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Abstract We consider the interaction between a general size-structured consumer
population and an unstructured resource. We show that stability properties and bifur-
cation phenomena can be understood in terms of solutions of a system of two delay
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278 O. Diekmann et al.

equations (a renewal equation for the consumer population birth rate coupled to a
delay differential equation for the resource concentration). As many results for such
systems are available (Diekmann et al. in SIAM J Math Anal 39:1023–1069, 2007), we
can draw rigorous conclusions concerning dynamical behaviour from an analysis of a
characteristic equation. We derive the characteristic equation for a fairly general class
of population models, including those based on the Kooijman–Metz Daphnia model
(Kooijman and Metz in Ecotox Env Saf 8:254–274, 1984; de Roos et al. in J Math
Biol 28:609–643, 1990) and a model introduced by Gurney–Nisbet (Theor Popul Biol
28:150–180, 1985) and Jones et al. (J Math Anal Appl 135:354–368, 1988), and next
obtain various ecological insights by analytical or numerical studies of special cases.

Keywords Physiologically structured population models · Size-structure ·
Delay equations · Linearised stability · Characteristic equation

Mathematics Subject Classification (2000) 34K20 · 37N25 · 45D05 · 65L03 ·
92D25

1 Introduction

Population dynamics is first and foremost concerned with changes in numbers of indi-
viduals due to death and reproduction. But once one realises that both fertility and the
force of mortality may depend heavily on the stage of development of an organism,
it becomes clear that population models cannot avoid to incorporate submodels for
this development of an organism. In other words, we need to introduce the notion
of individual state (i-state) and next model the distribution of i-state-at-birth and the
dynamics of the i-state. We refer to de Roos and Persson (2001) and the references
given there for further ecological motivation.

If individuals would be independent from each other, equations would be linear
and the analysis would be relatively easy. Dependence arises, e.g., by competition
for food (i.e., the consumption by one individual reduces the availability of food to
others) but also via the predation pressure (if an individual falls victim to a predator,
that might have as an immediate effect that the predator is satiated and that accord-
ingly the predation pressure on other individuals is reduced; but the long term effect
may be that the reproductive success of the predator becomes higher and hence the
future predation pressure on other individuals enhanced). By “environmental interac-
tion variables” we denote quantities like food concentration and predation pressure that
mediate the dependence. (As a side remark we mention that in the case of cannibalism
both the food concentration and the predation pressure are partly determined directly
by the focal population.)

The task of a population modeller is to specify how survival, reproduction and
development depend on the i-state and environmental interaction variables and, in
addition, to specify how the dynamics of the interaction variables is influenced by
feedback from the population. Restricting ourselves to “size” of an individual as
i-state, a unique size-at-birth and deterministic growth of individuals, and competition
for food, we can reformulate this as: a population model consists of a specification of

123



Daphnia revisited 279

(i) ξb, the size at birth of individuals
(ii) g(ξ, S), the rate of growth of an individual, as a function of size ξ and food

concentration S
(iii) β(ξ, S), the probability per unit of time of giving birth, as a function of size ξ

and food concentration S
(iv) µ(ξ, S), the probability per unit of time of dying, as a function of size ξ and

food concentration S
(v) γ (ξ, S), the rate of food consumption of an individual, as a function of size ξ

and food concentration S
(vi) the dynamics of the resource S in the absence of consumers

Based on these ingredients, one may now either start with a finite number of individ-
uals and do simulations or consider, at the population level, the deterministic system
obtained by letting the interactions depend inversely on a quantity called system size,
and taking the limit for system size going to infinity while keeping the initial densities
(numbers divided by system size) constant. Here we restrict to the second option and,
moreover, neglect any influence that spatial structure might have.

Way back in the late eighties of the last century, de Roos et al. (1990) analysed a
model for Daphnia feeding on algae, with exactly this structure. They found, among
other things, that variable maturation delay can lead to cohort cycles that differ mark-
edly from the standard prey–predator cycles (see Murdoch et al. (2002) and de Roos
and Persson (2003) for a more recent account that also relates to experimental and
field data). At the beginning of Section 5 of (de Roos et al. 1990) de Roos et al. wrote:
“The stability analysis of the internal equilibrium is not a straightforward procedure.
At present the existing general theory on structured population models of the type
that we study in this paper is not yet sufficiently developed to answer even the first
questions about the existence and uniqueness of solutions and the validity of the linear-
ised stability principle. In principle this means that at present there exists no valid and
mathematically rigorous technique to analyse the stability of the internal equilibrium.”

The first aim of the present paper is to show that now, at last, such a “mathemati-
cally rigorous technique” exists. A second aim is to present a gentle derivation of the
relevant characteristic equation for a wider class of models, thus showing that the new
framework has more to offer than just mathematical underpinning. We then use this
characteristic equation to study some aspects of variable maturation delay in more
detail.

The mathematical theory that justifies the principle of linearised stability for a quite
general class of delay equations was presented by Diekmann et al. (2007). Here we
assert that for a large class of physiologically structured population models, the long
term dynamics are fully described by solutions of delay equations. The trick is to
reconsider the notion of population state.

As explained in detail by Metz and Diekmann (1986), the natural way to represent
a population is by way of a distribution (a measure that may or may not correspond to
a density) over the i-state space. The corresponding mathematical theory is involved
(Diekmann et al. 2000, 2001; Diekmann and Getto 2005) and despite hard work over a
long period of time, we did not manage to prove the principle of linearised stability for
the corresponding nonlinear semigroups of operators. The breakthrough came when
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280 O. Diekmann et al.

we realised that the current population size and composition is fully determined by
the population birth rate in the past, provided we also prescribe the environmental
interaction variables in the past (as indeed we then can use the submodels for survival
and development to cover the period in between being born and the current time).
For Daphnia-type models, this means that we prescribe the history of the Daphnia
birth rate as well as the history of the algae concentration. The future values of these
variables are next determined by solving the system consisting of an equation for the
population birth rate b and a differential equation for the food concentration S. As the
b-equation also involves the history of S, this is a system of delay equations, more
precisely, a coupled system of a renewal equation and a delay-differential equation.

By restricting ourselves to initial distributions that can be constructed from a his-
tory of b and S, we put up with a certain loss of generality. Should we care? We claim
we should not! The point is that we do not miss any candidate attractors (or, more
generally, invariant sets) and that instability has to manifest itself within the restricted
class of initial conditions. This is easiest observed if there is an upper bound, say Amax,
on the length of the life of any consumer individual, as then the population state is
necessarily of the “restricted” type for t > Amax. In the general case one has to exploit
that for any reasonable model the direct influence of those initially present goes to
zero for t → ∞.

We shall formulate our results for a one-dimensional i-state, interpreted as size.
However, they hold equally well for a higher dimensional i-state, as long as there is
a unique state-at-birth. If finitely many states-at-birth are feasible, one has to add a
certain dose of linear algebra. If there is a continuum of possibilities for state-at-birth,
one has to work a bit harder (Diekmann and Gyllenberg 2008) and it is no longer pos-
sible to separate the determination of eigenvalues via a characteristic equation from
the determination of the corresponding eigenvectors.

It is well-known that some age-structured models incorporating a juvenile period
of fixed length can be described by delay differential equations, see e.g. Kuang and So
(1995) and the references in there. Here we consider a general size-structured model
with variable maturation delay and yet we find that the dynamical behaviour is com-
pletely described by the solutions of a system of delay equations (more precisely: a
coupled system consisting of one renewal equation and one delay-differential equa-
tion). Since the length of the juvenile period depends on the food supply, one could
call this a system of state-dependent delay equations.

The structure of the paper is as follows. In Sect. 2 we derive the system of delay
equations directly from biological assumptions and we show that, under additional
but still natural assumptions, a unique steady state exists. In Sect. 3 we describe the
structure of the linearised system and the corresponding characteristic equation, while
in Sect. 4 we express the ingredients of the linearised system in terms of quantities that
can be computed from the ingredients ξb, g, β, µ, γ and the rules for production and
decay of substrate (first for the smooth case and next for models that involve an abrupt
juvenile–adult transition upon reaching a critical size ξA). In Sect. 5 we introduce
some didactical examples of how to analyse the characteristic equation. In Sect. 6 we
present the results of numerical studies and interpret these. In Sect. 7 we show that
for the Daphnia model of de Roos et al. (1990), we recover exactly the characteristic
equation studied in that paper. The final Sect. 8 is devoted to a summary in recipe form.
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Daphnia revisited 281

2 Daphnia models

In this section we describe a class of consumer–resource models that is built from
assumptions concerning the behaviour of individuals. More specifically, we describe
how individuals grow in size, survive, reproduce and consume food, dependent on
their own size and the concentration of food. (We do so in somewhat abstract math-
ematical generality, meaning that we introduce functions that need to be specified in
more and more detail when one moves towards concrete applications.) In a second
step we then derive bookkeeping equations that pertain to the population level. For
historical reasons and for the ease of formulation we call the consumers Daphnia and
the food algae.

We assume that all Daphnia are born with the same size ξb and that their growth is
deterministic according to the differential equation

dξ

da
(a) = g(ξ(a), S(t (a))), (2.1)

where ξ denotes the size, a the age, S the food concentration and t (a) the time at
which the individual that we consider has age a. (We postpone the formulation of
smoothness and other assumptions concerning the function g(ξ, S), but have in mind
that these should at the very least guarantee that (2.1) with initial condition ξ0 = ξb
has a unique solution for any given continuous and positive function S(t).) We assume
that the survival probability F of an individual decreases with age according to

dF
da

(a) = −µ(ξ(a), S(t (a)))F(a) (2.2)

and that a newborn is produced with probability per unit of time

β(ξ(a), S(t (a))). (2.3)

The energy needed for maintenance, growth and reproduction is derived from the
ingestion of algae which proceeds at a rate

γ (ξ(a), S(t (a))) (2.4)

but for the time being we leave the relationship between, on the one hand g respec-
tively β and, on the other, γ , unspecified. Finally we assume that in the absence of
Daphnia the algal concentration evolves in time according to the differential equation

d S
dt

= f (S). (2.5)

Essentially the model is now specified, the rest is bookkeeping. To do the bookkeeping
in an efficient way, we need to introduce some notation.
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As in the theory of delay differential equations, we use the symbol St to denote the
history of the food concentration relative to t , that is, to denote the function

σ $→ S(t + σ ), σ ≤ 0 (2.6)

(In case of a maximal age Amax we can restrict to σ ≥ −Amax, but otherwise we need
to allow σ to take any value less than or equal to zero.) It is convenient to let ψ denote
an arbitrary nonnegative continuous function defined on R−.

Now consider an individual that has age a at the current time t and suppose St = ψ .
Denote the size of this individual at age τ , with 0 ≤ τ ≤ a, by ξ(τ ) = ξ(τ ; a,ψ)

(variables listed after the semicolon are suppressed in the notation whenever that helps
to keep formulas readable). It can be computed from

dξ

dτ
(τ ) = g(ξ(τ ),ψ(−a + τ )), ξ(0) = ξb. (2.7)

The size at the current time is then given by

Ξ(a;ψ) := ξ(a; a,ψ). (2.8)

The fraction of individuals born at time t − a that are still alive at time t , is given by
the survival probability F(a;ψ). Let G(τ ) = G(τ ; a,ψ) be the survival probability
up till time t − a + τ . Then G can be computed from

dG
dτ

(τ ) = −µ(ξ(τ ; a,ψ),ψ(−a + τ ))G(τ ), G(0) = 1 (2.9)

and next, by definition,

F(a;ψ) = G(a; a,ψ). (2.10)

Let b(t) denote the Daphnia population birth rate at time t . Then the assumptions
above imply that

b(t) =
∞∫

0

b(t − a)β(Ξ(a; St ), S(t))F(a; St )da,

(2.11)
d S
dt

(t) = f (S(t)) −
∞∫

0

b(t − a)γ (Ξ(a; St ), S(t))F(a; St )da.

As written, this refers to Daphnia and algae that have been interacting as described by
the model since the dawn of time. When looking for steady states, periodic solutions et
cetera, this is indeed the right perspective. But alternatively we can require the system
of Eqs. (2.11) to hold only for t > 0 (or, if you wish, t ≥ 0) and to provide initial
data in the form of the history of both b and S at time zero, the first as a nonnegative
locally integrable function and the second as a nonnegative continuous function. In the
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Daphnia revisited 283

mathematical theory concerning (2.11), for which we refer to Diekmann et al. (2007,
in particular Section 4) and Diekmann and Gyllenberg (2009, Section 5), both points
of view play a role.

Note that the right hand side of (2.11) is linear in b, reflecting that the environmental
interaction variables are chosen such that all dependence is by way of feedback via
these variables (i.e., if one considers S as prescribed, then the Daphnia are independent
from one another).

We now consider constant solutions of (2.11), i.e., steady population states. If food
is kept at the constant concentration S, then the basic reproduction number R0 of the
Daphnia is well defined and in fact given by

R0(S) =
∞∫

0

β(Ξ(a; S), S)F(a; S)da (2.12)

(note that here we use the same symbol to denote the value and the constant function
taking on that value). The equation

R0(S) = 1 (2.13)

determines the constant concentrations that lead to a steady Daphnia population. As
a rule, (2.13) has a unique solution, simply since R0(0) < 1, R0(∞) > 1 and R0 is
a monotone function of S (of course other scenarios are possible if, for instance, the
food is toxic at high concentrations).

Once S is determined, we have explicitly

b = f (S)/

∞∫

0

γ (Ξ(a; S), S)F(a; S)da (2.14)

for the Daphnia population birth rate that keeps the algae at the steady level S. (The
steady states of more general physiologically structured population models can be
determined by following essentially the same steps, see Diekmann et al. 2003.)

For later use we introduce the notation

ξ(a) := Ξ(a; S) (2.15)

F(a) := F(a; S) (2.16)

to denote, respectively, the steady state age–size relation and the steady state survival
probability. But is the steady population state stable? How does the answer depend on
the parameters? What dynamic phenomena accompany the loss of stability? The stan-
dard way to answer such questions is to first linearise the equations around the steady
state, next substitute exponential trial solutions into the linearised equations to deduce
a characteristic equation and finally to investigate how the roots of the characteristic
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equation are positioned in the complex plane relative to the imaginary axis (and how
positions change if we vary parameters; see for instance the stability boundaries in a
two dimensional parameter space depicted in Figure 2 of de Roos et al. 1990). The key
point of the paper (Diekmann et al. 2007) is that the information about the roots of the
characteristic equation allows one to indeed draw conclusions concerning solutions of
(2.11), in other words, the standard way works for (2.11)! Hence we feel encouraged
to present the general form of the linearised system and the characteristic equation in
the next section and to work out in Sect. 4 the details of how to obtain the constants
and the kernels that figure in the linearised system from g, µ, β, γ and f .

3 The linearised equation

Linearising the system (2.11) one obtains a system of the form

y(t) = c1z(t) +
∞∫

0

(k11(a)y(t − a) + k12(a)z(t − a))da,

dz
dt

(t) = c2z(t) +
∞∫

0

(k21(a)y(t − a) + k22(a)z(t − a))da

(3.1)

with y a small perturbation of b and z a small perturbation of S. It has a solution of
the form

(
y(t)
z(t)

)
= eλt

(
y0
z0

)
(3.2)

if and only if λ is a solution of the characteristic equation

(
1 − k̂11(λ)

) (
λ − c2 − k̂22(λ)

)
= k̂21(λ)

(
c1 + k̂12(λ)

)
, (3.3)

where the hat denotes Laplace transform, that is,

k̂i j (λ) :=
∞∫

0

e−λaki j (a)da. (3.4)

The underlying assumptions are presented soon, but let us first observe that by combin-
ing Section 4 and Corollary 2.19 of (Diekmann et al. 2007), one obtains the principle
of linearised stability for (2.11), albeit under the assumption of a maximal age Amax.
And by combining Section 4 and Theorem 2.21 of (Diekmann et al. 2007) one obtains
a Hopf bifurcation theorem for (2.11).

For the infinite delay case one has to invoke additional arguments, see Diekmann
and Gyllenberg (2008, 2009), and to perform a more detailed spectral analysis, as
there may be essential spectrum next to the eigenvalues that are obtained as roots of
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the characteristic equation; so the principle of linearised stability and the Hopf bifur-
cation theorem hold in that case too. In Diekmann and Gyllenberg (2009) these results
were derived by combining the methods of Diekmann et al. (1995, 2007) which results
concerning (3.1) from Gripenberg et al. (1990), thus avoiding the task of characterising
the essential spectrum.

We shall explain the derivation of the linearised system below, but its general form
can be predicted by combining a general mathematical result, that a linear translation
invariant integral operator is necessarily of convolution type, (see, for a far reaching
generalization, Rudin (1973, Theorem 6.33)), with an observation concerning (2.11),
viz., that S(t) appears at its right hand side (but not b(t)). In general, the convolution
kernel is a measure. In the present case, that measure is absolutely continuous (the k
part, deriving from the St and bt at the right hand side of (2.11)), except for an atom in
zero (the c part) in the second component that derives from the S(t) in the right hand
side of (2.11).

Our task is now to derive expressions for six quantities, the two components of c
and the four components of k, in terms of the model ingredients. Four out of six are
very easy. Since the system (2.11) is linear in b, the elements k11 and k21 are given by

k11(a) = β(ξ(a), S)F(a), (3.5)

k21(a) = −γ (ξ(a), S)F(a). (3.6)

Since S(t) is a scalar quantity, taking derivatives is straightforward and leads to the
expressions

c1 = b

∞∫

0

∂β

∂S
(ξ(a), S)F(a)da, (3.7)

c2 = f ′(S) − b

∞∫

0

∂γ

∂S
(ξ(a), S)F(a)da. (3.8)

The derivation of expressions for k12 and k22 is far more difficult, as we have to deal
with quantities that are implicitly defined, viz., as solutions of (2.1) and (2.2). We
delegate this derivation till the next section. The result is presented as formulas (4.14),
(4.15) for the smooth case and as formulas (4.31), (4.32) for the case of an abrupt juve-
nile–adult transition. The underlying assumptions concerning the model ingredients
are

(i) f : R+ → R is continuously differentiable.
(ii) g, µ, β and γ as maps from R2 to R+ are continuously differentiable on [ξb, ξA]×

R+ and on [ξA,∞) × R+, but need not be continuous, let alone differentiable,
at ξ = ξA.

The biological idea motivating the assumption labelled (ii) is that the individual organ-
isms turn from juveniles into adults upon reaching size ξA and that the behaviour of
juveniles and adults may differ substantially. Note that by assuming g ≥ 0 we have
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excluded shrinking. (The Kooijman–Metz model (Kooijman and Metz 1984; de Roos
et al. 1990) has additional rules to preclude shrinking, but for S not too far below
the steady state these do not kick in.) But note carefully that in the case of a jump
discontinuity at ξA we shall require strict positivity of g in ξA, see (4.16) and the text
that preceeds it for explanation and motivation.

In the remainder of this section we prepare the way for the derivation and, while
doing so, also present more details about the mathematical framework for studying
(2.11). We restrict the precise formulation to the finite delay case and denote Amax by
h. But we close with some remarks about the case of infinite delay.

For the history of the population birth rate b we require only integrability, but for the
resource concentration we require continuity (from t = 0 onwards the birth rate will
actually be continuous and the resource concentration differentiable). To express this
and other aspects more precisely and more concisely we shall use some mathematical
formalism that may not be familiar to all our readers. Such readers may skip the rest
of this section.

Let

X := L1 ([−h, 0]; R) ,

Y := C (([−h, 0]; R) .
(3.9)

We require that (2.11) holds for t ≥ 0 and supplement the system by the initial con-
dition

b(t) = ϕ(t), −h ≤ t ≤ 0,

S(t) = ψ(t), −h ≤ t ≤ 0,
(3.10)

where (ϕ,ψ) ∈ X × Y . We want to rewrite (2.11) in the form

b(t) = F1(bt , St ),

d S
dt

(t) = F2(bt , St )
(3.11)

since that brings us into exactly the setting studied in Section 4 of Diekmann et al.
(2007). (Alternatively one may work with non-densely defined Hille–Yosida operators
and integrated semigroups, see Thieme (1990), Magal and Ruan (2007, 2009).) So we
need to define, for i = 1, 2,

Fi : X × Y → R

and check that these maps are continuously differentiable. The linearity in bt motivates
us to introduce the dual space X∗, which we represent by

X∗ = L∞([0, h]; R) (3.12)
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with the pairing between X and X∗ defined by

〈ϕ,ϕ∗〉 :=
h∫

0

ϕ(−τ )ϕ∗(τ )dτ. (3.13)

If we now make sure, by making appropriate assumptions about the model ingredients,
that the maps Q and R defined by

Q(ψ)(a) = β(Ξ(a;ψ),ψ(0))F(a;ψ),

R(ψ)(a) = γ (Ξ(a;ψ),ψ(0))F(a;ψ)
(3.14)

map Y into X∗ and are as such continuously differentiable, then we only have to define

F1(ϕ,ψ) = 〈ϕ, Q(ψ)〉,
F2(ϕ,ψ) = f (ψ(0)) − 〈ϕ, R(ψ)〉 (3.15)

and require that f is C1, to achieve our aim. This motivates us to require that the maps
from Y into X∗ that send ψ to, respectively Ξ(.;ψ) and F(.;ψ), so

ψ $→ Ξ(·;ψ),

ψ $→ F(·;ψ)
(3.16)

are continuously differentiable. Since evaluation in zero ψ $→ ψ(0) is a continuous
linear map from Y into R, it only remains to check the smoothness of the maps defined
in (3.16) and this we shall do in the next section (strictly speaking Q and R, and hence
Fi , are only defined for functions ψ that take nonnegative values; there are various
ways to see that we should not worry about that, the easiest is perhaps to restrict the
assumption about the continuous differentiability of the maps Fi to a neighbourhood
of (b, S) ∈ X × Y ).

In the infinite delay case, i.e., when individuals can, in principle, pass any conceiv-
able age, any choice of space entails restrictions concerning the growth behaviour at
(minus) infinity. It is these restrictions that obstruct the construction of the resolvent
(of the generator of the linearised semigroup) for λ in some left half plane. As a con-
sequence there is an essential spectrum filling a left half plane. As long as this left half
plane lies strictly to the left of the imaginary axis and, in addition, we have suitable
estimates for the essential spectrum of the semigroup operators themselves, this need
not bother us. This is achieved by considering the initial value problem on exponen-
tially weighted spaces. To find a suitable weight function we first identify a + > 0
such that the survival probability is bounded by Ce−+a for even ideal environmental
conditions. Next we choose

X = L1
+(R−) = {ϕ ∈ L1

loc(R−) : a $→ ϕ(a)e+a belongs to L1(R−)} (3.17)
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and

Y = C0,+ =
{
ψ ∈ C(R−) : lim

a→−∞
e+aψ(a) = 0

}
. (3.18)

As representation of the dual space of X we take

X∗ = L∞
+ (R+)={ϕ∗ ∈ L∞

loc(R+) : a $→ ϕ∗(a)e+a belongs to L∞(R+)} (3.19)

with the pairing being given by

〈ϕ,ϕ∗〉 =
∞∫

0

ϕ(−a)ϕ∗(a)da =
∞∫

0

ϕ(−a)e+(−a)e+aϕ∗(a)da. (3.20)

The definitions of Q, R and Fi given in (3.14) and (3.15) remain unchanged.
One reason to introduce the exponential weight function is to make sure that con-

stant functions belong to the space X . A second reason is that once spectral properties
come into play, we need the weight in order to achieve that the essential spectrum
is bounded away from the imaginary axis, or, which amounts to the same thing, that
we can define Laplace transforms in a half plane that extends to the strict left of the
imaginary axis. In Diekmann and Gyllenberg (2009) this is worked out in detail but
here, from now on, we restrict our attention to the case of finite delay.

4 Linearising individual growth and survival

Recall that ξ(τ ; a,ψ) is defined by

dξ

dτ
(τ ) = g(ξ(τ ),ψ(−a + τ )), ξ(0) = ξb. (4.1)

We start by considering a smooth g, and postpone the incorporation of a jump at ξA.
Let

Ω = {(τ, a) : 0 ≤ a ≤ h, 0 ≤ τ ≤ a},

then ξ is defined on Ω ×Y and maps to R. Assume that ξ is differentiable with respect
to ψ and denote the derivative in the point (τ, a,ψ) by D3ξ(τ ; a,ψ). This is, for fixed
τ , a, ψ , a linear map from Y to R. We now consider ψ = S, the constant function
and re-use the symbol ψ to denote the element of Y on which the linear map acts. The
image we denote by η. So

η(τ ; a, S,ψ) := D3ξ(τ ; a, S)ψ. (4.2)
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We claim that, on fixing a and ψ , η can be found as a function of τ by solving the
ODE

dη

dτ
(τ ) = ∂g

∂ξ
(ξ(τ ), S)η(τ ) + ∂g

∂S
(ξ(τ ), S)ψ(−a + τ ), η(0) = 0. (4.3)

The actual proof that ξ is differentiable with respect to ψ proceeds by introducing,
for any a ∈ [0, h] and ψ ∈ Y , the solution of (4.3) and next, by combining (4.1) and
(4.3), checking that (4.2), read from right to left, is indeed the derivative (Hale 1969).

The solution of (4.3) can be written in the form

η(τ ) =
τ∫

0

K (τ,α)ψ(−a + α)dα (4.4)

with

K (τ,α) := e
∫ τ
α

∂g
∂ξ (ξ(θ),S)dθ ∂g

∂S
(ξ(α), S). (4.5)

(Note that for higher dimensional i-state one has to replace the explicit exponential
function with the implicit fundamental matrix solution, which then acts on the vector
∂g
∂S

(ξ(α), S).) By simply taking τ = a we obtain

D2Ξ(a; S)ψ = η(a) =
a∫

0

K (a,α)ψ(−a + α)dα (4.6)

which is a rather explicit expression for the derivative of the first of the two maps
considered in (3.16). We next set out to compute the derivative of the second map.

Define

ζ(τ ; a, S,ψ) := D3G(τ ; a, S)ψ, (4.7)

then ζ satisfies

dζ

dτ
(τ ) = −µ(ξ(τ ), S)ζ(τ ) − ρ(τ ), ζ(0) = 0 (4.8)

with

ρ(τ ) := ∂µ

∂ξ
(ξ(τ ), S)η(τ )F(τ ) + ∂µ

∂S
(ξ(τ ), S)ψ(−a + τ )F(τ ). (4.9)

Hence

ζ(τ ) = −
τ∫

0

e−
∫ τ
α µ(ξ(θ),S)dθρ(α)dα = −

τ∫

0

F(τ )

F(α)
ρ(α)dα (4.10)
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which, by inserting the expression (4.9) for ρ, (4.4) for η and changing the order of
integration, leads to

ζ(τ ) =
τ∫

0

L(τ, θ)ψ(−a + θ)dθ (4.11)

with

L(τ, θ) := −F(τ )






τ∫

θ

∂µ

∂ξ
(ξ(α), S)K (α, θ)dα + ∂µ

∂S
(ξ(θ), S)




 . (4.12)

In particular

D2F(a; S)ψ = ζ(a) =
a∫

0

L(a, θ)ψ(−a + θ)dθ . (4.13)

The final formulas

k12(a) = b

∞∫

0

{
β(ξ(a + θ), S)L(a + θ, θ) + ∂β

∂ξ
(ξ(a + θ), S)K (a + θ, θ)F(a + θ)

}
dθ

(4.14)

k22(a) = −b

∞∫

0

{
γ (ξ(a + θ), S)L(a + θ, θ) + ∂γ

∂ξ
(ξ(a + θ), S)K (a + θ, θ)F(a + θ)

}
dθ

(4.15)

are obtained by combining (3.14) and (3.15), the chain rule, (4.6), (4.13) and a change
in the order of integration. Note that the expression for k22 is obtained from the expres-
sion for k12 by changing the sign and replacing β by γ .

In many consumer–resource models a distinction is made between juvenile consum-
ers and adult consumers, with individual behaviour changing abruptly at the transition
from juvenile to adult. In particular, reproduction is reserved to adults. We now show
that a jump discontinuity at ξ = ξA yields additional terms to the expressions for k12
and k22.

As demonstrated in detail by Thieme in his pioneering paper (Thieme 1988), mod-
els are no longer well-posed if, possibly, individuals linger at the transition (or, in
mathematical jargon, if characteristics are not necessarily transversal to discontinu-
ities; also see Diekmann et al. 2000). Here we exclude such a situation by requiring
that, at the very least,

g(ξA−, S) > 0 g(ξA+, S) > 0 (4.16)
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where the “−” denotes the limit from below and the “+” the limit from above. By
continuity these inequalities extend to a neighbourhood (in R) of S and that suf-
fices for the present considerations. But in a full model analysis one should cer-
tainly be more conservative and check that transversality holds for a wider range of
conditions.

With ξ(τ ; a,ψ) defined by (4.1) we now first consider

ξ(τ ; a,ψ) = ξA (4.17)

as an equation for τ , for given a, ψ with a large enough and ψ in some neighbourhood
of the constant function S. In biological terms, the solution is the age at which an indi-
vidual matured that is presently an adult of age a and that experienced the food history
ψ . Under constant conditions, the present age is irrelevant. We denote the solution for
ψ = S and arbitrary a by τ , so

ξ(τ ; a, S) = ξA (4.18)

and τ is the age at which individuals mature under the conditions corresponding to
the population steady state.

By the implicit function theorem, (4.17) has a unique solution for a > τ and ‖ψ−S‖
small (uniqueness is global because of the monotonicity of the map τ $→ ξ(τ ; a,ψ)).
We denote this solution by τ̃ (a,ψ). So

ξ (̃τ (a,ψ); a,ψ) = ξA (4.19)

and by differentiation of this identity with respect to ψ and evaluation of the result in
S, we obtain

∂ξ

∂τ
(τ ; a, S)D2τ̃ (a, S)ψ + D3ξ(τ ; a, S)ψ = 0. (4.20)

Hence

D2τ̃ (a, S)ψ = −η(τ ; a, S,ψ)

g(ξA−, S)
(4.21)

with η defined by (4.3). (The reason why we should evaluate g at ξA−, is that the
solution of (4.17) does depend only on g for ξ ≤ ξA).

We still define η(τ ; a, S,ψ) as the solution of (4.3) and do not worry about the
discontinuity in the derivative with respect to τ at τ = τ . But, as we will show, (4.2)
read from right to left is no longer valid. There is now an additional term, which is a
multiple of H(τ − τ ), with H the Heaviside function. To derive this, we first observe
that (4.2) remains valid as stated for τ < τ . Next, consider τ > τ and let, for a given
ψ ∈ Y , ε be so small that also τ > τ̃ (a, S + εψ). Then
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ξ(τ ; a, S + εψ) − ξ(τ ; a, S)

=
τ∫

τ̃ (a,S+εψ)

g(ξ(σ ; a, S + εψ), S + εψ(−a + σ ))dσ −
τ∫

τ

g(ξ(σ ; a, S), S)dσ

=
τ∫

τ̃ (a,S+εψ)

g(ξ(σ ; a, S), S)dσ

+
τ∫

τ̃ (a,S+εψ)

{
g(ξ(σ ; a, S + εψ), S + εψ(−a + σ )) − g(ξ(σ ; a, S), S)

}
dσ

= −εg(ξA+, S)D2τ̃ (a, S)ψ + o(ε) + ε(η(τ ; a, S,ψ) − η(τ ; a, S,ψ)) + o(ε).

Hence we have for τ > τ , because of (4.21), that

D3ξ(τ ; a, S)ψ = η(τ ) +
(

g(ξA+, S)

g(ξA−, S)
− 1

)

η(τ ) (4.22)

and consequently

D3ξ(τ ; a, S)ψ = η(τ ) +
(

g(ξA+, S)

g(ξA−, S)
− 1

)

η(τ )H(τ − τ ) (4.23)

which, in turn, because of (4.4) and (4.5) yields

D2Ξ(a; S)ψ =
a∫

0

K (a,α)ψ(−a + α)dα

+
(

g(ξA+, S)

g(ξA−, S)
− 1

) τ∫

0

K (τ ,α)ψ(−a + α)dα · H(a − τ ).

(4.24)

The formula (4.13) likewise needs a Heaviside correction term to incorporate the
effects of the jump discontinuity. For (a,ψ) such that ξ(a; a,ψ) > ξA, we can write

F(a;ψ) = e−
∫ τ̃ (a,ψ)

0 µ(ξ(σ ;a,ψ),ψ(−a+σ ))dσ−
∫ a
τ̃ (a,ψ) µ(ξ(σ ;a,ψ),ψ(−a+σ ))dσ

which shows that, relative to the smooth situation, there is an extra term

(µ(ξA+, S) − µ(ξA−, S))F(a; S)D2τ̃ (a, S)ψ.
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Hence

D2F(a, S)ψ =
a∫

0

L(a, θ)ψ(−a + θ)dθ − µ(ξA+, S) − µ(ξA−, S)

g(ξA−, S)
F(a)

×
τ∫

0

K (τ ,α)ψ(−a+α)dα · H(a − τ ). (4.25)

Finally, we reconsider (2.11). Let a = a(ψ) be the age of the individuals that mature
exactly at the present time, given that the food history is ψ . In mathematical terms a
is the solution of the equation

τ̃ (a,ψ) = a (4.26)

or, equivalently, of the equation

Ξ(a;ψ) = ξA. (4.27)

Note that

a(S) = τ . (4.28)

Since juveniles do not reproduce, we replace the first equation of (2.11) with

b(t) =
∞∫

a(St )

b(t − a)β(Ξ(a; St ), S(t))F(a; St )da. (4.29)

In the linearised equation (the first equation of (3.1)) this yields, apart from the con-
tributions of the Heaviside terms in (4.24) and (4.25), an extra term

−bβ(ξA+, S)F(τ )Da(S)ψ.

Similarly the second equation of (3.1) should get an extra term

(γ (ξA+, S) − γ (ξA−, S))bF(τ )Da(S)ψ.

By implicit differentiation of (4.27) we obtain

D1Ξ(τ ; S)Da(S)ψ + D2Ξ(τ ; S)ψ = 0

which can be written as

g(ξA−; S)Da(S)ψ + η(τ ; τ , S,ψ) = 0
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to deduce that

Da(S)ψ = −
∫ τ

0 K (τ ,α)ψ(−τ + α)dα

g(ξA−, S)
. (4.30)

This ends the preparations and we are ready to formulate the final results. But first we
recall the notation χω for the characteristic function of the set ω. In particular

χ[0,τ ](a) =
{

1 for 0 ≤ a ≤ τ

0 otherwise.

k12(a)

= b

∞∫

max{0,τ−a}

{
β(ξ(a + θ), S)L(a + θ, θ)+ ∂β

∂ξ
(ξ(a + θ), S)K (a + θ, θ)F(a + θ)

}
dθ

+ χ[0,τ ](a)b

∞∫

τ

∂β

∂ξ
(ξ(σ ), S)F(σ )dσ

(
g(ξA + , S)

g(ξA−, S)
− 1

)

K (τ , τ − a)

+ b
µ(ξA−, S) − µ(ξA + , S)

g(ξA−, S)

τ∫

max{0,τ−a}

β(ξ(a + θ), S)F(a + θ)K (τ , θ)dθ

+ χ[0,τ ](a)b
β(ξ A + , S)F(τ )

g(ξA−, S)
K (τ , τ − a). (4.31)

k22(a)

= −b

∞∫

0

{
γ (ξ(a + θ), S)L(a + θ, θ)+ ∂γ

∂ξ
(ξ(a + θ), S)K (a + θ, θ)F(a + θ)

}
dθ

−χ[0,τ ](a)b

∞∫

τ

∂γ

∂ξ
(ξ(σ ), S)F(σ )dσ

(
g(ξA + , S)

g(ξA−, S)
− 1

)

K (τ , τ − a)

−b
µ(ξA−, S) − µ(ξA + , S)

g(ξA−, S)

τ∫

max{0,τ−a}

γ (ξ(a + θ), S)F(a + θ)K (τ , θ)dθ

−χ[0,τ ](a)b
γ (ξ A + , S) − γ (ξ A−, S)

g(ξA−, S)
F(τ )K (τ , τ − a). (4.32)

5 How to analyse the characteristic equation: some didactical examples

In this section we illustrate how one can use the characteristic equation (3.3) to find
stability boundaries in parameter space.
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5.1 A stage structured model

Motivated by the work of Gurney and Nisbet (1985), see also Chapter 5 of Murdoch
et al. (2003), and that of de Roos and Persson (2003), we consider a stage structured
population. Here the word “stage” is used to express that g, µ, β and γ are indepen-
dent of ξ on the juvenile interval ξb ≤ ξ < ξA) and on the adult interval ξ > ξA.
Since the juvenile growth rate depends on the food concentration, there is a variable
maturation delay. Our purported aim is to investigate how the density dependence of
this maturation delay can lead to population cycles.

We denote the per capita death rate and the per capita consumption rate by µ1,
γ1(S) when ξ < ξA and by µ2, γ2(S) for ξ ≥ ξA, respectively. In contrast to de Roos
and Persson (2003) we restrict our attention to death rates that are independent of the
resource concentration. By g(S) we denote the growth rate of juveniles and by β(S)

the reproduction rate of adults (there is no need for an index here, as juveniles do not
reproduce and the size of adults is irrelevant).

If g is bounded away from zero, the equation in τ

0∫

−τ

g(ψ(θ))dθ = ξA − ξb (5.1)

has a unique solution which we denote by

τ = τm(ψ). (5.2)

Biologically τm(ψ) is the age of individuals that mature at the present time, given
that the food history is ψ . If g can become zero or even negative for low resource
concentrations, one needs restrictions on ψ to guarantee the solvability of (5.1). Close
to population steady state such restrictions are automatically satisfied and hence we
refrain from any attempt at giving more precise formulations.

For a > τm(ψ) we can also consider the equation

τ∫

0

g(ψ−a(θ))dθ = ξA − ξb (5.3)

to find the age at maturation of an individual that presently has age a (and is an adult
since a > τm(ψ)). We denote the unique solution by

τ = τ̃m(a,ψ), a > τm(ψ). (5.4)

Note that the identity

τ̃m(τm(ψ),ψ) = τm(ψ)
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holds. Moreover τ̃m(a + t, St ) is constant, i.e., τ̃m is independent of t . The point of
introducing τm and τ̃m is that we can now reformulate (2.11) for the present situation
in explicit detail:

b(t) = β(S(t))

∞∫

τm (St )

b(t − a)e−µ1 τ̃m (a,St )−µ2(a−τ̃m (a,St ))da (5.5)

d S
dt

(t) = f (S(t)) − γ1(S(t))

τm (St )∫

0

b(t − a)e−µ1ada

−γ2(S(t))

∞∫

τm (St )

b(t − a)e−µ1 τ̃m (a,St )−µ2(a−τ̃m (a,St ))da. (5.6)

The steady state condition R0(S) = 1, cf. (2.13), amounts to

β(S)e−µ1τ
1
µ2

= 1 (5.7)

as follows at once from (5.5). Here τ is the common steady state value of τm and τ̃m ,
so τ depends on S and is given explicitly by

τ = ξA − ξb

g(S)
. (5.8)

This allows us to rewrite (5.7) in the form

g(S)

µ1
log

β(S)

µ2
= ξA − ξb. (5.9)

Whenever g and β are monotone increasing, the left hand side of (5.9) is monotone
increasing and so there is a unique solution provided the left hand side is smaller than
the right hand side for small S and larger for large S. From (5.6) we obtain

b = f (S)

γ1(S) 1−e−µ1τ

µ1
+ γ2(S) e−µ1τ

µ2

(5.10)

as the corresponding steady consumer population birth rate, cf. (2.14).
At population steady state, the size of a juvenile of age a is given by

ξ(a) = ξb + g(S)a, 0 ≤ a < τ (5.11)
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and the survival probability as a function of age by

F(a) =
{

e−µ1a, 0 ≤ a ≤ τ

e−µ1τ e−µ2(a−τ ), a ≥ τ .
(5.12)

5.2 The characteristic equation for purely imaginary λ

We recall that the characteristic equation (3.3) is given by

{
1 − k̂11(λ)

} {
λ − c2 − k̂22(λ)

}
− k̂21(λ)

{
c1 + k̂12(λ)

}
= 0, (5.13)

where

k̂i j (λ) =
∞∫

0

ki j (a)e−λada, (i, j = 1, 2). (5.14)

Combining (3.5) with (5.7) we find

k̂11(λ) = µ2

µ2 + λ
e−λτ . (5.15)

Directly from (3.6) we obtain

k̂21(λ) = γ1(S)
e−(µ1+λ)τ − 1

µ1 + λ
− γ2(S)

e−(µ1+λ)τ

µ2 + λ
, (5.16)

while (3.7) and (3.8) lead to

c1 = bβ ′(S)
e−µ1τ

µ2
= b

β ′(S)

β(S)
(5.17)

c2 = f ′(S) − bγ ′
1(S)

1 − e−µ1τ

µ1
− b

γ ′
2(S)

β(S)
(5.18)

where we have used (5.7) twice more.
In order to compute k̂12 and k̂22, we first observe that (4.5) reduces to

K (τ,α) = g′(S) for 0 ≤ α < τ (and zero otherwise) (5.19)

while (4.12) yields

L(τ, θ) = 0. (5.20)
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It is now a straightforward matter to deduce from (4.31) and (4.32) that

k̂12(λ) = b
g′(S)

g(S)

{
µ1

λ
+ µ2 − µ1

µ2 + λ

}
(1 − e−λτ ). (5.21)

k̂22(λ) = b
g′(S)

g(S)
e−µ1τ

{
1 − e−λτ

λ

(
γ1(S) − γ2(S)

µ1

µ2

)

− γ2(S)
1 − µ1/µ2

µ2 + λ
(1 − e−λτ )

}
. (5.22)

If we substitute λ = iω into (5.13) and rewrite the complex equation as two real
equations we obtain

.k̂11.k̂22 − /k̂11/k̂22 − c1.k̂21 − c2(1 − .k̂11) − .k̂22 + ω/k̂11

− (.k̂21.k̂12 − /k̂21/k̂12) = 0,

.k̂11/k̂22 + /k̂11.k̂22 − c1/k̂21 + c2/k̂11 − /k̂22 + ω(1 − .k̂11)

− (.k̂12/k̂21 + /k̂12.k̂21) = 0.

(5.23)

The symbols . and / denote the real and imaginary part of a complex number, respec-
tively. If we define ϕ = ϕ(µ,ω) by requiring that

cos ϕ = µ
√

µ2 + ω2
and sin ϕ = ω

√
µ2 + ω2

,

then we can write

1
µ + iω

= µ − iω
µ2 + ω2 = 1

√
µ2 + ω2

e−iϕ(µ,ω).

It follows that

k̂11(iω) = µ2√
µ2

2 + ω2
e−i(ωτ+ϕ(µ2,ω)),

k̂12(iω) = b
g′(S)

g(S)



µ1

iω
+ µ2 − µ1√

µ2
2 + ω2

e−iϕ(µ2,ω)



 (1 − e−iωτ ),

k̂21(iω) = γ1(S)
√

µ2
1 + ω2

(
e−µ1τ−i(ωτ+ϕ(µ1,ω)) − e−iϕ(µ1,ω)

)

− γ2(S)
√

µ2
2 + ω2

e−µ1τ−i(ωτ+ϕ(µ2,ω)),
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k̂22(iω) = b
g′(S)

g(S)
e−µ1τ





1 − e−iωτ

iω

(
γ1(S) − γ2(S)

µ1

µ2

)

− γ2(S)

(
1 − µ1

µ2

)
1

√
µ2

2 + ω2
e−iϕ(µ2,ω)(1 − e−iωτ )




 .

We can use (5.23) to find stability boundaries in parameter space. An effective way
is to single out two parameters and to use ω to parametrise the curve in the corre-
sponding parameter plane at which a Hopf bifurcation occurs (see Diekmann et al.
1995; de Roos et al. 2009, for details). In principle one can determine by way of
additional analytic computations whether the Hopf bifurcation is sub- or supercritical.
By implementing the corresponding algorithm, a useful tool for numerical bifurcation
analysis is obtained (see Janssens and Kuznetsov (2009), which builds on Khibnik
et al. (1993), Kuznetsov et al. (1996), Kuznetsov and Levitin (1997a,b)). As the tool is
not yet available in a user friendly form, we report some numerical experiments that
provide information concerning the direction of bifurcation in Sect. 6.

5.3 Analytical results

When does maturation delay lead to population cycles? This question is not precise
enough to allow a clear-cut answer (for instance, oscillations may arise by the com-
bined effect of several mechanisms and then, of course, it makes no sense to call a
single one of these the cause). Yet, in order to understand complex phenomena it may
help (to try) to disentangle the various mechanisms by analysing limiting cases that
are relatively simple. In that spirit we shall in the present subsection present some
analytical results and in the next section some numerical studies.

What follows is a telegram style preview of this section. Note that the conclusions
are based on a local stability analysis of the steady-state, but that the choice of word-
ing does not reflect this limitation. (Note also that in the Hopf Bifurcation Theorem
one of the conditions states that the eigenvalues should pass the imaginary axis with
positive speed if the scalar parameter passes the critical value. In terms of the stability
boundary this requires that when we implicitly consider a one parameter path in two
parameter space, this path is supposed to cross the stability boundary transversally.)

Consumer–resource cycles may occur in unstructured models as a result of a hump-
shaped resource growth function f (S). We call these classical predator-prey cycles. If
f is a decreasing function of S, one may still have cycles in case of maturation delay.
We shall, for ease of formulation, call these ‘delayed negative feedback’ cycles.

Delayed negative feedback cycles will not occur if there are no differences between
juvenile and adult consumers in either resource ingestion rate or mortality. If only
adults exploit the resource, cycles are possible, but not unless near the steady state
a small relative increase of food leads to a large relative increase in reproduction. If
cycles occur, their period at ‘birth’ is in between two and four times the duration of the
juvenile period, at least in a quasi-steady-state-approximation. If only juveniles exploit
the substrate, cycles are also possible. They are promoted by a high reproduction rate.
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At ‘birth’ their period is between one and two times the duration of the juvenile period,
at least in a quasi-steady-state-approximation.

5.3.1 Nothing but a growth-reproduction transition

Assume that there is neither a change in the death rate µ nor in the consumption rate
γ (S) at ξA. We will show that the (in)stability is closely related to that of the steady
state of the corresponding unstructured model

d S
dt

= f (S) − γ (S)P,

d P
dt

= β(S)P − µP.

(5.24)

We shall briefly review the stability of (5.24). There exists a positive equilibrium of
(5.24), denoted by (S, P), if there exists a positive constant S such that β(S) = µ and,
moreover, f (S) > 0. The characteristic equation defined for the linearized equations
for (5.24) around the positive equilibrium is given by

λ2 + c2λ + f (S)β ′(S) = 0, (5.25)

where c2 is given by c2 = f ′(S) − γ ′(S)

γ (S)
f (S). System (5.24) undergoes a Hopf bifur-

cation if and only if c2 passes 0. So a necessary condition for Hopf bifurcation to be
possible is that f is increasing on part of its domain.

For the structured model (2.11), we concentrate on the special case

µ = µ1 = µ2, γ (S) = γ1(S) = γ2(S). (5.26)

This means that when juveniles turn into adults there is no change in uptake rate nor in
death rate. By substituting the explicit expressions for k̂i j (iω) and ci (i, j = 1, 2) into
the characteristic equation (5.23), we can derive that for iω to be a root necessarily
p(ω2) = 0 should hold, where

p(ω2) := (ω2 − γ (S)c1)
2 + c2

2ω
2 + 2γ (S)µc2

(

b
g′(S)

g(S)
− c1

)

(5.27)

(the details of the derivation are presented in the Appendix). We now have

c1 = b
β ′(S)

β(S)
, c2 = f ′(S) − γ ′(S)

γ (S)
f (S). (5.28)

If p(ω2) = 0 has no positive real root, there exist no purely imaginary roots of (5.23).
By substituting the explicit expression for c1 we find b g′(S)

g(S)
− c1 = b

(
g′(S)

g(S)
− β ′(S)

β(S)

)
.

123



Daphnia revisited 301

Note that if g and β are proportional, then necessarily

g′(S)

g(S)
− β ′(S)

β(S)
= 0.

So in this case we find, exactly as for the unstructured model, that a Hopf bifur-
cation occurs if and only if c2 = 0, where c2 is given by the same formula c2 =
f ′(S) − {γ ′(S)/γ (S)} f (S) in both cases (concerning the ‘if’ part, note that in the
Appendix we show that for c2 = 0 there is indeed a pair of roots on the imaginary
axis). Hence, if adults and juveniles only differ in that juveniles convert substrate into
growth and adults convert it into offspring, with fixed conversion factors, then the
stability properties of that model exactly mimick those of an unstructured model. As a
corollary we conclude that the maturation delay on its own cannot lead to oscillations.

5.3.2 Substrate serves for reproduction, not for growth

Motivated by earlier work of Gurney and Nisbet (1985) and by the observation above,
we next consider the case that the growth rate g is independent of S. For consistency
we assume that the juveniles have a different food source and do not consume the
substrate. So we have g′ = 0 and γ1 = 0. Note that the maturation delay is now fixed
rather than variable.

We now have

b = β(S) f (S)

γ2(S)
, c1 = β ′(S) f (S)

γ2(S)
, c2 = f ′(S) − γ ′

2(S) f (S)

γ2(S)
, (5.29)

and the characteristic equation is given by

(
1− µ2

λ + µ2
e−λτ

)(

λ− f ′(S) + γ ′
2(S)

γ2(S)
f (S)

)

+ µ2

λ+µ2

β ′(S)

β(S)
f (S)e−λτ =0.

(5.30)

By reorganizing a bit we can bring this equation in the form

µ2

λ + µ2
e−λτ

λ − f ′(S) + γ ′
2(S)

γ2(S)
f (S) − β ′(S)

β(S)
f (S)

λ − f ′(S) + γ ′
2(S)

γ2(S)
f (S)

= 1. (5.31)

Taking the square of the absolute value of both sides of (5.31) we obtain, after some
rearranging, the equation

ω4 + c2
2ω

2 − µ2
2c3(2c2 + c3) = 0, (5.32)
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where

c3 := β ′(S)

β(S)
f (S). (5.33)

This is a quadratic equation for ω2 which has a positive root iff

(2c2 + c3)c3 > 0.

For increasing beta we have c3 > 0 and then this condition translates into

2
f ′(S)

f (S)
− 2

γ ′
2(S)

γ2(S)
+ β ′(S)

β(S)
> 0. (5.34)

If f is decreasing and β is proportional to γ2, (5.34) is false and hence we know for
sure that the steady state is stable. By writing (5.34) in the form

2
f ′(S)

f (S)
− γ ′

2(S)

γ2(S)
+ d

d S
ln

β(S)

γ2(S)

∣∣∣∣
S=S

> 0 (5.35)

we see that, for decreasing f and increasing γ2, destabilization requires that the con-
version efficiency increases rapidly with S near S. This may happen in an energy
budget model of the net-production type (in which reproduction is proportional to the
difference between the ingestion rate and maintenance costs) if at equilibrium β is
small, so that a small relative increase in ingestion can lead to a rather large relative
increase in reproduction.

To gain more insight about the possibility of destabilization we take a drastic step
and delete λ in the second factor of Eq. (5.30). The underlying idea is that, when both
f and γ2 are large relative to β, g, and µ2, the food dynamics is fast relative to both
maturation and demographic turnover of the consumer population. The corresponding
quasi-steady state assumption amounts to replacing d S/dt at the left hand side of the
second equation of (2.11) with zero. At the level of the characteristic equation this
amounts to removing the term λ in (5.31). The technical way of relating results of
the reduced characteristic equation to results for the full characteristic equation is as
follows. If f has a factor ε−1 then we can multiply (5.31) with ε, and next obtain the
reduced equation by putting ε = 0. The implicit function theorem then can be used
to show that if the reduced equation has roots in the right half plane, so has the full
equation for ε positive but small.

If we multiply the reduced equation with λ + µ2, reorganise a bit, and scale λ with
a factor τ , we obtain

λ = α1 + α2e−λ (5.36)
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Fig. 1 The Eq. (5.36) has a real root λ = 0 along the line α2 = −α1 and purely imaginary roots
along the curves C0 and C±

k . The numbers “# =” indicate the number of roots in the right half plane.
So C0 is the stability boundary. Along the curve C0 ω increases from 0 at the starting point on the line
α2 = −α1 to ω = π/2 where C0 intersects the negative α2-axis to π in the limit where C0 touches the line
α2 = α1

with

α1 = −µ2τ , α2 = µ2τ

(
f ′(S)

f (S)
− γ ′

2(S)

γ2(S)
+ β ′(S)

β(S)

) (
f ′(S)

f (S)
− γ ′

2(S)

γ2(S)

)−1

.

(5.37)

This equation is analysed in great detail in Diekmann et al. (1995, Section XI.2). The
most relevant information is summarized in Fig. 1, where α1 and α2 are considered
as free parameters. Since in the case of (5.37) α1 < 0, we can infer from Fig. 1 that
destabilization occurs if α2 becomes sufficiently negative. We already know that this
cannot happen if β is proportional to γ2 and f is decreasing. Reassuringly we find
that α2 > 0 in this case. The condition that α2 be sufficiently negative translates, in
fact, again into the requirement that the conversion efficiency increases rapidly with
S near S. The extra information we now have is that destabilization is indeed possible
and that π/2 < ω < π (see Fig. 1), which means that the period of the limit cycle is
at its ’birth’ by Hopf bifurcation between two and four times the juvenile delay τ , just
as it is in Nicholson’s blowfly model of Gurney et al. (1980), also see Thieme (2003,
Section 16).

The information about how the position of the roots of (5.36) depends on the two
parameters α1 and α2 can be used to deduce biologically interpretable conclusions by
exploiting the explicit expression (5.37). For example, if we choose

g(S) = g0, γ2(S) = θ S, f (S) = D, β(S) = ϕS − ν and µ1 = µ2 = µ,
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Fig. 2 Stability boundary in the (µτ , ντ )-plane. C0, C+
1 and C+

2 are the images of the corresponding
curves in Fig. 1. Note that along C0, ω ranges from π/2 at the vertical axis to π at infinity

then we have that by the inverse transformation

µτ = −α1, ντ = −α2e−α1 .

Hence we can translate information from the third quadrant of Figs. 1–2. Figure 2
reveals that population cycles do occur when the loss rate of maintenance is large rela-
tive to the loss rate of mortality. Note that the quasi-steady state assumption potentially
leads to the disappearance of cycles, as was indicated in de Roos and Persson (2003,
Subsection 3.4 and Figure 8).

In Meng et al. (2005), substrate growth is logistic, so f has a positive derivative
for S not too large, and in that case both (5.24) and the model with fixed maturation
delay do have a periodic attractor for suitable γ (resp. γ2) and β. We conclude that
the properties of a model with fixed delay to a large extent mimick those of unstruc-
tured models. In particular, oscillations are more easily generated by a Rosenzweig–
MacArthur type bifurcation of classical prey–predator cycles than by a delayed
negative feedback bifurcation. The latter one requires that the conversion efficiency
depends rather strongly on the substrate concentration near the equilibrium value.

5.3.3 Substrate serves for growth, not for reproduction

The other extreme is that the birth rate β is independent of S. For consistency we now
assume that the adults have a different (and constant) food source and do not consume
the substrate. So we have β ′ = 0 and γ2 = 0. Note that the maturation delay is now
variable, rather than fixed.

We now have

b = µ1β f (S)

γ1(S)(β − µ2)
, c1 = 0, c2 = f ′(S) − γ ′

1(S) f (S)

γ1(S)
(5.38)
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Fig. 3 Stability boundary in the (α1, α2)-plane (labelled by C1) and two more Hopf curves, labelled C2
and C3. Numbers “# =” refer to roots in the right half plane

and the characteristic equation is given by

(
1 − µ2

λ + µ2
e−λτ

) (

λ − f ′(S) + γ ′
1(S)

γ1(S)
f (S) − µ1µ2 f (S)

β − µ2

g′(S)

g(S)

1 − e−λτ

λ

)

+β − µ2e−λτ

λ + µ1

µ1 f (S)

β − µ2

g′(S)

g(S)

(
1 − e−λτ

) (
µ1

λ
+ µ2 − µ1

µ2 + λ

)
= 0. (5.39)

We now take the drastic step once again and delete λ in the second factor. If we mul-
tiply the reduced equation with λ + µ2, reorganise a bit, and scale λ with a factor τ ,
we obtain

λ + α1
(
1 − e−λ

)
+ α2

1 − e−λ

λ
= 0 (5.40)

with

α1 = τµ2 − α2

τ (β − µ2)
,

α2 = µ1µ2τ
2 g′(S)

g(S)

γ1(S) f (S)

γ ′
1(S) f (S) − γ1(S) f ′(S)

.

(5.41)

If we substitute λ = iω into (5.40), split into real and imaginary part, and solve for
(α1,α2) we obtain (Fig. 3)

(
α1
α2

)
= 1

2

(
−ω cos(ω/2)

sin(ω/2)

ω2

)

. (5.42)
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Here we should keep in mind that

τ = ln β − ln µ2

µ1

(
⇔ µ1τ = ln

β

µ2

)
(5.43)

and

S = g−1
(

ξA − ξb

τ

)
. (5.44)

Let us now concentrate on the special case

g(S) = g0S, γ1(S) = θ S, f (S) = D − εS (5.45)

so that

g′(S)

g(S)

γ1(S) f (S)

γ ′
1(S) f (S) − γ1(S) f ′(S)

= 1 − ε
S
D

with

S = 1
g0

ξA − ξb

τ
.

It follows that

α1 = µ2

µ1
ln

β

µ2
− α2

µ2
µ1

(
β
µ2

− 1
)

ln β
µ2

,

α2 = µ2

µ1

(
ln

β

µ2

)2
(

1 − ε
S
D

)

.

(5.46)

from which we see that there are three dimensionless parameter combinations that
play a role: µ1

µ2
, β

µ2
, ε S

D . If we restrict the attention to µ1 = µ2 only β
µ2

and ε S
D

remain. The boundary in parameter space of the region in which the steady state exists
is characterized by β

µ = 1 or ε S
D = 1. If we substitute the stability boundary given

by (5.42) into (5.46), it is possible to solve numerically for β
µ and ε S

D . As a next

step we may then express the result in the primary mechanistic parameters β
µ and

ε(ξA−ξb)µ
g0 D = ε S

D ln β
µ . Note that Fig. 4 gives, at just a glance, more information about

(in)stability of the steady state than the information presented in Jones et al. (1988).
We conclude that a fluctuating length of the juvenile period such that the rate of

growing up is negatively related to the juvenile density may on its own lead to cycles.
Of course this conclusion is not new (e.g. Gurney and Nisbet 1985) but is mathemat-
ically rather more neatly brought out by our present calculations.
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Fig. 4 Stability boundary in the (
εµ(ξA−ξb)

g0 D ,
β
µ )-plane. C2 and C3 are the images of the corresponding

two curves in Fig. 3. Along the stability boundary C1 we have that π/τ < ω < 2π/τ and so the period
of the oscillations is between one and two times the length of the juvenile period at their ‘birth’ by Hopf
bifurcation

5.4 Bistability in both reality and a more complex stage structured model

After the finishing of this paper a beautiful paper by McCauley et al. (2008) appeared
in which a generalisation of the stage structured model of this section was analysed
by different means. The authors frame their model as a system of delay-differential
equations with variable delay, apply an implicit transformation of the time variable
to arrive at a fixed delay and approximate the implicit equation for the probability to
survive the juvenile period by a finite system of differential equations. The advantage
of their technique is that they can then apply the recently developed bifurcation pro-
gram DDE-BIFTOOLS that also allows them to follow limit cycles, including unstable
ones, and their stability switches. (An even better feature of the paper is that the model
results are compared with real experimental data, specifically obtained for the pur-
pose!) It seems worth the effort to elaborate in detail the characteristic equation (3.3)
for that model and next study it.

6 Numerical studies

In this section, we continue to investigate under what conditions density dependence in
the maturation delay leads to population cycles. We do this by numerically determin-
ing when the characteristic equation (3.3) has a root exactly on the imaginary axis. In
addition, we do some numerical simulations, using the Escalator Boxcar Train method
(see de Roos and Persson 2001), to determine the direction of the Hopf-bifurcation.

We make the following choices for the ingredients of (5.5) and (5.6): The uptake of
resources by adults is assumed to be proportional to the concentration of the substrate.
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The juveniles are assumed to spend a fraction 1 − α of their time on exploiting a
fixed alternative food supply, denoted by A, and a fraction α on exploiting the sub-
strate, leading to per capita uptake rates for adults and juveniles of γ2(S) = θ S and
γ1(S) = αθ S, respectively. The growth rate of juveniles g(S) is determined by their
total resource uptake. Hence the growth of juveniles is independent of the substrate
when α = 0 whereas juveniles completely depend on the substrate for their growth
when α = 1. In particular, g(S) is given by g(S) = g0((1 − α)A + αS), where g0
is a conversion constant transforming food intake into growth/maturation. We allow
for unequal mortality rates for the juveniles and adults, parametrised as µ1 = qµ

and µ2 = µ, respectively. The per capita reproduction rate is proportional to the per
capita resource intake, β(S) = β0S. The dynamics of the substrate in the absence of
consumers is given by f (S) = D − εS. The number of parameters can be reduced by
scaling. By a scaling of time, i-size, birth rate and S we fix the parameters µ, ξA − ξb,
θ and D to 1. The other six parameters α, A, β0, g0, ε and q can vary. Hereafter the
latter parameters will be referred to as the “free parameters”. The relation between
the scaled and unscaled parameters is indicated by denoting the unscaled parameter
by the same symbol as the corresponding scaled parameter but equipped with a tilde.

t = µ̃t, ξ = ξ̃

ξA − ξb
, b = θ

µ2 b̃, S = µ

D
S̃,

µ = 1 ξA − ξb = 1, θ = 1, D = 1,

ε = 1
µ

ε̃, A = µ

D
Ã, α = α̃, g0 = D

µ2(ξA − ξb)
g̃0, q = q̃, β0 = D

µ2 β̃0.

The default values of the potentially free parameters are ε = 0.1, A = 1, α = 1,
g0 = 0.025, q = 0.1 and β0 = 5.0, when they are not varied.

We start our discussion by showing some simulation results. When varying the
parameters we always observed two qualitatively different types of asymptotic behav-
iour, convergence to a steady state, illustrated in the left panel of Fig. 6, and to periodic
oscillations (population cycles), shown in the right panel of Fig. 6.

Since there are six parameters ε, A, α, g0, q and β0, we have 15 options for drawing
one-dimensional stability boundaries. For α = 0 we have a fixed maturation delay
and model ingredients that fulfill the conditions for stability as derived in Sect. 5.3.2.
This indicates that larger values of α are required for population cycles and it makes
α a good choice for one of the two free parameters.

Figure 5 shows numerically calculated stability boundaries for different values of ε

in the (α,β0)-plane (left panel of Fig. 5) and for different values of β0 in the (α, g0)-
plane (right panel of Fig. 5). For the discussion we shall distinguish two qualitatively
different types of boundaries, parabola-like ones, in which there is only one stability
switch in the α-direction for all values of the second parameter, and boot-like ones in
which there occur two such switches for increasing α. In the left panel of Fig. 5, the
cycle regions are boot-like for the lower ε-values, for higher values they are parabola-
like. The instability regions shrink when ε becomes larger and have disappeared by
the time that ε = 0.25. Population cycles are absent for sufficiently small α, with the
stable region increasing with ε. This strongly suggests that the density dependence
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Fig. 5 Left panel: stability boundaries in the (α, β0)-plane, α the relative dependence on the dynamic
substrate, β0 the conversion constant of food into offspring, for three different values of ε, the autonomous
decay rate of the food; solid: ε = 0.1; dashed: ε = 0.2; dotted: ε = 0.22 (A = 1, q = 0.1 and g0 = 0.025).
The cycle region shrinks and eventually vanishes as ε increases. When ε is large population cycles are not
induced for small α (that is, when juveniles are weakly dependent on the substrate for their growth). For the
lower ε-values the cycle regions are boot-like, for higher values they are parabola-like. Right panel: stability
boundaries in the (α, g0)-plane, g0 the conversion constant transforming food into growth (maturation),
for different values of β0; solid β0 = 10, dashed β0 = 20 (A = 1, q = 0.1, ε = 0.1). For the same β0 two
different sets of purely imaginary roots of the characteristic equation are found

in maturation time brings about the qualitative change of the dynamics, but that a
delayed impact of this density dependence due to slow substrate dynamics is essential
for cycles to occur, as also concluded by de Roos and Persson (2003, subsection 3.4).
The other stability boundaries for different values of ε in the (α,β0)-plane, of q in the
(α,β0)-plane, of ε in the (α, g0)-plane and of q in (α, g0)-plane show essentially the
same features as in the left panel of Fig. 5 (results not shown). This is also the case
for different values of β0 in the (α, g0)-plane (β0 = 5.0, β0 = 1.5 and β0 = 1.15,
results also not shown). For these lower values of β0, however, the instability region
does not always provide a complete picture of the parameter combinations for which
population cycles occur. Numerical studies reveal that population cycles occur for
parameter combinations well into the stable region, in particular at the upper bound-
ary of the parabola-like instability regions in the (α, g0)-plane. This suggests that for
these low values of β0 the bifurcation at this particular part of the stability boundary
is subcritical. Furthermore, for high values of β0 (β0 = 10 and β0 = 20) two stability
boundaries are found for the same value of β0, corresponding to two different pairs
of characteristic roots crossing the imaginary axis. These two stability boundaries
suggest that different types of population cycles may branch of the equilibrium (see
below).

Figure 6 shows the results of numerical simulations at the parameter values indicated
by stars in the right panel of Fig. 5. For g0 = 0.025 the population density converges
to the steady state via a long and somewhat complicated transient (left panel of Fig. 6),
corroborating that for the corresponding point in Fig. 6 all characteristic roots indeed
lie in the left half of the complex plane. The simulation results for g0 = 0.011 exhibit
an additional interesting phenomenon (right panel of Fig. 6). The population density
first appears to approach the steady state in an oscillatory manner only to move off
again to end up on a limit cycle with a different period. This saddle-like behaviour
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Fig. 6 Numerical simulation results for A = 1, α = 1, β0 = 10, ε = 0.1 and q = 0.1. Left: g0 = 0.025.
The steady state is approached via a complicated transient. Right: g0 = 0.011. The population density
initially approaches the steady state, but eventually ends up cycling

of the steady state can be tentatively understood from the stability diagram in Fig. 5.
From the fact that the parameter point under consideration is near the second stability
boundary one may infer that the slowest submanifold of the stable manifold of the
steady state is tangent to the eigenspace of the characteristic root that is about to pass
through the imaginary axis. When g0 is decreased this slowest submanifold links at
the lower stability boundary to the center manifold containing the limit cycle. So in
the oscillatory approach to the steady state one sees the ghost of the cycle that is about
to branch of at the lower of the two stability boundaries. After having approached the
steady state, the trajectory slowly diverges along the unstable manifold that brings it
to the limit cycle springing from the Hopf-bifurcation on the upper stability boundary.

The main computational results can be summarized as follows. Population cycles
occur for parameters within the region of instability of the equilibrium, but cycles
may also occur for parameter values for which the equilibrium is locally stable. All
instability regions are bounded in the free parameters whenever α is chosen as one
of the two parameters. In other words, population cycles can occur only if β0, g0
or q are assigned intermediate values. The occurrence of population cycles depends
more strongly on α when q and ε are large. The shapes of stability boundaries can
be classified into two types. One type are parabola-like curves while another type are
boot-like ones. Population cycles are likely not to be induced for small α when the
stability boundary is parabola-like. In contrast, population cycles occur even though
α is small when the stability boundary is boot-like.

Our numerical results are to a large extent congruent with those presented in de
Roos and Persson (2003) for a similar model, which however assumed death rates
to depend on substrate density. In de Roos and Persson (2003, subsection 3.2) two
broad classes of population cycles were distinguished, referred to as juvenile- and
adult-driven cycles, respectively, which occurred when either juveniles or adults had a
larger impact on resource levels and hence on population dynamics. The type of popu-
lation cycles found in our model resemble juvenile-driven cycles, most likely because
in our model juveniles are more dominant than adults due to their smaller death rate. In
de Roos and Persson (2003) it was shown that juvenile-driven cycles disappear in case
of fast substrate dynamics, which is in agreement with our finding that the instability
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region shrinks for larger values of ε. Furthermore, in de Roos and Persson (2003) two
types of juvenile-driven cycles were distinguished on the basis of the ratio between the
cycle period and the maturation delay: type I cycles are characterized by a period that
is by and large equal to the maturation delay, while type II cycles have a period by and
large half that value. The two unstable regions in the right panel of Fig. 5 correspond to
the occurrence of these two types of juvenile-driven cycles over a considerable range
of g0. By numerical simulations for β0 = 10 and α = 0.2 we found large-amplitude
cycles with a cycle period roughly equal to the maturation delay in the lower of the
two instability regions, whereas small-amplitude cycles with a period equal to half the
maturation delay occur in the upper unstable region (results not shown). Hence for
each β0, the upper and lower cycle regions are characterized by juvenile-driven type
I and type II, respectively.

Juvenile-driven cycles are characterized by the appearance of dominant cohorts
in the populations (de Roos and Persson 2003). The birth of such a dominant cohort
reduces the resource substantially, leading to retarded growth and dwindling reproduc-
tion. Not until the dominant cohort has decreased in abundance due to mortality can
resource densities recover again and can a new pulse of offspring be produced. This
offspring immediately reduces the resource level and the cycle repeats itself. Accord-
ing to de Roos and Persson (2003), juvenile-driven type I cycles are characterized by
a high mean resource density, a short juvenile period, high survival till maturation
and a low ratio between juvenile and adult peak densities. Moreover adults have a
very short life expectancy and a low fecundity. By comparing two stability boundaries
for β0 = 10 and β0 = 20 we find that the cycle region of juvenile-driven type I for
β0 = 20 is smaller than that for β0 = 10. This observation agrees well with the fact that
juvenile-driven type I cycle are likely to occur when adult fecundity is low. Another
qualitative difference between juvenile-driven type I and II cycles is that for type I
cycles non-negligible quantities of adults are only present in the population during
short bouts of time right after maturation of the dominant cohort, whereas for type II
cycles adults are always present in the population in non-negligible quantities (de Roos
and Persson 2003). According to our numerical computations, qualitative change of
population cycles from type I to type II may occur when the resource availability α

or the growth speed g0 cross the boundary between two cycle regions. In particular
for β0 = 10, this kind of qualitative change can occur for almost all values of α when
the growth speed g0 increases. Hence the growth rate of juveniles may influence the
qualitative features of the size distribution. Note that this kind of qualitative change
can occur as well when juveniles become less competitive, see de Roos and Persson
(2003, Figures 5 and 6).

7 The Kooijman–Metz Model

The modern theory of dynamic energy budget models (Kooijman 2000) has its roots
in the Kooijman–Metz Daphnia model (Kooijman and Metz 1984), that was designed
to extrapolate data on the effect of toxic substances from lab experiments to field situ-
ations, with due attention to the various possibilities for the underlying physiological
mechanisms (does the chemical impede food uptake, maintenance, growth, survival or
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Table 1 The Kooijman–Metz model

This paper Functional form interpretation Reference (de Roos et al. 1990)

ξ Length 7

S Algal concentration x

g γ0(7m f0(S) − ξ) g

µ Constant d

β rm f0(S)ξ2 b

γ ν f0(S)ξ2 I

f α(Smax − S) or β0 S
(

1 − S
Smax

)
R

ξ0 S
1+ξ0 S : Functional response to prey density f0

reproduction?). In de Roos et al. (1990) the same model was used to study the ecolog-
ical implications for prey–predator interaction of delayed maturation of the predator.
In that analysis a characteristic equation (equation 17) figured prominently. The aim of
this section is to check that Eq. (3.3) in the present paper translates to (17a) in de Roos
et al. (1990) if we choose ξ , g, µ, β, γ and f in accordance with the Kooijman–Metz
model.

While comparing the present formulation with that of de Roos et al. (1990) one
runs into notational problems, as the same symbol may be used in both papers, but
with a different meaning. Our strategy is to give the present notation priority and to
provide symbols from de Roos et al. (1990) with an index 0 in case of conflict (this
applies in particular to ξ , β, γ and f ).

The Kooijman–Metz model also specifies individual behaviour under starvation
conditions. For populations close to steady state, such conditions never arise. There-
fore we omit this part of the model specification in our description here. We collect a
number of observations that will facilitate the comparison of (3.3) (with (3.5)–(3.8) and
(4.31), (4.32) as specification of c and k) and (17a) (with (17b)–(17e) as specification
of the matrix components) (Table 1).

(i) Since the death rate is constant, L ≡ 0, cf. (4.12).
(ii) Since g is linear in ξ and linear in f0(S),

K (τ,α) = e−γ0(τ−α)γ07m f ′
0(S), c f. (4.5). (7.1)

(iii) From (3.7) we deduce that

c1 = brm f ′
0(S)

∞∫

τ

ξ
2
(a)F(a)da

but since (2.13) (which is (11a) in de Roos et al. (1990)) amounts to

1 = rm f0(S)

∞∫

τ

ξ
2
(a)F(a)da
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this may be rewritten in the form

c1 = b
f ′
0(S)

f0(S)
. (7.2)

Likewise we deduce from (2.14) and (3.8) that

c2 = f ′(S) − f (S)
f ′
0(S)

f0(S)
. (7.3)

(iv) Directly from (3.5) and (3.6) we obtain

k11(a) = rm f0(S)ξ
2
(a)e−µa H(a − τ ), (7.4)

k21(a) = −ν f0(S)ξ
2
(a)e−µa . (7.5)

(v) From (4.31) and (4.32) we deduce

k12(a) = 2brm f0(S)γ07m f ′
0(S)e−(γ0+µ)a

∞∫

max{0,τ−a}

ξ(a + θ)e−µθ dθ

+χ[0,τ ](a)b
rm f0(S)ξ2

Ae−µτ

γ0(7m f0(S) − ξA)
γ07m f ′

0(S)e−γ0a, (7.6)

k22(a) = −2bν f0(S)γ07m f ′
0(S)e−(γ0+µ)a

∞∫

0

ξ(a + θ)e−µθ dθ . (7.7)

(vi) By solving

dξ

da
= g(ξ , S), ξ(0) = ξb,

we obtain

ξ(a) = 7m f0(S) − (7m f0(S) − ξb)e−γ0a (7.8)

from which we see that (cf. (11c) in de Roos et al. (1990))

a = 1
γ0

log

(
7m f0(S) − ξb

7m f0(S) − ξA

)

. (7.9)

The final verification that (3.3) is identical to (17) is now only a matter of computing
Laplace transforms, which, in the case of k12 and k22 involves some changes of the
order of integration. All expressions match. At this point the reader has two options:
either believe us on our word or perform these final computations himself.
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We refer to the original paper (de Roos et al. 1990) for an account of the ecological
insights that can be obtained by analysing the Kooijman–Metz model.

8 A summary in recipe form

Each of the steps below can be performed either by writing a subroutine that performs
the required calculation numerically or (in special cases) analytically in the form of a
mathematical formula.

Part 1: Model formulation and finding steady states
Step 1: specify the individual growth rate g and the per capita death rate µ

as a function of size ξ and food concentration S
Step 2: specify the size at birth ξb

for constant S solve, or write an algorithm to solve,

dξ

da
= g(ξ, S), ξ(0) = ξb,

d F
da

= −µ(ξ, S)F, F(0) = 1

Step 3: specify the per capita rate of giving birth β as a function of size ξ

and food concentration S
Step 4: solve (2.13)
Step 5: specify the per capita consumption rate γ as a function of size ξ

and food concentration S
specify the rate f of change in S in the absence of consumers
compute the steady population birth rate according to (2.14)

Step 6: calculate the steady state size-age relation and survival probabili-
ties by substituting the value of S found in Step 4 into the results
from Step 2 (cf. (2.15), (2.16))

Part 2: Determining the stability of steady states
Step 1: define c1, c2, k11, k21 by (3.5)–(3.8)
Step 2: define K by (4.5) and L by (4.12)

define k12 and k22 by (4.31) and (4.32) [note the simplification
(4.14), (4.15) for a smooth juvenile–adult transition]

Step 3: take Laplace transforms of ki j
Step 4: consider the characteristic equation (3.3):

if at least one root has .λ > 0 then the steady state is unstable
if all roots satisfy .λ < 0 then the steady state is stable

Part 3: Parameter studies
Step 1: substitute λ = iω into the characteristic equation (3.3)

select two parameters (start with those that lead to relatively simple
calculations)
solve for these parameters as a function of ω

draw stability boundaries (cf. Figs. 3, 4 and 5)
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Step 2, 3,…: repeat Step 1, but with another choice of (one or both of the) two
parameters

We refer to Kirkilionis et al. (2001) and de Roos (2008) for suggestions concerning
the numerical implementation of the computation of (the Laplace transforms of) the
kernels ki j . A new edition of the former paper, employing the delay framework of the
present paper, is submitted (de Roos et al. 2009).
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Appendix: Derivation of (5.27)

We rewrite the explicit expressions of k̂i j (iω) and ci (i, j = 1, 2) under the assump-
tion (5.26).

k̂11(iω) = cos ϕe−i(ωτ+ϕ),

k̂12(iω) = −b̄µ
g′

g
1 − cos ωτ

ω
i + b̄µ

g′

g
sin ωτ

ω
,

k̂21(iω) = −γ

µ
cos ϕe−iϕ,

k̂22(iω) = 0.

The real part of the characteristic equation (5.23) can be rewritten as

c1
γ

µ
cos2 ϕ − c2 + c2 cos ϕ cos(ωτ + ϕ) − ω cos ϕ sin(ωτ + ϕ)

− b̄γ
g′

g
cos ϕ

{
sin ϕ

ω
− sin(ωτ + ϕ)

ω

}
= 0. (A.1)

In the same way, the imaginary part of (5.23) can be written as

−c1
γ

µ
cos ϕ sin ϕ + ω − c2 cos ϕ sin(ωτ + ϕ) − ω cos ϕ cos(ωτ + ϕ)

+ b̄γ
g′

g
cos ϕ

{
−cos ϕ

ω
+ cos(ωτ + ϕ)

ω

}
= 0. (A.2)

123



316 O. Diekmann et al.

Equations (A.1) and (A.2) read in matrix form:

A(ω)

[
cos(ωτ + ϕ)

sin(ωτ + ϕ)

]
= b(ω), (A.3)

where A(ω) = [ai j (ω)]i, j=1,2 and b(ω) = [b j (ω)] j=1,2 are given by

A(ω) =
(

c2 cos ϕ −ω cos ϕ + b̄γ g′
g

cos ϕ
ω

−ω cos ϕ + b̄γ g′
g

cos ϕ
ω −c2 cos ϕ

)

and

b(ω) =
(

−c1
γ
µ cos2 ϕ + c2 + b̄γ g′

g cos ϕ sin ϕ
ω

c1
γ
µ cos ϕ sin ϕ − ω + b̄γ g′

g
cos2 ϕ

ω

)

,

Note that a11(ω) = −a22(ω) and a12(ω) = a21(ω). If c2 = 0, then both A(ω) and
b(ω) are zero for ω2 = b̄γ g′/g if c1 = b̄g′/g and we conclude that in this case the
characteristic equation has a root iω. If

det[A(ω)] = −(a2
11 + a2

12) = − cos2 ϕ

{

c2
2 +

(
ω − b̄γ

g′

g
1
ω

)2
}

2= 0,

we find by solving (A.3)

cos(ωτ + ϕ) = a11(ω)b1(ω) + a12(ω)b2(ω)

a2
11(ω) + a2

12(ω)
,

sin(ωτ + ϕ) = a12(ω)b1(ω) − a11(ω)b2(ω)

a2
11(ω) + a2

12(ω)
.

Since cos2(ωτ + ϕ) + sin2(ωτ + ϕ) = 1, ai j (ω) and b j (ω) must satisfy

(b2
1(ω) + b2

2(ω)) − (a2
11(ω) + a2

12(ω)) = 0.

By using the relation

cos ϕ

µ
= sin ϕ

ω
,

b1(ω) is rewritten as

b1(ω) = γ

µ

(
b̄

g′

g
− c1

)
cos2 ϕ + c2.
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Since cos2 ϕ + sin2 ϕ = 1, b2(ω) is rewritten as follows.

b2(ω) = −γ

µ

(
b̄

g′

g
− c1

)
cos ϕ sin ϕ − ω + b̄γ

g′

g
1
ω

.

For convenience of computation, we introduce d1 and d2 by

d1 = γ

µ

(
b̄

g′

g
− c1

)
and d2 = −ω + b̄γ

g′

g
1
ω

.

Straightforward calculation yields that

(b2
1(ω) + b2

2(ω)) − (a2
11(ω) + a2

12(ω))

= (d1 cos2 ϕ + c2)
2 + (−d1 cos ϕ sin ϕ + d2)

2 − (c2 cos ϕ)2 − (d2 cos ϕ)2

= (d1 cos ϕ − d2 sin ϕ)2 + c2
2 sin2 ϕ + 2d1c2 cos2 ϕ

= 1
µ2 + ω2

{
(d1µ − d2ω)2 + c2

2ω
2 + 2d1c2µ

2
}

= 1
µ2 + ω2

{
(ω2 − γ c1)

2 + c2
2ω

2 + 2γµc2

(
b̄

g′

g
− c1

)}
.

Hence we obtain (5.27) as a necessary condition for the possibility that the character-
istic equation has a root iω.
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