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Abstract The class TFNP, defined by Megiddo and Papadimitriou, consists of multi-
valued functions with values that are polynomially verifiable and guaranteed to exist.
Do we have evidence that such functions are hard, for example, if TFNP is com-
putable in polynomial-time does this imply the polynomial-time hierarchy collapses?
By computing a multivalued function in deterministic polynomial-time we mean on
every input producing one of the possible values of the function on that input.

We give a relativized negative answer to this question by exhibiting an oracle under
which TFNP functions are easy to compute but the polynomial-time hierarchy is
infinite. We also show that relative to this same oracle, P �= UP and TFNPNP functions
are not computable in polynomial-time with an NP oracle.
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1 Introduction

Many problems studied in complexity theory are NP decision problems: for a poly-
nomial time computable binary relation R(x, y) and a polynomial p, given any string
x find out whether there is a string y of length at most p(|x|) such that R(x, y) holds.
Usually, we are interested not only in finding out whether there is such y but also
in finding such y in the case it exists. Problems of this kind are called NP search
problems.

If an algorithm solves an NP search problem then it certainly solves the corre-
sponding decision problem, but not the other way around. However, for every NP
search problem S it is easy to construct an NP decision problem D which S reduces
to, using a binary search. Thus every NP complete decision problem is equivalent to
the corresponding NP search problem. Under the assumption that for example double
exponential time does not equal Nondeterministic double exponential time it is easy
to show that there are search problems in NP that are harder than the corresponding
search problem [2].

The situation differs however if we are given the promise that for every x there is
such a y. The class of such search problems was defined by Megiddo and Papadi-
mitriou [10] and called TFNP, the abbreviation reads “Total Functions in NP”.
A (multi-valued) function from TFNP is specified by a polynomial time computable
binary relation R(x, y) and a polynomial p such that for every string x there is a
string y of length at most p(|x|) such that R(x, y) holds. It maps x to the set of y’s
of length at most p(|x|) such that R(x, y) holds, where in the sequel by a value of
the function on x we mean any of the y’s. To compute a TFNP function will mean to
solve the corresponding search problem: given a x find a y of length at most p(|x|)
such that R(x, y) holds. This class of problems includes Factoring, finding a Nash
Equilibrium, finding solutions of Sperner’s Lemma, finding solutions to Ramsey the-
orem, and finding collisions of hash functions.

Note that NP decision problems corresponding to TFNP search problems are al-
ways trivial. On the other hand, TFNP search problems might be hard, as the above
examples show.

Fenner, Fortnow, Naik and Rogers [3] consider the hypothesis, which they called
“Q”, that for every function in TFNP there is a polynomial-time procedure that will
output a value of that function. That is, Proposition Q states that for every R and
p defining a TFNP-function there is a polynomial time computable function f such
that R(x,f (x)) holds for all x.

If some of the above listed problems cannot be solved in polynomial time then
Proposition Q is false. As all those problems seem to be hard, it is plausible that
Proposition Q is false. In this paper we address the following questions: is there
any evidence that Proposition Q is false, and how does Proposition Q relate to other
similar hypotheses in Complexity Theory?

Fenner et al. showed that Proposition Q is equivalent to a number of different
hypotheses including:

• Given an NP machine M with L(M) = �∗, there is a polynomial-time computable
function f such that f (x) is an accepting computation of M(x).
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• Given an honest onto polynomial-time computable function g there is a poly-
nomial-time computable function f such that g(f (x)) = x. (A function g(x) is
called honest if there is a polynomial p(n) such that |x| ≤ p(|g(x)|) for all x.)

• For all polynomial-time computable subsets S of SAT there is a polynomial-time
computable function f such that for all φ in S, f (φ) is a satisfying assignment
to φ.

• For all NP machines M such that L(M) = SAT, there is a polynomial-time com-
putable function f such that for every φ in SAT and accepting path c of M(φ),
f (φ, c) is a satisfying assignment of φ.

Here are the known relations between Proposition Q and similar hypotheses.
(1) As TFNP is a sub-class of the class of all NP search problems, P = NP im-
plies Proposition Q. (2) Proposition Q implies that any pair of disjoint coNP-sets
is P-separable (which implies that NP ∩ coNP = P). A P-separator for two disjoint
sets A and B is a set S ∈ P such that A ⊆ S and B ⊆ S. Indeed, for a pair A,B of
disjoint coNP-sets, consider the following TFNP search problem: given an x find a
witness that x /∈ A or a witness that x /∈ B . Since A and B are disjoint there will be
a witness for every x. If Proposition Q holds for every x a witness can be found in
polynomial time. Define S as follows: x ∈ S if the witness found on input x indicates
that x /∈ B and x ∈ S otherwise. It is not hard to see that S is a polynomial time
separator for A and B .

Fenner et. al. ask whether we can draw any stronger complexity collapses from Q,
in particular whether Q implies that the polynomial-time hierarchy collapses. We
give a relativized negative answer to this question by exhibiting an oracle relative to
which Q holds and the polynomial-time hierarchy is infinite. In particular, there is no
relativizable proof that Proposition Q implies P = NP.

Proposition Q naturally generalizes to other levels of the polynomial hierarchy.
Namely, define the class TF�

p
k as follows. A TF�

p
k -function is specified by a binary

relation R(x, y) computable in polynomial time with an oracle from �
p

k−1 and a
polynomial p such that for every string x there is a string y of length at most p(|x|)
such that R(x, y) holds. For k ≥ 1 we will label �

p
k Q the statement.

Proposition �
p
k Q For every R and p defining a TF�

p
k -function there is a func-

tion f computable in polynomial time with an oracle from �
p

k−1 such that R(x,f (x))

holds for all x.

For k = 1 we obtain the class TFNP and Proposition Q.

Proposition �
p
k Q implies that P�

p
k−1 = �

p
k ∩ �

p
k and is implied by �

p

k−1 = �
p
k .

A natural question is whether, similar to the implication

�
p

k−1 = �
p
k =⇒ �

p
k = �

p

k+1,

Proposition �
p
k Q implies Proposition �

p

k+1Q. We give a relativized negative answer
to this question in the case k = 1: there is an oracle under which Proposition �

p

2 Q
does not hold and Proposition Q holds.

Our proof uses a new “Kolmogorov generic” oracle: we show that for any Kol-
mogorov generic G, relative to G ⊕ (PSPACE-complete set), Proposition Q holds,
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the polynomial hierarchy is infinite and Proposition �
p

2 Q does not hold. In addition
we show that P �= UP relative to that oracle. The following theorem summarizes our
results. It is a consequence of Theorems 2, 6, 3 and 5.

Theorem 1 Let H denote any PSPACE-complete set and G any Kolmogorov-generic
oracle. Let G⊕H stand for the join of G and H , that is, G⊕H = {0x | x ∈ G}∪{1x |
x ∈ H }.
1. Relative to G ⊕ H , Proposition Q is true.
2. Relative to G, as well as relative to G ⊕ H , Proposition �

p

2 Q is false.
3. Relative to G, as well as relative to G ⊕ H , for all k ≥ 0 we have �

p
k �= �

p

k+1.
4. Relative to G, as well as relative to G ⊕ H , P �= UP.

Note that other notions of genericity studied before, do not resolve the question.
Indeed, if Proposition Q is true and PH is infinite under an oracle then P �= NP and
P = NP ∩ coNP under that oracle. The oracles having the latter property were con-
structed in [1, 4, 7, 12]. It is not hard to see that PH is infinite if and only if Proposi-
tion Q is false for all oracles constructed in those papers.

2 Definitions and Preliminaries

Let � denote the alphabet {0,1}. The set of all finite-length binary strings is de-
noted �∗.

2.1 Complexity Classes

Our model of computation is the oracle Turing machine, both deterministic (DTM)
and nondeterministic (NTM). Unless otherwise noted, all machines in this paper
run in polynomial time. We assume that the reader is familiar with the complexity
classes P, NP, UP, PSPACE, �

p
k , and �

p
k for k ≥ 0 as defined in e.g., [13, 15].

The class �
p
k is defined as P�

p
k−1 , and PH = ⋃

k �
p
k stands for the polynomial hier-

archy. The class F�
p
k is defined as the class of all functions from �∗ to �∗ that are

computable in polynomial time with an oracle from �
p

k−1.
We say that disjoint sets B and C are P-separable if there is a set D ∈ P such that

B ⊆ D and C ⊆ �∗ − D.
Proposition Q and its generalizations �

p
k Q are defined in the Introduction. The

standard relationship between different definitions of NP [15, Theorem 7.17] gives
that �

p
k Q is equivalent to the following statement:

Statement For every nondeterministic polynomial-time Turing machine M with or-
acle from �

p

k−1 that accepts �∗, there is a function f in F�
p
k such that, for all x,

f (x) is an accepting computation of M(x).

It is easy to see the following:

Proposition 1 If �
p

k−1 = �
p
k then �

p
k Q is true. If �

p
k Q is true then �

p
k = �

p
k ∩ �

p
k .
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The first part of the proposition follows from our ability to binary search for a value
of a TF�

p
k -function using a �

p
k oracle which by the assumption falls into �

p

k−1, and
the second part follows from the fact that for any language L in �

p
k ∩ �

p
k we can

design a TF�
p
k -function that on input x outputs a string starting with one iff x ∈ L

and otherwise it outputs a string starting with zero. Proposition �
p
k Q implies that the

value of the function can be found in P�
p
k−1 .

2.2 Kolmogorov Complexity and Randomness

An excellent introduction to Kolmogorov complexity can be found in the textbook by
Li and Vitányi [9]. We will state here the definitions and results relevant to our work.
Roughly speaking, the Kolmogorov complexity of a binary string x is the minimal
length of a program that generates x; the conditional complexity C(x|y) of x condi-
tional to y is the minimal length of a program that produces x with y as input. We
provide a precise definition.

A conditional description method is a partial computable function � (that is, a
Turing machine) mapping pairs of binary strings to binary strings. A string p is called
a description of x conditional to y with respect to � if �(p,y) = x. The complexity
of x conditional to y with respect to � is defined as the minimal length of a descrip-
tion of x conditional to y with respect to �:

C�(x|y) = min{|p| | �(p,y) = x}.
A conditional description method � is called universal if for all other conditional
description methods � there is a constant k such that

C�(x|y) ≤ C�(x|y) + k

for all x, y. The Solomonoff–Kolmogorov theorem [8, 16] states that universal meth-
ods exist. We fix a universal � and define conditional Kolmogorov complexity C(x|y)

as C�(x|y). We call this � the reference universal Turing machine. The (uncondi-
tional) Kolmogorov complexity C(x) is defined as the Kolmogorov complexity of x

conditional to the empty string. Comparing the universal function � with the function
�(p,y) = �(p, empty string) we see that the conditional Kolmogorov complexity
does not exceed the unconditional one:

C(x|y) ≤ C(x) + O(1).

Comparing the universal function � with the function �(p,y) = p we see that the
Kolmogorov complexity does not exceed the length by no more than a constant:

C(x) ≤ |x| + k (1)

for some k and all x. For most strings this inequality is close to an equality: the
number of strings x of length n with

C(x) < n − m
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is less than 2n−m. Indeed, the total number of descriptions of length less than n − m

is equal to

1 + 2 + · · · + 2n−m−1 = 2n−m − 1.

In particular, for every n there is a string x of length n and complexity at least n. Such
strings are called incompressible, or random.

Let f (x, y) be a computable function mapping strings to strings. To describe the
string f (x, y) it is enough to concatenate x and y. Thus we obtain:

C(f (x, y)) ≤ 2|x| + |y| + k. (2)

where k depends on f and on the reference universal machine but not on x, y. We
have the extra factor of 2, as we need to separate x from y. To this end we write the
former in a self-delimiting form. As a self-delimiting encoding of a string u we take
the string ū obtained from u by doubling all its bits and appending the pattern 01.
For instance, 001 = 00001101. A similar inequality holds for computable functions
of more than 2 strings:

C(f (x1, x2, . . . , xn)) ≤ 2|x1| + 2|x2| + · · · + 2|xn−1| + |xn| + O(1). (3)

2.3 Kolmogorov-Generic Oracles

In order to create a relativized world where Proposition Q holds but the polynomial-
time hierarchy is infinite we develop a new type of oracle, which we call a Kol-
mogorov generic oracle.

We create a set of allowable strings Y of indexed mutually independent Kolmo-
gorov-random strings as follows:

For each n fix a binary string Zn of length n2n that is incompressible, that is,
C(Zn) ≥ |Zn|. Divide Zn into substrings z1, . . . , z2n , each of length n. Let Yn be
the set {〈i, zi〉|i ∈ {0,1}n}. (Here we identify i with the integer binary represented
by i. A pair 〈u,v〉 is encoded be the string ūv, where ū stands for the self-delimiting
encoding of u defined in Sect. 2.2.) Let U be the set of all subsets of Y = ⋃

Yn, where
the union is over all tower n, i.e., n can be expressed as a tower of twos.

A condition α : Y → {0,1,∗} indicates which strings we have forced in or out of
our generic oracle G where α(x) = 0 if we guarantee that x is not in G and α(x) = 1
if we guarantee that x is in G. In this paper, we only consider conditions that force a
finite number of strings of G, i.e., the set α−1({0,1}) is finite.

An interval Uα is a subset of U consistent with some condition α. If β is a con-
dition satisfying for each x ∈ Y , α(x) �= ∗ implies β(x) = α(x), then Uβ is a sub-
interval of Uα . Suppose we have a property P(A) on sets A. We say P(A) is dense
within U if for every interval Uα there is a sub-interval Uβ such that for each G ∈ Uβ ,
P(G) is true.

For example, let Pk(A) be the property that A has at least k strings. This is a dense
property by choosing k strings in α−1(∗) and setting β(x) = 1 for these strings.

Let α0 map every x in Y to ∗. Define αk so that Uαk
⊂ Uαk−1 and every G in Uαk

has property Pk , i.e., has at least k ones. Note that
⋂

k Uαk
is non-empty and any G

in that set must be infinite.
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The same argument holds for any countable collection of dense properties. In-
tuitively, by Kolmogorov-generic oracle we mean an oracle satisfying some dense
property. This is similar to the meaning of the term “random” oracle. Indeed, we
say that a property P holds for a random oracle if P is a measure 1 set. In order to
give the term Kolmogorov-generic oracle a fixed meaning within the paper we fix a
logical system 
 strong enough to define every property described in this paper and
we let P be the set of dense properties defined in 
. By the argument above, there
exists a set G such that P(G) holds for every P ∈ P . We call such G Kolmogorov-
generic.

When proving that a certain property holds for a Kolmogorov-generic oracle G we
use the fact that every two different lengths of strings in G are exponentially far apart.
When discussing a particular polynomial-time computation, we only have to worry
about strings at exactly one length in the oracle. Longer strings cannot be queried by
the computation and so cannot affect it. Shorter strings can all be queried and found
by the computation.

3 Results

Let H denote any PSPACE-complete set and G any Kolmogorov-generic oracle. Let
G ⊕ H stand for the join of G and H , that is, G ⊕ H = {0x | x ∈ G} ∪ {1x | x ∈ H }.

Theorem 2 Relative to G ⊕ H , Proposition Q is true.

We provide a sketch of the argument first. First, we relativize to a PSPACE-
complete set H so that we are able to answer queries in P H about PSPACEH . Al-
though later we relativize further to a Kolmogorov generic oracle G ∈ U , thus consid-
ering (P H )G = P G⊕H computation, we will only need to be able to answer queries
computable in PSPACEH .

So we want to show that relative to a Kolmogorov generic oracle G and simulta-
neously relative to H , Proposition Q holds. We look on each nondeterministic poly-
nomial time machine M independently. For a given interval of U if we can find a
sub-interval of U that makes M not to accept all the inputs then we pick this sub-
interval of U for our Kolmogorov generic oracle G; Proposition Q will be trivially
satisfied for M then. If that is not the case so we cannot dispose of M so easily we
will show how to find accepting paths of M efficiently for all the oracles in the given
interval of U . We have the power of PSPACE at our disposal so we could search for
accepting paths of M if M were not relativized to G or if it were relativized to a
simple enough G so that we could pass the description of the oracle or its relevant
part to our PSPACE search procedure. Since strings of different lengths in G are ex-
ponentially far apart the relevant part of G is quite restricted although, still possibly
large in size. However, iteratively we can find a small (polynomial size) portion of G

that is truly relevant for our search. We use the Kolmogorov properties of G for that.
Once we know the relevant part of G we find the accepting path of M in PSPACE.
The actual proof is next.



150 Theory Comput Syst (2010) 46: 143–156

Proof of Theorem 2 We first assume that P = PSPACE and prove that Proposition Q
is true under a Kolmogorov-generic oracle G ∈ U .

As explained in the section on generic oracles it suffices to show that for every
polynomial-time oracle NTM M and relative to a Kolmogorov-generic oracle,

If M accepts �∗ then there is a polynomial time machine

finding for each input an accepting computation of M . (4)

Fix M . Without loss of generality, M on an input x runs in time |x|k + k, for
some constant k independent of its oracle. Indeed, for each oracle nondeterministic
Turing machine M (not necessarily polynomial time) and natural k we can construct
an NTM that acts as M supplied with a clock that prevents it from running more than
in |x|k + k steps. If MA runs in polynomial time then for some k the machine MA

supplied with the clock |x|k + k is equivalent to MA.
We will show that the set of oracles satisfying (4) is dense. Let I = Uα be an

interval in U . We need to construct a sub-interval J of I such that (4) is true for all
G ∈ J . Consider two cases.

Case 1. There is a sub-interval of I such that for all A in that sub-interval, MA

does not accept �∗. Then let J be equal to that sub-interval of I .
Case 2. There is no such sub-interval. Consider the following polynomial-time

deterministic algorithm A that, given an input x of length at least two, finds an ac-
cepting path of the computation MG(x). Let n be the largest tower number smaller
or equal to 4|x|2k . The algorithm A will try to collect enough information about the
oracle G so that it can find an accepting path of MG(x). The algorithm A starts by
asking the value of G on all the strings in Yi for i ≤ logn. This can be done in time
polynomial in |x|.

After that it iteratively builds a set Q of strings from G ∩ Yn starting from an
empty set Q. Using the assumption that P = PSPACE and the information about G

collected so far, the algorithm finds the lexicographically first accepting path of MG

on x under the assumption that G ∩ {〈i, u〉|i, u ∈ {0,1}n} = Q. (Note, M on x cannot
query any string in Ym, for m > n so in PSPACE we can find such an accepting path
given x, Y≤logn and Q.) Such path does exist, as otherwise, the sub-interval J of I ,
consisting of all G′ with G′ ∩ {〈i, u〉|i, u ∈ {0,1}n} = Q and G′ ∩ Yi = G ∩ Yi for all
i ≤ logn would qualify for case (1).

If this path is indeed an accepting path of the computation MG(x), A is done. If
not then there is a string w ∈ (G∩{〈i, u〉|i, u ∈ {0,1}n})\Q that is queried along this
path. Clearly such w is from Yn. The algorithm picks the first such w, adds it to the
set Q and iterates the process. Clearly, A eventually finds a correct accepting path of
MG(x). We claim that A will find it within polynomially many iterations.

Observe, given M , x, G ∩ Y≤logn and the first i − 1 strings of Q, the ith string
added to Q can be described by k log |x| bits by its order number among the queries of
M on x on the accepting path found under the assumption that G∩Yn = {the first i−1
strings of Q}. The set G∩Y≤logn has at most n+ logn+ log logn+· · · strings, each
of length at most logn. Thus G ∩ Y≤logn can be described in at most O(n logn) bits.
Hence if Q reaches size �, we can describe Q by �k log |x|+O(n logn)+2|x|+O(1)

bits (by (3) and the fact that we need to specify the length of k log |x|-bit strings only
once).
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Recall that all of the strings in Yn are derived from Zn. Because of the way
Yn is defined any set A of � strings from Yn has Kolmogorov complexity at least
�n/2 − O(1).

Indeed, each element of Yn is a pair 〈i, y〉. Let p denote the concatenation of all y’s
from all pairs 〈i, y〉 outside A arranged according to the order on i’s. The length of
p is n(2n − �). The initial string Zn can be obtained from p by inserting the second
components of pairs from A, their first components specifying the places where to
insert. Thus given p and the shortest description q of A we can find Zn, and (2)
implies

n2n ≤ C(Zn) ≤ |p| + 2|q| + O(1) = n(2n − �) + 2C(A) + O(1).

Since 2+2k log |x| < n ≤ 4|x|2k , the Kolmogorov complexity of � strings from Yn

is at least �k log |x|+�−O(1). Thus Q cannot grow bigger than O(n logn)+2|x| =
O(|x|2k log |x|).

We can remove the hypothesis that P = PSPACE by first relativizing to an oracle
making P = PSPACE. It is known that relative to every PSPACE-complete set H we
have P = PSPACE. Thus, relative to H , Proposition Q holds relative to a generic
oracle in U . So we first relativize to H and then to G which is no different than
relativizing to G ⊕ H . �

The following theorem implies that relative to a Kolmogorov-generic oracle the
polynomial hierarchy is infinite.

Theorem 3 Relative to G, as well as relative to G ⊕ H , for all k ≥ 0 we have �
p
k �=

�
p

k+1.

To establish the theorem we use the technique of Sipser [14] together with the
result of Håstad [6] that there are functions computable by polynomial size depth-k
circuits consisting of unbounded fan-in AND and OR gates that are not computable
by depth-(k−1) circuits of polynomial size. Sipser observes that the output of a �

p,G

k−1
computation on a fixed input can be computed by an appropriate size depth-(k − 1)

circuit consisting of unbounded fan-in AND and OR gates that takes as its input the
characteristic sequence of G (or its beginning segment). The proof follows.

Proof of Theorem 3 Meyer and Stockmeyer [11] show that if �
p
k = �

p

k+1 then �
p
k =

�
p
j for all j ≥ k and the proof of this relativizes. So it is sufficient for us to show that

�
p

k−2 �= �
p

k+1 for all k ≥ 3 relative to a Kolmogorov generic oracle G.
We use the Sipser [14] functions. The function f m

k is represented by a depth k

alternating AND/OR circuit tree with an OR gate at the top with fan-in m, and all
fan-ins are m. Each variable occurs just once at each leaf.

Theorem 4 (Håstad [6]) Depth k − 1 circuits computing f m
k are of size at least

2�(m/ logm).
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Pick a tower n. Set mn = 2�n/k�. The number of variables of f
mn

k is mk
n ≤ 2n for

large n. For each of the variables of this formula assign a unique i ∈ {0,1}n so we
can in polynomial-time find i from the variable and vice-versa.

Now consider the language Lk(G) ⊆ {1}∗:

1n is in Lk(G) iff f
mn

k is true if we set the variables corresponding to i

to one when 〈i, zi〉 is in G and to zero otherwise.

We will show relative to a Kolmogorov generic oracle G, Lk(G) ∈ �
p,G

k+1 − �
p,G

k−2 .

First notice that Lk(G) ∈ �
p,G

k+1 for all G ∈ U : Consider an alternating Turing ma-
chine that uses k alternations to simulate the circuit. To determine whether a variable
corresponding to i is true the machine makes the NP query “is there a z such that
〈i, z〉 is in G.” This gives us a �

NP,G
k = �

p,G

k+1 machine accepting Lk(G).
Let M be an alternating �

p

k−2 oracle Turing machine that runs in time nj . Let
I = Uα be an interval in U . We need to construct a sub-interval J of I such that MG

does not accept L(G) for all G ∈ J . Along the lines of Sipser [14] we can convert
the computation to a circuit of depth k − 1 and size 2O(nj ) whose input variables
correspond to queries to G. This way we obtain a circuit whose variables are the same
as those in f

mn

k in the definition of Lk(G) on 1n. By Theorem 4 for sufficiently large n

this circuit cannot compute f
mn

k so there must be some setting of the variables where
the circuit and f

mn

k have different outputs. Add to the condition α the requirement
〈i, zi〉 ∈ G if variable i is assigned 1 in this setting and the requirement 〈i, zi〉 /∈ G

otherwise. For all G ∈ U satisfying the resulting condition, MG(1n) accepts iff 1n is
not in L(G).

The case of Kolmogorov-generic oracle is done. For the oracle G ⊕ H , the proof
is entirely similar: again, one uses precisely the same language Lk(G), and in the
circuit obtained from the computation of machine M one hardwires the queries not
of the form 〈i, zi〉 to one if they belong to H and to zero otherwise. �

Grollman and Selman [5] established a connection between the existence of worst-
case one-way functions and P �= UP, see also [13]. Using this connection we can
show that one-way functions exist relative to G.

Theorem 5 Relative to a Kolmogorov-generic oracle G, as well as relative to G⊕H ,
P �= UP.

Proof Define the relativized language LX as {〈i,0n〉 : (∃z)|z| = n & 〈i, z〉 ∈ X}. For a
string z of length n, there is at most one string of the form 〈i, z〉 in G so the language
is in UPG. A simple argument demonstrates that LG is not in PG. �

Can the proof that Proposition Q holds relative to a Kolmogorov-generic be lifted
to show that �

p
k Q holds and thus we get the collapse of �

p
k and �

p
k ∩ �

p
k ? The

answer is no for k = 2 and the proof of this shows that this is true for a broad class of
finite extension oracles.

To show that �
p

2 Q fails relative to a Kolmogorov-generic oracle G, let f G be a
function from �∗ to �∗ where for every x of length n

f G(x) = y1 . . . yn−1
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and

yj = 1 ⇐⇒ (∃u, z), |u| = n, |z| = 2n + �logn�, 〈xju, z〉 ∈ G.

No matter what strings are in G, the pigeonhole principle tells us that, for all n,
there will always be a collision, that is, two different strings x1 and x2 of length n

such that f G(x1) = f G(x2).
Let M be a �

p,G

2 machine that on any input of length n guesses two different
strings of length n in its existential step and then accepts iff those strings collide on
f G. It is clear from the definition of f G that M can find these collisions and that it
accepts �∗. A PNPG

machine that finds an accepting path of M could be modified to
output the two colliding strings found by M on that path so, without loss of generality,
we will assume it does just that. (Because of the inner working of M which we
designed by ourselves, the two colliding strings are directly determined by certain
well defined bits in the nondeterministic choices of M .)

Theorem 6 Relative to a Kolmogorov generic oracle G, as well as relative to G⊕H ,
no PNP machine can find an accepting path of the computation M(x) for every x.

Again in the proof we will look on each PNP machine independently and show
that relative to a Kolmogorov generic oracle G the machine fails to find an accepting
path of M , i.e., it fails to output a collision in f G. We will do it by imposing certain
conditions on G that will fix the computation of the PNP machine while still allowing
us to define f G on most of its domain in a suitable way. The conditions will be
imposed iteratively for each additional query of the PNP machine to its NP oracle.
Indeed our goal will be to fix the computation of the NP oracle machine on the queries
it receives. We will do it by imposing additional constraints on G in a way that does
not produce observable collisions in f G. Once the PNP machine outputs the pair of
strings forming a presumed collision we constrain G as not give a collision of f G on
that pair of strings.

Proof of Theorem 6 Let 〈R,N〉 be an arbitrary pair consisting of an oracle polyno-
mial time DTM R and an oracle polynomial time NTM N . We will show that the
set of all oracles G such that R with oracle NG does not find any collision of f G is
dense in U .

Without loss of generality we can assume that there are polynomial upper bounds
of the running time of R and N that do not depend on their oracles. Let pR and pN

stand for those polynomials, respectively.
Let Iα be an interval in U . We will show that for some n there is an interval Iβ ⊂ Iα

such that for all G ∈ Iβ , RNG
(0n) does not find two strings that collide on f G.

We pick a large enough n so that the rest of the argument would go through. In
particular, n should be such that 2n + �logn� is a tower number and it should be
bigger than the maximal length of strings in the domain of α. (We call the set of all y

such that α contains a condition y ∈ G or y /∈ G the domain of α and use the notation
domα for the domain of α.)

Note that the outcome of RNG
on input 0n depends only on membership in G

of strings of length at most pN(pR(n)). First we add to α the requirements y /∈ G
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for all strings y /∈ Y2n+�logn� ∪ domα of length at most pN(pR(n)) and denote by
β0 the resulting condition. The condition β is obtained from β0 in at most pR(n)

iterations. In ith iteration we define a condition βi obtained from βi−1 by adding
some requirements of the form y ∈ G and y /∈ G for y ∈ Y2n+�logn�.

Let us explain this in more detail. For x ∈ �n and j = 1, . . . , n − 1 let

Bxj = {〈xju, zxju〉 | u ∈ �n}.

We call the set Bx = ⋃n−1
j=1 Bxj the bag corresponding to x. The value f G(x) depends

only on Bx ∩ G. More specifically, j th bit of f G(x) is 0 if the set Bxj ∩ G is empty.
In each iteration we choose a set D ⊂ �n of cardinality at most pN(pR(n)) and

set oracle’s value on the set
⋃

x∈D Bx . This means that for every y in this set we
include in βi either the condition y /∈ G, or the condition y ∈ G. The notation Di will
refer to the set of all strings x such that oracle’s value is set on Bx during iterations
s = 1, . . . , i. We will keep the following statement invariant:

f G is injective on Di for all G ∈ Iβi
.

Additionally, in the ith iteration we choose the desired answer ai of NG to the ith
query to NG in the run of R on input 0n.

In ith iteration we run R on input 0n assuming the answers a1, . . . , ai−1 to oracle
queries until R makes ith query qi to the oracle or outputs a result. If the first option
happens, we choose the desired answer of NG on qi as follows.

Assume that G ∈ Iβi−1 and C is an accepting computation of NG on input qi . We
say that 〈G,C〉 is a good pair if the following holds. Let D be the set of all x ∈ �n

such that computation C queries a string in the bag of x. The pair 〈G,C〉 is good if
f G is injective on the set D ∪ Di−1.

Assume first that there is a good pair 〈G,C〉. In this case we pick a good pair
〈G̃, C̃〉, define D as explained above and choose YES as the desired answer to ith
query. The condition βi is obtained from βi−1 by adding the requirements y ∈ G for
all y ∈ ⋃

x∈D Bx ∩ G̃ and the requirements y /∈ G for all y ∈ ⋃
x∈D Bx \ G̃. Note that

NG(qi) = 1 for all G ∈ Iβi
.

If there is no good pair 〈G,C〉 then we choose NO as the desired answer to ith
query and set βi = βi−1, Di = Di−1.

On some iteration k ≤ pR(n), R makes no new queries and outputs two strings
x1 and x2, where f G presumably collides. At this point we set oracle’s value on
all remaining strings in Y2n+�logn� as follows. Pick any oracle G̃ ∈ Iβk−1 such that

f G̃ is injective on the set Dk = Dk−1 ∪ {x1, x2} and such that for all x ∈ �n \ Dk ,
f G̃(x) = 0 0 . . .0. As n is large enough there is such G̃. Indeed, the length of qi is at
most pR(n) and thus every computation of NG̃ on input qi runs in time pN(pR(n)).
Hence |Dk| is bounded by the polynomial pR(n)pN(pR(n)) + 2. If 2n−1 is bigger
than this bound then there are enough strings in the range of f to avoid collision
in Dk .

We let β be the condition containing the requirements y ∈ G for all y ∈ G̃ of
length at most pN(pR(n)) and the requirements y /∈ G for all y /∈ G̃ of length at most
pN(pR(n)).
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We claim that for all G ∈ Iβ , RNG
on 0n computes the way how we determined.

Indeed, if R computes differently for some G ∈ Iβ then there must be a query an-
swered in the opposite way than we desire. Let qi be the first such query. Note
that qi coincides with the ith query in our construction, as all the previous queries
are answered by NG as we desire. If we have chosen YES as the desired answer
to ith query then by construction NG(qi) = 1 and thus the desired answer is cor-
rect. Therefore this may happen only if we have chosen NO as the ith answer and
NG(qi) = 1.

By way of contradiction, assume that this is the case. Pick then an accepting com-
putation C of NG on qi . We will show that there is G′ ∈ Iβi−1 such that 〈G′,C〉 is a
good pair. Let D be the set of all x ∈ �n such that computation C queries a string in
the bag of x. Note that by construction f G is injective on Dk . (However, f G may be
not injective on Di−1 ∪ D thus 〈G,C〉 may be not a good pair.)

We will add to G some strings from
⋃

x∈D\Dk
Bx so that for the resulting oracle

G′ the pair 〈G′,C〉 is good. We may assume that 2n, the cardinality of every set Bxj ,
is greater than the number of queries along C. For every x ∈ D \ Dk and every j we
can change j th bit of f G(x) to 1 by adding to G a non-queried string from Bxj . All
of the 2n−1 values in the range of f can be obtained in this way as we did not set any
string in Bx for any x ∈ D \ Dk . Thus we can change f G(x) for all x ∈ D \ Dk one
by one so that for the resulting oracle G′, C is an accepting computation and f G′

(x)

is injective on D ∪ Dk and hence on D ∪ Di−1.
The case of Kolmogorov-generic oracle is done. For the oracle G ⊕ H , the proof

is entirely similar: again one uses the same function f G. As the oracle H is fixed the
same reasoning as above gives conditions on G that ascertain that no PNP machine
can find collisions in f G even if it has access to H in addition to G. �

4 Conclusion and Open Problems

Is there an oracle relative to which the polynomial-time hierarchy is proper and �
p
k Q

is true for all k? As a corollary we would get a relativized world where the hierarchy
is proper and �

p
k = �

p
k ∩ �

p
k . The second statement remains open even relative to

Kolmogorov generics and, if true, would give a relativized version of the polynomial-
time hierarchy that acts like the arithmetic hierarchy.
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