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SIGNIFICANCE OF THE WEIBULL DISTRIBUTION AND ITS
SUB-MODELS IN NATURAL IMAGE STATISTICS

Victoria Yanulevskaya, Jan-Mark Geusebroek
Intelligent Systems Lab Amsterdam, Informatics Institute, University of Amsterdam, Kruislaan 403, Amsterdam, The Netherlands
V.Yanulevskaya@uva.nl, Geusebroek@uva.nl
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Abstract: The contrast statistics of natural images can be adequately characterized by a two-parameter Weibull distribu-
tion. Here we show how distinct regimes of this Weibull distribution lead to various classes of visual content.
These regimes can be determined using model selection techniques from information theory. We experimen-
tally explore the occurrence of the content classes, as related to the global statistics, local statistics, and to
human attended regions. As such, we explicitly link local image statistics and visual content.

1 INTRODUCTION confirm that the statistics involving linear filters can
be modeled by a generalized Laplacian distribution.
While looking at the world around us, we see a Geusebroek and Smeulders (2005) generalize these
wide variety of images. These images, being a vi- findings in showing that the dominant distribution of
sual projection of the world on our eye, are not ran- texture statistics follows the Weibull distribution. An
dom, but highly organized and structured. This is re- overview of statistical modelling of natural images
flected in the statistics of natural images. With nat- can be found in Srivastava et al. (2003).
ural images, we mean real-world photos, including Scholte et al. (2008) examined to which degree
both natural landscapes and man-made environmentsthe brain is sensitive to these natural image statistics,
Surprisingly, the contrast statistics of such natural im- by considering the ERP brain measurements of hu-
ages can be adequately described by a simple modeman subjects. They found a correlation of 84% and
(Geusebroek & Smeulders, 2003). 93% between the Weibull parameters as derived from
Natural image statistics have widely been studied images and a simple model of ERP measurements
in the field of image coding (Field, 1987), image com- obtained from the parvo- and magnocellular system.
pression and image representation (Mallat, 1989), andGiven these results, one would expect the Weibull dis-
more recently, in 3D scene geometry understanding tribution to play a significant role in image statistics.
(Nedovic et al., 2007), visual categorization (Oliva & The central question we address in this paper is:
Torralba, 2001). Despite its apparent importance, not In how far can natural image statistics explain visual
many efforts have been undertaken to gain a funda-content? To address this question, we explore edge
mental insight in understanding the cause and signifi- distributions of natural images at the global and local
cance of these statistics. level. We distinguish four classes of natural images
One of the most important image statistics is the according to the behavior of the Weibull distribution.
distribution of contrasts. Mallat (1989) and later Si- As we will show, each class seems to reflect a specific
moncelli (1999) propose the generalized Laplacian type of visual content. Furthermore, we study the oc-
distribution as a parameterized model which provides currence of the different classes for human attended
a good fit to the statistics of natural images. Huang regions.
and Mumford (1999) systematically investigate vari- Novel in our approach is the explicit link between
ous statistical properties of natural images on a large regional statistics and visual content, as reflected in
calibrated image database (van Hateren, 1998). Theythe Weibull sub-models. Furthermore, from a human



attention perspective we study the importance of each * .
sub-model. X I
The paper is organized as follows. Section 2 in- o <. S . »
troduces the integrated Weibull distribution to cap- #—==——= = L T R
ture the natural image statistics. The maximum like- .o ! 10 b
lihood estimators of the Weibull parameters are pro-
vided. Furthermore, we distinguish four different sub-
models of the Weibull distribution, and apply infor-
mation theory to differentiate these sub-models. We
present the g-test as a goodness of fit test between the ] ] ]
data and the Weibull distribution. In Section 3 we E?:Sr_e c}l;.'é‘éf%’:gidr\c’:ﬁer:zﬂ%z[)g'?a‘:)orig;gegesn\tlv'?t'ﬂdrﬁ;éi’;éte
eXplore. the occurrence of the_dlfferent sub-models of contrast g:ontent (t?), high-frquuency’/ textgre image (c) and
the Weibull distribution on an image data set, and We jmage with a regular pattern (d).
link the sub-models to the visual content. We consider
three experiments. We start by analyzing the statistics
of the whole image. Then we zoom in on the local
image statistics. Finally, we explore the statistics of
human attended regions. We wrap up with conclu-
sions in Section 4.
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Weibull statistics and visual content. Hence, besides
investigating the variation in image content as func-
tion of the Weibull parameters by means of scatter
plots, we will explore visual content by categorizing

these statistical sub-models. To distinguish between
the different sub-models, we need to know parame-
2 IMAGE STATISTICS ters of each model. They can be estimated with the
Maximum Likelihood Estimation (MLE) technique.

The parameterized model which provides a good After that, we can quantify the various sub distribu-
fit to the edge distribution of natural images (Geuse- tions using model selection techniques.

broek & Smeulders, 2003; Simoncelli, 1999; Huang

& Mumford, 1999) has a probability density function 5 q Maximum likelihood estimation
(pdf) given by, '

p(x) = Y exp<1 ‘X y) 1) The likelihood function indicates how well a distri-
YBr(L YIB| ) bution describes the observed data= x1,X2, ..., Xn.
2yVpr(y) > .
) Y ) . The best fit is obtained when model parameters max-
wherex is the edge response to the Gaussian deriva-jmjze the log-likelihood function, in which case their
tive filter,y> O is the shape parameter gl Oisthe  egpective derivatives should equal zero. For the in-

scale parameter of the distributiofi(.) is the com-  tegrated Weibull distribution given by Eq.(1), the best
plete Gamma function, fit is obtained when

[Pl ot
r(x)_/ot exp " dt. 2) ilnLiw(B,VIX):*

Through out the paper we will refer to this model oB
as the two parameter integrated Weibull distribution, and
considering its close relationship to the Weibull dis-
tribution (Geusebroek & Smeulders, 2003). The pa- glnL- ByX) = 1/ 1rw(i) 4
rameterf3 denotes the width of the distribution and ay " Y Y Y v y
the parametey represents the peakness of the distri-
bution. The widti reflects the local contrast. A wide +In(y) + Z\
distribution indicates a texture with high contrast. The =
shapey is sensitive to the local edge spatial frequency. 1N
These two parameters catch the structure of the image - ZI
texture (Geusebroek & Smeulders, 2005). Figure 1il- i=
lustrates the integrated Weibull pdf for some example
images.

The integrated Weibull distribution captures the d é’—yr(y)
behavior of other statistical distributions, mainly be- by) =4, InFv) = v 5)
ing the power-law, exponential, and gaussian distri- ¥ Y
bution. Our aim is to explore the link between the is the digamma function.
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where,




The parameteyis obtained by eliminatin@ from
Eq. (4):

1 ) Ixi¥
Yiga Skl Y xlY

1 1 /1
1+y|n(y)+yw(y>_o. (6)

f(y.X)

Eg. (6) may be solved using standard iterative pro-
cedures, for example, the Newton-Raphson method:

f
yk+l Vk_ F] (yk) )
a,f(Vk
0 I YT
a/f(y,X) = IZi/\ XY —nZ/\—
n Y,
xn
—n /\In( ), @)
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= — —_— . 8
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The Newton-Raphson algorithm works as shown
in Alg. 1. Thus, the maximum likelihood estimatpr
is the solution of Eq. (6) and thghcan be calculated
from Eq. (3), until convergence.

Algorithm 1 Integrated Weibull parameter estimation
y = 1initial value
€ = 0.001accuracy of the calculations
_y_ _fX)
Ynext=Y %f(vﬁx)
while |Ynext— Y| > €
Y = Ynext
Ynext=Y—

returnynext

f(yX)
21X

MLE for parameters of the power law, the expo-
nential, and the Gaussian distribution are well known

tions are
~ n
Po = SrogEy ™2
o = 2E=ihl (13
- n )2
By = 220 (14

2.2 Model selection

We use Akaike’s information criterion (AIC) (Akaike,
1973) for appropriate model selection. AIC estimates
expected Kullback-Leibler information, based on the
log-likelihood function at its maximum point. Hence,
we do not need to assume that the "true model” is in
the set of candidates (Burnham & Anderson, 2004).
AIC for modeli is

AIC; = —log(Li (Bi|X)) +Ki, (15)

wherel; is the likelihood function of the mode] {3;

is the maximum likelihood estimator of the model pa-
rameters based on the assumed modeld the data
X, andK; is the number of parameters of the model
i. In our case, parameté is defined by Eq. (12)-
(14) for each particular model. In the end we have
three AIC values corresponding to the power law, the
exponential, and the Gaussian distribution. The best
model is the one with minimum valu&lCp,i,. How-
ever, we follow (Burnham & Anderson, 2002) and as-
sign a probability to each model by

exp(—A; /2)
TR exp(—Ar/2)

| = (16)
where
A = AIG — AlChin (17)

andRis the number of model® = 3 in our case. The

w; are called Akaike weights and are interpreted as a
probability that model fits the dataX best over the
considered set of models.

2.3 g-Test

and can be easily calculated. Their pdf's are given by Sometimes none of the considered models represents

P = | ©

E(x) = ZlBexp(— BD’ (10)
2

G(x) = \/;ﬁexp<—le32>. (11)

The corresponding maximum likelihood estima-

the data appropriately. Thus, it should be tested how
well the integrated Weibull distribution fits the data.
The g-test is the log-likelihood equivalent of the chi-
squared test, given by:

k O]
g= 2;101- log (EJ> ,

whereQj is the number of observed valugsin bin
j of the histogram of the dafd. FurthermoreE; is

(18)



a number of expected values in the same jpbimder

the fitted distribution. The hypothesis that the distri-
bution is of a given form is accepted if the calculated
test statisti@ is less than an appropriate critical value.
The g-test can be applied with the same critical values
as the chi-squared test. In this paper we use a criti-
cal value which corresponds to a significance level of
o = 0.05 and 100 degrees of freedomp <€ 77.929)
(Filliben, 2002).

2.4 The four regimes of the integrated
Weibull distribution

We can now distinguish four types of natural images
according to the behavior of the integrated Weibull
distribution. When the integrated Weibull distribution
fits the data well, its sub-models define the first three
types, being: the power law, the exponential or the
Gaussian. The fourth type of natural images occurs
when the integrated Weibull distribution does not de-
scribe the data well. Our aim is to assign one particu-
lar type to a (sub-)image.

3 EXPERIMENTS

To illustrate the different regimes of the integrated
Weibull distribution, we analyze a data set contain-
ing 107 natural images of size 800x540 pixels. These

images are selected from three categories of National

Geographic wallpapets animals, landscapes, and
people. We are interested in the intensity edge dis-
tribution and its sub-models according to the four
regimes of the integrated Weibull distribution. To ob-
tain the intensity edge distribution, we do not use the

Table 1: Four regimes of the integrated Weibull distribution
for global image analysis.

Int. Weibull Not Int. Weibull
100% 0%
Power Law | Exp. | Gauss. -
20% 78% | 2% -

distribution is chosen as an appropriate sub-model for
20% of the images. These images have well separated
foreground and uniform background regions, see Fig-
ure 2(a). Only 2% of the images are Gaussian dis-
tributed, these are images which contain mostly high-
frequency texture, illustrated in Figure 2(c). Most of
the images (78%) follow the exponential distribution,
which refers to moderate contrast contents. These im-
ages usually contain a lot of details at different scales,
see Figure 2(b).

Figure 3 gives an overview of the occurrence of
each sub-model in the entire image collection. Each
of the sub-models indicates different image content.
Images with strong object-background contrasts are
close to the power law behavior. Images with mod-
erate contrast tend to follow the exponential distribu-
tion. High-frequency texture images are described by
the Gaussian distribution.

F

(@)

Figure 2: Typical images for three sub-models of the inte-
grated Weibull distribution. Figure (a) corresponds to the
power law sub-model, (b) and (c) show, respectively, exam-

standard edge filters, e.g. Sobel style, instead we ap-p|es for the exponential and the Gaussian sub-models.

ply the Gaussian derivative filteo(= 1) and steer

it in the gradient direction. Then we consider a his-
togram (101 bins) of the responses, and fit the inte-
grated Weibull distribution to this histogram. Finally,
we select the appropriate sub-model using Akaike’s
information criterion.

3.1 Global image statistic analysis

3.2 Local image statistic analysis

Edge distributions of natural images follow the in-
tegrated Weibull when looking at global statistics
as shown above. More important, the various sub-
models of the integrated Weibull distribution seem to

We start by analyzing the presence of the various in- reflect visual content. One woqld gxpect this effect
tegrated Weibull sub-models in the statistics of the {0 be even stronger when considering local patches,
whole image. We extract edges and study their dis- @S local visual content is more coherent. Therefore,

tribution globally for each image from the data set. for the local analysis, we divide images into rectan-
The results are shown in Table 1. gular patches (60x60 pixels) and consider the edge

Allimages fit well to the integrated Weibull distri- ~ Nistogram and model selection over these patches.

bution according to the g-testt & 0.05). Power law Results are presented in Table 2. For_ experimen-
tal setup reasons (see below), we consider a subset

Ihttp://iwww.nationalgeographic.com/ of 49 images, however, results for the whole data set



Table 2: Four regimes of the integrated Weibull distribution
for local region analysis.
Int. Weibull Not int. Weibull
87% 13%
Power Law| Exp. | Gauss. -
26% 47% | 14% -

a photo stock. However, uniform textured regions do
occur inimages, and local analysis reflects this. Com-
paring the results for the power law sub-model, the
model behaves relatively similar at the global and lo-
cal levels.

Figure 4 illustrates how the patch’s visual content
is reflected by the integrated Weibull sub-models. The
figure represents a scatter plot of integrated Weibull
parameter$ andy with each patch positioned at its
respective §,y) value. The power law sub-model
is concentrated at the bottom which corresponds to
smally values ¢ < 1). This sub-model is linked to
Figure 3: Scatter plot of integrated Weibull parametgrs  the patches containing uniform regions separated by
andy with each image positioned at its respectifgyf val- strong edges, but are not very detailed, as shown in
ues. The horizontal axis represents the value optparam- the inset. The exponential sub-model spans a wide
eter, indicating contrast. The vertical axis represents value range ofy values, starting within the power law sub-

of they parameter (between 0 and 3). A red frame indicates del d endi t the | . fthe G
the image is fitted by the power law distribution. Images model, and ending at the lower regions ot the (>aus-

with blue frames follow the exponential distribution. Yel- Sian sub-model. This sub-model correspondgal-

low framed images are described with the Gaussian distri- ues around 1 and describes more detailed patches.
bution. The Gaussian sub-model ends up at the top of the
figure, where they parameter is close to 2. High-
frequency with high contrast patches are reflected in
the Gaussian sub-model, as well as smoothed patches
with Gaussian noise.

are similar (data not shown). Comparing these re-
sults with the global analysis (Table 1), local patches
do not always follow the integrated Weibull distribu- ) .
tion according to the g-testi(= 0.05). For one, re- 3.3 Attention based analysis of local
gions without edges are dominated by compression image statistics

artifacts and may not follow the integrated Weibull

diStribution. Furthermore, in many cases, patCheS are\/isua| content is C|Ose|y connected to human atten-
composed of a few parts, each following a different tion while observing the world around us. Our vi-
sub-model. Thus, each part seems to conform thesya| system samples the environment not randomly,
integrated Weibull distribution, but all together they pyt is driven by visual stimuli, like variations in con-
do not follow one of the sub-models. In the global trast or color (Baddeley & Tatler, 2006; ltti et al.,
analysis, we have the same situation, where images]998: Mante et al., 2005: Reinagel & Zador, 1999).
are composed of many parts due to objects and clut-we are interested in the occurrence of various sub-
ter. However, the resulting distribution of the whole models of the integrated Weibull distribution in the
image combines into the exponential distribution due statistics of local regions attended by humans. To
to the large amount of parts (Burghouts et al., 2007). gptain the ground truth attended regions, human eye
This explains the smaller portion of local patches de- fixations were recorded for the subset of 49 images.
scribed with the exponential sub-model in compari- Ejghteen subjects participated in the experiment, they
son with the global analysis. were shown each image for 5 seconds. For each fix-
The Gaussian sub-model occurs more often at lo- ation point we consider a fovea-sized patch (60x60
cal scale. The Gaussian distribution describes uni- pixels). Again the local edge distribution analysis is
form regions of high-frequency textures. Images con- applied for each fixated patch.
taining only high-frequency textures are rather rare in Based on the results shown in Table 3, we can con-



Figure 4: Scatter plot of integrated Weibull paramefasdy with each patch positioned at its respecti@eyf value. Again,

the horizontal axis represents value of fh@arameter, and the vertical axis represents value of therameter (between

0 and 3). Red framed patches correspond to the power law sub-model. These patches contain uniform regions separated
by strong edges, but are not very detailed, see the inset on the bottom left. Patches with blue frames follow the exponential
distribution. Clearly they are showing more small scale details, as illustrated by the inset in the middle. Yellow framed patches
are Gaussian distributed, there we observe two types of visual content. On the top right, high-frequency with high contrast

patches are gathered, enlarged version is in the bottom right inset. On the top left, there are smooth patches with gaussian-like
noise.




clude that attended regions differ from arbitrary se-
lected local regions (Table 2). People tend to look to
strong edges, which are power law distributed, in our
results 33% for attended regions compared to 26% for |
arbitrary regions, respectively.

Table 3: Four regimes of the integrated Weibull distribution
for attended region analysis.

Int. Weibull Not int. Weibull
95% 5%
Power Law| Exp. | Gauss. -
33% 55% | 7% -

Gaussian distributed patches occur more rare in at- . -
tended regions in comparison with arbitrary regions, Figure 5: Visualization of the integrated Weibull sub-
7% versus 14%. The examples of Gaussian regions inmodels with superposed human gaze directions. On the
Figure 4 (in yellow frames) show two types of Gaus- left two example images. On the right a visualization
sian distributed patches. As one can notice, SmOOthOf the local model selection and the eye-tracklng experi-
patches with gaussian-like noise on the top left are ment. The black areas correspond to patches with power

inf . h I v d fi law sub-model, dark and light grey areas correspond to
not informative, thus, people generally do not fixate patches with the exponential and Gaussian sub-models, re-

on such kind of regions. Instead, people look to de- spectively. White small squares depict the human fixation
tailed regions, which follow the exponential distribu- points.

tion. In our attention based analysis, the exponential
sub-model is present in 55% of the results (Table 3),
whereas this is only for 47% the case when consid-
ering arbitrary regions (Table 2). Regions which do

Table 4: Mean integrated Weib@lparameter.

not follow the integrated Weibull distribution accord- . . PowerLaw| Exp. | Gauss.
ing to the g-test, are less present in attended regiong_Arbitrary regions| 0.0090 | 0.0149 | 0.0249
than in arbitrary regions, 5% versus 13%. This is may | Attended regiong  0.0119 | 0.0189| 0.0287

be due to the portion of regions without edge content
as discussed previously.

Figure 5 illustrates the occurrence of different 4 CONCLUSIONS
regimes of the integrated Weibull distribution with su-
perimposed human gaze directions. As can be seen |n this paper, we have explored the link between
from the Figure, subjects seldom look to the Gaus- yisual content and natural image statistics modelled
sian distributed regions, but prefer areas which follow by the integrated Weibull distribution. We have given
the power law and the exponential distributions. four different regimes with respect to the integrated

As discussed in Section 2, the integrated Weibull
parametefB reflects the local contrast. From litera-
ture it is known that contrast plays an important role
in human eye fixations (Reinagel & Zador, 1999; Bad-
deley & Tatler, 2006). Table 3.3 illustrates the mean
values of the paramet@ within each sub-model for
arbitrary regions versus attended regions. THest
shows that the local contrast capturedbis signif-
icantly higher p < 1071° for each sub-model) in av-
erage for attended regions than for arbitrary regions.
Therefore, our experiments reproduce the tendency of

Weibull distribution: power-law, exponential, Gaus-
sian, and the case when the integrated Weibull distri-
bution is not appropriate. With model selection tech-
nigues from information theory, we can determine the
probability for every sub-model to explain the statis-
tical properties of the regions. Our results show that
natural image statistics explain a lot of visual content.
Each sub-model reflects a specific type of visual con-
tent, at the global (see Figure 3), and at the local level
(see Figure 4).
At the global level, all images from our collection

people to look at higher contrast regions. The results follow the integrated Weibull distribution, see Table 1.
identify both contrast and edge frequency reflected in Most of the images, around 80%, are exponentially
the integrated Weibull parameters and its sub-modelsdistributed. The rest is mainly power law distributed,
might be cues for human attention. the Gaussian distribution being rare. In the local anal-



ysis we have considered the statistics of arbitrary and Mante, V., Frazor, R. A., Bonin, V., Geisler, W. S. & Caran-

attended regions, see Tables 2 and 3, respectively. We  dini, M. (2005). Independence of luminance and con-

have shown that the occurrence of the various sub- trast in natural scenes and in the early visual system.

models in human attended versus arbitrary regions is N_ature Neuroscj8(12), 1690-7.

significantly different. This might indicate a role of Nedovic, V., Smeulders, A. W. M., Redert, A. & Geuse-

the Weibull sub-models in human attention. b.rf‘?e‘iz J. 'VI' %?:?/7)' Depth information by stage clas-
In future work, we plan to address salient re- strication. i ' )

gion detection algorithms based on these local image ©liva, A. & Torralba, A. (2001). Modeling the shape of

statistics. Furthermore, recent studies show natural the scene: A holistic representation of the spatial en-

: ST t . ; velope.Int. J. Comput. Visiopd2(3), 145-175.

image statistics play an important role in 3D scene Pelii. D. G. & Til KA. (2008). Th ded wi

perception (Pelli & Tillman, 2008). We plan to further € I’dO'W o objlercntigbog';niiignNat)ljre Neeﬂrgg("g. ?o ;I‘[’)'_n'

exploit the various Weibull sub-models in condensed

! £ 3D pear in october).
representations o Scenes. Reinagel, P. & Zador, A. (1999). Natural scene statistics at

the centre of gazeNetwork: Comput. Neural Syst.
10(4), 341-350.
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