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MCMC estimation for the p2 network regression
model with crossed random effects

Bonne J.H.Zijlstra1*,MarijtjeA. J. vanDuijn2 andTomA.B. Snijders3,4
1Department of Educational Sciences/IOPS, University of Amsterdam, Amsterdam,
The Netherlands

2Department of Sociology/ICS/IOPS, University of Groningen, Groningen,
The Netherlands

3Department of Sociology/ICS, University of Groningen, Groningen,
The Netherlands

4Department of Statistics, University of Oxford, Oxford, UK

The p2 model is a statistical model for the analysis of binary relational data with
covariates, as occur in social network studies. It can be characterized as a multinomial
regression model with crossed random effects that reflect actor heterogeneity and
dependence between the ties from and to the same actor in the network. Three
Markov chain Monte Carlo (MCMC) estimation methods for the p2 model are
presented to improve iterative generalized least squares (IGLS) estimation developed
earlier, two of which use random walk proposals. The third method, an independence
chain sampler, and one of the random walk algorithms use normal approximations of
the binary network data to generate proposals in the MCMC algorithms. A large-scale
simulation study compares MCMC estimates with IGLS estimates for networks with 20
and 40 actors. It was found that the IGLS estimates have a smaller variance but are
severely biased, while the MCMC estimates have a larger variance with a small bias. For
networks with 20 actors, mean squared errors are generally comparable or smaller for
the IGLS estimates. For networks with 40 actors, mean squared errors are the smallest
for the MCMC estimates. Coverage rates of confidence intervals are good for the
MCMC estimates but not for the IGLS estimates.

1. Introduction

The p2 model (Van Duijn, Snijders, & Zijlstra, 2004) is applied in social network analysis.

A social network consists of a set of actors and the ties between them. The p2 model is

an extension of the p1 model (Holland & Leinhardt, 1981) which models binary tie
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variables using actor-specific sender and receiver parameters and overall density and

reciprocity parameters. In the p2 model, these parameters are regressed on covariates, and

correlated random effects are added to the sender and receiver parameters, which

considerably reduces thenumberofmodel parameters. Thep2model is formally introduced

in Section 2. In this paper, new estimation methods for the p2 model are proposed and

compared to the earlier proposed estimation method in a large-scale simulation study.
Thep2model canbe viewed as a generalized linearmixedmodel (McCullagh&Nelder,

1989; Skrondal & Rabe-Hesketh, 2004). Until recently, generalized linear mixed models

were usually estimated with iterative generalized least squares (IGLS) algorithms using a

first- or second-order Taylor approximation of the likelihood function (see Goldstein,

2003), often resulting in biased estimates (Rodrı́guez & Goldman, 1995, 2001).

An alternative to IGLS is numerical integration (see Gibbons & Hedeker, 1997).

However, with the crossed random effects in the p2 model, standard numerical integration

is not feasible and complex approximations are required (Shun & McCullagh, 1995; Shun,
1997). Another alternative is Markov chain Monte Carlo (MCMC) estimation, which has

been shown to give nearly unbiased estimates in other generalized linear mixed models

(Browne, 1998; Browne & Draper, 2000). Gill and Swartz (2004) used MCMC estimation

for a random effects extension of the p1 model formulated as a log-linear model (Fienberg

& Wasserman, 1981). A disadvantage of this approach is that possible covariates can only

be categorical and there have to be sufficiently many observations in each category.

MCMC is often applied within a Bayesian framework where, unlike the frequentist

IGLS approach, prior distributions for the parameters are specified. Based on the data and
priors, the MCMC procedure generates a sample from the posterior distributions.

Inference is typically based on a credibility interval of this sample. In this paper, three

MCMC estimation algorithms for the p2model are proposed and explored by simulations.

In the simulation study, estimates are compared on the basis of their bias and

variance. Preferably, both should be small. They are combined in a single measure by

computing mean squared errors. To evaluate the quality of inferences about the

parameter estimates, coverage of the true parameter value by IGLS confidence intervals

and MCMC credibility intervals is investigated. Coverage rates of credibility intervals
based on normal approximations of the MCMC estimates are explored as well.

2. The p2 model

The dependent variable in the p2 model is a social network or digraph. A digraph

represents the directed lines or ties between a fixed set of nodes or actors. A pair of

actors and their observed ties is called a dyad. Here, observed ties are coded as binary,

resulting in four possible outcomes for each dyad: (0,0), (1,0), (0,1), and (1,1). They are

modelled as follows in the p1 model (Holland & Leinhardt, 1981):

PðY ij ¼ y1;Y ji ¼ y2Þ

¼
exp y1ðmþaiþbjÞþy2ðmþajþbiÞþy1y2r

n o
1þexp mþaiþbj

n o
þexp mþajþbi

� �
þexp mþmþaiþbjþajþbiþr

n o ;
y1;y2 [ 0;1f g; 1# i, j#n;

ð1Þ
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whereYij is the directed tie variable (with value 0 or 1,where 1 indicates the presence of a

tie) from actor i to actor j. Parameters ai and bi are the sender and receiver parameters,

respectively, of actor i. Parameter m is called the density parameter. It represents the log

odds of a tie in the case of zero sender and receiver effects and no reciprocity. Parameter r

represents the log odds ratio of a symmetric over a non-symmetric dyad. Therefore, r is

called the reciprocity parameter. For identification purposes, a restriction needs to be

imposed on the sender and receiver parameters, usually
P

ai ¼
P

bi ¼ 0.

In the p2 model (Van Duijn et al., 2004), a, b, m, and r are further extended to
include covariates. Density and reciprocity parameters m and r have additional

subscripts i and j to indicate that they are dyad-specific,

ai ¼ X1ig1 þ Ai; bi ¼ X2ig2 þ Bi; mij ¼ mþ Z1ijd1;

rij ¼ rþ Z2ijd2;
ð2Þ

where Ai and Bi are normal independent and identically distributed random effects with

E(Ai) ¼ E(Bi) ¼ 0, variances s2
A and s2

B, and covariance sAB. The random effects for

actors i ¼ 1, : : : , n are collected in vector C,

CT
i ¼ ðAi;BiÞ;

with covariance matrix �,

� ¼
s2
A sAB

sAB s2
B

0
@

1
A: ð3Þ

Because the random actor effects occur in all ties sent or received by the same actor,

modelling the dependence between these relations, the random effects in the p2 model
have a crossed structure.

Matrices X1 and X2 contain actor-specific covariates and Z1 and Z2 are matrices with

dyad-specific covariates. Vectors g1,g2,d1, and d2 contain fixed regression parameters for

the sender, receiver, density, and reciprocity effects, respectively. All fixed parameters

are collected in the k-dimensional parameter vector u,

uT ¼ ðm; r;gT
1 ;g

T
2 ; d

T
1 ; d

T
2 Þ:

The p2 model can be formulated as a generalized linear mixed model for a multinomial

outcome variable with four categories, where the data Y are represented by n(n 2 1)/2

stacked three-dimensional vectors dij,

dij ¼

Y ijð12 Y jiÞ
Y jið12 Y ijÞ

Y ijY ji

0
BB@

1
CCA ¼

d1ij

d2ij

d3ij

0
BB@

1
CCA:
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Using this representation, the numerator in (1) can be expressed as expðjTijdijÞ with

jij ¼

ai þ bj þ m

aj þ bi þ m

j1ij þ j2ij þ r

0
BB@

1
CCA ¼

j1ij

j2ij

j3ij

0
BB@

1
CCA:

The probability of Y under the p1 model is then rewritten as an exponential family

distribution,

PðY ¼ yÞ ¼ exp jTd2 bðjÞ
� �

; ð4Þ

with bðjÞ ¼
Pn

i,jkðjijÞ; and kðjijÞ ¼ lnð1þ expðj1ijÞ þ expðj2ijÞ þ exp ðj3ijÞÞ:
The p1 model is thus a generalized linear model, expressed here as a multinomial

model with (0,0) as the reference category. The p2 model is obtained by substituting jij
using (2), resulting in a generalized linear mixed model (4) with

jij ¼

Ai þ X1ig1 þ Bj þ X2jg2 þ mij þ Z1ijd1

Aj þ X1jg1 þ Bi þ X2ig2 þ mji þ Z1jid1

j1ij þ j2ij þ rij þ Z2ijd2

0
BB@

1
CCA ¼

j1ij

j2ij

j3ij

0
BB@

1
CCA: ð5Þ

The likelihood function of the p2 model can be written as

PðYju;�Þ ¼
ð
PðYju;CÞPðCj�ÞdC; ð6Þ

where the integral is taken over the random effects C and P(Yju, C) is the p1 probability
(4) with j defined as in (5). One way of dealing with the integral is through IGLS, an

estimation procedure based on Taylor approximations to generalized linear mixed

models, which is discussed in the next section. However, IGLS does not always work

well for non-linear models (Rodrı́guez & Goldman, 1995, 2001). An alternative is MCMC

estimation, discussed in Sections 4–8.

3. IGLS estimation of the p2 model

For non-linear models, several iterative generalized least squares (see Goldstein, 2003)

algorithms are available, which alternate two basic steps until convergence. In the first
step, the model is approximated around its current estimates, and estimates of the fixed

parameters are obtained. In the second step, the variance of the residuals is linearly

regressed on indicator variables for the variance components, yielding estimates for the

variance and covariance parameters of the random effects (see Goldstein, 2003,

Appendix 2.1).

The marginal quasi-likelihood (MQL-1) algorithm uses a first-order Taylor

approximation around the current estimates of the fixed parameters (see Goldstein

& Rasbash, 1996). The MQL-2 algorithm applies a second-order Taylor approximation.
In both MQL algorithms, random parameters are set to zero in the first step.

Rodrı́guez and Goldman (1995) showed that the MQL algorithm in other generalized

linear mixed models for binary data produces biased estimates for fixed and random

effect parameters. In response, Goldstein and Rasbash (1996) proposed the PQL-2

146 Bonne J. H. Zijlstra et al.



Copyright © The British Psychological Society
Reproduction in any form (including the internet) is prohibited without prior permission from the Society

algorithm which performs considerably better. The penalized quasi-likelihood (PQL)

algorithm uses an approximation around the current estimates including estimates of

random effects, with a first- (PQL-1) or second-order (PQL-2) Taylor expansion.

However, even with PQL-2, some estimates are still biased (Goldstein & Rasbash,

1996). Therefore, the IGLS algorithms for the p2 model are also expected to yield

biased estimates, the extent of which is examined in a simulation study, presented in
Section 9.

Two IGLS algorithms for the p2 model are briefly discussed here, both of which are

comparable to the MQL-1 algorithm. The first one (Van Duijn et al., 2004) formulates the

probability of the two observed ties in a dyad as the product of the two binomial

probabilities of the first and the second tie conditional on the first,

P Y ij ¼ y1; Y ji ¼ y2
� �

¼ P Y ij ¼ y1
� �

P Y ji ¼ y2jY ij ¼ y1
� �

; y1; y2 [ 0; 1f g; ð7Þ

where both binomial probabilities are derived from the p2 model. Because of the two

‘observations’ for each dyad, this algorithm is called IGLS-2.

The approximation of (7) depends on which of the two tie variables is taken to be

first, but allows incomplete dyadic data, i.e. Yij observed but Yji not. Results from the

IGLS-2 procedure change, usually only slightly, if the first and second tie variables are
reversed. This can be avoided by expressing the p2 model as a multinomial model in

which the dyads have four possible outcomes, as in (4) using (5). The resulting

algorithm, for obvious reasons called IGLS-3, is insensitive to data ordering, but requires

complete dyadic data.

The IGLS-3 algorithm is similar to IGLS-2, except that instead of the independent

binomial variance structure, the probabilities in (4), using (5), have a multinomial

covariance matrix,

diagðEðdijÞÞ2 EðdijÞEðdijÞT : ð8Þ

The IGLS algorithm can be refined by taking into account the sampling variation

of the regression parameters u. This is done with a restricted IGLS (RIGLS)

algorithm (Goldstein & Rasbash, 1992). In the simulation study, results from the

IGLS-2, IGLS-3, and RIGLS-3 algorithms are compared, along with the results of

MCMC algorithms.

4. MCMC estimation of the p2 model

In Markov chain Monte Carlo estimation, a Markov chain is used to obtain a sample from

a (multivariate) distribution from which Monte Carlo estimates are calculated. Here,

the p2 model is formulated as a Bayesian model and MCMC is applied to obtain a

sample of the posterior distributions of the model parameters (see Gilks, Richardson, &

Spiegelhalter, 1996). Applying Bayes’ theorem, posterior distributions for the model
parameters conditional on the data and the prior distributions are derived. An advantage

of MCMC is that it provides conceptually straightforward methods to set up simulation

algorithms for the posterior distributions. These generate samples for which

convergence is achieved, after a sufficiently long initial burn-in period and for large

enough samples.
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4.1. The p2 model including prior distributions
In the full multivariate distribution of the p2 model, (6) is extended with the prior

distributions for the parameters u and �, Pu(u) and P�(�). Assuming that � and u are a

priori independent, the factorization

PðY; C; �; uÞ ¼ PY ðYjC; uÞPCðCj�ÞP�ð�ÞPuðuÞ ð9Þ

results, where

PY ðYjC; uÞ ¼
Yn
i,j

{f 1ðY ij; Y jijCi; Cj; uÞ};

with f1 the p2 probabilities (conditional on u and C) given in (4) using (5). The second

factor of (9) is the product over all actors of the bivariate normal distribution of the

random effects,

PCðCj�Þ ¼
Yn
i¼1

f 2ðCij�Þ;

with

f 2ðCij�Þ ¼ ð2pÞ21j�j21=2exp 2
1

2
CT
i �

21Ci

� �� �
:

Given the assumption of normally distributed random effects, a convenient choice is to
take the prior distribution of the covariance matrix for the random effects, P�(�), as
inverse Wishart (see Johnson & Kotz, 1972, pp. 158–159). This is the conjugate prior

distribution. Here, we assume for � a prior inverse Wishart distribution with ns ¼ 3

degrees of freedom and prior covariance matrix �s ¼ I, the identity matrix, which

represents little prior information for �.
The prior distribution for the fixed model parameters, Pu(u), is chosen to be

multivariate normal with means mu ¼ 0 and a diagonal covariance matrix �u depending

on effect size considerations in multinomial regression. Our aim is to have a slightly
informative prior, which is applicable in most social network data sets. The p2
probability function resembles the logistic function e

x/(1 þ e
x), where x ¼ ^10

corresponds to extremely large or small probabilities. Therefore, it is assumed that the

products g1X1, g2X2, d1Z1, d2Z2 in the p2 model are unlikely to exceed 10 in absolute

value. In more general notation, juir ij ¼ 10 is considered to be a very large value for the

product of a certain parameter ui with corresponding covariate ri. Thus, a normal prior

distribution with zero means and standard deviation 10/s(r) is assigned to each

parameter ui:

ui , N 0;
100

s2ðr iÞ

� �
; ui [ {gT

1 ;g
T
2 ; d

T
1 ; d

T
2 }:

The parameters m and r are assumed to have a normal prior with zero mean and

variance 100.
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4.2. A hybrid Metropolis–Hastings algorithm for the p2 model
A convenient starting-point to set up a transition kernel for a Markov chain that generates

samples from the posterior distributions of the p2 model parameters is the Gibbs

sampler (Geman & Geman, 1984), defined by consecutively sampling from the

conditional distributions of each parameter, given the data, all other parameters, and the

prior distributions. The Gibbs sampler is a special case of the Metropolis–Hastings
algorithm (see Chib & Greenberg, 1995). If the conditional distribution has an unfamiliar

distributional form, it can be approximated using the Metropolis–Hastings algorithm

which, instead of directly drawing from the conditional distribution, either accepts or

rejects a proposal as a next value in the chain. For thep2model, proposals are generated in

twoways: as independent proposals and as random perturbations from the current value

of the parameters. This is elaborated below.

From the factorization of the parameter sets in (9), three conditional distributions

required for the sampler are derived, P(CjY, u, �), P(�jC), and P(ujY, C, �). The
conditional distribution of the random effects is proportional to the product of the p2
distribution, (4) with (5), and the bivariate normal for the random effects,

P CjY; u; �
� �

/
Yn
i,j

f 1 Y ij; Y jijCi; Cj; u
� �� �

PC Cj�
� �

;

which cannot be sampled from directly.
The conditional distribution of the covariance matrix � is proportional to the

product PC (Cj�)P�(�) of the density of the random effects and the inverse Wishart

prior for �, resulting in an inverse Wishart distribution with ns þ n degrees of freedom

and covariance matrix
Pn

i¼1CiC
T
i þ �21

s

� �21
(see Box & Tiao, 1973, p. 427). Draws

from the conditional distribution of � are obtained by inverting a draw from the Wishart

distribution for the conditional distribution of �21 (using the algorithm by Odell &

Feiveson, 1966).

The conditional distribution of the fixed parameters u is again proportional to the
product of the p2 distribution, (4) with (5), and a normal prior distribution,

P ujY; C; �
� �

/
Yn
i,j

f 1 Y ij; Y jijCi; Cj; u
� �( )

PuðuÞ:

Because neither the conditional distributions of u nor the conditional distribution of C
can be sampled from directly, draws for these variables are obtained by applying the

Metropolis–Hastings algorithm.

The Metropolis–Hastings step for the fixed parameters in u accepts a proposal u*
with a probability that depends on the ratio of the conditional distribution for the

proposal and for u (t21), the current value of u. It further depends on the probability of
the current value and the proposal defined by a generating function g(u). The

probability can be expressed as

min 1;
P u�jY; C; �
� �

g uðt21Þju�� �
P uðt21ÞjY; C; �
� �

g u�juðt21Þ
� �

 !
: ð10Þ

If the proposal u (t) ¼ u* is rejected, u (t21) is retained.

MCMC estimation for the p2 model 149



Copyright © The British Psychological Society
Reproduction in any form (including the internet) is prohibited without prior permission from the Society

The Metropolis–Hastings step for sampling the random effects C i, with proposal

generating function h(C i ), accepts the proposal CðtÞ
i ¼ C�

i with probability

min 1;
PðC*

ijY; u;�ÞhðCðt21Þ
i jC*

iÞ
PðCðt21Þ

i jY; u;�ÞhðC*
ijCðt21Þ

i Þ

� �
: ð11Þ

The following sections present three MCMC sampling procedures, distinguished by

their proposal distributions. The first is an adaptive algorithm that evaluates random

walk proposals (see Gilks et al., 1996, for the random walk). The second is an

independence chain sampler, evaluating independent proposals, which gives rise to the

third algorithm, also using random walk proposals.

5. Proposal distributions for an adaptive random walk algorithm

Based on the work by Browne (1998) for multi-level models (see also Browne & Draper,

2006), a procedure for an adaptive random walk algorithm for the p2 model was

developed. In a random walk algorithm, proposals are evaluated in Metropolis steps

(Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953), a particular case of the

Metropolis–Hastings kernel where the probabilities of getting to and from a proposal are
equal. For the p2 model, this leads to acceptance probabilities as in (10) and (11) with

g( ) and h( ) cancelling out because they are equal in the numerator and denominator.

In the random walk algorithm, the proposed value u* is a random perturbation from

the current value,

u� ¼ uðt21Þ þ z1; z1 , Nð0; FuÞ

where z1 is a perturbation from a multivariate normal distribution with zero means and

covariance matrix Fu, or equivalently, g(u*) ¼ N(u (t21),Fu).

Likewise, for evaluating proposals for the random effects, hðC�
i Þ ¼ NðCðt21Þ

i ;FCÞ:
Each new set C* of n proposals is composed of the current values plus a random
perturbation from a multivariate normal distribution with zero means and covariance

matrix FC :

C�
i ¼ Cðt21Þ

i þ z2i; z2i , Nð0; FCÞ:

In the adaptive random walk algorithm, proposals for the random effects are evaluated
for all n actors in a single Metropolis step, using the same covariance matrix for the

random perturbations, FC.

The hard part in the random walk algorithm is to get good working values forFu and

FC. For ill-chosen values, the random walk algorithm performs very poorly up to the

point where it does not move at all. For the p2 model, the random walk algorithm is

made adaptive following the method proposed by Browne (1998) and Browne and

Draper (2006). In the initial stages, variances of the random perturbation are adapted to

some optimal acceptance rate in the Metropolis steps, after obtaining a batch of
observations of the parameters from the Markov chain. With each batch, the covariance

matrices of u and C are updated using the additional observations and multiplied by a

scale factor (S) which depends on the acceptance rate of the Metropolis steps. The

acceptance rate is monitored by the number of accepted proposals in a batch (Na).

S adjusts Na to achieve the required number of accepted proposals in a batch (No).
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If Na . No then

S ¼ S 1þ 12
Nb 2 Na

Nb 2 No

� �
F

� �
; and otherwise S ¼ S

1þ 12 Na=No

� �
F
; ð12Þ

where Nb is the size of the batch and F is a certain factor, which we take to be 1. Thus, a

simplified version of ‘sampler 2’ from Browne (1998) is applied to perturbations from

multivariate distributions.

The current random walk algorithm has two adaptive sequences (12), one for u and
one for C, both using 20 batches of 125 iterations. Because plausible starting

configurations of the random perturbations are needed for the adaptive sequences to

work well, RIGLS-3 covariance matrices of the fixed and random parameters are used as

starting configurations for the random perturbations. If the RIGLS-3 estimation fails, only

the first two iterations of the RIGLS-3 algorithm are performed. These fail much less

frequently, while still providing a reasonable starting-point.

Gelman, Roberts, and Gilks (1995) state that optimal acceptance rates for random

walk proposal distributions are between 44% for a single parameter and decline towards
25% for multidimensional distributions. The aim here is an acceptance rate of 33%, for

which the efficiency of random walk algorithms of all dimensions proved to be near

optimal (Gelman et al., 1995). After the adaptive sequence, the covariance matrix for

the random perturbations is fixed and used in the proposal generation throughout the

remainder of the sampling procedure.

Because in this adaptive random walk algorithm the entire matrix C is evaluated in a

single step, this algorithm is called the ‘random walk simultaneous’, or RW Sim,

algorithm.

6. Proposal distributions applying normal approximations to the data

Considering a model in which the data have a multivariate normal distribution with
approximately the same mean vector and covariance matrix, as in the p2 model, leads to

conditional distributions of u and C which also are normal. These approximated

conditional distributions for u and C, which are easily sampled from, appear to yield

reasonably good proposal distributions. These are applied in an independence chain

algorithm and a related random walk algorithm, which are derived below.

6.1. Independence chain
In the independence chain sampler, the proposal u* is drawn from a distribution g,

independent of the current value, u (t21); similarly, the proposal C*
i is drawn from h,

independent of Cðt21Þ
i . To obtain the proposal generating functions g and h, the

distribution of Y is approximated by a normal distribution, where a first-order Taylor
approximation is used for the mean, m, and a block diagonal structure according to the

multinomial distribution, as given in (8), for the covariancematrixT. The approximations

of Y for the fixed parameters u and for the random effects C are different because two

Taylor approximations are used with respect to each set of parameters,

Y , Nðmðu0; C0Þ þ D0ðu0; C0Þðu2 u0Þ; T ðu0; C0ÞÞ
Y , Nðmðu0; C0Þ þ F0ðu0; C0ÞðC2 C0Þ; T ðu0; C0ÞÞ;
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where the superscript zero denotes the current estimates. The Taylor approximation

is centred on the mean m( u0,C0 ) ¼ Eu(YjC0, u0 ), the expectation of Y given the

current values of the parameters u and C as in (4) using (5). D0(u
0,C0 ) has elements

›m(u0,C0 )/›u, the vector of partial derivatives of m(u0,C0 ) with respect to the fixed

parameters in u. F0(u
0,C0 ) contains the partial derivatives with respect to the random

effects in C.
The approximated conditional normal distribution of u based on the normal

approximation of Y is derived as follows. After orthogonalization, the approximate
distribution of Y is

T21=2ðY 2mÞ , NðT21=2D0ðu2 u0Þ; IÞ;

with m ¼ m(u0,C0 ), D0 ¼ D0(u
0,C0 ) and T ¼ T(u0,C0 ), and T21/2 is obtained from

the eigenvalue decomposition T ¼ KLKT giving T21=2 ¼ KL21=2KT : Further

transformation to a linear model gives

T21=2 ðY 2mÞ þD0u
0

� �
, NðGu; IÞ;

with G ¼ T21=2D0: Denoting T21=2 ðY 2mÞ þD0u
0

� �
by W, an expression for a linear

model for W with parameter u and predictor G is obtained. The linear model and the

normal prior distribution ofuwithmeanmu and variance�u result in a conditional normal
distribution for u (for a similar type of derivation, see Box & Tiao, 1973, p. 74):

ujW , N GTG þ �21
u

� �21
GTW þ �21

u mu

� �
; GTG þ �21

u

� �21
	 


: ð13Þ

In the independence chain sampler, the function g(ujW ) generates proposals from (13).

Similarly, an approximated normal conditional distribution for C i is derived as

CijZ , N HTHþ �21
C

� �21
HTZþ �21

C mC

� �
; HTHþ �21

C

� �21
	 


; ð14Þ

with

H ¼ T21=2F0;

and

Z ¼ T21=2 ðY 2mÞ þ F0C
0

� �
;

from which the function h(C ijZ ) generates proposals in the independence chain. In the

Metropolis–Hastings step (10) of the independence chain sampler, g(u* ) represents the
probability of obtaining u* given the current values of all parameters, including u (t21).

This can be written as g(u*jW (t21) ).

If u* is accepted, the proposal distribution g is replaced with the normal density (13)

based on all current parameter estimates, including u* and Y. In that case, in the

independence chain sampler, g(u (t21) ) in (10) becomes g(u (t21)jW* ), where W* is W
based on all current values and u*. For the random effects C i, similar Metropolis–
Hastings steps are taken. This algorithm is called the ‘independence chain’ (IC)

algorithm.

Note that it is also possible to maintain a certain proposal generating function

g(u*jW (t21) ) formultipleMetropolis–Hastings steps. In that case, theproposal generating

function is not replacedwhen u* is accepted. This saves computation time for a cycle, but
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more cycles are required for convergence of MCMC. In Section 7, an optimum between

these two opposite mechanisms is sought.

6.2. Random walk algorithm
From the normal approximation a second random walk algorithm is derived, not using

adaptation, but with the covariance matrices of the normal approximations for the

conditional distributions of u and C i as Fu and FCi
.

In the burn-in sequence, the initial stage before obtaining the MCMC sample, these

matrices are updated every 100 iterations using Metropolis–Hastings steps (10) and (11).

In these steps, the normal approximations (13) and (14) are recalculated, providing new

values forFu andFCi
. Because the computationally very intensive update ofFu andFCi

is

performed far less frequently, it requires considerably fewer computational resourses per
iteration than the IC algorithm. Note that since in (13) the C i variables are independent,

this random walk algorithm evaluates the random effects for all actors separately. It is

simply called the ‘random walk’ (RW) algorithm.

7. Implementation of the MCMC algorithms

This section investigates the behaviour of the three MCMC algorithms proposed in the

previous sections. The question iswhether they converge to similar posterior distributions

and how efficiently they converge computationally. The study is based on one simulated

data set with 40 actors and parameter values s2
A ¼ 1, s2

B ¼ 1, sAB ¼ 0, m ¼ 22, r ¼ 2,

g1 ¼ 0:05, and d1 ¼ 0:5; where the covariate for g1 is an integer ranking the 40 actors

(taking values 1–40) and the covariate ford1 is a network generatedwith the stated values of

the parameters s2
A, s

2
B, sAB, m and r. (The model is also used as Model 2 in the simulation

study, presented in the next section.) The reason for using thismodel is thatwe know from
experience that this is a realistic type of data set, but the estimation of parameter g1 for the

actor rank number can be troublesome because of its large negative correlation with m in

the MCMC simulation chain. All simulation results presented are based on 200,000

iterations of the MCMC algorithms, following a burn-in of 10,000 for the RW Sim algorithm

and 2,000 for the IC and RWalgorithms.

In Figure 1, displaying the posterior means and standard errors (posterior standard

deviations) of parameters m, r, g1, and d1, it can be seen that all three algorithms

converge reasonably quickly to the posterior means.
Figure 2 shows that the standard errors (posterior standard deviations) provided by

the three algorithms have not converged as closely as the posterior means, particularly

for m. The RW and RW Sim algorithms appear to show rather arbitrary variation, but the

IC algorithm systematically underestimates the standard errors. This is true for all

parameters, also for g1 where this is not immediately clear from the figure.

In the right-hand panel of Figure 2, a remedy for the smaller standard errors from the

independence chain sampler can be observed. The figure shows the standard errors for

m, r, d1, and g1 for runs of the independence chain when the variances of the proposal
distributions are multiplied by 3, 5, and 10. For all parameters, the independence chain

now seems to converge to similar posterior standard errors as the random walk

algorithms. Apparently, the variation in the true conditional distribution is under-

estimated by the normal approximation. Multiplying the covariance matrices of the

proposal distributions by a factor of at least 3 appears to be a satisfactory remedy.
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The independence chain sampler is computationally much more demanding than

the random walk algorithms. It took approximately 1, 8, and 22 hours for the RW Sim,

RW, and IC algorithms, respectively, to obtain the samples of Figure 1 on the same

standard 1GHz PC performing no other major tasks. If the same proposal distribution in

the independence chain sampler is maintained for a number of iterations, the
computational efficiency of this algorithm could be improved by up to a factor of 3 per

iteration. However, maintaining a proposal distribution for several iterations will

decrease the acceptance rate of the proposals and consequently also decrease the

efficiency of the independence chain. After some experimenting, multiplication of the

Figure 1. Posterior means for r (R), d1 (D), g1 (G ), and m (M).

Figure 2. Posterior standard errors for m (M), r (R), d1 (D), and g1 (G ).
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proposal variance by 5 and maintaining the same proposal generating distribution for

10 iterations appears to be a reasonable choice. Of course, it is not guaranteed that these

choices work for different parameter values. The proof of the pudding is in the eating:

the algorithm with this implementation will be used in the simulation studies treated

later in this paper. The quality of convergence will be one of the aspects evaluated to

determine the quality of the resulting MCMC estimators.
Whereas the independence chain sampler can be improved by increasing the

covariance matrices from the normal approximations of the conditional distributions of

C i and u, the random walk algorithm, RW, can be improved by reducing them, i.e.

multiplying the covariance matrices by a scalar c with 0 , c , 1. As in the adaptive

random walk algorithm, RW Sim, the acceptance rates in the RW algorithm can be

increased by decreasing the covariance matrix of the random perturbations, Fu and

FCi
. From experience, we know that multiplying Fu and FCi

by 22x/5, where x is the

number of dimensions of the parameter vectors, keeps the ratio of accepted proposals
roughly between 1/3 and 2/3 for x # 25, the most efficient acceptance rates for this

random walk algorithm. Without adjusting the covariance matrices of the random

perturbations, the acceptance rates steadily drop with an increasing number of

parameters. The three implementations of the MCMC algorithms used in the simulation

study are summarized in Table 1.

Table 1. Summary of the implementation of the MCMC algorithms

RW Sim
(adaptive simultaneous

random walk)
IC

(independence chain)
RW

(random walk)

Pre burn-in RIGLS-3, adaptive
sequences (12) with 20
batches of 125 iterations
determining FC and Fu

Burn-in Fixed FC and Fu from
pre burn-in

Every 10th iteration,
new proposal distributions
for C and u from normal
approximations (13)
and (14) with FCi

and
Fu steps (10) and (11)

Every 100th iteration
updated FCi

and
Fu from normal

approximations,

with FCi
and Fu

times 220.2(# par),

using steps (10)

and (11)

Length: 10,000
iterations

Length: 2,000
iterations

Length: 2,000
iterations

Sampling
sequence

Fixed FC and Fu

from pre burn-in
Every 10th iteration,
new proposal
distributions as
in burn-in

Fixed FCi
and Fu

from burn-in

Length: 40,000
iterations

Length: 8,000
iterations

Length: 4,000
iterations

Evaluation of
random actor
effects proposals

For all n actors in a
single Metropolis step

Metropolis–Hastings
step for each actor
separately

Metropolis–Hastings
step for each
actor separately
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8. Simulation study

8.1. Design
In the simulation study, three different model specifications are used for networks with
20 and 40 actors. A network with 20 actors can be considered as small and a network

with 40 actors as medium-sized. For each of the six combinations of model and network

size, 1,000 data sets are simulated. The models are estimated with the three MCMC

algorithms and the three IGLS algorithms.

Model 1 has parameters m ¼ 22 and r¼2 with independent standard normal

random effects and no covariates (this model is called ‘empty’). Model 2 has one dyadic

density covariate Z1 and one sender covariate X1 in addition to the parameters of Model

1. The dyadic density covariate with regression parameter 0.5 is a network (net1)
generated according to Model 1. The sender covariate is the actor’s rank number

(1; : : :;n) with regression parameter 0.05. Model 3 has negatively correlated random

effects, sAB ¼ 20.5, with the sender variance, s2
A ¼ 1:5; twice as large as the receiver

variance, s2
B ¼ 0:75; a receiver covariate X2, two density covariates Z1, and one

reciprocity covariate Z2. The receiver covariate is binary (0,1), drawn from a distribution

with equal probabilities for both outcomes and has coefficient 20.1. The first density

covariate is net1, with coefficient 0.5. The second density covariate ( fc) is constructed

from an actor covariate with five discrete outcomes (1, 2, 3, 4, and 5) from a multinomial
distribution with equal probabilities. The dyadic covariate fc contains the absolute

differences of the outcomes of the multinomial distribution for all pairs of actors. Model

3 includes this absolute difference dyadic covariate ( fc) as a density covariate with

regression coefficient 0.2 and as a reciprocity covariate with coefficient 0.05.

8.2. Simulation results
We first discuss the results of the simulation study in terms of bias and variance for the

three models separately for IGLS and MCMC. Then we compare both estimation

methods by studying the mean squared errors and coverage rates of confidence and

credibility intervals.

8.2.1. IGLS
Results of the IGLS simulations are shown in Table 2, confirming the findings of

Rodrı́guez and Goldman (1995). The average parameter estimates are all biased towards

zero and the magnitude of the bias is roughly proportional to the size of the parameters.
Notice that compared to the networks with 20 actors, the bias is not reduced for

networks with 40 actors. The standard errors, however, are reduced for larger samples.

Where in a linear model random effects can be provisionally set to zero because

their contributions cancel, in the IGLS algorithms for non-linear models a different

approximation is used for each observed value. It is unlikely that across all

approximations the random effects will cancel out. This could well be the reason for

the biased IGLS estimates.

The estimates forModel 2 show that a non-trivial number of the IGLS-3 estimates failed
to converge, particularly for 40 actors. This is due to numerical overflowor the algorithm

being unable to reach the convergence criterion. The linear approximation of the model

is less accurate when the probabilities modelled deviate further from 0.5, causing more

estimation problems. In particular with the multinomial formulation in (R)IGLS-3, the

probabilitiesmodelled are smaller than in IGLS-2 and therefore the deviation from a linear

156 Bonne J. H. Zijlstra et al.



Copyright © The British Psychological Society
Reproduction in any form (including the internet) is prohibited without prior permission from the Society

T
a
b
le

2
.
IG
LS

m
ea
n
p
ar
am

et
er

es
ti
m
at
es

an
d
m
ea
n
st
an
d
ar
d
er
ro
rs

o
ve
r
1
,0
0
0
re
p
lic
at
io
n
s
o
f
m
o
d
el
s
1
,
2
,
an
d
3

IG
LS
-2

IG
LS
-3

R
IG
LS
-3

IG
LS
-2

IG
LS
-3

R
IG
LS
-3

M
ea
n

SE
M
ea
n

SE
M
ea
n

SE
M
ea
n

SE
M
ea
n

SE
M
ea
n

SE

M
od
el
1

2
0
ac
to
rs

4
0
ac
to
rs

s
2 A
¼

1
0
.8
0
9

0
.2
5
5

0
.8
3
3

0
.2
6
3

0
.8
6
0

0
.2
6
9

0
.6
7
1

0
.1
3
1

0
.7
1
5

0
.1
3
9

0
.7
2
5

0
.1
4
0

s
2 B
¼

1
0
.8
0
7

0
.2
5
4

0
.8
3
2

0
.2
6
3

0
.8
6
0

0
.2
6
9

0
.6
8
0

0
.1
3
2

0
.7
2
2

0
.1
4
0

0
.7
3
2

0
.1
4
1

s
A
B
¼

0
2
0
.1
0
2

0
.1
8
3

2
0
.1
8
9

0
.1
9
0

2
0
.1
6
5

0
.1
9
3

2
0
.0
4
7

0
.0
9
3

2
0
.1
4
9

0
.1
0
0

2
0
.1
4
0

0
.1
0
1

m
¼

2
2

2
1
.5
1
9

0
.3
2
0

2
1
.6
1
2

0
.3
0
8

2
1
.6
1
2

0
.3
1
7

2
1
.4
9
8

0
.1
9
7

2
1
.6
1
1

0
.1
9
0

2
1
.6
1
1

0
.1
9
2

r
¼

2
1
.5
4
6

0
.3
9
7

1
.8
0
2

0
.3
7
0

1
.8
0
2

0
.3
7
0

1
.5
2
3

0
.1
9
0

1
.8
3
7

0
.1
8
0

1
.8
3
7

0
.1
8
0

C
o
nv
er
ge
d
ru
n
s

1
,0
0
0

1
,0
0
0

1
,0
0
0

1
,0
0
0

1
,0
0
0

1
,0
0
0

M
od
el
2

2
0
ac
to
rs

4
0
ac
to
rs

s
2 A
¼

1
0
.7
0
5

0
.2
2
0

0
.7
4
0

0
.2
3
6

0
.8
3
0

0
.2
5
6

0
.6
1
0

0
.1
1
8

0
.6
7
0

0
.1
3
3

0
.7
0
0

0
.1
3
7

s
2 B
¼

1
0
.7
4
2

0
.2
2
8

0
.7
8
3

0
.2
4
6

0
.8
1
3

0
.2
5
2

0
.6
2
6

0
.1
2
0

0
.6
9
8

0
.1
3
8

0
.7
0
8

0
.1
3
9

s
A
B
¼

0
2
0
.1
1
5

0
.1
6
2

2
0
.1
7
9

0
.1
7
3

2
0
.1
5
0

0
.1
8
2

2
0
.0
5
3

0
.0
8
4

2
0
.1
2
3

0
.0
9
6

2
0
.1
1
6

0
.0
9
8

m
¼

2
2

2
1
.5
2
7

0
.5
0
4

2
1
.6
2
5

0
.5
1
2

2
1
.6
0
8

0
.5
3
6

2
1
.5
0
9

0
.3
1
2

2
1
.6
3
8

0
.3
2
1

2
1
.6
3
2

0
.3
2
8

r
¼

2
1
.5
5
9

0
.3
4
5

1
.7
8
1

0
.3
5
2

1
.7
8
1

0
.3
5
1

1
.5
2
7

0
.1
7
3

1
.8
2
4

0
.1
8
5

1
.8
2
5

0
.1
8
4

g
1
¼

0
.0
5

0
.0
3
8

0
.0
3
6

0
.0
3
7

0
.0
3
8

0
.0
3
5

0
.0
4
0

0
.0
3
7

0
.0
1
2

0
.0
3
5

0
.0
1
2

0
.0
3
5

0
.0
1
2

d
1
¼

0
.5

0
.3
7
3

0
.2
5
3

0
.3
6
3

0
.2
7
2

0
.3
5
9

0
.2
7
3

0
.3
7
6

0
.1
2
5

0
.3
7
4

0
.1
5
1

0
.3
7
3

0
.1
5
1

C
o
nv
er
ge
d
ru
n
s

1
,0
0
0

9
8
4

9
8
9

1
,0
0
0

8
7
6

8
7
8

M
od
el
3

2
0
ac
to
rs

4
0
ac
to
rs

s
2 A
¼

1
:5

1
.0
8
4

0
.3
0
8

1
.0
1
5

0
.2
9
1

1
.0
6
1

0
.3
0
1

0
.9
5
8

0
.1
7
3

0
.9
1
3

0
.1
6
5

0
.9
2
9

0
.1
6
8

s
2 B
¼

0
:7
5

0
.6
3
1

0
.2
0
6

0
.5
7
2

0
.1
9
1

0
.6
3
9

0
.2
0
6

0
.5
2
7

0
.1
0
5

0
.4
8
9

0
.0
9
8

0
.5
0
8

0
.1
0
1

s
A
B
¼

2
0
.5

2
0
.3
8
1

0
.1
9
3

2
0
.2
7
2

0
.1
7
4

2
0
.2
4
6

0
.1
8
1

2
0
.3
2
7

0
.1
0
4

2
0
.2
5
9

0
.0
9
6

2
0
.2
5
3

0
.0
9
7

m
¼

2
2

2
1
.5
1
0

0
.4
3
5

2
1
.4
4
1

0
.4
3
4

2
1
.4
8
2

0
.4
4
9

2
1
.4
8
0

0
.2
4
2

2
1
.4
1
8

0
.2
4
2

2
1
.4
1
5

0
.2
4
6

r
¼

2
1
.4
8
0

0
.5
9
6

1
.2
5
8

0
.5
5
7

1
.2
6
1

0
.5
5
7

1
.4
7
5

0
.2
8
9

1
.2
9
0

0
.2
7
2

1
.2
9
0

0
.2
7
2

g
2
¼

2
0
.1

2
0
.0
7
3

0
.3
7
8

2
0
.0
7
5

0
.3
8
3

2
0
.0
9
5

0
.4
0
4

2
0
.0
7
7

0
.2
2
7

2
0
.0
7
8

0
.2
2
9

2
0
.0
8
3

0
.2
3
4

d
1
(f
c)
¼

0
.2

0
.1
6
1

0
.1
7
1

0
.1
6
5

0
.1
6
5

0
.1
6
4

0
.1
6
6

0
.1
5
5

0
.0
8
1

0
.1
5
5

0
.0
7
9

0
.1
5
5

0
.0
7
9

d
1
(n
et
1
)
¼

0
.5

0
.3
8
2

0
.2
5
4

0
.3
9
4

0
.2
5
7

0
.3
8
9

0
.2
6
0

0
.3
7
5

0
.1
2
3

0
.3
8
4

0
.1
2
3

0
.3
8
3

0
.1
2
3

d
2
(f
c)
¼

0
.0
5

0
.0
0
6

0
.3
7
1

0
.0
2
3

0
.3
0
0

0
.0
2
3

0
.3
0
1

0
.0
0
5

0
.1
4
9

0
.0
1
9

0
.1
4
2

0
.0
1
9

0
.1
4
2

C
o
nv
er
ge
d
ru
n
s

1
,0
0
0

1
,0
0
0

1
,0
0
0

1
,0
0
0

1
,0
0
0

1
,0
0
0

MCMC estimation for the p2 model 157



Copyright © The British Psychological Society
Reproduction in any form (including the internet) is prohibited without prior permission from the Society

model ismore severe. The actor rank numberwith regression parameter g1 inModel 2 is a

‘strong’ covariate, even more so if it runs up to 40. The strong effect of this covariate will

result in some estimated probabilities close to zero (or one).

Although still underestimated (in an absolute sense), in Models 1 and 2 the means of

s2
A, s

2
B, m, and r, obtained with (R)IGLS-3, are slightly closer to the true values than the

IGLS-2 means. In all models, the bias of the covariance parameter is larger for (R)IGLS-3.
The coefficients of the covariates in Model 3 are slightly less negatively biased for

(R)IGLS-3, whereas the other parameters show slightly more underestimation.

8.2.2. MCMC
Table 3 shows the average posterior means for the three MCMC algorithms,
implemented as indicated in Table 1. In contrast to the IGLS estimation methods, the

MCMC algorithms perform rather well with respect to bias, producing means of the

Table 3. MCMC average posterior means over 1,000 replications of Models 1, 2, and 3

RW Sim IC RW RW Sim IC RW

Model 1 20 actors 40 actors
s2
A ¼ 1 1.019 1.003 1.011 1.002 0.990 0.998

s2
B ¼ 1 1.012 0.996 1.006 1.019 1.008 1.017

sAB ¼ 0 0.029 0.076 0.030 20.002 0.033 20.001
m ¼ 22 21.968 21.917 21.967 21.992 21.938 21.992
r ¼ 2 1.927 1.868 1.926 1.988 1.942 1.985
Runs 1,000 1,000 1,000 1,000 1,000 1,000
Acceptance rate C 0.36 0.29 0.59 0.35 0.29 0.60
Acceptance rate u 0.35 0.27 0.60 0.35 0.26 0.60
Model 2 20 actors 40 actors
s2
A ¼ 1 1.059 1.041 1.056 1.028 1.016 1.027

s2
B ¼ 1 1.068 1.053 1.065 1.036 1.025 1.034

sAB ¼ 0 0.020 0.074 0.021 20.002 0.031 20.003
m ¼ 22 21.968 21.933 21.965 21.991 21.960 21.991
r ¼ 2 1.955 1.895 1.953 1.996 1.954 1.995
g1 ¼ 0.05 0.049 0.049 0.049 0.049 0.049 0.050
d1 ¼ 0.5 0.499 0.504 0.500 0.509 0.510 0.508
Runs 1,000 1,000 1,000 981 1,000 1,000
Acceptance rate C 0.36 0.29 0.60 0.35 0.29 0.60
Acceptance rate u 0.35 0.12 0.49 0.35 0.11 0.49
Model 3 20 actors 40 actors
s2
A ¼ 1:5 1.607 1.579 1.607 1.522 1.508 1.520

s2
B ¼ 0:75 0.852 0.826 0.851 0.791 0.775 0.788

sAB ¼ 20.5 20.463 20.392 20.464 20.496 20.462 20.494
m ¼ 22 22.010 21.971 22.007 21.994 21.968 21.998
r ¼ 2 1.902 1.815 1.902 1.987 1.943 1.981
g2 ¼ 20.1 20.103 20.099 20.102 20.105 20.102 20.101
d1( fc) ¼ 0.2 0.213 0.214 0.213 0.203 0.203 0.202
d1(net1) ¼ 0.5 0.515 0.524 0.517 0.504 0.506 0.504
d2( fc) ¼ 0.05 0.028 0.031 0.028 0.020 0.022 0.023
Runs 1,000 1,000 1,000 1,000 1,000 1,000
Acceptance rate C 0.36 0.29 0.60 0.35 0.29 0.60
Acceptance rate u 0.35 0.07 0.46 0.35 0.07 0.46
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fixed parameters close to the true values. The variances of the random effects are

somewhat overestimated, but as the number of actors increases, the MCMC estimates

improve. For Model 2 with 40 actors, due to non-convergence of the RIGLS-3 algorithm,

the RW Sim algorithm failed to converge for 19 simulated data sets (see also Table 1).

These failures still occurred after reducing the number of RIGLS-3 iterations to two.

(R)IGLS-3 was applied instead of IGLS-2 because both the RW Sim algorithm and
(R)IGLS-3 use the multinomial data representation as in (4).

The acceptance rates of the RW Sim algorithm are close to the required 33%, while

results in Table 3 show that with increasing dimensions of u, the acceptance rates of

the proposals drop for the IC and RW algorithms. Assuming that the random walk

algorithm is most efficient roughly in the range of acceptance rates between 1/3 and

2/3, the RW Sim and RW algorithms perform reasonably well. Because the efficiency

of an independence chain decreases with any decrease in the acceptance rates, the

IC algorithm clearly becomes increasingly inefficient with more parameters in u.
A convenient way to inspect whether estimates in Table 3 converge to similar

distributions is by comparing the average posterior standard deviationswith the standard

deviations of the posterior means, displayed in Table 4. These should be approximately

equal, which is true for most estimates.

Table 4.MCMC average posterior standard deviations and standard deviations of the posterior means

over 1,000 replications of Models 1, 2, and 3

RW Sim IC RW RW Sim IC RW

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean

Model 1 20 actors 40 actors
s2
A 0.535 0.507 0.527 0.491 0.529 0.495 0.299 0.282 0.300 0.280 0.299 0.279

s2
B 0.532 0.456 0.525 0.447 0.528 0.453 0.305 0.298 0.305 0.297 0.305 0.298

sAB 0.390 0.350 0.385 0.336 0.387 0.348 0.216 0.214 0.217 0.211 0.216 0.214
m 0.399 0.391 0.387 0.380 0.391 0.390 0.247 0.263 0.242 0.246 0.243 0.259
r 0.514 0.504 0.517 0.496 0.511 0.499 0.251 0.253 0.256 0.251 0.251 0.256
Model 2 20 actors 40 actors
s2
A 0.537 0.503 0.531 0.490 0.533 0.502 0.299 0.296 0.299 0.292 0.299 0.294

s2
B 0.529 0.486 0.525 0.473 0.525 0.478 0.269 0.291 0.297 0.291 0.297 0.291

sAB 0.394 0.364 0.390 0.349 0.392 0.363 0.215 0.210 0.216 0.212 0.215 0.213
m 0.629 0.658 0.616 0.652 0.616 0.666 0.397 0.418 0.391 0.412 0.391 0.424
r 0.464 0.467 0.471 0.459 0.463 0.472 0.230 0.229 0.236 0.227 0.230 0.231
g1 0.044 0.046 0.043 0.046 0.043 0.047 0.014 0.016 0.014 0.015 0.014 0.016
d1 0.300 0.307 0.309 0.309 0.299 0.308 0.148 0.151 0.153 0.151 0.148 0.151
Model 3 20 actors 40 actors
s2
A 0.765 0.772 0.762 0.761 0.764 0.769 0.422 0.410 0.423 0.413 0.422 0.410

s2
B 0.455 0.417 0.450 0.394 0.454 0.415 0.239 0.229 0.239 0.227 0.239 0.228

sAB 0.461 0.446 0.457 0.425 0.462 0.445 0.249 0.243 0.249 0.242 0.249 0.242
m 0.522 0.519 0.535 0.525 0.515 0.523 0.291 0.296 0.296 0.296 0.285 0.302
r 0.693 0.706 0.709 0.716 0.689 0.713 0.338 0.344 0.347 0.348 0.334 0.349
g2 0.439 0.457 0.447 0.457 0.433 0.458 0.269 0.280 0.273 0.280 0.266 0.283
d1 0.184 0.188 0.190 0.194 0.182 0.189 0.088 0.087 0.091 0.089 0.087 0.088
d1 0.299 0.318 0.315 0.322 0.298 0.318 0.143 0.148 0.151 0.149 0.143 0.149
d2 0.327 0.327 0.340 0.340 0.325 0.331 0.155 0.156 0.162 0.159 0.154 0.158
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Even though the means of the MCMC estimates in Table 3 appear to be nearly

unbiased compared to the means of the IGLS estimates in Table 2, the standard

deviations in the MCMC samples in Table 4 are sometimes more than twice as large as

the IGLS standard errors in Table 2. This raises the question as to which of the estimation

methods produces the best estimates in terms of mean squared error (MSE, the mean

of the squared difference between the estimates and the true parameter values).
The MSE is equal to the sum of the squared bias, i.e. the difference between the average

parameter estimate and the true value, and the variance of the parameter estimate.

The root mean squared errors (RMSEs) are displayed in Table 5. Observe that the

posterior means from the MCMC algorithms have a small bias and thus the RMSEs are

almost equal to the standard deviations of the estimates.

In Table 5, the IGLS RMSEs for networks with 20 actors are either similar to or smaller

than the MCMC RMSEs. Even though the IGLS parameter estimates are biased, small

RMSEs are obtained because of the small standard errors.
For the networks with 40 actors, MCMC RMSEs are smaller except for sAB, and for g2

and d2 in Model 3. Since the MCMC fixed parameters are virtually unbiased and the IGLS

bias is roughly proportional to the size of the parameters and insensitive to network size,

the effect of the bias of the IGLS estimates on the RMSEs becomes relatively larger for

larger networks.

Considering the RMSEs, the IGLS estimates can be preferred for networks of size 20

because these generally are at least as close to the true values as the MCMC estimates.

Conversely, for networks with 40 actors, the MCMC estimates are preferred.
Another important way to evaluate the estimation methods is by looking at the

confidence and credibility intervals of the parameter estimates. Confidence intervals for

the IGLS estimates can be constructed around the IGLS parameter estimates covering

the central 95% and 99% of a normal distribution with the standard deviations equal

to the IGLS standard errors. Credibility intervals from the Bayesian MCMC results

are defined by the central 95th or 99th percentiles of the posterior. This procedure does

not make assumptions about the shape of the posterior distribution. In Figures 3 and 4

the coverage percentages are shown.
The coverage rates of the IGLS estimates in Figures 3 and 4 are mostly far below the

nominal percentages, except for some of the regression parameters. Whereas in the

RMSEs the contributions of the bias and the variance of the IGLS estimates can

compensate for each other, for the coverage rates of confidence intervals these tend to

reinforce each other negatively. In IGLS, with increasing sample size the bias remains

similar, while the standard errors decrease. Therefore, in networks with 40 actors, the

IGLS coverage rates are even worse than for those with 20 actors.

Most MCMC coverage percentages appear to be satisfactory. In general, better
coverage rates are obtained with larger networks. Coverage rates for m and the sender

and receiver covariates are relatively low when compared with the desired rates. These

terms always appear together in the p2 probability, (4) with (5), and are therefore the

most difficult parameters to estimate. It should be noted, however, that m gives a

baseline for the probability of a tie and is seldom of substantive interest. Relatively low

coverage rates are also observed for sAB in Model 3 for 20 actors.

A convenient way of testing MCMC results is just to focus on the estimated posterior

means and standard errors instead of coverage rates of credibility intervals. Assuming
that the parameters are normally distributed, credibility intervals can be constructed

based on estimated posterior means and standard errors of the MCMC samples. Figures 5

and 6 contain coverage rates of these credibility intervals.
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In Figures 5 and 6, the coverage rates for the fixed parameters are slightly less

accurate than the coverage rates for the credibility intervals based on the MCMC

samples. (Obviously, the variance parameters cannot be expected to be normally
distributed here and are only added here for illustrative purposes.) Thus, for the MCMC

results, it is preferred to report the credibility intervals based on MCMC samples instead

of the posterior means and standard errors. However, for networks with many actors,

the results are expected to be more comparable.

Ultimately, the estimation method preferred depends on the purpose of the

estimation. For networks with 40 actors, MCMC is preferred because of the small RMSEs

and accurate credibility intervals. For networks with 20 actors, generally the estimates

with the smallest RMSEs are obtained with IGLS, while for credibility intervals MCMC is
preferred.

Small RMSEs indicate that an estimate can be expected to be close to the true value.

Thus, for networks with 20 actors, the IGLS point estimates are preferred, while for

hypothesis testing MCMC estimates are preferred. As the number of actors in a network

increases above 20, the advantage of the smallest RMSEs is expected to shift quickly to

MCMC, because the number of observed ties increases almost quadratically with the

number of actors.

Figure 3. Coverage rates for 95% and 99% intervals for the IGLS and MCMC algorithms for networks

with 20 actors.
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9. Concluding remarks

Until recently, only the IGLS-2 algorithm was available for the p2 model. The

availability of the MCMC estimation algorithms for the p2 model provides a large

improvement, resulting in largely unbiased estimates with good coverage rates. The

MCMC estimation methods, however, are not without drawbacks. The MCMC

estimates are less efficient (have larger RMSEs) than the IGLS estimates for networks

with 20 actors, and the MCMC algorithms are more time-consuming than the IGLS

algorithms for the network sizes used here (taking minutes instead of seconds).
Interestingly, with large networks (150 actors or more), the relative advantage in

speed of computation of the IGLS algorithm is seriously reduced (both methods

taking hours).

Comparing the MCMC procedures, the adaptive random walk algorithm, RW Sim,

has the disadvantage that it requires IGLS estimates to obtain starting values. This

means that for any further development of the p2 model, a new implementation of the

IGLS algorithm (or other approximating algorithm) is needed as well. The

independence chain, IC, does not have this disadvantage, but this algorithm has an
acceptance rate that drops relatively quickly with the number of dimensions of the

parameter vector, as can be seen in Table 3. The random walk algorithm, RW, with

perturbations based on the normal approximations of the fixed and random

Figure 4. Coverage rates for 95% and 99% intervals for the IGLS and MCMC algorithms for networks

with 40 actors.
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Figure 5. Coverage rates for 95% and 99% credibility intervals from the MCMC posterior means and

standard errors for networks with 20 actors.

Figure 6. Coverage rates for 95% and 99% credibility intervals from the MCMC posterior means and

standard errors for networks with 40 actors.
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parameters performs much better in this sense. Furthermore, taking into account that

the RW Sim algorithm needs more iterations to reach a converged solution, the RW and

the RW Sim algorithms are comparable in terms of speed, while the IC algorithm is

much slower. The p2 model with the (R)IGLS algorithms, and the RW Sim and

RW algorithms has been made available in StOCNET (Boer et al., 2006), an open

software system for the statistical analysis of social network data. Because of its
adaptability and speed, the RW algorithm has been chosen as the default algorithm in

StOCNET.

For all MCMC algorithms in the simulation study, no really good estimates for m are

obtained when covariates for the sender and receiver effects are present. Because these

parameters co-occur in the p2 probability, (4) with (5), they are inherently dependent on

each other. This may also explain why the independence chain algorithm did not clearly

outperform the RW algorithm in terms of efficiency (by requiring smaller samples). For

the same reason, the accept–reject Metropolis–Hastings (ARMH) algorithm (Tierney,
1994) did not increase the efficiency of theMCMC algorithms. TheARMHalgorithm starts

with an accept–reject step, where proposals are accepted with a probability inversely

related to the degree of domination of an importance function, which includes a

proportionality constant for the conditional distribution sampled. Because of the

dependence of the parameter sets in the p2model, the proportionality constant had to be

set so small that the importance function hardly ever dominated the conditional

probability function, which eliminates any efficiency gain from the ARMH algorithm.

Further developments of the p2 model are in progress. They deal with modelling
multiple network observations, such as friendship ties observed in multiple classrooms,

as well as dealing with multiple types of relations within the same set of actors.
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