(analyst). The PRIM user needs to define (and tune)  (the peeling proportion) and 
(the minimal support); choose boxes from the peeling trajectory for further inspection 
(the series of successively smaller generated boxes corresponding to the successive 
peels); and to manually manipulate box definitions. Figure 2 illustrates the peeling 
trajectory for a fictional classification problem. The trajectory consists of the boxes’ mean 
versus their support obtained by top-down peeling for some given  and . The initial 
box including all observations is successively shrunk by peeling until very small groups 
emerge with a target mean close to 1 (for a binary outcome). The user may plot multiple
trajectories on the same plot, each trajectory associated with e.g. a different choice of , 
a different choice of support-adjusted improvement, or with a bootstrap sample of the 
original data. The user can choose which box in the (single or multiple) peeling trajectory 
to consider based on statistical considerations and on domain knowledge. Once a box is 
selected for further inspection the user may remove variables from the definition of the 
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subgroup and manually change the definition (e.g. change the threshold values in the 
definition). For example if the original definition of the subgroup includes the condition 
“120 < creatinine < 650” the user may decide to narrow the range of creatinine in the 
condition by changing it to “125 < creatinine < 642”.  SuperGEM supports the user by 
providing diagnostic measures such as a sensitivity plot for each box-defining variable. A 
sensitivity plot shows how much the target mean would be influenced by (local) changes 
made to the boundaries of the box. The process of adjusting subgroups is however 
cumbersome as a change in any variable may affect the sensitivity plots of all other 
variables because the plots are conditional on the box. This means that results are very 
much dependent on the analyst and his or her skills. 
 

4.3.4 Case study 

The Dutch National Intensive Care Evaluation (NICE) [6] maintains a continuous and 
complete registry of all patients admitted to the intensive care units (ICUs) of the 
participating hospitals in the Netherlands. The data used in this study consisted of all 
41,183 consecutive admissions of patients from 1 January 2002 until 30 June 2006 who 
satisfy the SAPS II [7] inclusion criteria (no readmissions, no cardio-surgical patients, 
and no patients with burns). Two thirds of the records were used for training and the rest 
for testing. Table 1 shows some characteristics of the sample. 
 
 

Variable Summary statistic (N = 41,183) 

Age in years, IQR(median) 53-75 (66) 

Admission type, %  

 Medical 53 

 Surgical unscheduled 20 

 Surgical scheduled 27 

Male, % 41 

SAPS II Score, IQR(median) 26-50 (37) 

GCS 24 hrs after admission = 15, % 78 

ICU LOS in days, IQR(median) 1.7-7.2 (3.0) 

Hospital mortality, % 25.6 

Table 1. Characteristics of the sample. IQR = Interquartile range (the range between the 25thto the 75th 
percentile). SAPS = Simplified Acute Physiology Score, GCS = Glasgow Coma Score, LOS = Length Of 

Stay. GCS ranges between 3 (highest severity in the neurological system) and 15 (normal condition).   

The data included 86 input variables whose values correspond to quantities measured 
within 24 hours from admission to the ICU. They cover demography (e.g. age), 
physiology (e.g. creatinine), therapy (e.g. vasoactive medications), conditions (e.g. 
sepsis), and organ-system assessments (e.g. Glasgow Coma Scale). They include 45 
continuous input variables, 18 binary and categorical variables, and 23 discrete ordinal 
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variables represented as integers. The discrete ordinal variables reflect severity-of-
illness scores. Three of these are variants of the Glasgow Coma Scale (such as the 
worst GCS score in the first 24 hours of admission) and 17 variables were obtained by 
categorizing continuous variables according to the Acute Physiology and Chronic Health 
Evaluation (APACHE) IV cut-off criteria or APACHE II [8] or the Simplified Acute 
Physiology Score II (SAPS) [7], in this order. An example of a categorization is 
converting a patient’s worst measured mean blood pressure (furthest from 90) within the 
first 24 hours of admission of 145 mmHg (which is quite severe) into a score of 10, or a 
minimum body temperature value of 35.5 °C into a severity score of only 2. These 
categorizations into integer values allow us to group very high and very low values 
together in a single logical condition. The induction algorithm has a choice between 
using a severity score and the raw data on which it is based, and although unlikely, it 
can also choose to use both. 
 
In this case study we are interested in finding subgroups for which the mortality is 
markedly higher than the sample mean. Based on advice from the intensive care unit 
specialist (the third author) the minimum support was set at 3% (a similar decision was 
made in [9]). The actual support may be higher, notably when there are indications of 
overfitting (that is, while the support decreases the performance on the internally held-
out set drops, unlike the performance on the training set). 
 

4.3.5 Comparison design 

There are two factors that hinder the comparison between PRIM and CART. The first is 
the fact that CART, unlike PRIM, does not provide a tradeoff between mean and 
support. Friedman and Fisher suggested the following procedure to make their results 
comparable. First CART is applied and its best J subgroups are identified. Then a PRIM 
subgroup is generated to match each of the J subgroups of CART. A PRIM subgroup is 
made to match either the CART subgroup’s support or the target mean of that group, 
whichever can be approximated better. The other issue hindering comparison is the 
intensive user interaction required by PRIM: if care is not taken, a comparison between 
the two algorithms may actually be a comparison between the analytical skills used in 
each approach. In order to adequately compare PRIM with CART one therefore should 
devise a reasonable semi-automated strategy for doing data analysis in PRIM, but 
acknowledge that the PRIM analyst is much less restricted in practice.  In fact with 
enough tweaking of a subgroup’s definition, the PRIM analyst can represent any 
subgroup that the tree can express. The question is however whether the analyst can 
derive equally good or better subgroups than CART’s subgroups with reasonable 
“effort”. In this paper we apply a strategy for conducting the comparative study by 
designing a variety of analytical scenarios. The first class of scenarios is perceived as 
comprising scenarios that are “reasonable” for an analyst to perform. In particular one 
may be interested in the single best subgroup achievable. To this end we allow for 
various (in this study 6) different sub-scenarios to arrive at this subgroup. Alternatively 
the analyst may be interested in all discoverable subgroups. To this end we allow for 
iterative discovery of subgroups in PRIM. For CART we allow for non-iterative (by 
considering the best subgroups in the partition induced by CART) as well as for iterative 
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discovery of subgroups (CART is reapplied on the dataset after removing the best 
subgroup in the previous iteration). The other class of scenarios is specifically meant to 
facilitate a “fair” comparison between PRIM and CART by matching their subgroups’ 
support or target mean. 
 
The analysis strategy consists of the following conceptual steps and is illustrated in 
Figure 3, which functions as a road map for the experiments: 
 

1. Define a minimum clinically relevant subgroup support for both algorithms 
(denoted by �0 in PRIM). 

 
A. Comparisons of the best CART’s subgroup with PRIM’s subgroups 

obtained in six ways (see Figure 3A).  
 

2. Induce from D a CART tree T1 and denote its best subgroup (i.e. with the highest 
target mean) by s1(T1) with support Supp(s1(T1)).  

3. Select a peeling parameter  for PRIM. 
4. Induce from D the best PRIM subgroup P1 (with support �0), compare the 

performance of P1 to s1(T1). Note that we expect that the PRIM subgroups will 
be smaller in size than the subgroups of CART because, unlike CART, PRIM can 
control the size of the subgroup. Obtain P1b by expanding P1 to match the 
support of s1(T1), compare the performance of P1b to that of s1(T1). Expanding 
a subgroup PA to match a subgroup with higher support PB means that the last 
conditions along the peeling trajectory leading to PA are dropped one by one, 
thus enlarging the subgroup, until a subgroup is obtained with the support of PB. 

5. Remove observations belonging to P1 from D and reapply PRIM to induce P2. 
Compare the performances of P2 and s1(T1). Obtain P2b by expanding P2 to 
match support s1(T1), compare the performances of P2b and s1(T1). 

6. Apply PRIM to D with �0= Supp(s1(T1)) to induce P3b, compare performance to 
s1(T1). 

7. Remove observations belonging to P3b from D, reapply PRIM with �0= 
Supp(s1(T1)) to induce P4b, compare performances of P4b and s1(T1). 

 
B. Comparisons between the sets of all allowable subgroups obtained by the 

algorithms (Figure 3B): 
 

8. Define the minimum target mean on a subgroup to render it acceptable.  
9. Denote the set of all acceptable subgroups in T1 by TREE1all = {s1(T1), s2(T1), 

…}. 
10. Apply CART in a PRIM iterative manner where only the best subgroup is 

obtained each time: Start with D and obtain the best subgroup (the very first one 
will be s1(T1)), then remove the observations of the last retrieved subgroup from 
the remaining data and reapply CART (giving T2 and T3 etc.) until no acceptable 
subgroups can be found. Denote the set of thus obtained CART groups by 
TREESall =(s1(T1), s1(T2), …} 
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11. Iteratively induce all the acceptable subgroups in PRIM to obtain the set PRIMall 
= {P1, P2, …}. 

12. Compare performance of PRIMall to TREE1all and to TREESall. 
 

C. Comparisons between the set of subgroups TREESall to sets of matched 
PRIM subgroups (Figure 3C): 

 
13. Generate PRIM subgroups matching the subgroups in TREESall on target mean 

and/or on support. 
14. Compare the performance of these matched PRIM subgroups to that of the 

subgroups of TREESall. 
 
 
 

 

Figure 3. The figure illustrates the three components of the comparative approach between PRIM and 
CART in inducing subgroups from a given sample D. In A the major question is how do the PRIM subgroups 

obtained in 6 variants compare to the first best tree subgroup s1(T1).  P1 and P2 are obtained without 
matching their support to s1(T1). P1b,  P2b, P3b and P4b  have the same support as s1(T1). In B the 

algorithms are free to collect all the encountered acceptable subgroups. The set TREE1all consists of all the 
acceptable subgroups in the first induced tree T1. The set TREESall consists of the single best acceptable 
subgroup from each induced tree in the following manner: once a tree is fit, observations belonging to its 

subgroup are removed from the current sample before the next tree is induced. In C, PRIM induces for each 
subgroup  a matching subgroup to s based on its support or target mean. In case both can 

be well approximated then both matches are tried.  

 

4.3.6 Operational aspects 

To make our strategy operational and the experiments amenable for reproduction we 
provide details below on the various design and implementation decisions that were 
made. 
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Minimum support and peeling rate 

In our case study  = 3%, based on expert opinion. We will use  = 0.05 as this has 
been considered by [1] as a good choice. 
 
Inducing CART trees: a CART tree is induced by the “rpart” procedure in the R statistical 
environment by specifying that the tree is a classification tree, the splitting criterion is 
based on information gain, the minimum number of observations per node is , and 
the tree complexity is 0.0001 (very high). High complexity assures that we arrive at the 
smallest possible subgroups (which still have at least the minimum number of 
observations per node) but may necessitate pruning to avoid overfitting. The tree is 
pruned, if needed, at the complexity level (number of splits) where the cross-validated 
error (based on the training set) is minimal. 

Discovering a PRIM subgroup 

A PRIM subgroup is obtained by running SuperGEM 1.0 [5] in the Splus environment 
with the given  and  meta parameters and the following instructions: allow for bottom-
up pasting, require a minimum number of 10 peeled observations per step, allow for 
peeling based on all sub-box penalty criteria and also on the “input variable criterion” 
(see above), and use 10 bootstrap samples of D. The latter two instructions lead to a 
multiple peeling trajectory (each choice of a peeling criterion results in its mean-support 
points on the trajectory plot and each bootstrap sample creates a separate peeling 
trajectory). The box in the peeling trajectory with the highest target mean is chosen and 
the conditions in its definition are scrutinized. The conditions in PRIM are ordered 
according to their influence on outcome. Conditions are included in a descending order 
of influence, one by one, making the subgroup smaller and smaller until the point for 
which the (1 fold) cross-validated mean on the internally held out dataset shows for the 
first time a drop in the target mean. This circumstance signifies that dropping the support 
beyond this point by adding the next conditions, even if we did not arrive at  will overfit 
the data. 
 

Acceptable subgroups 

Aside from its minimum support, we consider a subgroup acceptable when its target 
mean is at least twice the (a priori) target mean in D. 

Performance measures: 

We use two summary measures (on the completely independent test set) of relative 
performance. The first is coverage ratio, which has been defined in [1]. For K subgroups 
the coverage is .  
 
Table 2 provides data to illustrate the calculations of the performance measures used in 
this paper. 
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Subgroup Size Mean 

Total population 100% 0.5 

PRIM subgroup1 of 2 5% 0.8 

PRIM subgroup2 of 2 2% 0.6 

Non Prim rest data 93% 0.482 

CART subgroup1 of 2 1% 0.9 

CART subgroup2 of 2 4% 0.6 

Non CART rest data 95% 0.492 

Table 2. Example data. 

Given these data the coverage of the PRIM and CART subgroups is: 
Coverage PRIM subgroups: 0.05(0.8 – 0.5) + 0.02(0.6 – 0.5) = 0.015 +  0.002 = 0.017 
Coverage CART subgroups: 0.01(0.9 – 0.5) + 0.04(0.6 – 0.5) = 0.004 + 0.004 = 0.008 
 
The coverage ratio is , a value of 1 indicates similar performance, a 
value > 1 indicates better performance for PRIM and value < 1 indicates better 
performance for CART. In this example the CR is 0.017 / 0.008 > 1, thus PRIM performs 
better than CART in this example. 
 
The second performance measure (ROR) is the ratio between the odds ratio (OR) of 
PRIM to the odds ratio of CART. The odds ratio of each algorithm is calculated as: 
 

 

 
where  and . Again ROR = 1 indicates equal 
performance, ROR > 1 better performance for PRIM, and ROR < 1 better performance 
for CART.  
 
In our quantitative example the odds ratio of PRIM is calculated as follows: 
 
PRIM: 
 

 
 
CART: 
 

 
 
 
Then  indicating PRIM’s performance is better than CART (in our 
example). 
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We use ROR, which is meaningful for binary outcomes, because of two reasons. First, 
the odds ratio, a measure of effect size, describes intuitively the strength of the 
association between mortality and belonging to a set of subgroups.  Secondly, we 
envision using subgroups in traditional logistic regression predictive models: a 
membership to a (set of) subgroup(s) can be represented by a dummy (indicator) 
variable alongside other input variables. The coefficient of the dummy variable obtained 
by fitting the logistic regression model can be interpreted in terms of the natural 
logarithm of the odds ratio. Hence the link between subgroups and odds ratios is 
important. Unlike CR, ROR is not sensitive to the subgroup’s support but focuses on the 
target mean in a region of interest. 

Confidence intervals and statistical significance 

For each experiment we applied 100 bootstrap samples of D (a larger number of 
bootstrap samples did not change any of the results). Note that these bootstrap samples 
are unrelated to the 10 bootstrap samples used during subgroup discovery. For each of 
the 100 bootstrap samples the observations falling into the subgroups under comparison 
were determined and then the performance statistics for each algorithm were calculated. 
The 2.5 and 97.5 percentiles of the bootstrap distribution of each statistic were used to 
get the 95% confidence intervals (this is called the bootstrap percentile method). To 
avoid the zero-frequency problem that may arise in some bootstrap samples, Laplace 
smoothing was used. This means that in estimating a probability such as 

 instead of simply using the frequency of occurrence of  in 
Subs (that is,  1 is added to the numerator and 2 (the 
number of classes) to the denominator. For declaring statistical significance of the 
difference in the performance of the two algorithms at the 0.05 level, the same 100 
bootstrap samples were used to also calculate the bootstrap distribution of CR and 
ROR. When the lower bound of the 95% confidence interval of this distribution for one of 
these statistics is > 1 then PRIM is statistically significantly better than CART and when 
the upper bound of this interval < 1 then CART is statistically significantly better than 
PRIM. 

4.4. Results 

The results are structured according to the steps described in the methods section. For 
illustrational purposes the first discovered subgroups of CART and PRIM will be shown 
first, but as this study has a performance perspective on the comparison between the 
algorithms we will focus on performance statistics. 
 
The first step in the experiments was inducing a classification tree T1. T1 is shown in 
Figure 4, its best subgroup s1(T1) (i.e. the one with the highest target mean) 
corresponds to patients with GCS at 24 hours after admission with values of 3 or 4 (the 
tree indicates “ ����� ” for the left branch, hence “ < 4.5 ” for the right branch but the 
variable has discrete values between 3 and 15).  
 



69 

 

 

 

Figure 4. The induced CART tree T1 on D. The conditions are shown at each split. The variable gcs.24 
denotes the 24h (measured from time of admission) GCS, urea the 24h-highest value of the serum urea (in 

µmol/L), urine.8 the least urine production in an 8h period within 24h (mL/8 uur), mech.v.a whether  the 
patient was on mechanical ventilation after 24h, and bicarb.m denotes the 24h-highest serum bicarbonate 
value (µmol/L).  Observations for which the condition is true are sent to the left child node of the split. A 

label of 0 or 1 at a leaf node indicates whether the majority of observations at that leaf consist of survivors or 
non-survivors, respectively. The S/NS format at a leaf node indicates the number of survivors (S) and non-

survivors (NS). The best subgroup s1(T1) is marked by a solid-lined rectangle. In the training set the support 
of s1(T1) is 6.6% [(514+1282)/27078] and the target mean is 0.71 [1282/(514+1282)]. The dashed-lined 

rectangle marks the second best subgroup s2(T1) with 4% support and target mean of 0.6. 

 
The next step was the induction from D of a PRIM subgroup P1 (with support ). 
Applying PRIM on D resulted in the following best PRIM subgroup P1 with 19 conditions 
(considering conditions such as 120.5 < max creatinine < 643.0 as one condition): 
 

1. 120.5 < max creatinine< 643.0  
2. urine.8 < 332.5  
3. not-missing(urine.8))  
4. vasoactive medication   = Yes  
5. score of urine.24 > 2  
6. minimum mean blood pressure < 120.5  
7. least Partial Pressure of Oxygen in Arterial Blood/Fraction of Inspired 

Oxygen > 0.34  
8. Fraction of Inspired Oxygen > 35.5  
9. max hemoglobin > 7.05  
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10. urea score >  4.5  
11. max serum bicarbonate <  24.15  
12. Partial Thromboplastin Time > 11.15  
13. reason-for-admission  {Medical, Urgent-Surgery}  
14. maximum respiratory rate < 20.5  
15. age > 45.5  
16. minimum thrombocyte count <  318.5  
17. not-missing(admission GCS)  
18. minimum serum bicarbonate < 32.25  
19. not-missing(Partial Pressure of Oxygen in Arterial Blood)  

 
 
Note the use of the “not-missing” predicate and of the score variables (for urine and urea 
in conditions 5 and 10). Interestingly gcs.24 was not selected in the PRIM subgroup 
while it was the sole variable present in s1(T1). In the training set the number of patients 
in P1 was 1092 (lived = 335, died = 757) with support of 4% and target mean of 0.69. 
 
 
Expanding P1 to P1b (with support as close as possible to s1(T1)) delivered the 
following subgroup: 
 

1. 120.5 < max creatinine< 643.0  

2. urine.8 < 332.5  
3. not-missing(urine.8))  

4. vasoactive medication  = Yes  
5. score of urine.24 > 2  
6. minimum mean blood pressure < 120.5  
7. least Partial Pressure of Oxygen in Arterial Blood/Fraction of Inspired 

Oxygen > 0.34  

8. Fraction of Inspired Oxygen> 35.5  
9. max hemoglobin > 7.05 

 
 
Note that the conditions of  are the first 9 conditions of . The training set  
included 933 patients (363 lived and 750 died) amounting to a 6.6% support. The target 
mean in the training set is 0.61. The performance of the algorithms will only be 
compared on the independently held out test set.  
 
The tables below summarize all results of the experiments on the test set. The subgroup 
identifiers in these tables conform to the subgroup names shown in Figure 3. Table 3 
shows the results of the “A component” (see Figure 3) of the comparative approach. 
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Subgroup 

Identifier 

(#vars, cond 

gcs.24) 

Subgroup 

characteristics 

Performance measures and 

comparison with CART 

 N 

(lived/died) 

S 

% 

M C 

(95% CI) 

CR=C/CCART 

(95% CI) 

O 

(95% CI) 

ROR=O/OCA

RT 

(95% CI) 

S1(T1) 

(1) 

958 

(289/669) 

6.8 

 

70 

 

419 

(382, 458) 

1 

(reference 

group) 

7.9 

(6.2, 8.4) 

1 

(reference 

group) 

P1 

(19, no) 

536 

(189/347) 

3.8 65 206 

(181, 237) 

0.49* 

(0.42, 0.57) 

5.5 

(4.7, 6.5) 

0.75* 

(0.58, 0.96) 

P1b 

(8, no) 

933 

(363/570) 

6.6 

 

61 

 

332 

(299, 360) 

0.79* 

(0.68, 0.87) 

5.0 

(4.4 , 5.6) 

0.68* 

(0.57, 0.8) 

P2 

(11, gcs.24< 11) 

671 

(204/467) 

4.8 

 

70 

 

292 

(256, 326) 

0.7* 

(0.62, 0.79) 

7.0 

(5.9, 8.3) 

0.96 

(0.79, 1.16) 

P2b 

(5, gcs.24< 11) 

941 

(304/637) 

6.7 

 

68 

 

393 

(356, 434) 

0.94 

(0.85, 1.04) 

6.6 

(5.7, 7.5) 

0.91 

(0.77, 1.05) 

P3b 

(15, no) 

937 

(347/590) 

6.6 

 

63 

 

343 

(303, 383) 

0.82* 

(0.72, 0.94) 

5.2 

(4.5, 5.9) 

0.72* 

(0.61, 0.86) 

P4b 

(7, gcs.24<11) 

983 

(354/629) 

7.0 

 

64 

 

371 

(332, 413) 

0.89* 

(0.82, 0.96) 

5.6 

(4.9, 6.6) 

0.76* 

(0.67, 0.87) 

 

Table 3. Results for component A of the comparative approach: Subgroup identifiers and characteristics, 
and (comparative) performance measures between CART’s first best subgroup and subgroups identified by 

PRIM based on 6 analytical scenarios. # vars denotes the number of variables in a subgroup’s definition, 
“cond gcs.24” indicates whether and which condition was expressed by the gcs.24 variable in the definition 

of a PRIM group. The gcs.24 variable is the sole variable appearing in the tree. “N” indicates the total 
number of patients and how much died and lived, “S” indicates support (percentage of the data covered by 

the subgroup), “M” indicates the percentage of mortality, C indicates the Coverage (mean and 95% 
confidence interval), CR the coverage ratio (mean and 95% confidence interval), O the odds ratio (mean 

and 95% confidence interval) and ROR the relative odds ratio (mean and confidence interval). An asterisk (*) 
denotes statistical significance at the 0.05 level. 

 
For example the row corresponding to the  subgroup in Table 3 states that the 
subgroup is defined by conditions on 7 variables, and that the variable gcs.24 appears in 
this definition with the constraint “gcs.24 < 11”. There are 983 patients in  in the test 
group of which 354 survived and 629 did not survive. The support of the subgroup is 7% 
and the target mean in the test set is 64%. The mean coverage of P4b is 371 with a 
confidence interval (CI) ranging between 332 and 413 (obtained from the bootstrap 
distribution). The ratio of the coverage of  and the coverage of s1(T1) is 0.89 with CI 
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ranging between 0.82 to 0.96. The asterisk superscript at 0.89 signifies statistical 
significance at the 0.05 level: the null hypothesis that P4b and s1(T1) have the same 
coverage (i.e. CR=1) can be refuted because the confidence interval does not include 
the value 1. CR < 1 means that the coverage of s1(T1) is better (higher) than that of  

.  has an odds ratio of 5.6 with confidence interval of 4.9 to 6.6. ROR is 0.76 with 
a CI of 0.67 and 0.87 which means that s1(T1) has a  statistically significantly better 
(higher) odds ratio than .    
 
Table 4 shows the results of the “B component” of the comparative approach (see Figure 
3). The set TREE1all consists of s1(T1) and s2(T1) (the second subgroup of T1, which 
appears in Figure 4). TREESall consists of s1(T1) and the best subgroup discovered by 
running CART on D after removing the s1(T1) observations, referred to as s1(T2). The 
subgroup s1(T2) turned out to be very similar to s2(T1), it had the same definition except 
that the condition  urine.8  ����	�
�����������8  ��������������������������
����������
to be included. Whereas the set of the four PRIM subgroups found, has 15.5% support, 
each set of the CART subgroups, TREE1all and TREESall had only 2 subgroups with 
11.1% and 11.4% support respectively. PRIMall had a slightly better coverage which 
was statistically significant (the CI does not include the value 1). At the same time 
PRIMall had statistically significant worse odds ratios. This means that the high support 
for PRIMall came with sufficiently high target mean to score high on coverage, but this 
target mean was still not sufficiently high to score better on the odds ratio performance 
measure.  
 

Subgroup 

identifier 
(#subgroups) 

Subgroup 

characteristics 

Performance measures and comparison with CART 

 N 
(lived/died) 

S 
% 

M C 
(95% 
CI) 

CR=C/CCART 
(95% CI) 

O 
(95% 
CI) 

ROR=O/OCART 
 

TREE1all 

(2) 
1562 

(545/1017) 
11.1 

 
65 

 
615 

(567, 
665) 

(reference 
group) 

6.4 
(5.7, 
7.1) 

(reference group) 

TREESall 

(2) 
1605 

(557/1048) 
11.4 

 
65 

 
627 

(584, 
669) 

(reference 
group) 

6.3 
(5.7, 
7.0) 

(reference group) 

PRIMall 

(4) 
2184 

(926/1258) 
15.5 

 
58 

 
693 

(643, 
737) 

1.1* (1.05, 1.2) 
(vs TREE1all) 

1.1* (1.02, 1.2) 
(vs TREESall) 

4.7 
(4.3 , 
5.2) 

0.74* (0.67, 0.84) 
(vs TREE1all) 

0.75* (0.67, 0.81) 
(vs TREESall) 

Table 4. Results for component B of the comparative approach: Subgroup identifiers and (comparative) 
performance measures. The set TREE1all consists of the two acceptable subgroups in the first induced tree 

T1 (see Figure 4). The set TREESall consisted also of 2 subgroups, albeit from 2 different trees. PRIMall 
consists of 4 subgroups. 
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It is useful to get insight into the overlap among the PRIM’s subgroups and how far apart 
they are located in input space. Table 5 shows the overlap and dissimilarity between the 
PRIM subgroups (overlap and dissimilarity are both provided in the standard output of 
SuperGEM). Overlap between two subgroups shows the proportion of observations in D 
that fall in both subgroups according to their definitions when applied on D (these 
observations, due to the way subgroups are constructed, belong to only the subgroup 
which was found first and are removed before more subgroups are sought, but the 
concept of overlap ignores how subgroups were found). Subgroups 2 and 4 have the 
largest overlap. Dissimilarity measures how far apart the corresponding boxes are in 
input space. It is defined as the difference between the support of the smallest box 
covering both boxes and the support of their union:  

 

Where  is the minimal box covering both subgroups. For example, two different 
nested boxes will have zero dissimilarity (they are very close in input space). Overlap 
does not provide a measure of location: any two disjoint boxes will have zero overlap 
regardless of their location. While two adjacent, but disjoint, boxes aligned on an input 
variable will have zero overlap they will also have zero dissimilarity. Dissimilarity will be 
close to 1 when boxes are very far apart in input space. We see that while subgroups 2 
and 4 seem to be very close in input space, the other groups are moderately dissimilar. 
Hence PRIM succeeded in finding more groups (four) than CART (only 2). Three out of 
four of these subgroups originate from different regions in input space. 
 
 

Overlap/Dissimilarity Subgrp1 Subgrp2 Subgrp3 

Subgrp2 0.24/0.32   

Subgrp3 0.27/0.23 0.16/0.38  

Subgrp4 0.19/0.47 0.56/0.09 0.12/0.45 

Table 5. Overlap and dissimilarity between the subgroups of PRIMall. Overlap between two subgroups is the 
proportion of observations in D that fall into both subgroups. Dissimilarity is a measure of the extent to which 

the boxes defining the subgroups are “geographically” separated from each other in the input space. 

 
Table 6 shows the results of the “C component” of the comparative approach (see 
Figure 3). Since TREESall seems to be (slightly) better than TREE1all we will use it for 
matching the PRIM subgroups (the same qualitative results are obtained when using 
either one). Matching a PRIM subgroup to s1(T1) could only be done for the support, not 
the target mean, of s1(T1). This results in the P3 subgroup are described in Table 3. For 
s1(T2) of TREESall there is a choice of matching support or target mean of s1(T2), 
leading to the subgroups denoted by Psupport and Pmean respectively. In the table 
PRIM1all.support = {P3, Psupport} and PRIM1all.mean = {P3, Pmean} are compared to 
TREESall. TREESall has better coverage (and in one case with statistical significance) 
than both PRIM sets of subgroups, and has statistically significantly better odds ratios.   
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Subgroup 
identifier 

Subgroup 
characteristics 

Performance measures and comparison with 
CART 

 N 
(lived/died) 

S 
% 

M C 
(95% CI) 

CR=C/CCART 
(95% CI) 

O 
(95% 
CI) 

ROR=O/OCART 
 

TREESall 1605 
(557/1048) 

11.4 
 

65 
 

627 
(584, 
669) 

(reference 
group) 

6.3 
(5.7, 
7.0) 

(reference 
group) 

PRIM1all.support 

(match 
support) 

1811 
(729/1082) 

12.8 
 

60 
 

614 
(557, 
667) 

0.97 
(0.9, 1) 

5.0 
(4.5, 
5.6) 

0.78* 
(0.71, 0.86) 

PRIM1all.mean 

(match 
mean) 

1560 
(592/968) 

11.0 
 

62 
 

566 
(517, 
615) 

0.89* 
(0.83, 0.95) 

5.5 
(4.9, 
6.1) 

0.85* 
(0.76, 0.95) 

Table 6. Results for component C of the comparative approach: Subgroup identifiers and (comparative) 
performance measures. The set PRIM1all is induced to match the two subgroups obtained by the two trees 
induced by CART. s1(T1) could only be matched by support but for s1(T2) there was the option to match its 
support as well as the target mean. The second subgroup in PRIM1all.support  matches the support of s1(T2) 

whereas the second group of PRIM1all.mean  matches the target mean of s1(T2). 

4.5. Discussion 

Unexpectedly, PRIM’s performance in a subgroup discovery task was, on the whole, 
inferior to CART. In the first series of experiments when seeking the single best 
subgroup, PRIM performed much worse than CART. PRIM simply failed to find a 
relatively large contiguous subgroup involving a discrete ordinal variable (the Glasgow 
Coma Scale, GCS). In the second series of experiments PRIM scored better on 
coverage when it was free to find as many subgroups as possible. It took advantage of 
its ability to find smaller groups that together had more support than CART’s subgroups. 
PRIM scored worse, however, on odds ratio. In the last series of experiments where 
PRIM’s subgroups were required to match support or target mean of CART’s subgroups, 
PRIM performed worse on both performance measures. The culprit is the inability of 
PRIM to find the large contiguous group found by CART. 
 
To understand why PRIM seems to miss such an important subgroup we need to 
consider the distribution of the GCS variable (gcs.24) in the training set (see barplot in 
Figure 5). GCS has a very dominant mode at 15. Observations with GCS = 15 denote 
patients with no derangement in their neurological system. There are 19659 such 
observations (15883 for survivors and 3776 for non-survivors) which amount to 73% of 
all observations. The 3776 observations of non-survivors amount to 55% of all non-
survivors in the sample. We also see that there is a relatively large group at GCS = 3 
amounting to 6% of the data and to 17% of the non-survivors.     
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Figure 5. Barplot showing the frequency of survival status  for each value of GCS in the training set. The left 
bar in each pair denotes survivors and the right bar non-survivors. The “m” denotes missing values. Note 

the very dominant mode at GCS = 15. The upper number at the top of each bar pair stands for the 
percentage of the observations of the whole sample, and the lower number for the percentage among the 
non-survivors. For example, observations with GCS = 15 amounted for 73% of the sample, and included 

55% of the non-survivors in the sample. 

 
It is clear why PRIM is hesitant to peel off the observations at GCS = 15: any variant of 
the penalty function on improving the mean makes this decision unattractive. Removing 
the observations at GCS = 15 leaves a box with 4311 and 3108 observations, for 
survivors and non-survivors respectively. The improvement in mean is equal to the mean 
in the candidate box minus the global mortality mean: 3108/(3108+4311) – 0.25 = 0.165. 
The milder of the two penalty functions on an improvement in the mean prescribes 
adjusting the improvement to the unit of lost support: 0.165/0.73 = 0.226. Consider that 
this adjusted improvement is equivalent to an improvement in the target mean of 0.0113 
(20 times worse than that obtained by removing the observations at GCS=15) for a 
hypothetical continuous variable with lost support of only 5% (instead of 73%). Of course 
PRIM may still find GCS, as was the case in some experiments. First, although unlikely, 
it can find it by chance e.g. when a very large number of bootstrap samples are used. 
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Second, this variable may be selected when all other variables provide less or no 
improvement. Third, the selection of other variables may also result in the removal of 
observations with GCS=15, making the selection of GCS more attractive in subsequent 
steps. Until GCS would be selected, however, PRIM will be picking up other less 
relevant variables, which makes the analyst’s work harder in assessing their real 
contribution. Fourth, the use of the “input variable criterion” (if the difference in 
improvement between peeling off observations with GCS = 3 and of GCS = 15 is highest 
among the variables) can make such a variable more attractive. However, in our 
experiments PRIM still missed the subgroup as defined by CART.  
 
PRIM’s reliance on a patient strategy (like any hill climbing algorithm) has inherent 
limitations: without the provision of any backtracking mechanism, interesting subgroups 
may be missed, or finding them becomes hard and at the cost of much tweaking and 
post processing. This finding has considerable significance in clinical medicine where 
ordinal scores are ubiquitous. Many clinical scores, such as the Glasgow Coma Scale, 
have a dominant mode in their distribution. Although such scores are relevant for 
defining subgroups, PRIM will underestimate the effect of peeling them off in particular at 
their mode, rendering the search suboptimal especially if the mode is located at the 
variable’s minimum or maximum value. PRIM’s utility in clinical databases will increase 
when more information about (ordinal) variables is better put to use. One option is to 
allow for a better trade-off between the number of peeled off observations and the 
increase in quality of the generated subgroup based on additional information, beyond 
that obtained at the faces of the current box. In this sense PRIM can assess the potential 
of the variable for future peels. In fact the “input variable criterion” is a first attempt at 
incorporating global information about variables. However this particular criterion faces a 
problem when peeling at both sides of a variable range renders the same improvement 
in the target mean. In this regard, Friedman and Fisher [1] suggest the possible use of 
an internal sub-box (for example one with faces at GCS = 5 and GCS = 12 instead of at 
3 and 15) whose removal results in a high improvement of the mean. They insist 
however that peeling must still take place at the faces and that the “intermediate” box is 
only used to evaluate the input variable. Another option is to create a backtracking 
mechanism like using a beam-search to keep track of alternative solutions (in beam 
search, only a predetermined number, called the beam width, of best partial solutions 
are kept as candidates for further exploration). The second option better counters 
PRIM’s sole reliance on patience, albeit at the cost of a higher complexity of the search 
process. An interesting research question is how to control the beam’s width based on a 
measure of the uncertainty that the algorithm faces in making decisions on peeling. We 
believe that a combination of using global information to assess the potential 
improvement of input variables in order to rank their potential for peeling accompanied 
with a backtracking mechanism can greatly improve the capabilities of PRIM. 
 
Our study resonates well with various opinions and suggestions published by 
discussants of the PRIM paper in the same journal issue. Huber, who implemented a 
PRIM version of the algorithm himself, was unable to easily find a second “bump” that he 
generated in a synthetic database [10]. Kloesgen mentions the possible addition to 
PRIM of search strategies such as beam search or best-n, which are widely used in the 
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machine learning literature [11]. Feelders, addressing the CART-PRIM comparison in 
the original paper hopes that “further experiments will provide more insight as to when 
one tends to outperform the other” [12]. Our work provides such insight obtained by 
empirical analysis of a large clinical database. 
 
Although there is a study, which we published [9] in the medical informatics literature, 
that compares PRIM to logistic regression, our current study reports for the first time on 
a systematic comparison between PRIM and CART on a large real-world database with 
high dimensionality. Strengths of our study include the use of various scenarios for 
analysis as an attempt to reflect reasonable paths that an analyst, at least initially, might 
pursue. The scenarios vary in the number and order of finding the subgroups and in 
whether matching subgroups are required. We also use a separate test set for 
measuring performance, provide two relevant performance measures and obtain 
confidence intervals around them. All these issues form improvements on the initial 
experiments of Friedman and Fisher (in which one scenario was attempted, maximum 
dimensionality was 14, only coverage was considered in the classification problem 
[geology], the performance was obtained on the training set itself [13], and no 
confidence intervals were provided). Admittedly, the goal of the PRIM paper [1] was not 
the comparison of the two algorithms but the introduction of PRIM. 
 
In [14] an adaptation of PRIM is provided called f-PRIM (for flexible PRIM) in which a 
new penalty function is provided that allows PRIM to remove more than  observations 
for a discrete variable (the paper deals with process optimization, a domain rich with 
discrete ordinal variables). The premise in the paper was that the original PRIM 
algorithm is never allowed to remove more than  observations for any variable type. 
The paper then goes to show that f-PRIM has superior performance than PRIM (which 
was implemented by the authors). Because PRIM (at least as envisioned by Friedman 
and Fisher) does actually allow to consider removals of more than  observations, as we 
described above, the paper of Chong and Jun can be seen as a motivation of why it is 
important to allow such removals. The paper also provides a meta-parameter to balance 
support and target mean. Hence, although f-PRIM offers a new penalty function to 
PRIM, there is no use of global information about input variables nor are there 
possibilities for backtracking. Therefore, our analysis should apply to PRIM and f-PRIM 
alike.  
 
An important limitation of our work is that the analytical scenarios, however extensive, 
cannot capture the flexibility and creativity of a human analyst working with PRIM. In fact 
PRIM is aimed at human interaction and provides a battery of diagnostic tools to aid the 
analyst in inspecting the results, removing redundant variables, tweaking the boxes etc. 
Our aim however was to consider the results of some straightforward scenarios that an 
analyst might follow. None of the experiments’ results provided hints for finding the 
s1(T1) subgroup found at once by CART, which is relatively large and easy to describe. 
We believe that it is probable that the analyst, without such cues, will eventually not find 
this subgroup. Another limitation of our comparison is that we solely address the 
performance perspective (simplicity, novelty and usefulness of the subgroups are left 
out).  
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Further work to improve PRIM can focus on two aspects: using additional global input 
variable information, and allowing a backtracking strategy (beyond the local pasting that 
PRIM performs). These improvements are especially important for dealing with 
categorical and discrete ordinal variables because the algorithm in these cases cannot 
precisely control the amount of peeling. Global input variable information implies 
assessing candidate variables based on all possible values in a given box, for example 
the information gain of possible cut off points in the case of ordinal (discrete or 
continuous) variables. One could use such global information to either select the optimal 
variable (and subsequently choose the best condition associated with this variable) or at 
once to select the optimal condition (a variable-value pair). In our experiments, if PRIM 
would have had also access to the information gain criterion used by CART in our 
experiments, and the possibility to choose the best box not only among its generated 
candidate boxes with the “patient peels” but also among boxes with “greedy peels” it 
would have found a subgroup at the same location of s1(T1) which it could have in fact 
even further improved by some subsequent patient peels. This strategy will however 
tend to be too greedy defying the underlying idea of PRIM. The solution should hence be 
sought in accompanying the generated candidates (whether patient or greedy) with a 
backtracking mechanism such as beam search. Beam search has been used with the 
subgroup discovery algorithms CN2-SD [15] and Data Surveyor [16]. Both of these 
algorithms use greedy removals of data, with Data Surveyor being even greedier by 
directly seeking conditions of the form “lower-value < attribute < upper-value” for 
continuous variables. The dilemma remains: what is an appropriate beam width and 
should it be dynamically determined by a measure of the uncertainty in the choice 
between the candidates? Also if one wishes to combine greedy with patient options, the 
greedy ones should not be allowed to completely dominate the patient ones (that is, by 
populating all the beam width). This requires either making distinctions between 
candidate types (greedy or patient) in the search graph or using probabilistic strategies 
such as genetic algorithms to search the space in parallel and allowing all types of 
options to have a chance to be selected. The approach to take is partly determined by 
the allowable search complexity. However, the current lack of a backtracking mechanism 
in PRIM implicitly requires the analysts to simulate backtracking themselves. They can 
easily become overwhelmed with the vast number of tweaks and options to keep track 
of.   
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5.1. Abstract 

5.1.1 Objectives 

Decision Support Telemedicine Systems (DSTSs) are at the intersection of the 
disciplines telemedicine and clinical decision support systems (CDSSs). The objective of 
this paper is to provide a set of characterizing properties for DSTSs. This characterizing 
property set (CPS) can be used for typing, classifying and clustering DSTSs.  
 

5.1.2 Methods 

We performed a systematic keyword-based literature search to identify candidate 
characterizing properties. We selected a subset of candidates and refined them by 
assessing their potential in order to obtain the CPS. 

5.1.3 Results 

The CPS consists of 14 properties, which can be used for the uniform description and 
typing of applications of DSTSs. The properties are grouped in three categories that we 
refer to as the problem dimension, process dimension, and system dimension. We 
provide CPS instantiations for three prototypical applications. 

5.1.4 Conclusions 

The CPS includes important properties for typing DSTSs, focusing on aspects of 
communication for the telemedicine part and on aspects of decision-making for the 
CDSS part. The CPS provides users with tools for uniformly describing DSTSs. 
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5.2. Introduction 

In this information age, health care practitioners are struggling with a number of 
problems. We touch on three important problems here. Research in medicine has led to 
a large body of new medical knowledge of new diagnostic, therapeutic and surgical 
procedures. Failing to keep up to date with this new information is a problem of 
information overload. Another related problem is data overload, indicating failure to 
interpret large amounts of available data. This problem is especially prevalent in medical 
domains in which large amounts of raw data are generated for each patient. Intensive 
Care is a good example of such a domain, where physiological patient data are 
continuously electronically measured and recorded by bedside equipment. Finally, 
health care suffers from problems related to communication. Communication problems 
are especially pronounced in multi-disciplinary or so-called shared-care settings, such as 
diabetes care. 
 
Information systems are often devised to address these problems. In this paper we focus 
on the merger of telemedicine and clinical decision support systems (CDSSs) in what we 
call Decision Support Telemedicine Systems (DSTSs). Examples of common forms of 
telemedicine are telemonitoring and teleconsultation systems, while common forms of 
CDSSs are reminder systems, and systems supporting the diagnostic process, e.g. [1]. 
There are several factors promoting the merger of these information technologies. 
Together, CDSS and telemedicine can address the three above-mentioned problems. 
CDSSs can potentially reduce data overload by automatic data interpretation, and 
information overload by information selection. At the same time, telemedicine can help to 
convey data and information across distance or organizational boundaries. Both 
technologies share the requirement that information should be electronically available. 
This means that an information infrastructure promotes the application of both 
technologies at the same time. 
 
Telemedicine and CDSSs are intricate notions themselves. This accounts for the wide 
spectrum of terms introduced which are related to telemedicine, and also for the 
availability of a great number of different frameworks for describing (primarily non-
clinical) DSSs as exemplified in [2]. Although the number of DSTSs is increasing, little 
has been published about them. The domain of DSTSs is an emerging technology and, 
due to its potential, deserves an approach that considers it as such. To effectively merge 
telemedicine and CDSSs, a unifying conceptualization is required.  
 
Such a conceptualization can be obtained by identifying and describing a set of 
characterizing properties for DSTSs. This paper suggests a characterizing property set 
(CPS) which can be used for typing, classifying and clustering DSTSs. We now clarify 
important relevant terms. We denote the unique set of property-value pairs of an object 
as its type. The identification of these property-value pairs for a system is referred to as 
typing the system. For instance, suppose a block object has two properties: ‘color’ and 
‘size’. The value domain of ‘color’ consists of ‘red’, ‘blue’ and ‘green’, while the value 
domain of ‘size’ consists of ‘small’, ‘medium’ and ‘large’. In this case a block object can 
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have 9 possible types, a block having ‘red’ as its color and ‘small’ as its size is an 
example of one type of block. When we cluster different types together we obtain 
classes. For example, all red blocks can be considered as forming one class, regardless 
of their size. The classification of an object means assigning a class to that object. 
 
The CPS forms an extendable basis allowing users to type future and current DSTSs in 
terms of the property-value pairs. These types can serve as the basis for activities such 
as scoring, benchmarking, classification and clustering. To enhance the management of 
these properties, we group them according to whether they describe the problem, 
system, or behavior of a system.  
 
We demonstrate the use of the CPS by typing three prototypical DSTSs: an online 
website offering a decision support service, a decision-supported call-centre, and a 
system providing telemonitoring at the home. 
 
A notable related work to ours is 3LGM² [3,4], which is a meta-model for modeling 
human-computer systems in healthcare. In its three-level structure, 3LGM² links models 
at a domain layer, logical tool layer and physical layer. 3LGM² is different from our work 
in that it provides general concepts rather than concepts that are specialized to 
telemedicine and CDSSs. Another difference is that 3LGM² is more focused on physical 
implementation and allows further specification of the domain tasks, qualities important 
in later phases of software engineering.  
 

5.3. Methods 

We performed a systematic literature search, focusing on both telemedicine and CDSS. 
We used the Ovid search engine to perform a search on Medline (1966-May 2004), 
Embase (1980-May 2004) and Cinahl (1982-May 2004). The search was restricted to 
articles in English language journals. The keywords used are: ‘decision support’, ‘expert 
system’, ‘telemedicine’, ‘telehealth’, ‘e-health’, ‘review’, ‘overview’ and ‘framework’. A 
total of 1584 studies were identified. Then, based on the titles and abstracts, we applied 
the following inclusion criteria: 
 

� Articles address telemedicine, CDSS or both. 
� Articles are (systematic or non-systematic) reviews or overviews, or contained 

frameworks to describe them. 
� Articles are not limited to one specific application. 

 
Application of these criteria resulted in the inclusion of 65 full-text articles in our study. 
While reviewing the literature, special attention was paid to definitions and conceptual 
frameworks. More extensive information about the search queries and articles included 
can be requested from the authors. 
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Most properties that were found were not explicitly named as such in the literature, but 
required us to distill them. For example, telemedicine is often said to be either real-time 
or store-and-forward (or a mixture). While this has to do with the property of 
communication synchronicity, this property is not often named as such. Sometimes, 
however, the literature includes explicit properties, such as in [2,5]. The potentially useful 
properties we found were classified according to their orientation as belonging to one of 
three dimensions: problem dimension, process dimension, and system dimension. 
 
Choosing the right number of properties to be selected is not straightforward. Parsimony 
and elegance on the one hand, imply the selection of fewer properties, while 
completeness and correctness on the other hand, tend to require a larger number of 
properties [6]. Therefore, based on our personal judgment we assessed the ability of 
candidate properties to describe a range of prototypical DSTSs that we encountered in 
the literature ranging from simple web-based CDSSs to complex automated monitoring 
systems. This assessment led to a selection and refinement of the candidate properties 
resulting in the CPS. 
 

5.4. Results 

5.4.1 Definition 

Based on analysis of the literature we defined a DSTS as: “A computer-based system 
aiding health care professionals and patients in making decisions by providing problem 
specific advice involving the remote communication of medical information”. The term 
“remote” implies crossing application-dependent critical boundaries. These boundaries 
are often geographical or organizational in nature but can also relate to responsibility, 
intellectual property rights and legal issues. Therefore, the mere fact that an intelligent 
application is based on an intra-hospital network does not warrant it as a telemedicine 
system, and hence, also not as a DSTS.  
 

5.4.2 The Characterizing Property Set 

The initial literature search resulted in a collection of 26 of what we considered 
potentially useful properties. The problem dimension, process dimension and system 
dimension were assigned, respectively, 10, 4, and 12 properties. After refinement 
through the assessment process, a total of 14 properties have been chosen, of which 5 
are related to the problem dimension, 3 are related to the process dimension, and 6 are 
related to the system dimension. Most of the properties that were not chosen, were 
either at a low level of granularity (e.g. whether a device uses RS-232 or RS-449 
connectors) or did not fall within our three dimensions, such as social- and ethical-
related properties. The number of properties related to aspects of communication turned 
out to be about the same as the number of properties related to aspects of decision-
making. Below, we address the properties in each dimension. 
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Dimension Attribute name Value Domain 

 Problem agentRole e.g. nurse, system administrator,  medical specialist, 
… 

 purpose e.g. quality of care, efficiency, … 

 medicalDomain e.g. dermatology, cardiology, … 

 medicalTask e.g. diagnosis, prognosis, monitoring, … 

 site e.g. home, teaching hospital, … 

Process activityPattern Active, passive 

 adviceMode Suggestive, critiquing 

 synchronicity Synchronous (real-time), Asynchronous (store and 
forward) 

System availability Public, private 

 dataResource e.g. electronic patient record, literature database, … 

 dataType Alpha-numeric, still or moving images, audio 

 integration Stand-alone, integrated 

 knowledgeRepresentation e.g. frames, rules, first-order logic, bayesian nets, … 

 reasoningProcess e.g. decision theoretic approaches, rule-chaining, … 

Table 1. The CPS of DSTSs. 

Problem dimension 

Properties categorized as belonging to the problem dimension are related to the medical 
problem, and the environment in which the DSTS is introduced. The property 
“agentRole” is used to specify human agents that are involved in the DSTS. For 
example, the human agent “Nurse” may have different roles within the system such as 
taking the history of a patient or entering information in a CDSS. The property “purpose” 
specifies the purpose for which the DSTS is introduced. For instance, a typical purpose 
of teledermatology is reduction of unnecessary referrals of patients to dermatologists 
and speeding up the referral process. Examples of other purposes are effectiveness of 
care and accessibility of care. The properties “medicalDomain” and “medicalTask” are 
used for specifying the medical domain(s) in which the DSTS is situated, and the 
medical task(s) with which it is concerned, respectively. Examples of medical domains 
are dermatology, radiology and emergency care, while prevention, diagnosis, treatment, 
and monitoring are examples of medical tasks. Finally, the property “site” specifies the 
location of an agent. 

Process dimension 

Properties from the process dimension are related to the behavior and dynamic aspects 
of the DSTS. The property “activityPattern” distinguishes between CDSSs that respond 
only to user events aimed at activating the CDSS, and CDSSs that can initiate action 
after being triggered by events occurring normally, but without explicit user intervention. 
A monitoring system is an example of a system that should mostly be active, while a 
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diagnostic CDSS is often passive to prevent it from being perceived as obstructive to the 
medical professional’s workflow. “adviceMode” allows distinction between critiquing 
CDSSs that provide feedback only after the user has entered his or her own preliminary 
decision, and suggestive CDSSs that can provide support prior to having received 
information regarding the user’s preliminary decision. “synchronicity” allows distinction 
between so called real-time systems and store-and-forward systems. Video-
conferencing is a technology often applied in telemedicine serving as an example of 
real-time telemedicine, while e-mail is an example of a store-and-forward communication 
technology. 
 

System dimension 

The system dimension properties are descriptive characteristics related to (physical) 
components of the DSTS. The property “availability”, suggested by Wyatt [7], is used to 
distinguish between publicly available systems and systems whose usage has been 
restricted to health professionals. “dataResource” specifies any device or software 
application entrusted with the storage and retrieval of data such as an electronic patient 
record (EPR). Note that this property can also have “manual entry” as a value. 
“dataType” refers to the data-type of the information that is communicated. Data can be 
alphanumeric, (moving) images, or audio. “integration” denotes whether a CDSS in a 
DSTS has specifically been developed to be used within a telemedicine environment, or 
that this is not the case. “knowledgeRepresentation” denotes the representation of 
knowledge in the knowledge-base of the CDSS. Examples of knowledge representations 
are frames, rules, first-order logic, flow-charts, neural networks, Bayesian nets, and 
mathematical models. “reasoningProcess” denotes the type of reasoning the CDSS 
applies. Examples are Bayesian statistics, rule-chaining, pattern recognition, and 
decision theoretic approaches. Note that these categories might overlap, and hence 
more than one value can be chosen. 
 

5.5. Examples: Putting the CPS into use 

To illustrate the use of the CPS, we apply it to three actual DSTSs. The first example 
concerns an application of an online decision support tool, a typical form of a DSTS. An 
instance of this type of DSTS is the cardiac risk calculator as provided by the Mayo 
Clinic website [8]. The result of applying the CPS to type this system is shown in Table 
2. 
 
In the third example we apply our CPS to a web-based approach for electrocardiogram 
monitoring at the home of the patient as described in [11]. In this form of DSTS, the 
patient is required to obtain his or her electrocardiograms (ECG) using the available 
equipment. This information is sent to a monitoring centre, where an intelligent agent 
performs analysis of the signal. The agent then sends a summary report containing 
advice to the patients and the doctor using e-mail. Additionally, the system allows for 
easy retrieval of patient information at the site of the patient and doctor. Table 4 shows 
the result of applying our CPS to type this system. 
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Dimension Attribute name Value 

Problem agentRole Consumer 

 purpose Quality of care 

 medicalDomain Cardiology 

 medicalTask Prevention 

 site Home 

Process activityPattern Passive 

 adviceMode Suggestive 

 synchronicity Store-and-forward 

System availability Public 

 dataResource Manual entry 

 dataType Alpha-numeric data 

 integration Stand-alone 

 knowledgeRepresentation Rules 

 reasoningProcess Rule-chaining 

Table 2. Applying the CPS to the Mayoclinic.com cardiac disease risk calculator. 

The second example is NHS Direct [9,10], a typical decision supported call-centre. The 
result of typing NHS Direct is shown in Table 3. 
 

Dimension Attribute name Value 

Problem agentRole Patient, nurse 

 purpose Accessibility of care 

 medicalDomain General, emergency care 

 medicalTask Triaging 

 site Home, call-centre 

Process activityPattern Passive 

 adviceMode Suggestive 

 synchronicity Real-time 

System availability Public 

 dataResource Manual entry 

 dataType Audio 

 integration Stand-alone 

 knowledgeRepresentation Rules 

 reasoningProcess Rule-chaining 

Table 3. Applying the CPS to the NHS Direct decision-supported call-centre. 
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Dimension Attribute name Value 

Problem agentRole 

 purpose Quality of care (continuity) 

 medicalDomain Cardiology, home-healthcare 

 medicalTask Monitoring 

 site Monitoring centre, home, hospital 

Process activityPattern Active, but configurable 

 adviceMode Suggestive 

 synchronicity Store-and-forward 

System availability Private 

 dataResource Manual entry, extraction from electronic 
patient record  

 dataType Alpha-numeric 

 integration Integrated 

 knowledgeRepresentation Unknown 

 reasoningProcess Unknown 

Table 4. Applying the CPS to electrocardiogram monitoring in the home. 

In Table 4, the properties “knowledgeRepresentation” and “reasoningProcess”, have not 
been assigned a value since information about these properties has not been reported in 
[11]. 
 
We now shortly touch on how the CPS can be used to type and classify instances of 
DSTSs. The values of the properties in Tables 2 and 3 hint at some similarities. Since 
we defined a type as a unique set of property-value pairs, the DSTSs of Table 2 and 
Table 3 have a different type. However, if we define a class consisting of all systems 
having the same values for the properties activityPattern, adviceMode and dataType, 
then both of these systems will belong to this class. 

5.6. Discussion and Conclusion 

In this paper 14 important properties of DSTSs have been identified which form the 
Characterizing Property Set (CPS) which has then been illustrated in typing three 
systems. The CPS can be used for uniformly describing, comparing, classifying and 
clustering DSTSs by making their types explicit. Additionally, the list of properties might 
serve as a checklist during system development especially in the analysis phase. 
 
The CPS introduced in this paper can easily be extended with properties that are related 
to the existing ones. For example, although the CPS does not currently contain 
properties related to aspects such as security, data-compression and communication 
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standards, adding them should not pose serious problems. Examples of well-known 
standards and protocols are the DICOM standard [12] for the exchange of images, HL7 
for the exchange of general medical information, and the communication protocol Hyper 
Text Transfer Protocol (HTTP). Additional information about standards related to DSTSs 
can be found in [13,14]. By the same token, if a property is not relevant to a family of 
applications under consideration, it can be left out. 
 
It is useful to delineate a frame around our topic of interest by mentioning some of its 
bordering aspects. Important examples of such bordering aspects are ethical, legal and 
financial issues. These issues warrant a special separate treatment. We refer the 
interested reader to the literature [15-19]. Evaluation of telemedicine and CDSSs is 
another topic that frequently forms the focal point in different articles that we 
encountered, but which is outside the scope of this paper. Readers interested in 
evaluation aspects are referred to the literature [20-25].  

5.6.1 Future research 

A logical next step in further research is the development of a conceptual model that 
describes the concepts underlying the anatomy of DSTSs and that organizes the 
properties from the CPS. Other possible future research consists of developing a 
modeling language specific to the domain of DSTSs. This modeling language can be an 
extension of UML that provides additional primitives relevant for communication and 
decision-making. It is expected that the CPS presented in this paper will form a good 
basis for the development of a DSTS-specific modeling language. 
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6.1. Abstract 

6.1.1 Objective 

Decision support telemedicine systems (DSTSs) are systems combining elements from 
telemedicine and clinical decision support systems (CDSSs). Although emerging more 
strongly these days, these types of systems have not been given much attention in the 
literature. Our objective is to define the term DSTS, to propose a general DSTS model, 
and to propose model-based templates to aid DSTS development for three medical 
tasks. 

6.1.2 Materials and methods 

The definition, general model and model-based templates are based on a systematic 
literature search. To build the model we use UML (Unified Modeling Language) class-
models. The models were supplemented by class-attributes stemming from a recently 
suggested set of DSTS characterizing properties. We tested the applicability of the 
templates to new DSTSs found in a separate limited literature search. 

6.1.3 Results 

We provide a definition of DSTS, propose a conceptual model for understanding DSTSs 
and synthesize a set of reusable templates, and examples for using them. The templates 
are shown to be relevant and are likely useful for modeling new systems. 

6.1.4 Conclusion 

Our definition combines and harmonizes the various existing definitions. The conceptual 
model and the reusable modeling templates are demonstrated to be useful in 
understanding and modeling DSTSs during the early stages of their development. 
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6.2. Introduction 

In response to information overload, data overload and problems pertaining to 
communication between health providers, healthcare has witnessed the emergence of a 
promising information communication technology we call decision support telemedicine 
systems (DSTSs). DSTSs are a hybrid of telemedicine and clinical decision support 
systems (CDSSs). Telemedicine is exemplified by tasks such as telemonitoring and 
telediagnosis. Continuous improvements in techniques for data capturing, recording, 
communication, and data accessibility, boost the usability of telemedicine. Examples of 
CDSSs are systems aiding with diagnosis and systems that generate drug-interaction 
alerts [1].  Especially decision support based on clinical guidelines is receiving increased 
attention due to the recent focus  on Evidence-Based Medicine. A hybrid system that 
conveys information of patients at home to a monitoring center and provides support in 
interpreting and making decisions about the monitored information is an example of a 
DSTS. 
 
Software development in various domains is facilitated by using frameworks, conceptual 
models, templates, patterns, reference models, and standards that serve as blueprints to 
understand the domain, develop software components, and denote agreements about 
representation and communication. In this light the development of standards such as 
Health Level 7 Reference Information Model (RIM) [2] and European Committee for 
Standardization (CEN being the French acronym) pre-standard ENV (which stands for 
EuroNorm, Vornorm, meaning a pre-standard) 13606 [3] and the modeling framework 
initiative Three-layer Graph-based meta model (3LGM²) [4,5] are examples of efforts in 
health care that are aimed at facilitating a systematic approach to software development 
in health care. 
 
The examples above concern efforts aimed at the development of software for general 
use in health care. In this paper we aim at providing a conceptual model which is specific 
to the family of DSTS applications. In particular, we focus on the anatomy of these 
systems: the identification and separation of the parts of such a system in order to 
ascertain its structure and the relations between its parts. Our model can be used in 
conjunction with the other, more general approaches in the sense that it provides the 
specific contents, or ontology, describing the DSTS. 

6.3. Materials and methods 

6.3.1 Literature search 

We performed a systematic literature search, focusing on both telemedicine and CDSSs. 
We used the Ovid search engine to perform a search on Medline (1966-May 2004), 
Embase (1980-May 2004) and Cinahl (1982-May 2004). The search was restricted to 
articles in English-language journals. The keywords used were: ‘decision support’, 
‘expert system’, ‘telemedicine’, ‘telehealth’, ‘e-health’, ‘review’, ‘overview’ and 
‘framework’. We used Medical Subject Headings whenever possible. A total of 1584 
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studies were identified. Then, based on the titles and abstracts, we applied the following 
inclusion criteria: 
 

� Articles should address telemedicine, CDSSs or both topics. 
� Articles should be (systematic or non-systematic) reviews or overviews, or contain 

frameworks to describe them. 
� Articles should not be limited to one specific system. 

 
Application of these criteria resulted in the inclusion of 65 full-text articles in our study. 
While reviewing the literature, special attention was paid to definitions, models, and 
conceptual frameworks. More information about the search queries and the articles 
included can be requested from the authors. 

6.3.2 Developing a conceptual model and modeling templates 

To construct the conceptual model pertaining to the anatomy of these systems, we first 
derived relevant concepts encountered in the literature. As an example we show the 
concepts that were extracted from the article Teledermatology: a review, by DJ. Eedy 
and R. Wootton [6]. This article presents a review of teledermatology contrasting the 
real-time with the store-and-forward mode of communication. The article compares 
these two forms with respect to diagnostic accuracy, equipment, patient and physician 
satisfaction, cost-effectiveness and issues such as security and privacy. Anatomical 
concepts that were frequently mentioned in this article were: agents (patients, medical 
specialists and general practitioners) and their sites, data being transferred (images, 
video), data capture/review/storage equipment (camera, monitor, CD-ROMs), data 
editing software, the network being used, the medical setting (dermatology and 
radiology) and tasks performed in this setting (diagnosis, management and education). 
This kind of general concept extraction was performed for each of the 65 selected 
papers. The final selection of concepts to include in the models was based on the 
frequency of their occurrence in the papers we included. 
 
We then created UML class-models to represent a general DSTS and the task-specific 
templates, drawing the classes from the anatomical concepts that were extracted from 
the literature. We chose UML as this is the de facto standard for modeling architectures 
and complex processes in the database and software engineering communities. We 
have added attributes to these classes originating from a set of DSTS characteristics 
that we have identified in [7]. In [7] a list of characterizing properties of DSTSs was 
presented that can be used for typing, classifying and clustering these systems. 
Examples of such characteristics are adviceMode, having the values `suggestive’ and 
`critiquing’ specifying the mode of giving advice in the decision support component, and 
synchronicity having values `real time’ and `store-and-forward’ describing how entities 
inter-communicate. Reusable templates were then defined as groups of cohesive 
classes in the conceptual model, including default or typical attribute values. Templates 
correspond to specific medical tasks, such as monitoring, and can be reused in various 
medical specialties. 
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Templates were validated by applying them to model DSTS descriptions we 
encountered in a new separate literature search. This limited search was based on 
abstracts and titles in the latest issues of the Journal of Telemedicine and Telecare 
(June 2004 to September 2005) and resulted in two papers about DSTSs related to 
prevention and two about DSTSs related to monitoring [8-11].  

6.4. Results 

6.4.1 Definitions 

The definitions of Telemedicine (see Table 1) were not mutually consistent in the 
literature, for example regarding the medical task that is facilitated. 
 

Reference Definition of telemedicine 

CEC DG XIII. Research and 
Technology Development on 
Telematics Systems in 
Health Care [12] 

Rapid access to shared and remote medical expertise by 
means of telecommunications and information technologies, 
no matter where the patient or the relevant information is 
located. 

Coiera [13] The exchange of information at a distance, whether that 
information is voice, an image, elements of a medical record, 
or commands to a surgical robot. It seems reasonable to think 
of telemedicine as the remote communication of information 
to facilitate clinical care. 

Wyatt [14] The use of any electronic medium to mediate or augment 
clinical consultations. 

The World Health 
Organization [15] 

The delivery of healthcare services, where distance is a 
critical factor, by healthcare professionals using information 
and communication technologies for the exchange of valid 
information for diagnosis, treatment and prevention of disease 
and injuries, and for the continuing education of healthcare 
providers as well as research and evaluation, all in the 
interest of advancing the health of individuals and their 
communities. 

Ried [16] Including the use of telecommunication technology to 
exchange health information which provides access to health 
care across time, social and cultural barriers. 

Wootton [17] A process, rather than a technology: telemedicine connects 
patients and healthcare professionals in a chain of care. 

Table 1. Definitions of telemedicine 

 
We harmonized these definitions into one addressing the what, who, how, and why 
questions relating to telemedicine: “A process involving the remote communication of 
medical information by health care professionals and/or patients, using any electronic 
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medium to facilitate clinical care”. We further specify that the term ‘remote’ implies 
crossing geographical or organizational boundaries. In some cases one may wish to 
extend upon this specification of the term remote by considering issues such as 
responsibility, intellectual property rights, and legal issues.  
 
As in the case of telemedicine, definitions of Clinical Decision Support also include 
recurring elements, but are not mutually consistent (see Table 2) for example regarding 
the case specificity of the advice. Using the same structure of definition as used for 
defining telemedicine, we define a CDSS in this paper as: “Any computer-based system 
providing problem-specific output that aids health care professionals and or patients in 
decision-making”. It is worth noting that this definition differs from that of Shortliffe [18] in 
two respects: we exclude systems providing a very general level of support such as 
simple text-editors, and we include patients as users of a CDSS.  
 
 
 

Reference Definition of Clinical Decision Support System 

Shortliffe [18] Any computer program designed to help health professionals 
make clinical decisions. 

Wyatt and Spiegelhalter [19] Active knowledge systems which use two or more items of 
patient data to generate case-specific advice. 

Wyatt [20] A computer program that provides reminders, advice or 
interpretation specific to a given patient at a particular time. 

Musen [21] Any piece of software that takes as input information about a 
clinical situation and that produces as output inferences that 
can assist practitioners in their decision making and that 
would be judged as “intelligent” by the programs’ users. 

Table 2. Definitions for Clinical Decision Support System. 

 
Based on the definitions above, we define a DSTS as: “A computer-based system aiding 
health care professionals and patients in making decisions by providing problem-specific 
advice involving the remote communication of medical information.” A further 
specification of the term ‘remote’ was given above.  

6.4.2 General model 

The conceptual model for DSTSs appears in Fig. 1. The attributes of the classes stem 
from the characterizing property set for DSTSs that we suggested in [7]. 
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Figure 1. Conceptual model of decision support telemedicine systems. 

The class DSTS appears at the top of Fig. 1. A DSTS is associated with a specific 
(medical) setting and incorporates at least a network and one CDSS, this is shown using 
the UML cardinality notation. Cardinality belonging to a relationship between classes A 
and B expresses a constraint on the number of objects from class A that can be 
associated with objects in class B. For example consider the relationship has between 
Network and Interface in Fig. 1, the notation 2..* at the Interface end means that a 
network has at least two interfaces. The Network class represents the set of physical 
connections that are used in the DSTS. Note that a network can consist of other (sub) 
networks1

The Host class is connected to the network using a network interface and is used to 
represent devices such as workstations and servers but also devices such as mobile 
phones or faxes. Examples of network interfaces are a modem and a network interface 
card. When an agent using the host is a human agent, an Input/Output device 
(I/ODevice) is used to transfer information between the host and the human agent. 
Examples of I/O devices are a keyboard, a screen, and a mouse. When agents 
communicate with each other using messages, a connection (a specific part of the 
network) is reserved for them. A connection is represented by the association class 
Connection. It should be noted that the class: Message could be further specialized into 
classes such as Advice and Information when this is deemed useful. Hosts and agents 
can have a data resource or a data-capture device at their disposal. Examples of data 

. This recursive relation allows for a clear distinction between different types of 
networks within a specific DSTS. An example is a network that is used for exchanging e-
mail between healthcare practitioners and a network that is used for teleconferencing 
between healthcare practitioners and patients within one DSTS. 
 

                                                
1 This part-of relationship, which denotes aggregation, is represented in UML by a 
link with a small diamond attached to the aggregate class. 
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resources are databases containing patient information, while digital cameras and blood-
glucose measurement devices are examples of data-capture devices. 
 
The Agent class is specialized into three classes: HumanAgent, CDSS, and their 
aggregate HumanAgentAndCDSS2

6.4.3 Templates 

. The HumanAgent class is specialized into patient 
and medical professional, and can be extended to other types of users. The class CDSS 
is modeled as an aggregate of components for reasoning and storing knowledge. About 
half of the classes contain properties from the characterizing property list of earlier work 
[7]. 

We propose reusable templates corresponding to three important medical tasks: 
prevention, diagnosis, and monitoring. A template is essentially a selection of classes 
and their inter-relationships from the conceptual model. In addition, some of the class 
attributes have been set to default values that are specific for the respective type of 
DSTS.  

Prevention DSTS template 

Prevention DSTSs share a number of important traits. They are usually publicly available 
through the Internet, for example from the patient’s home and passive (rather than pro-
active) needing to be prompted for advice. They often provide suggestive feedback after 
having the user’s input but prior to the user making a decision, and thus are not 
critiquing systems. The communication with the system is usually asynchronous (store-
and-forward).  
 
The diagram in Figure 2 shows the prevention template. It consists of 11 classes from 
the conceptual model. Classes have been given new names where this clarified the 
template followed by the original class names between parentheses. Some attributes 
have been given default values. The prevention DSTS template essentially consists of a 
network linking an autonomous decision support tool for prevention purposes with a 
‘patient user’ who can be located anywhere. 
 
Prevention covers triaging, as exemplified by the National Health Service Direct Online 
[22], and patient education, as exemplified by the website of the Mayo clinic providing 
online CDSSs such as a heart-disease calculator [23]. In the case of the Mayo heart-
disease risk calculator, the HumanAgent class of Fig. 2 is instantiated by the person 
visiting the website. Through a keyboard, mouse and monitor (I/O Devices) this 
consumer interacts with his or her PC (ClientPC). A NetworkInterfaceCard connects the 
consumer’s computer to the Internet, and to the Webserver hosting the heart-disease 
calculator Clinical Decision Support System (PreventionCDSS). Based on information 
supplied by the consumer, the heart-disease risk calculator provides an estimate of risk 
of heart-disease and sends this back to the consumer immediately. For a review of 
public prevention DSTSs see [24]. 

                                                
2 Specialization is denoted in UML by an open-headed arrow. 
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Figure 2. Template for prevention DSTSs. 

Diagnosis DSTS template 

 
We expect most diagnostic DSTSs to be introduced in ‘visual’ medical specialties such 
as dermatology and radiology, and therefore the data-type of the images that are sent 
will be mostly still images, although video clips could also be added, and the mode of 
communication is mostly store-and-forward. Compared to prevention DSTSs, the users 
of the systems are more likely to be medical experts situated in care settings such as a 
hospital or a general practice. These systems often provide suggestive advice to support 
expert decision-making although critiquing systems can also be employed.  
 
The diagnostic template is shown in Figure 3. It consists of a network linking two medical 
experts, one in the role of a medical specialist requiring advice, and the other in the role 
of consultant, having access to a diagnostic CDSS.  
 

 

Figure 3. Template for diagnosis DSTSs. 

 



102 

 

An example of a diagnostic DSTS is a system in which a general practitioner 
(HumanAgent, class appearing at the right side of Fig. 3) sends electronic images of a 
patient’s skin suspected of having a melanoma (Message), that the general practinioner 
captured using a digital camera, (DataCaptureDevice) to a dermatologist (HumanAgent, 
class appearing at the left side of Fig. 3) using a PC (I/O Devices, ClientPC and 
NetworkInterfaceCard) which is connected to the Internet. The dermatologist can view 
these images using his or her PC which is also connected to the Internet. The 
dermatologist analyzes these images using a CDSS (DiagnosisCDSS). This system 
performs automatic image analysis to augment certain features in the images to help the 
dermatologist to reach a conclusion about the state of the patient. The dermatologist 
then provides the general practitioner with feedback. E.g. the general practitioner can 
provide care to the patient, or refer him or her to the dermatologist. 

Monitoring DSTS template 

Monitoring DSTSs usually link the home of the patient and a site where the patient data 
is monitored, such as a hospital or a monitoring centre. In some cases these kinds of 
systems bridge multiple hospitals varying in their specialization as exemplified in some 
intensive care units [33,34]. Monitoring DSTSs can be described as being active, 
providing alerts at any time. This can be contrasted with the relative passivity of the 
prevention and diagnosis DSTSs. Both synchronous and asynchronous communication 
forms are encountered.  
 
The template shown in Figure 4 represents a DSTS in which a patient is being monitored 
by a data capture device. The data are then sent to a remote monitoring center for 
analysis by a CDSS. If there is reason for alarm, an alert is generated to trigger problem-
solving actions. 
 

 

Figure 4. Template for monitoring DSTSs. 
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An example of a monitoring DSTS is one in which a patient with risk of cardiac failure 
(HumanAgent, appearing at the right side of Fig. 4) is monitored using a portable ECG 
device (DataCaptureDevice) that sends its data via the patient’s PC (I/O Devices, 
ClientPC and NetworkInterfaceCard), over the Internet to a Webserver, hosting 
monitoring software (MonitoringCDSS). The data is stored in a database 
(DataResource) and is automatically monitored by the monitoring software 
(MonitoringCDSS) for abnormalities. In the case of abnormal data, the software alerts a 
local medical specialist (HumanAgent, class appearing at the left side of Fig. 4). This 
medical specialist can then take actions as required. Another example is a system in 
which elderly people are monitored by a camera of which the images are analyzed by a 
Decision Support System (DSS) to detect fall accidents. Currently numerous remote 
sensing devices are commercially available such as electronic stethoscopes, electronic 
blood pressure monitors and pulse oximeters [25]. For a review of monitoring DSTSs 
see [26]. 
 

6.4.4 External validation of templates 

To validate the templates we applied them to DSTSs encountered in a separate limited 
literature search. This search yielded two articles related to prevention DSTSs and two 
articles related to monitoring DSTSs (we did not encounter diagnostic DSTSs). The first 
article about prevention DSTSs concerns so called interactive health communication 
applications for chronically diseased patients, which are information packages offering at 
least one interactive component such as peer support, decision support, and behavior 
change support [8]. The second article is about what is referred to as web-based 
wellness management programs [9]. The first article about monitoring DSTSs is about a 
system performing automated fall detection [10], whereas the second one is about 
remote monitoring of diabetic patients [11].  
 
For the prevention DSTSs the explicit architecture of the systems was not described, 
although they are web-based systems and thus are likely to fit the prevention DSTS 
template we propose. As a rule, all the values of properties reported in the articles did 
indeed match those in the template, but some important properties which appear in the 
template are left unreported in the article. The system described in [9] formed an 
exception to the rule, as it reports on active reminders sent to the patients, in contrast to 
the passive advice mode as suggested in the template. For the monitoring DSTSs, the 
architectures matched our monitoring template fairly well. In the case of the remote fall 
detection however, the decision support component of the system is (for reasons of 
privacy) located at the patient’s home, whereas in our template this component resides 
on a remote server and is linked to the patient’s home using a network. In the diabetes 
management DSTS the architecture specifically contains a database at the monitoring 
centre. Although this is not part of our template, it is part of the conceptual model, and 
adding it to our template is straightforward. Also the characteristics described as typical 
for monitoring DSTSs turned out to be correct.  
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Through provision of classes, their relations and attribute values, this modeling exercise 
demonstrates that our templates would be of aid during the analysis and preliminary 
design of these systems prior to their implementation, since the concepts that were 
needed in the template, were readily available in the general DSTS model of Figure 1. In 
addition, the templates helped us pose important questions about the systems being 
described. In the article about the remote fall detection for instance, little is mentioned 
about the mode of communication. An example of an important question resulting from 
use of the template would be: “what kind of communication technology will the system 
use to relay the alerts to the monitoring center?”  In the articles about prevention little is 
mentioned about the specifics of the decision support that is used. An example of a 
question arising from the template is: “In what way is decision support delivered, will it be 
a suggesting or critiquing system?” Although this was not the focus of the article, these 
issues do become important during the development of such a system. 

6.5. Discussion 

Decision support telemedicine systems (DSTSs) represent an emerging important 
technology that is expected to expand rapidly. Information overload, data overload, and 
problems pertaining to communication between health providers trigger the need for 
such systems. Moreover, there is a continuous improvement of electronic recording 
facilitation, data integration, and the accessibility of the resulting data. Finally, the advent 
of evidence-based medicine is likely to give an impetus for decision support techniques 
like guideline-based expert systems and data mining-based interpretation techniques. 
We believe that the provision of conceptual models pertaining to DSTSs contributes 
towards their understanding and development within the discipline of telemedicine and 
medical informatics in general. We are unaware of such models in the literature. In this 
paper we propose three new extensible conceptual components to enhance the 
understanding of decision support telemedicine systems and their development: a 
definition of a DSTS, a conceptual model thereof, and model-based templates for three 
types of DSTSs. The models have been validated and demonstrated to be usable and 
useful. 
 
Our approach builds on and is consistent with existing CDSSs and telemedicine 
conceptual models. In particular it selectively merges both into one conceptual model 
and defines model-based templates to describe DSTSs. As for existing general 
frameworks for developing medical information systems, such as the modeling 
framework initiative 3LGM² [4,5], our models are not meant to replace them but rather to 
be used in conjunction with them: our models contribute a DSTS-specific ontology, that 
is e.g. not yet part of 3LGM². 
 
Some limitations of our work include the following. We included only review articles in 
our literature search and it is possible that we missed some other relevant articles. 
Moreover, the selection of the classes to be included in the conceptual model is 
necessarily partially subjective but we believe that the conceptual model is robust. 
 
Our validation efforts do provide insight into the usability and usefulness of the model-
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based templates and the conceptual model but we did not externally validate diagnostic 
DSTSs. Besides, these efforts are preliminary as we have used only a small number of 
validation cases. 
 
The most important further work includes a more extensive validation effort, the 
examination of other kinds of templates, and using the framework to detect decision-
support opportunities to be integrated within existing “pure” Telemedicine systems. 
 
In conclusion, we believe that the proposed conceptual components in this paper are 
usable and useful for attaining a better insight into DSTSs and of getting an initial design 
thereof. The models are useful because they allowed us to formulate the important 
characteristics of DSTSs we found in the literature and, as reference models, allow the 
researcher, developer, and user to pose relevant questions about DSTSs. The models 
are usable because the template-based formulation process of a DSTS was 
straightforward: all major classes needed to express the design were already in the 
model, and the selection of the correct class was easily facilitated by the distinct 
functionalities provided by the individual classes. 
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7.1. Principal Findings 

The main contribution of the research presented in this thesis is to provide a better 
understanding of Clinical Decision Support Systems (CDSSs) from two angles. The first 
part of this thesis focuses on the application of the subgroup discovery algorithm named 
Patient Rule Induction Method (PRIM) [1] for answering medically relevant questions. 
Not only are the results of these studies important, also the investigation of the 
possibilities and limitations of the PRIM method is a valuable contribution from a medical 
informatics perspective. 
 
In the second part of the paper, we look at CDSSs in a telemedicine context from a 
bird’s eye view. We propose valuable definitions, conceptual models and a tool for 
categorizing such systems which together form a framework for understanding them. 
 
In the first chapter of this thesis, the general introduction, we stated a number of 
objectives. In the paragraph below we reiterate the objectives and discuss how they 
were reached. 

� To assess the value of PRIM subgroups, and compare them to ones obtained from 
logistic regression, in predicting the mortality in the population of very elderly 
intensive care patients. 

In Chapter 2 we used PRIM on a dataset of 12993 consecutive admissions of elderly 
(80+) patients to a number of intensive care units (ICUs) in the Netherlands. The goal 
was to determine subgroups of patients with a very high mean mortality. We compared 
the characteristics of these subgroups to those of subgroups found using a 
conventionally used prognostic model (SAPS II [2]).  
 
Using PRIM almost 10% of elderly ICU patients were identified as having a risk greater 
than 85% to die before hospital discharge. The subgroups are defined as conjunctions of 
simple conditions (patient characteristics) based on data which are routinely collected in 
the first 24 hours after ICU admission. Examples of patient characteristics used to define 
the subgroups are urine production, whether patients required mechanical ventilation, 
and what the lowest systolic blood pressure was, generally conditions that medical 
professionals associate with high risk of mortality. 
 
The quality of the subgroups obtained with these methods were comparable, but using 
PRIM as opposed to conventional prognostic models also carries some additional 
benefits: PRIM requires less data to collect as subgroup definitions we found are based 
on only few input attributes while prognostic models such as SAPS II requires many 
input variables to calculate the patient’s probability of mortality. To obtain SAPS II patient 
subgroups we consider patients that share the fact that they have a (similar) predicted 
high probability of mortality. PRIM subgroups are more homogenous than subgroups of 
SAPS II patients as SAPS II mortality is calculated using a score that consists of many 
components; two patients having the same score may still differ greatly in their input 
variables. For the same reasons, the PRIM group may also be easier to understand; it is 
more clear which are the common (harmful) conditions of the patients within a subgroup. 
For these reasons, PRIM subgroups may be more useful for decision makers. 
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� To analyze the ability of PRIM to find subgroups of hyperglycemic intensive care 
patients, as a first step to improve blood glucose control.  

In Chapter 3 we used PRIM on a dataset of glucose measurements taken during the 
stay of patients in the intensive care unit. Although the patients were treated according 
to a blood glucose regulation protocol, hyperglycemia was still very common. By 
identifying subgroups of high (hyperglycemic) glucose measurements and correlating 
these outcomes with available explanatory variables we were able to identify patient 
characteristics that possibly may cause patients to be unresponsive to the glucose 
control treatment.  
 
Most of the patient characteristics (possible determinants of hyperglycemia) that were 
used to define the subgroups were known to have a relation with hyperglycemia, e.g. the 
relation between a glucose measurement and its previous value, body temperature and 
bicarbonate concentration are all well-known. Two attributes for which no known relation 
exists to hyperglycemia are albumin serum levels and the admission type. It was also 
the case that some patient characteristics for which their relation to hyperglycemia is 
known, were not found in our subgroups. 
 
The attributes we found are only possible determinants of hyperglycemia, further 
research that refines the treatment protocols according to our results can verify whether 
this leads to a reduction of hyperglycemic patients in the intensive care unit. 
 

� To analyze the weaknesses/strengths of PRIM by comparing it with the CART 
methodology and applying the methods to a large medical dataset to find 
subgroups of high mortality patients in a population of intensive care patients.  

 
In Chapter 4 we apply PRIM to a large medical dataset to find subgroups of patients 
having a high risk of mortality and compare the resulting subgroups with those 
discovered by CART (classification and regression trees) [3]. In our dataset CART 
generally outperformed PRIM because of PRIM’s inability to find a large contiguous 
group that was found by CART. This subgroup was defined as all patients having a 
Glasgow Coma Score of 4 or lower. 
 
We conclude that PRIM has problems with peeling data at the mode of an ordinal 
attribute (e.g. the Glasgow Come Scale). This can be especially problematic if this mode 
is located near the variable’s minimum or maximum value. As ordinal scores are used 
frequently in the medical domain, this is an important fact to consider when using PRIM. 
We propose suggestions for improving PRIM such as implementing a form of 
backtracking (e.g. beam search), and making use of global information to choose 
variables for peeling.  
 

� To provide a single definition of Decision Support Telemedicine Systems (DSTS) 
and to propose a framework of properties helpful to characterize such a system.  
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In Chapter 5, we propose a Characterizing Property Set (CPS) consisting of 14 
properties based on a literature study. We grouped these properties in 3 categories: 
“Problem”, “Process” and “System”, containing respectively 5, 3 and 6 properties. 
Properties of the “Problem” category are related to the medical problem and the 
environment in which a DSTS is introduced, such as purpose of a DSTS and in which 
medical domain the system is used. Properties of the “Process” category are related to 
the behavior and dynamic aspects of the DSTS such as the synchronicity of the 
communication and the passivity of the decision support component of a DSTS. 
Properties of the “System” category are related to the system and data that the system 
uses, such as what reasoning process the decision support component of a DSTS uses; 
if it contains a knowledge-base; and how this knowledge is structured. Unfortunately we 
did not find emergent properties unique to DSTSs. The CPS can be used to describe, 
compare, classify and cluster DSTSs by making their types explicit. We exemplify its use 
by applying it to two different types of DSTSs. 
 

� To provide a conceptual model of DSTSs for its application in different forms of 
healthcare provision. 

In Chapter 6, based on literature search, we propose definitions and conceptual models 
that are useful for understanding DSTSs. This may help different parties such as 
physicians, CDSS developers and telemedicine specialists in understanding and 
developing future DSTSs.  
 
The conceptual models are expressed by Unified Modeling Language (UML) Class 
models, showing the relation of different components within a DSTS. We provide a 
single general model that should be useable for most DSTSs, and provide a number of 
template models which are aimed at specific types of DSTS, e.g. diagnosis or monitoring 
DSTSs. In both the general model and the template models we encapsulate properties 
(as class attributes) from the CPS that was described in Chapter 5. 
 
In the following paragraphs we describe strengths and weaknesses of our approach, the 
implications of the work, related research, future work and concluding remarks. 

7.2. Strengths and Weaknesses of our Approach 

In the first part of this thesis we presented a significant effort to investigate PRIM and its 
possible usefulness for medical informatics research. Although PRIM has been applied 
in the medical domain before [4], our work distinguishes itself by using a large clinical 
database of high dimensionality, by comparing PRIM to parametric (logistic regression) 
and non-parametric methods (CART) and by relying on bootstrap techniques for 
evaluating subgroup performance. 
 
The specific subgroups identified by PRIM have to be considered as validated 
subgroups with a markedly higher average outcome than the global average. These 
subgroups are not necessarily the best subgroups possible because PRIM is not an 
exhaustive search algorithm but in essence a hill-climbing search algorithm. In addition, 
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altering the meta-parameters of the PRIM algorithm may lead to different (possibly 
better) subgroups. It should also be noted that the subgroup descriptions might not 
necessarily generalize to external settings although a multicenter database was used for 
the mortality prediction problem. 
 
A limitation of the comparison of PRIM with logistic regression and CART is that our 
evaluation was purely based on performance measures. We did not formally consider 
the complexity of the obtained rules and the usefulness of applying the knowledge 
obtained from discovered subgroups in practice.  
 
In addition, our analytical scenarios for comparing PRIM to CART could not possibly 
mimic the flexibility of a human performing the analysis with PRIM. However, our choices 
for the scenarios were motivated by the idea to cover the general analytical goals an 
analyst might have in mind. Since the comparison of the results of the algorithms is 
difficult, because the subgroups resulting from the application of both methods may not 
be the same, we used the principle of matching the two algorithms on support and/or 
target mean. The relative rigidity in performing the analysis has the advantage that our 
scenarios can be completely automated and hence the analyses are reproducible.  
 
The first part of this thesis can be seen as exploring “does PRIM work (and when not)?”. 
We did not try to answer the “does it help?” question by actually using the knowledge to 
influence (treatment) decisions. In future investigations this question should be 
addressed. 
 
A weakness of the second part of our thesis is that we do not give much attention to 
semantic interoperability. This becomes an increasingly important issue when one aims 
to reuse the same CDSS for various databases and “clients” such as different types of 
Electronic Patient Records. Most of these systems will store information in their own way 
and a mapping is needed between the concepts used by the CDSS and the various 
systems to which it is connected. We did not give much attention to this problem 
because it is a problem that occurs for CDSSs irrespective of whether they are used as 
a telemedicine application or not. A solution to the problem for guideline-based decision 
support may be the vMR (virtual medical record) [5]. Johnson et al suggest a vMR that 
supports (1) a structured data model for representing information related to individual 
patients, (2) domains for values of attributes in the data model and (3) queries through 
which guideline decision-support systems can test the states of the patient. The vMR 
allows guideline authors for example to encode clinical guidelines using a rich and well-
defined model of patient data.  The vMR does not contain a data model that replicates 
everything that an EPR holds, but only those distinctions necessary for modeling 
guidelines and protocols. The authors suggest to use the HL7 Reference Information 
Model [6] as the basis for a standardized virtual medical record.  
 
The properties we found to be relevant in DSTSs are not unique for those types of 
systems. In other words, a CDSS with or without a telemedicine component has the 
same properties. However, we believe our framework is useful for describing DSTSs. In 
the literature we found a number of DSTSs that were not clearly described because 
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some properties were not mentioned. E.g. in [7] the type of knowledge representation 
and the reasoning process of the CDSS component of the DSTS were not described. 
Our framework can in such cases be used as a checklist for determining whether 
relevant issues are discussed in a system description. 
 
The fact that we did not find emerging properties has to do with the granularity of the 
conceptual model. The network part is introduced almost as a black box. For the 
description of many DSTSs that is not a problem: the only thing that counts is the 
connection with a specific CDSS. But the availability of a network also makes it possible 
for a client to choose various services. Both the CORBA (Common Object Request 
Broker Architecture) standard and web services can now be used for communication 
between clients and servers. Using the CORBA standard one can select even in runtime 
a certain service. Our conceptual model could be extended by characteristics that 
describe these approaches, like the type of object request broker, the presence of a 
name server, etc. In the case of computer-interpretable guidelines (CIGs) the 
OpenClinical Group [8] suggested a model for publishing CIGs on the web. In this 
model, executable guidelines are published as Web-accessible services. 
 
We have stated that our characterizing property set and conceptual models may help in 
developing a DSTS. However, we do not support the development directly as our work 
does not contain guidelines about how to develop such systems. Our framework does 
however provide a ‘language’ to facilitate communicating about these systems and thus 
indirectly supports the development of these systems. 

7.3. Implications 

In this thesis we address two forms of decision support: decision support related to 
subgroup discovery, and decision support systems embedded in a telemedicine setting. 
 
The idea behind PRIM is attractive and it also provides a battery of diagnostics to guide 
the analyst in performing his or her task. Hence we encourage researchers to explore 
PRIM in more depth. Analysts should however be aware of the limitations we discovered 
when using PRIM. We suggest that researchers and analysts complement PRIM with 
the use of other algorithms or incorporating a suitable backtracking mechanism. 
 
Some of the subgroups we found agree with the literature and seem plausible. For 
example, the relation between Glasgow Coma Score and mortality that we found in 
elderly patients is well documented. Of others, we are not sure of their exact meaning 
(what the underlying cause for a high value of the outcome is). However, these 
subgroups may prompt other investigators to investigate these subgroups and report 
about their statistical properties. 
 
Our subgroup discovery related work could also have implications for clinicians, as the 
results described in this research may eventually lead to improvement of clinical practice 
guidelines (e.g. ICU blood glucose management guidelines), of course this necessitates 
additional research to be carried out. 
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In the second part of this thesis we harmonize the work in two fields based on an 
extensive literature search: clinical decision support systems and telemedicine. Both 
disciplines have literature dedicated to it, but literature about DSTSs is scarce, while 
such systems are becoming increasingly more important with the advent of the Internet 
and Information Communication Technology (ICT) in general. 
 
We provide a framework that will help parties involved in requirements analysis 
processes and the development of DSTSs. It focuses on important concepts and their 
relations from a DSTS perspective. At the start of the requirements analysis the 
framework may help stakeholders to identify important questions to ask, and aids them 
in designing a high-level architecture of the DSTS.  
 
Aside from providing support during the analysis and development of a DSTS, the 
framework provides a means for describing, comparing and clustering DSTSs.  While 
description is important from a research point of view, comparing and clustering DSTSs 
can be important when carrying out systematic reviews of such systems or evaluation 
studies. 

7.4. Related Research 

The first part of this thesis applies PRIM to different purposes: comparing it with other 
algorithms and evaluating its performance. Although PRIM has been applied before, it 
has not been applied to a real-world large high dimensionality dataset such as ours. 
 
In this section we contrast PRIM with other algorithms/methods that can be used for 
subgroup discovery and note the main differences between PRIM and related 
algorithms. PRIM is a non-parametric, patient, subgroup discovery hill-climbing algorithm 
without a backtracking mechanism (aside from pasting which however has a very local 
nature). 
 
The first method that we compared to PRIM was the Simplified Acute Physiology Score 
(SAPS) II model. SAPS II is used to score the severity of illness of ICU patients, and the 
model allows us to compare the quality of care of different ICUs. Unlike PRIM, SAPS II is 
a global parametric model based on logistic regression. It is global because it can predict 
the probability of the outcome for any subject in the population. It is parametric because 
it pre-supposes the form of the model. Strictly speaking, it cannot be considered a 
subgroup discovery algorithm, but it can be used to rank subjects based on their 
probability of showing an event. An example of a subgroup obtained using SAPS II is all 
the patients that have a predicted mortality > 90%. Limitations of using a logistic 
regression model for subgroup discovery are: a) the coefficients of the variables are 
determined by maximizing the likelihood of the model taking into account all 
observations, not just those in a subgroup, b) all variables should be known and used in 
order to determine the probability of an event while a subgroup description on PRIM may 
use fewer variables (in its application, for subgroup definition generation it does need all 
the variables), c) the subgroups do not tend to be contiguous in the input variable space, 
they include all those with a very high (or very low) risk of the event, d) the outcome of 
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the model is more difficult to interpret than the symbolic representation of outcomes in 
PRIM. 
 
The second algorithm that we compared to PRIM was CART (Classification and 
Regression Trees). Like PRIM, CART is a non-parametric hill-climbing model without 
backtracking. In contrast to PRIM, CART is a global model and is greedier. Using CART 
for subgroup discovery shares some of the limitations noted above of a global model, as 
it is not optimized on subgroups but rather on splits in the data. The greedier character 
of CART means that once a split (a constraint on a variable's values) is determined this 
split is permanent since there is no backtracking mechanism. If the split, in retrospect, 
turned out to be a bad one CART would not recover from this sub-optimal choice. PRIM 
is patient and hence attempts to save enough data for future decisions. However, as we 
showed in Chapter 4, PRIM's insistence on patience without allowing for backtracking 
makes it vulnerable too. The adoption of the penalty function in f-PRIM [9] may allow 
PRIM to make different peeling decisions but without backtracking this does not solve 
PRIM's vulnerability. 
 
CN2-SD [10], APRIORI-SD [11] and Data Surveyor [12] are all subgroup discovery 
algorithms. They show two main differences with PRIM. First they are greedy (with 
DataSurveyor being the most greedy) but they do provide backtracking by applying 
beam-search. However, it is unclear which beam width one should select. In addition 
there is a risk that the beam is filled with various constraints of just one dominant 
variable (e.g. age > 32, age > 41, age> 45) hence defeating the idea of keeping track of 
truly  alternative candidates. 
 
An important related work for part two of this thesis is [13]. This paper describes a 
service-oriented architecture for distributed clinical decision support. The architecture 
aims to leverage information exchange between health information systems. Although 
web service oriented architectures (Web services are a W3C standard) are used in 
many domains, it is not very prevalent in the domain of medicine. The architecture 
specifies a series of protocols/communication standards such as HL7 [6], SNOMED [14], 
the National Council for Prescription Drug Programs (NCPDP) SCRIPT [15], RxNorm 
[16], and National Drug Codes [17], and Service Oriented Architecture related standards 
such as Simple Object Access Protocol (SOAP), Extensible Markup Language (XML), 
Universal Description, Discovery and Integration language (UDDI) and the Web Service 
Definition Language (WSDL). It aims to promote modularity (services are provided in 
reusable components) and abstraction (it is not necessary to know how a system works, 
but only how to use its services) and sets the agenda for future decision support 
research and development. This research differs from our work since it focuses on the 
integration task and specifies standards to facilitate this integration whereas our work 
focuses on properties of the internals and externals of such systems. Common Object 
Request Broker Architecture (CORBA) [18], Microsoft’s Distributed Component Object 
Model (DCOM) [19] and SUN’s Java Remote Method Invocation (RMI) [20] are all 
standards/approaches highly similar to web services, which will help to promote 
development and use of DSTSs. 
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7.5. Recommendations for future research 

Future research is mostly related to the weaknesses we mentioned earlier. While we 
compared PRIM to CART and SAPS, comparisons with other subgroup discovery 
algorithms still have to be carried out. It would also be interesting to make a comparison 
between PRIM and a version of PRIM that implements the changes that were suggested 
in Chapter 4. 
 
It is also important to apply PRIM to other (large) medical datasets, perhaps PRIM has 
other weaknesses or strengths that did not show in our research because of the specific 
dataset we used.  
 
The user interactivity that is part of PRIM will be most advantageous when the analysis 
is carried out by an analyst who has expert knowledge of the relevant medical domain. 
Perhaps having an expert analyst performing subgroup discovery with PRIM will reveal 
subgroups far superior to the ones we found using our ‘algorithmic approach’. However, 
this could pose a problem for studies evaluating PRIM, as it will be unclear which part of 
the subgroup discovery process can be attributed to the algorithm and which part is 
attributed by the analyst’s (analytical and domain) knowledge. 
 
It is also worth to investigate the usefulness of the discovered subgroups for clinical 
practice. Perhaps subgroups can be used to adjust clinical practice guidelines. This 
however needs rigorous evaluation in carefully designed clinical trials. 
 
The characterizing property set and UML models that we provide for DSTSs need to be 
applied in practice (e.g. using them to perform requirements analysis for a DSTS) to 
learn more of their applicability and get feedback to improve them. 
 
Future work related to the DSTS framework should focus also on integrating CDSSs and 
clinical data sources through e.g. web services. Increase of standards have made web 
service oriented architectures very common in general ICT. Applying this technology in 
medicine will increase interoperability of systems and will help to bring together medical 
data and CDSSs, which has great potential in terms of improvement of quality and 
efficiency of care. 

7.6. Concluding Remarks 

In this thesis we have investigated two forms of CDSSs. The ever increasing amount of 
medical data, and the wish to improve healthcare by applying medical informatics 
methods will likely boost the development and use of the types of CDSS that we have 
described in this thesis. Our analysis of PRIM on a large medical dataset revealed both 
good and poor qualities, and we provided suggestions on how to improve the PRIM 
algorithm. For DSTSs we provided a characterizing property set and conceptual models 
that we hope will help future DSTS stakeholders to get acquainted with the basics and 
will enable them to focus on the essentials of these systems. 
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Clinical Decision Support Systems (CDSSs) are likely to play a major role in future 
healthcare provision. Physicians are expected to provide healthcare on the basis of the 
latest medical knowledge available. Moreover they have to cope with ever-increasing 
amounts of patient data. CDSSs can help medical professionals by providing them with 
targeted knowledge, relevant to the problem at hand, and may help physicians to 
discover important patterns or values from a mound of data that they very unlikely would 
discover themselves. This thesis has two parts addressing two forms of decision 
support: support based on discovery of “interesting” subgroups, and support embedded 
in a telemedicine system.  
 
Specifically, the main focus of the first part of this thesis is the Patient Rule Induction 
Method (PRIM), which is a subgroup discovery algorithm, and its application in the 
Intensive Care Unit (ICU). PRIM can be used to discover subgroups of patients or 
observations that deviate markedly from the rest. The discovery of such subgroups is 
meant to support health care professionals and managers to improve the provision of 
care. For example, in the ICU the discovered subgroups can help refine blood glucose 
regulation guidelines, or adapt the policy for intensifying or withholding therapy.  
 
PRIM was introduced by Friedman and Fisher and is often referred to as a “bump-
hunting” algorithm. Bump hunting algorithms attempt to find regions in the input space 
that are associated with a high (hence the term “bump”) or low mean outcome value 
relative to the average value of the outcome in the whole sample. PRIM describes 
regions based on conjunctive conditions on input variables, e.g. “body temperature > 80 
AND patient has diabetes”. An important attribute of PRIM is that it is “patient”, 
contrasting it with more greedy algorithms such as the widely known Classification And 
Regression Tree (CART) algorithm. In addition, PRIM is non-parametric, unlike logistic 
regression models commonly used in medicine, such as the popular Simplified Acute 
Physiology Score (SAPS) model in the ICU. The applicability of PRIM in medicine, and 
its merits relative to CART and logistic regression models like SAPS are not well 
understood. The first part of this thesis addresses the applicability of PRIM and the 
comparison of PRIM with CART and SAPS.   
 
In Chapter 2 we apply PRIM with the aim of discovering subgroups of very elderly 
patients in the ICU that have a high risk of mortality. There are several reasons for 
seeking such subgroups. First, these subgroups may provide insight into underlying 
causes of mortality that may potentially be timely acted upon to increase the probability 
of survival.  Second, high mortality subgroups are often needed in research on the 
efficacy and efficiency of therapeutic interventions. Third, such groups may improve 
case-mix adjustment to allow for comparisons of quality of care across different intensive 
care units. Fourth, information about probability of survival is something that patients and 
their families are interested in to make informed decisions about further treatments. 
Finally, such subgroups may influence patient admittance policy (for example, if a 
subgroup has an extremely high probability of death in the ICU after a specific form of 
surgery one may not only want to decide on whether to continue or withdraw ICU 
therapy but also to contemplate on the question whether to operate on such patients in 
the first place). 
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We sought subgroups on a dataset of 6617 ICU patients of at least 80 years of age that 
were obtained from ICUs in the Netherlands that participate in the National Intensive 
Care Evaluation (NICE) initiative. In addition to applying PRIM we also applied a 
recalibrated SAPS (version II) model. SAPS II is a commonly used method to predict 
mortality of intensive care patients. We compared the PRIM subgroups to those found by 
SAPS II. Performance of the subgroups was evaluated on a randomly selected 
independent test set. The performance of PRIM and SAPS II was comparable but the 
subgroups obtained by PRIM involved less variables and resulted in much more 
homogeneous groups. They are therefore likely to be more useful for decision makers. 
 
In Chapter 3 we applied PRIM to find subgroups of ICU patients having a high blood 
glucose level (BGL). Despite being on Intensive Insulin Therapy (IIT), many patients 
suffer from hyperglycemia, which is believed to increase the risk of mortality and 
morbidity. In contrast to the application concerning mortality of very old patients, the 
input data in the hyperglycemia application is time-ordered (for example, body 
temperature is repeatedly measured over time) and the outcome (BGL) is continuous 
instead of binary. Hyperglycemia in the ICU is generally caused by a disrupted 
homeostasis as a result of injury or surgery. To provide treatment suggestions, most 
blood glucose management guidelines rely on the last measured glucose value, and 
sometimes on a measure describing the trend in previous glucose values and nutritional 
feed rates, disregarding most other available clinical data. The aim of this study was to 
discover subgroups of measurements having high blood glucose, and, based on these 
subgroups, discover potential determinants of hyperglycemia at the ICU. Further 
research of these potential determinants may lead to improvement of the guidelines, and 
in turn to a reduced mortality and morbidity. 
 
Data for this study were physiological measurements collected in an 18 bed mixed 
general-surgical intensive care unit of a teaching hospital. For each patient multiple 
measurements over time for various variables were available. We included only 
measurements within the first 24 hours, as normoglycemia (normal glucose level) should 
be achieved within this period while hyperglycemia was found to be still prevalent. 
 
Prior to applying PRIM we investigated the literature for known determinants of 
hyperglycemia. PRIM was able to find several subgroups of high glucose measurements 
which were validated with the independent test set. Aside from well known determinants 
(e.g. the previous glucose value obtained from the previous measurement) we also 
found additional candidate determinants of which their relation to blood glucose is less 
clear. More research is needed to determine whether these potential determinants may 
help to improve blood glucose management guidelines. 
 
In Chapter 4 we compared PRIM to the Classification And Regression Trees (CART) 
algorithm using a large high dimensional real-world clinical dataset and searched for 
circumstances in which the PRIM algorithm is at a disadvantage. We used a multi-center 
dataset consisting of 41183 records of intensive care patients with 86 input variables and 
mortality (survival or non-survival) as the outcome variable. 
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Because there are factors that hinder the direct comparison of PRIM and CART we 
followed an extensive analysis strategy consisting of 10 different comparison scenarios. 
The algorithms were compared using the performance measures odds ratios and 
coverage. We used bootstrapping (with Laplace smoothing) to obtain estimates and 
confidence intervals. 
 
In most cases CART significantly outperformed PRIM. Further analysis revealed that 
PRIM’s inferiority could be attributed to its failure to find a large contiguous subgroup 
that was found by CART at once. More specifically PRIM has trouble “peeling” 
observations of a discrete ordinal variable which had a mode (in its distribution) located 
at its highest value. Since such variables are ubiquitous in clinical medicine we 
recommend to incorporate a backtracking mechanism (such as beam-search) in PRIM 
and let it make use of global information in assessing the utility of peeling a variable. 
 
In the second part of this thesis we investigated CDSSs in a telemedicine context for 
which we coined the term Decision Support Telemedicine Systems (DSTSs). These 
systems are likely to become more common in the near future to cater for the need of 
having medical information available any time and place, and to support medical 
professionals in keeping up to date with the latest medical knowledge and coping with 
the large amounts of data that are available to them. 
 
Although much research dedicated to telemedicine and CDSSs separately exist, this is 
not the case in the area where these two fields intersect. Based on a systematic 
literature search with a focus on keywords pertaining to telemedicine and CDDS, we 
aimed to create a useful conceptualization of DSTSs focusing on those areas that are 
important for DSTSs. 
 
While studying the literature in search of DSTSs, it became clear that the descriptions of 
such systems were often incomplete and/or vague, as important properties were not 
described (e.g. not reporting on the reasoning method pertaining to the CDSS 
component). In Chapter 5 we proposed a characterizing property set for DSTSs and 
applied this set to describe a number of DSTSs. The set consists of 14 properties that 
can be used to describe and cluster DSTSs. The properties are grouped in three 
categories that we refer to as the problem dimension (medical problem and the 
environment where the DSTS is used), process dimension (behavior and dynamic 
aspects) and system dimension (physical system aspects). Properties of the problem 
dimension are related to e.g. the purpose of a DSTS, what kind of human agents are 
involved, and what kind of medical task is supported. Properties of the process 
dimension are related to e.g. whether the process is synchronous or asynchronous. 
Properties of the system dimension are related to e.g. what type of reasoning method 
the system uses to support a decision and what type of data it processes. Unexpectedly 
the literature did not reveal emerging properties that are unique to DSTSs.  
 
In Chapter 6 we proposed a definition for DSTSs. This definition is a combination and 
harmonization of definitions for telemedicine and CDSSs that we found in the literature. 
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Additionally, we proposed a general conceptual model of a DSTS and a number of 
template models for different typical DSTSs. Such models can help stakeholders of a 
DSTS such as medical professionals, CDSS developers and telemedicine experts to 
quickly gain insights specific to DSTSs that could be used during the system’s 
requirements analysis or further development. The models were created using the 
Unified Modeling Language (UML). 
 
In Chapter 7 we provide a summary of the principle findings of this thesis. The main 
contribution of this thesis is to provide a better understanding of CDSSs from an 
application and comparison perspective (based on the PRIM algorithm), and by 
formulating a conceptual framework for understanding CDSSs in a telemedicine context 
from a bird’s eye view. 
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Een toename van het belang van klinische beslissingsondersteunende systemen in de 
toekomst lijkt waarschijnlijk. Er wordt tegenwoordig van artsen verwacht dat ze zorg 
leveren gebaseerd op de allerlaatste stand van zaken. Artsen krijgen bovendien te 
maken met steeds grotere hoeveelheden patiëntgegevens. Klinische 
beslissingsondersteunende systemen kunnen medische professionals helpen door hen 
te voorzien van specifieke informatie die van pas komt bij het oplossen van problemen, 
of door belangrijke patronen te ontdekken in data, die door een mens gemist zouden 
kunnen worden vanwege de grote hoeveelheid ervan. Dit proefschrift richt zich op twee 
vormen van beslissingsondersteuning: de vorm die gebaseerd is op herkenning van 
interessante patronen en de vorm die beslissingsondersteuning biedt in de context van 
een telemedicine systeem. 
 
In het onderzoek dat wordt beschreven in het eerste deel van dit proefschrift ligt de 
nadruk op het toepassen van het Patient Rule Induction Method (PRIM) algoritme in het 
domein van de Intensive Care. PRIM is een algoritme dat zoekt naar subgroepen van 
patiënten, of subgroepen van afzonderlijke metingen, die sterk afwijken van de 
gemiddelde patiënt of meting. Kennis van het bestaan van subgroepen kan medische 
professionals en managers mogelijk ondersteunen in het verbeteren van de verleende 
zorg. Voorbeelden van het gebruik van subgroepen in het domein van de Intensive Care 
zijn bijvoorbeeld het verfijnen van richtlijnen die worden gebruikt om bloedglucose 
binnen de normale grenzen te reguleren, of voor het aanpassen van beleid ten aanzien 
van de beslissing met betrekking tot het geven van een bepaalde therapie. 
 
PRIM is ontwikkeld door Friedman en Fisher en wordt vaak een “Bump hunting” (heuvel 
zoek) algoritme genoemd. Bump hunting algoritmes zoeken naar gedeelten in de invoer 
ruimte (gevormd door patiënt karakteristieken zoals bijvoorbeeld leeftijd of geslacht) 
waar een bepaalde uitkomst erg hoog is (vandaar de term heuvel), of erg laag is 
vergeleken met de gemiddelde uitkomst. PRIM beschrijft deze gebieden door 
combinaties van condities van de invoer variabelen, bijvoorbeeld “lichaamstemperatuur 
> 80 EN patiënt heeft diabetes”. Een belangrijke eigenschap van PRIM is dat het een 
‘geduldig’ algoritme is, dit in tegenstelling tot “gulzige” algoritmen zoals bijvoorbeeld het 
bekende Classification And Regression Tree (CART) algoritme. Een andere belangrijke 
eigenschap van PRIM is dat het een non-parametrisch model oplevert, dit in 
tegenstelling tot het populaire (parametrische) Simplified Acute Physiology Score 
(SAPS) model, dat veel gebruikt wordt in de ICU. Er is nog weinig bekend over de 
toepasbaarheid van PRIM in het domein van de geneeskunde, en hoe PRIM zich laat 
vergelijken met het CART algoritme en logistische regressie modellen zoals SAPS. In 
het eerste gedeelte van dit proefschrift wordt de toepasbaarheid van PRIM in het ICU 
domein onderzocht, en vergelijken we PRIM met CART en SAPS. 
 
In Hoofdstuk 2 passen we PRIM toe om subgroepen te vinden van zeer oude patiënten 
met een hoog risico op overlijden. Dit soort subgroepen zijn om verschillende redenen 
belangrijk. Ten eerste zouden deze subgroepen inzicht kunnen verschaffen in de 
onderliggende oorzaken van sterfte, zodat mogelijk kan worden ingegrepen om de kans 
op overleving te vergroten. Ten tweede zijn subgroepen van patiënten met een hoog 
risico op overlijden nodig voor het verrichten van onderzoek naar de doeltreffendheid en 
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efficiency van therapeutische ingrepen. Ten derde kunnen dergelijke subgroepen helpen 
om case-mix correcties mogelijk te maken, waardoor de kwaliteit van zorg van 
verschillende intensive care units met elkaar vergeleken kunnen worden. Ten vierde kan 
informatie over overlevingskansen naar patiënten en hun familieleden worden 
gecommuniceerd om hen te helpen bij het nemen van beslissingen over toekomstige 
medische behandelingen. Ten laatste kunnen dergelijke subgroepen worden gebruikt 
om over opname van patiënten te beslissen. (Wanneer een bepaalde subgroep 
bijvoorbeeld een extreem hoge kans op overlijden heeft wanneer een bepaald type 
chirurgische ingreep wordt uitgevoerd, kan men mogelijk beslissen de patiënt de ingreep 
te onthouden, en kan men zich bovendien afvragen of een dergelijke ingreep überhaupt 
bij dergelijke patiënten moet worden uitgevoerd). 
 
We hebben subgroepen gezocht in een dataset van 6617 ICU patiënten met een leeftijd 
van tenminste 80 jaar die waren opgenomen in ICUs in Nederland die participeerden in 
het Nationaal Intensive Care Evaluatie (NICE) initiatief. Naast PRIM hebben we ook een 
(geijkt) SAPS II model toegepast. SAPS II wordt veel gebruikt om de sterfte van 
Intensive Care patiënten te voorspellen. Met behulp van een onafhankelijke willekeurig 
gekozen testset zijn PRIM en SAPS II met elkaar vergeleken. 
 
De prestaties van PRIM en SAPS II bleken vergelijkbaar maar de PRIM subgroepen 
vereisten minder data, en de samenstelling van deze subgroepen was homogener. 
Hierdoor zijn de PRIM subgroepen waarschijnlijk bruikbaarder voor beslissingnemers. 
 
In Hoofdstuk 3 passen we PRIM toe om subgroepen met een relatief hoog 
bloedglucose gehalte te vinden bij ICU patiënten. Ondanks behandeling met Intensieve 
Insuline Therapie (IIT), komt hyperglykemie nog veel voor bij patiënten op de ICU. In 
tegenstelling tot het onderzoek in hoofdstuk 2 is de invoer data in deze toepassing 
geordend in de tijd (lichaamstemperatuur wordt bijvoorbeeld meerdere keren na elkaar 
gemeten gedurende een dag) en een ander verschil is dat de uitkomst continu is (en niet 
binair zoals in het geval van mortaliteit). Meestal wordt hyperglykemie op de ICU 
veroorzaakt doordat operaties of trauma’s vaak een sterk ontregelde homeostase als 
gevolg hebben. De meeste richtlijnen voor het managen van bloedglucose maken, om 
tot een advies te komen, gebruik van de laatst gemeten bloedglucose waarde en soms 
van de trend in bloedglucose waarden of van voedingsgegevens, en negeren daarbij 
andere beschikbare klinische data. 
 
Het doel van dit onderzoek is het ontdekken van subgroepen met een hoog 
bloedglucose gehalte, om op basis hiervan, potentiële determinanten van hyperglykemie 
op de ICU te bepalen. Vervolgonderzoek zal mogelijk leiden tot verbetering van de 
richtlijnen voor het managen van de bloedglucose, en mogelijke tot een afname van 
mortaliteit en morbiditeit. 
 
De gegevens die voor dit onderzoek zijn gebruikt zijn verzameld in een gemengde 
generieke/chirurgische ICU met 18 bedden in een algemeen ziekenhuis. Bij iedere 
patiënt waren metingen van verschillende variabelen, meerdere keren op één dag 
gemeten, beschikbaar. We hebben alleen metingen uit de eerste 24 uur van de opname 
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bestudeerd, aangezien dit de periode is waarin normoglykemie zou moeten worden 
bereikt, hoewel hyperglykemie nog wel veel voorkomt. 
 
Voordat PRIM is toegepast, is de literatuur geraadpleegd om bekende determinanten 
van hyperglykemie te bepalen. Toepassing van PRIM leidde tot de ontdekking van een 
aantal subgroepen met een hoog bloedglucose gehalte, welke ook konden worden 
gevalideerd in de onafhankelijke testset. Behalve bekende determinanten (bijvoorbeeld 
het laatst gemeten bloedglucose gehalte) ontdekten we ook potentiële determinanten 
waarvan de relatie met bloedglucose minder duidelijk is. Vervolgonderzoek is nodig om 
te bepalen of deze potentiële determinanten kunnen helpen bij het verbeteren van 
bloedglucose management richtlijnen. 
 
In Hoofdstuk 4 vergelijken we PRIM met het Classification And Regression Tree 
(CART) algoritme door deze toe te passen op een grote sterk multi-dimensionale 
dataset. In dit onderzoek zochten we naar mogelijke omstandigheden waarin het PRIM 
algoritme in het nadeel is. De dataset die in dit onderzoek is gebruikt komt van meerdere 
ICUs en bestaat uit 41183 records van intensive care patiënten, en omvatte 86 invoer 
variabelen en mortaliteit (overleving of sterfte) als de uitkomstvariabele. 
 
Omdat bepaalde factoren het onmogelijk maken om PRIM en CART rechtstreeks met 
elkaar te vergelijken, is een uitgebreide analyse uitgevoerd, gebruikmakend van een 
tiental scenarios. De algoritmen zijn vergeleken op basis van de uitkomstmaten odds-
ratio en coverage. Om schattingen en betrouwbaarheidsintervallen te verkrijgen is 
gebruik gemaakt van bootstrapping (met Laplace smoothing). 
 
CART bleek PRIM in veel gevallen significant te overtreffen. Verdere analyse maakte 
duidelijk dat dit grotendeels kan worden verklaard door het onvermogen van PRIM om 
een bepaalde grote aaneengesloten subgroep te vinden, die wel meteen door CART 
was gevonden. PRIM blijkt moeite te hebben om een “peeling” operatie te verrichten bij 
een geordende discrete variabele waarvan de modus nabij de maximum waarde van 
deze variabele ligt. Omdat dergelijke variabelen veel voorkomen in het domein van de 
geneeskunde, raden we aan om PRIM uit te breiden met een backtracking mechanisme 
(zoals bijvoorbeeld beam-search), en gebruik te maken van globale informatie bij het 
uitvoeren van een “peeling” operatie bij een variabele. 
 
Het tweede gedeelte van dit proefschrift richt zich op klinische beslissingsondersteunde 
systemen in de context van een telemedicine systeem. In dit proefschrift gebruiken we 
de term Decision Support Telemedicine System (DSTS) om een dergelijk systeem aan 
te duiden. DSTSs zullen waarschijnlijk steeds meer worden ingezet om medische 
informatie te allen tijde en op alle plaatsen toegankelijk te maken, en medische 
professionals te ondersteunen in het op de hoogte blijven van nieuwe medische kennis, 
en in de omgang met grote hoeveelheden klinische data waar ze mee in aanraking 
komen. 
 
Hoewel er veel onderzoek is gericht op CDSSs en telemedicine als afzonderlijke 
onderzoeksgebieden, is dat niet het geval voor het snijvlak van deze gebieden. 
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Gebaseerd op systematisch literatuur onderzoek, waarbij gebruik is gemaakt van 
zoektermen gerelateerd aan CDSS en telemedicine, creëren we een bruikbare 
conceptualisatie van DSTSs, waarbij extra aandacht wordt besteed aan zaken die 
relevant zijn voor DSTSs. 
 
Gedurende de literatuurstudie over DSTSs werd het duidelijk dat de beschrijvingen van 
dergelijke systemen vaak incompleet of onduidelijk zijn, omdat belangrijke 
eigenschappen van dit soort systemen vaak niet worden beschreven (bijvoorbeeld het 
niet rapporteren van de redeneermethode van een CDSS component). In Hoofdstuk 5 
presenteren we een verzameling van attributen die gebruikt kunnen worden om een 
DSTS te karakteriseren. De verzameling bestaat uit 14 attributen die kunnen worden 
gebruikt om DSTSs te beschrijven of te clusteren. De attributen zijn onderverdeeld in 
drie categorieën: de probleem dimensie (gerelateerd aan het medische probleem en de 
omgeving waar een DSTS wordt ingezet), de proces dimensie (gerelateerd aan gedrag 
en dynamische aspecten) en de systeem dimensie (attributen gerelateerd aan het 
daadwerkelijke systeem). Voorbeelden van attributen van de probleem dimensie zijn 
bijvoorbeeld wat het doel is van een DSTS, welke menselijke actoren bij het systeem 
zijn betrokken, en wat voor soort medische taak worden ondersteund. Voorbeelden van 
attributen van de proces dimensie zijn bijvoorbeeld of het proces een synchroon of 
asynchroon karakter heeft. Voorbeelden van attributen van de systeem dimensie zijn 
bijvoorbeeld wat voor soort redeneermechanisme het systeem gebruikt en wat voor 
soort data door het systeem wordt verwerkt. Onverwacht werden uiteindelijk geen 
attributen in de literatuur gevonden die uniek zijn voor DSTSs. 
 
In Hoofdstuk 6 stellen we een definitie voor DSTSs voor. Deze definitie is een 
combinatie en harmonisatie van afzonderlijk definities voor telemedicine en CDSSs uit 
de literatuur. Daarnaast stellen we ook een algemeen conceptueel DSTS raamwerk voor 
en presenteren we een aantal sjablonen (templates) die gebruikt kunnen worden bij het 
uitvoeren van een vereisten analyse of bij de verdere ontwikkeling van een DSTS. Om 
de sjablonen te creëren is gebruikt gemaakt van de Unified Modeling Language (UML). 
 
In Hoofdstuk 7 geven we een samenvatting van de belangrijkste bevindingen van dit 
proefschrift. De grootste bijdrage van dit proefschrift is een beter begrip van CDSSs te 
bevorderen. Daarbij besteden we zowel aandacht aan een toepassing (toepassen van 
het PRIM algoritme) als aan het formuleren van een conceptueel raamwerk om begrip 
van CDSSs in een telemedicine omgeving te bevorderen. 
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