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Abstract An economic environment is a feedback system, where the dynamics of aggregate
variables depend on individual expectations and vice versa. The type of feedback mechanism
is crucial for the aggregate outcome. Experiments with human subjects (Heemeijer, Hommes,
Sonnemans, and Tuinstra, 2009) have shown that price converges to the fundamental level in
a negative feedback environment but fails to do so under positive feedback. We present an ex-
planation of these experimental results by means of a model of evolutionary switching between
heuristics. Active heuristics are chosen endogenously, on the basis of their past performance.
Under negative feedback an adaptive heuristic dominates explaining fast price convergence,
whereas under positive feedback a trend-following heuristic dominates resulting in persistent
price deviations and oscillations.
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1 Introduction

Expectations play a major role in both financial and commodity markets affecting individual
decisions and having a large impact on aggregate variables, such as prices. Sometimes the
influence of expectations seems larger than that of other, more tangible fundamental factors.
Recent literature on Heterogeneous Agent Models shows that when non-fundamental expecta-
tions are widespread among market participants they can result in price bubbles, see, e.g., the
review in Hommes (2006). Dynamics of heterogeneous, non-fundamental expectations might
explain different “stylized facts” of financial markets, above all excess volatility of asset prices
(Shiller, 1981). For this reason it is important to investigate how individuals form expectations
about market variables and what is their aggregate effect. The expectations of the participants
in real markets are not easily observable and are also affected by different uncontrolled fac-
tors. This makes experiments in a controlled environment particularly attractive for studying
expectations (Duffy, 2006). The number of experiments on expectations is growing, see, e.g.,
Hey (1994), Hommes, Sonnemans, Tuinstra, and van de Velden (2005, 2007, 2008), Adam
(2007) and Fehr and Tyran (2008), see Hommes (2011) for a recent survey. By and large these
experiments reject the dominating in economic theory Rational Expectations hypothesis. The
development of an alternative theory of expectation formation thus becomes an important
task.

In this paper we contribute to this task by fitting the Heuristics Switching Model (HSM),
introduced in Anufriev and Hommes (2009, 2012), to a recent experiment on expectation
formation presented in Heemeijer, Hommes, Sonnemans, and Tuinstra (2009) (HHST, hence-
forth). This experiment is one of several “learning to forecast” experiments that have been
performed in the CREED laboratory of the University of Amsterdam (UvA). Participants
of these experiments have a single task to predict next period’s realization of an aggregate
variable (price), which depends on the average of all individual predictions. The details of
the pricing equation may change in these experiments, see the examples in Hommes, Sonne-
mans, Tuinstra, and van de Velden (2005), Hommes, Sonnemans, Tuinstra, and van de Velden
(2007), Hommes, Sonnemans, Tuinstra, and van de Velden (2008) and Sonnemans and Tu-
instra (2010). These early experiments have already pointed out that the type of feedback
between expectations and realization is important. In the “hog cycle” model of a market for
an agricultural good with a production lag, when the expectations about next period’s price
are high, producers produce a large amount of the good and the realized price is low. This is
an example of a negative feedback system. The opposite situation holds in positive feedback
systems. For example, if expectations about the future price of a speculative asset are high,
the demand for the asset will increase and the realized price will be also high. Experiments
in Heemeijer, Hommes, Sonnemans, and Tuinstra (2009) focus on the role of the feedback
type. In a perfectly symmetric setting, where the only difference between two treatments is
the sign of the average forecast in the pricing equation, two different qualitative patterns have
been observed. In the negative feedback treatments, where higher expectations lead to lower
price, the realized market price converges to the fundamental level very quickly and remains
there for the rest of the experiment. In contrast, in a positive feedback market, where higher
expectations lead to higher price realizations, the price exhibits fluctuations and long lasting
deviations from the fundamental level. The purpose of this paper is to demonstrate that a
single model of individual expectations can explain these different aggregate outcomes.

Estimation of individual forecasts in HHST reveals that participants of the experiment
tended to use simple behavioral rules in their forecasting activity. These rules strongly de-
pended on the feedback type. This paper takes these results as a starting point to fit the data
with a heuristic switching model (HSM) which also explains why different rules are chosen
under different feedback. This HSM proposed in Anufriev and Hommes (2012) extends the
adaptive belief framework of Brock and Hommes (1997). In the HSM agents’ expectations
are governed by several behavioral heuristics, e.g., adaptive or trend-following rules. Agents
switch between heuristics learning to use those heuristics which performed better in the past.
The impact of different heuristics on the aggregate price is, therefore, changing over time,
explaining different aggregate outcome observed in the experiment. For the negative feedback
experiment we find that in the initial periods the adaptive heuristic performs much better than
the others. As this heuristic attracts enough participants, the price dynamics exhibit conver-
gence to the fundamental level with small oscillations around it due to small noise. Along this
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converging time path the adaptive heuristic performs slightly better than the others, support-
ing this outcome in the long run. In the positive feedback environment the performance of
the trend-following heuristic is better. When this heuristic is used by a majority of partici-
pants, the price deviates from the fundamental value leading to persistent price trends, and
confirming the dominating trend-following heuristic.

The rest of the paper is organized as follows. In Section 2 we set out the background on
which this work rests, discuss bounded rationality and recall the HHST experiment. Section
3 presents models with a single heuristic and HSM with several heuristics replicating the
experimental data. In Section 4 we compare the performances of different models, optimize
the best performing model and discuss the robustness of the model simulations. Finally, Section
5 presents the conclusions drawn from our research.

2 Agents’ Rationality and Market Feedback

One of the main theoretical and methodological foundations of this paper is the concept of
bounded rationality initially proposed by Herbert Simon, see, e.g., Simon (1957). According
to Sargent (1993) bounded rationality provides an alternative to the stringent restrictions en-
forced by the concept of rational expectations (RE). Full rationality imposes two requirements
on economic models. The first is that individuals act rationally, maximizing some objective
function subject to perceived constraints. The second requirement is that there is consistency of
perceptions about these constraints among different individuals, which is guaranteed by REs.
REs require agents to have profound knowledge about their surroundings, such as knowledge
of the precise equations of the environment and expectations of other agents. This suggests
that REs only have limited and mostly theoretical appeal. We may expect from the outset
that RE models will perform poorly descriptively, because the assumptions required by the
concept are unlikely to be satisfied in most economic environments.

In contrast, bounded rationality does not assume that economic agents behave as all-
foreseeing beings who know the complicated structure of the whole economy. Instead it creates
a system in which agents try to maximize their outcome by altering their forecasts to eliminate
systematic forecast errors. For instance, the adaptive learning approach advocated by Sargent
(1993) and extensively used in macroeconomics (e.g., Evans and Honkapohja, 2001) assumes
that agents form expectations by means of some underlying economic model whose parameters
are unknown. Agents behave like econometricians and estimate these parameters. By explicitly
modeling a learning process, models of bounded rationality can be used to describe non-
equilibrium dynamics and, hence, are more useful in explaining experimental data. At the
same time, experiments can be used to discriminate between plausible learning models. By
abstracting from irrelevant details of individual learning processes, a good model should, in
particular, explain why aggregate variables, such as price, converge to the RE trajectory in
some laboratory experiments, but fail to do so in others. Recent empirical evidence suggests
that the type of the environment’s feedback can be crucial for the outcome.

2.1 Feedback Mechanisms

In economic, biological and physical systems the type of feedback between output and inputs
is important. A positive feedback system reinforces a change in input by responding to a
perturbation in the same direction. In contrast, a negative feedback system reverses a change
in input and responds to a perturbation in the opposite direction. Davidovits (2008) points
out that the negative feedback inherent to most biological systems allows the system to keep
its response to disturbances at a relatively constant level. Examples include the mechanism
regulating body temperature by sweating or shivering and mechanism regulating the level of
blood glucose whose failure would result in diabetes. Thus, a negative feedback stabilizes the
system, as it forces it to return to an equilibrium state after a disequilibrium shock. This
principle can be illustrated by a classical example of negative feedback in a physical system,
the centrifugal governor. In Selfish Gene Dawkins (1976) explains

The Watt governor consists of a pair of balls which are whirled round by a steam
engine. Each ball is on the end of a hinged arm. The faster the balls fly round, the
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more does centrifugal force push the arms towards a horizontal position, this tendency
being resisted by gravity. The arms are connected to the steam valve feeding the engine,
in such a way that the steam tends to be shut off when the arms approach the horizontal
position. So, if the engine goes too fast, some of its steam will be shut off, and it will
tend to slow down. If it slows down too much, more steam will automatically be fed to
it by the valve, and it will speed up again.

On the other hand, in physics and economics many systems have positive feedback which may
trigger and reinforce instability. The chain of nuclear fission reactions is caused by a single
neutron bombarding a nucleus of Uranium 235. As a result of collision, the Uranium 235
nucleus splits into smaller parts, liberates energy and emits new neutrons. These neutrons hit
other Uranium 235 nuclei and so on.

In economic markets in general both types of feedback will play a role. On the whole
however, negative feedback is usually associated with supply driven commodity markets and
positive feedback with demand driven speculative asset markets. In commodity markets, if
producers expect an increase in future prices of a certain commodity, they will start producing
more of it. According to the law of supply and demand this will then lead to a decrease in
price. In a speculative asset market, if all traders expect a stock’s value to increase they will
start buying the stock. This creates a self-fulfilling prophecy by causing the stock to increase
in value. Some economists argue that financial markets can easily lead to a state of speculative
bubbles, along which the growth of the asset prices is mainly driven by investors’ optimistic
expectations, “animal spirit”, rather than by some fundamental factors of economy, see, e.g.,
Akerlof and Shiller (2009) and Kirman (2011).

The distinction between positive expectations feedback and negative expectations feedback
is related to the idea of strategic complements and substitutes (Haltiwanger and Waldman,
1989). If the majority of agents predict a higher price level in the market with positive feedback,
every other agent is better off adjusting his/her own prediction upwards as well. Thus every
agent has an incentive to behave similarly to others. Such behavior is typical for an environment
with strategic substitutability. On the other hand, in a market with negative feedback, every
agent has an incentive to considerably deviate from the majority, decreasing his/her prediction
in response to an increase of the prediction from the majority. This is a characteristic of
environment with strategic complementarity.

2.2 Experimental Evidence

A number of experiments focusing on the type of feedback have recently been performed,
see, e.g., Fehr and Tyran (2008) and Sutan and Willinger (2009). This paper builds upon
the learning to forecast experiment of Heemeijer, Hommes, Sonnemans, and Tuinstra (2009),
HHST, henceforth.! The experiment is designed in such a way that the only difference between
two treatments is whether the feedback is positive or negative. In both treatments the price
formation process is of the form

pe=1f (}f) )
where p¢ is the average price forecast of all the participants. The functional form of f is linear

but its slope depends on the type of market. In the negative feedback market the (unknown)
price generating law of motion is given by

0 ,—
p§ —60) + &, (1)

—60—1<
Pt = 21

while in the positive feedback market the law of motion is given by

20
pt:60+ﬁ(pte—60)+€t, (2)

where e, ~ N(0,1/4) is a random sequence, the same in all experimental sessions. For both

price-generating processes the rational expectations equilibrium, which require p§ = p;, lead
to the same RE outcome, p; = 60 + ;. Thus under both negative and positive feedback the

1 The data of all the learning to forecast experiments, including the experiments we discuss in this paper,
are freely available at the personal web page of Cars Hommes, http://wwwl.fee.uva.nl/cendef.
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same equilibrium strategy prevails, when all participants predict 60. Further, both processes
have the same absolute slope coeflicient of 20/21 with respect to the average forecast. The
only difference between the two processes is the sign of the slope coefficient.?

Thirteen experimental sessions have been performed in the CREED laboratory at the
University of Amsterdam, six in the negative feedback treatment with the price given by (1),
and seven in the positive feedback treatment with the price given by (2). In each session 6
participants had to predict the price during 50 periods (with ¢t = 0,...,49). Let pf, denote the
forecast for the price p; submitted by participant ¢ at the beginning of period ¢. The average
price forecast in (1) and (2) is computed as

6
— 1 .
Pi=5 D pie- (3)
i=1

Participants were paid according to accumulated rewards, with the reward per period com-

puted (in euros) as
1 —ps,\2
€t = 5 max (1 - (%) ,0) . 4)

Therefore, the accuracy of their prediction was the only concern of participants. Participants
were not informed explicitly about the price generating process. Before the experiment, they
were given qualitative information on how the market functions. They knew that the price
depends on the aggregate price prediction of a number of players and they knew the type
of feedback, positive or negative. They did not know the identity and the number of other
participants. Moreover, participants had no information about forecasts of others. In each
period, after the individual predictions were submitted, the aggregate price has been computed
from market clearing and shown to the participants, graphically and in table form, together
with their own last and previous forecasts and rewards.

Ezperimental Outcome: Aggregate Price Dynamics

Fig. 1 shows the market price observed in the positive and negative feedback experimental
markets. The price in the negative feedback treatments fluctuates heavily in the first 5 periods
and then quickly converges towards the value 60 to which we refer as “the equilibrium price”.
The price in the positive feedback treatments does not converge to the equilibrium value and
in several groups exhibits slow oscillatory movement with relatively high amplitude.?

Another interesting characteristic of the experimental outcomes is that the price develop-
ment seems to depend on the price in the first period. In the experiment this initial price pg is a
result of more or less random guesses made by the participants. Indeed, at time 0 participants
do not have any knowledge of past prices. They are only given the range [0, 100] where the
initial forecast has to lie. Apparently, the initial price realization had a big influence on the
rest of the dynamics. In the negative feedback market shown in Fig. 1(a), prices fluctuated
more strongly in the beginning, when the initial price significantly differed from the equilib-
rium level. In the positive feedback market a more striking difference could be observed, see
Fig. 1(b). In all three groups where the standard deviation in the last 30 periods was less than
1, the initial price was in the range of 20 from the equilibrium level. On the other hand, in
both groups where the initial price differed from the equilibrium level by a value larger than
20, strong oscillations were observed during the experiment.

Ezperimental Outcome: Individual Predictions

HHST investigated the prediction behavior of individuals by estimating parameters ¢, 0; and
s; of a linear heuristic

3 3
piy=c+ E opr—1 + E SIDS 41 s
=1 =1

2 Bao, Hommes, Sonnemans, and Tuinstra (2010) ran similar learning to forecast experiment with a time
varying fundamental price subject to large unanticipated shocks.

3 Ignoring the first 5 periods, the standard deviation of the price in 6 groups with negative feedback were
0.63, 0.93, 2.97, 0.57, 1.55 and 0.84. In all these cases the interval of oscillations contained the price 60. Ignoring
the first 20 periods, the standard deviation of the price in 7 groups with positive feedback was 3.35, 0.89, 0.82,
7.01, 2.63, 5.96 and 0.80. In all three groups where the standard deviation was less than 1, the equilibrium
price 60 did not belong to the interval of oscillations.
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(a) 6 groups with negative feedback. (b) 7 groups with positive feedback.

Fig. 1 Price dynamics in the HHST experiment. (a) The price quickly converges to the equilibrium level 60
under negative feedback in all 6 experimental groups. (b) The price never converges to the equilibrium level 60
under positive feedback and exhibits strong oscillations over 50 periods of the experiment in 4 of the 7 groups.

where p; is the price at time ¢ and pf, is the expectations of individual i for the price p;.
They found that such a simple, linear rule can be fitted to 71 out of 78 participants (without
autocorrelations in the residuals). Furthermore, the forecasts given by 40 of the 78 participants
can be described by an even simpler heuristic in the form of

Pit=1pi-1+ 04217?,15—1 + (1 — o1 — @2)60 +y(pt—1 — pt—2) - (5)

This first-order heuristic depends only on the last observed price, the last own forecast and
the last price change. A key difference between the two treatments has been found in the
estimation of the trend parameter, . In the sessions with negative feedback, v was usually
non-significant, while in the sessions with positive feedback, v was, in most cases, significantly
positive.* The use of simple forecasting rule is consistent with the finding of the behavioral
literature that agents often replace optimizing rules with relatively simple rules of thumb, see,
e.g., Conlisk (1996).

2.3 Evolutionary Model of Heuristics

Which model of expectations would fit the results of the HHST experiment? As discussed
above, the RE model implies that individuals immediately predict the equilibrium price 60.
The results of the experiment show strong and persistent deviations from the equilibrium
especially in the positive feedback treatment. This suggests that the more flexible concept
of bounded rationality can be more relevant. Marcet and Sargent (1989) introduced adaptive
learning models, where agents behave as econometricians, applying some linear model for price
prediction and re-estimating the coefficients of the model as more and more data are available.
The models of adaptive learning generate convergence, although with different speed, to the
equilibrium price for both feedback dynamics, (1) and (2), considered in the HHST experiment
(Evans and Honkapohja, 2001). This outcome, however, is at odds with the experimental
evidence. In fact, it is not very surprising that RE or adaptive learning dynamics do not
fit experiments well. Both approaches require a relatively high amount of knowledge from
the participants about the environment where they operate: under REs agents have a full
knowledge of the equations governing the system, while under adaptive learning agents know
the functional form of these equations.

The “learning to forecast” experiments are made in such a way that participants have
limited knowledge about the environment. Every time period of the experiment can be though
of as a one-shot game in which every participant has many strategies (every positive number
up to two decimals), and the payoffs are given by (4). In this interpretation of the experiment,

4 The value of v was significantly different from 0 in 3 out of 19 first-order heuristics (5) estimated for
the participants in the negative feedback experiments and in 15 out of 21 first-order heuristics estimated for
the participants in the positive feedback experiments. In the former case values of v were estimated as —0.44,
—0.38 and 0.06. In the latter case values of v in the range from 0.28 to 0.97 were observed.
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participants are not explained that they are playing a game against each other and do not know
the exact payoff structure, since the equation for realized price is outside of their information
set. Such an experimental setting is attractive, because it corresponds to many real world
situations in which individuals make decisions without detailed information and understanding
of the underlying (complex) environmental structure. The behavior of agents in such situation
is nicely described by Mailath (1998), p. 1349-1350:

The typical agent is not like Gary Kasparov, the world champion chess player who
knows the rules of chess, but also knows that he doesn’t know the winning strategy. In
most situations, people do not know they are playing a game. Rather, people have some
(perhaps imprecise) notion of the environment they are in, their possible opponents, the
actions they and their opponents have available, and the possible payoff implications
of different actions. These people use heuristics and rules of thumb (generated from
experience) to guide behavior; sometimes these heuristics work well and sometimes they
don’t. These heuristics can generate behavior that is inconsistent with straightforward
maximization.

To explain the experimental results we use the model of Anufriev and Hommes (2012)
where predictions are made by simple behavioral rules, heuristics, as suggested by the above
quote. To explain the behavior of agents in both positive and negative feedback experiments,
the forecasting heuristics are combined in a so-called switching model, which is an extension
of Brock and Hommes (1997). More than one forecasting heuristic is tried by agents and when
a heuristic performs well it attracts more followers. Thus, the relative weights attached to
different heuristics are time-varying.

3 Model and Simulations

In this section we, first, present two different forecasting heuristics and study the dynamics of
the corresponding models with homogeneous expectations. Then, we combine the heuristics
in the switching model.

We evaluate the explanatory power of different models in two ways. In this section we apply
a first test. We compare a 50—periods ahead model simulation (so-called simulated path) with
the experimental outcomes. The price dynamics, generated by a model, must have some of the
characteristics of the price developments observed in the experiments. In the negative feedback
market the price must fluctuate heavily in the first few periods and then converge quickly to
the equilibrium value, see Fig. 1(a). In the positive feedback market the price must oscillate
slowly and either gradually converge towards the constant level or not converge at all, see
Fig. 1(b). After identifying a model that satisfies these requirements for the simulated path of
50 periods, we apply a second test in Section 4. There the model performance in one-period-
ahead forecasting is investigated numerically, the models are optimized over parameters and
tested for robustness.

3.1 First-order heuristics

Before defining the switching model a small number of forecasting heuristics has to be chosen.
A prediction heuristic must fulfill a certain number of conditions to be relevant. It should
be informationally accessible to the experiment’s participants, and it should be simple and
intuitive for them to use. We define the following two heuristics. The first heuristic is an
adaptive heuristic given by

Piyr = wpe + (1 — w)pi, (6)
where an agent’s expectation of the price in the next period, pf, ;, depends on the price of today
and agents’ expectation about the price of today, with weights w and (1 — w), respectively.

The second prediction heuristic is a trend heuristic of the form

pf+1 =pt + (Pt — Pi-1), (7)

where the expectation for the price in the next period depends on the last price plus «y times
the last price change. This heuristic is interpreted as people expecting a constant trend in
price developments.
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(b) Expectations are formed by trend heuristic (7) with two different weights.

Fig. 2 50 periods ahead forecast obtained by the models with homogeneous expectations in the negative (left
panels) and positive (right panels) feedback environments.

3.2 Dynamics generated by single heuristics

What kind of aggregate behavior does each of these heuristics imply for the negative and posi-
tive feedback environments? Fig. 2 shows the deterministic simulated paths with the adaptive
and trend heuristics, i.e., 50-periods ahead simulations by the model with homogeneous ex-
pectations. The first forecasts generated by the heuristics are set to 50 in this simulation.

The adaptive heuristic (6) with w = 0.75 generates oscillatory converging price dynamics in
the negative and monotonically converging price dynamics in the positive feedback markets, see
Fig. 2(a). This outcome is similar to the dynamics observed in the negative feedback sessions,
but is very different from the oscillations observed in the positive feedback sessions. Notice
that a decrease of the weight w in (6) leads to less oscillating and, eventually, to monotonic
convergence under negative feedback and very slow convergence under positive feedback, as
illustrated by example with w = 0.25.

Straightforward stability analysis reveals that the trend heuristic (7) produces converging
prices in the negative feedback market when —21/20 < v < 1/40, and converging prices
in the positive feedback market when —41/40 < v < 21/20. For ~ outside of the interval,
the price dynamics under corresponding feedback diverge. Interestingly, all the values of ~
estimated in the positive feedback sessions of the HHST experiment fall within the interval
of convergence under positive feedback. But the dynamics with these v’s would diverge under
negative feedback. The dynamics of the model where expectations are generated by the trend
heuristic are illustrated in Fig. 2(b). For v = 1 the dynamics under negative feedback (left
panel) does not converge to the equilibrium but remain bounded because the forecasts in the
simulations are limited to the interval [0,100]. When ~ is changing to 0.5 the initial oscillations
are less wild but eventually converge to the same 2-cycle. The right panel of Fig. 2(b) shows
that for v = 1 the price oscillates on the positive feedback market, resembling the experimental
outcome. When v decreases the oscillations are less pronounced and convergence eventually
become monotonic, as shown for v = 0.5.
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3.3 Heuristic Switching Model

In the model of heterogeneous expectations, different heuristics can be used. Consequently,
the average price expectations in (1) and (2) is given by

H
ZT? = Z nh,tpz,t ; (8)
h=1

where H is the number of heuristics and ny + is the impact of heuristic h at time ¢, which
depends on the past performance of the heuristic.

The performance of the heuristics is measured by squared forecasting errors, consistently
with incentives given to the participants in the experiment. The performance of heuristic h at
time ¢ is given by

Unt = —(pt — 50)* + nUnt-1 5 9)

where p; is the realized price obtained by applying (1) or (2), respectively. The parameter
0 <7 <1 represents the weight that agents attribute to past forecasting errors. The impact of
heuristic h changes according to a discrete choice model with asynchronous updating (Hommes,
Huang, and Wang, 2005; Diks and van der Weide, 2005)

eXP(BUh,t)

Nht41 = 0Nyt + (1 —6) 7 )
t

(10)

where Z; = Zf:l exp(BUn,:) is a normalization factor.

Two parameters are important in (10). The parameter ¢ is inversely related to the frequency
with which every agent updates “active” forecasting heuristic. Positive values of & capture
the tendency of people to stick to their previously chosen rule despite the evidence that an
alternative rule performs better. Such inertia is widely reported in experiments (Kahneman,
2003). In a large population, ¢ is also the average percentage of agents who do not update
their heuristic in every period. The parameter § > 0 determines how strongly those agents
who update their heuristic react to a difference in performance between heuristics. If 5 = 0
agents will not consider the differences in the performance of the heuristics at all; all heuristics
will be given equal impacts. If, on the contrary, the value of g is very large, agents who update
their forecasting heuristic will all switch to the best performing heuristic.

In order to simulate the model, one should

— choose H different forecasting heuristics;

— fix three learning parameters, 3, n and §;

— initialize prices in order for the heuristics to yield the initial forecasts;

— initialize the impacts for all heuristics so that the initial forecasts are combined to determine
the average price forecast.

Given these initializations, the model works as follows. For every time ¢, first, the forecasts
P}, + of H heuristics are computed on the basis of past prices. Second, they are combined using
(8) to provide the average price forecast. Third, the price predicted by the model at time ¢ is
computed using (1) for the negative feedback market or (2) for the positive feedback market.
This price is denoted simply as p;. Fourth, the performance of every heuristic U}, ; is calculated
using (9) on the basis of the realized price p;. Finally, the relative impacts of heuristic for the
next period are computed using (10). The same steps are then repeated for time ¢+ 1, and so
on.

3.4 Dynamics of the Heuristics Switching Model

Let us apply the heuristic switching model (HSM) given by (9) and (10) to the experimental
results of HHST. The parameters of the heuristics are chosen as w = 0.75 for the adaptive
heuristic (6), and v = 1 for the trend heuristic (7). Recall that the heuristics with these
parameters describe the two markets relatively well: the negative feedback market is well
described by the adaptive heuristic, while the positive feedback market is well described by
the trend heuristic. After some trial and error simulations, we set the parameters of the HSM
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Fig. 3 Heuristic switching model with H = 2 heuristics, adaptive and trend. The parameters are w = 0.75,
vy=1,8=1.5,6 =0.1 and n = 0.1. Left: Simulated path of price without noise (lines) and with experimental
noise (circles). Right: Evolution of the heuristics’ impacts.

to 8 =1.5, 6 =0.1 and n = 0.1. We also choose equal initial impacts of both heuristics and
po = 50 as the initial price.

Figs. 3(a) and 3(b) show the outcome of the model’s simulations in, respectively, the
negative and positive feedback environments. In the left panels the two types of dynamics
of the simulated path are shown. The lines show the simulation without noise in the laws
of motion (1) and (2), while the circles correspond to the simulation with the same noise
realization e; as in the experiments. The right panels show the evolution of the heuristics’
impacts for the simulated path without noise. We observe striking difference in the dynamics
between the negative and positive feedback environments. Indeed, the price dynamics of the
heuristic switching model do adhere to the characteristics of the experimental outcomes in both
treatments. In the negative feedback market the price oscillates heavily in the first periods and
then quickly converges. In the positive feedback market the price slowly and (when augmented
by the experimental noise) persistently oscillates around the equilibrium.

It is particularly informative to analyze the evolution of the heuristics’ impacts. When
the feedback is negative, the impact of the trend heuristic immediately falls to almost 0 and
increases later on only at the stage when the price has already converged to the equilibrium
level, i.e., when the predictions of both heuristics are similar. When the feedback is positive,
the opposite phenomenon takes place with the trend heuristic dominating from the beginning
of the simulations. The intuition of this result is as follows. The trend heuristic performs well
during the long phases of the trends and performs poorly during the periods with frequent
fluctuations around the constant price. At the same time, an extensive use of the trend heuristic
results in the trends under the positive feedback and in oscillations under the negative feedback,
see Fig. 2(b). Thus, under the positive feedback, the success of the trend heuristic reinforces
its use, which makes the trend in prices sustainable. The adaptive heuristic performs relatively
poorly during the trend phases and loses its impact. On the other hand, under the negative
feedback, the trend heuristic generates oscillatory dynamics on which it performs very poorly,
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Fig. 4 Positive feedback environment. Dynamics of the heuristic switching model with H = 2 heuristics for
different initial prices. Left: No noise is added to the law of motion (2). Right: Experimental noise is added to
the law of motion (2).

much worse than adaptive heuristic. Coordination on the adaptive heuristic leads to fast
convergence through initial oscillations, as shown in Fig. 2(a).

The initial 10 periods of the simulations are explained now, but what happens next? In
the positive feedback market agents attach a higher impact to the trend heuristic at the trend
phases and decrease their impacts when the price development changes direction. Even when
all subjects use the trend-following heuristic, the trend cannot be sustained forever and, at
a certain moment, the trend will be reverted and the impact of the adaptive heuristic will
grow. This occurs in the periods 15 — 17 of the simulations. Afterwards the downwarding
trend reinforces the use of the trend heuristic, but since the price is already close to the
equilibrium, the relative impacts of the heuristics are similar. Notice that the model generates
such convergence to the equilibrium only in the absence of noise, see the left panel of Fig. 3(b).
In the negative feedback market, the price is stabilized at the level close to the equilibrium
during the periods 10 — 15. However, the steady-state dynamics with price at the equilibrium
level is not stable in the model with switching. Indeed, when the price stabilizes both heuristics
give the same predictions and their impacts are the same. But the trend heuristic reinforces a
trend and leads to the overshooting of the equilibrium level. As a result, dynamics converge
to the 2-period cycle with price being very close to the equilibrium level but jumping around
it.> At the cycle, the forecast of the trend heuristic is worse than the forecast of the adaptive
heuristic, which results in their different impacts: around 80% of the adaptive heuristic and
around 20% of the trend heuristic.

The heuristic switching model is also able to reproduce the same pattern of dependence
on the initial condition, which was observed in the HHST experiment. Fig. 4 shows that the
different aggregate outcomes (convergence and oscillations) within the same environment of the
positive feedback can be attributed to the path-dependent property of the HSM. Depending on
the initial price level, the model produces qualitatively different outcomes during 50 periods.
Both without (the left panel) and with noise (the right panel), the price generated by the
model stays closer to the fundamental level during all simulation, when the initial price, po,
is closer to the fundamental level.

3.5 Discussion

The first simulations of the heuristic switching model point to a behavioral explanation of
the difference in the experimental outcomes between positive and negative feedback markets.
When people, as subjects in the experiment or agents in the model, cannot make strategic
decisions due to the absence of full knowledge of the environment they are operating in,
they rely on behavioral rules of thumb. In the learning to forecast experiment different rules
are possible, and some of them provide better forecasts than others. The learning of agents
then takes a form of evaluating different forecasting possibilities and switching to those which

5 This cycle is almost invisible at Fig. 3(a). The prices are 59.74418 and 60.2559 along the cycle. The impacts
are 0.8125 and 0.1875 for the adaptive and trend heuristics, respectively.
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performed better in the past. Agents in the HSM learn individually (not socially, through the
interaction with others) by applying a counterfactual analysis of alternative forecasting rules
on the basis of past data. As a result, the population of agents switch to more successful rules
and the aggregate dynamics may change its properties (e.g., the trend in prices may revert).
Then, via the re-evaluation of performances, dynamics feed back to the distribution of the
rules’ impacts. Three parameters of the model allow to capture the behavioral characteristics
such as imperfect switching behavior and, consequently, heterogeneity (especially when f is
small), inertia in switching (when ¢ is close to 1), and short memory of past performances
(when 7 is close to 0).

While the behavioral assumptions underlying our model are known from the behavioral
literature,® our model does not aim to provide a precise description of the behavior of subjects
in the experiment.” Instead, the aim of the model is to outline a mechanism explaining both
negative and positive feedback markets at the same time. Indeed, in the simulations discussed
in Section 3.4 the same heuristics and values of the learning parameters have been used. Our
model is, essentially, a parsimonious version of the numerous computational learning models
based on genetic algorithms (see, e.g., Arifovic (1996) and Hommes and Lux (2011)) or its
modifications such as Individual Evolutionary Learning (see Arifovic and Ledyard, 2007 and
Anufriev, Arifovic, Ledyard, and Panchenko, 2011).

Our model also stresses importance of heterogeneity in the explanation of the experiments.
According to the results of Section 3.2, the homogeneous expectations model with simple first-
order heuristics we considered can not explain negative and positive feedback experimental
data simultaneously. The results of the experiments can be explained, however, by assuming
that agents learn to change their forecasting methods. The heuristic switching model can be
simulated with many heuristics. For example, the model analyzed in Anufriev and Hommes
(2012) had 4 different heuristics. We found, however, that the two heuristics are sufficient to
reproduce the result of the HHST experiment qualitatively, and preferred such parsimonious
version of the model over other possible specifications.®

4 Validation and Robustness

In this section we further examine the performance of the heuristic switching model with the
adaptive and trend forecasting heuristics. First, we investigate the one-period-ahead forecast-
ing performance of the HSM, compare it with performances of the other models, and also fit
the HSM to the data.® Second, we investigate robustness of the model with respect to the
change in parameter values.

4.1 One-period ahead model predictions

We now apply the heuristic switching model in a different way than before. The difference
is that at each period of the simulation the past experimental prices are used to compute
the heuristics’ forecasts and impacts. Every time the heuristic switching model will produce
a one-period ahead forecast of the price. This forecast is based upon the same information
as subjects had in the experiment. Formally, it means that in (6), (7) and (9) we substitute
the price predicted by the model, p;, by the price observed in one of the experimental groups,

6 HHST and other learning to forecast experiments showed that agents use first-order heuristics for forecast-
ing. Indeed, the heuristics we have chosen for the simulations were used by some subjects in the experiment.
Recent learning to forecast experiments provide evidence of switching between simple heuristics, see illustra-
tion in Anufriev and Hommes (2009). Anufriev, Bao, and Tuinstra (2011) estimate switching parameters in a
multiple choice experiment.

7 For example, we ignore the fact that actual impacts in the experiment could be a multiple of 1/6, proceeding
instead with arbitrary values of impacts, which is valid only under a continuum of agents. An alternative
interpretation is that every agent combines two forecasts, adaptive and trend, with time varying weights.

8 We simulated the model with 3 heuristics, adding to the adaptive and trend heuristic a, so-called, anchoring
and adjustment heuristic obtained from (5) by replacing the (unknown to the participants) fundamental price
60 by the average of all past prices. The anchoring and adjustment heuristic combines some features of the
trend and adaptive heuristics. It is, therefore, not surprising that the dynamics of the model with 3 heuristics
(not shown in the paper) is not very different from the dynamics shown in Fig. 3.

9 For other examples of fitting the similar learning models to the experimental or survey data, see Colucci
and Valori (2006) and Branch (2004).
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Fig. 5 Dynamics of the HHST experiment as compared with the one-period ahead predictions by the heuristic
switching model, augmented by experimental noise. The parameters are w = 0.75, y =1, 8 = 1.5, § = 0.1 and
n = 0.1. Left: Price dynamics in the experiment (points) and forecasts generated by the model (line). Right:
Evolution of impacts of two heuristics.

p&t X In particular, the impacts of the heuristics are updated now as in (10) on the basis of
the performance given by

Unt = —(p5™ X — 5 )2 + 0Unt—1 -

After the forecasts and impacts of all heuristics are computed, the corresponding price equation
generates the one-period ahead prediction of the price by the HSM.

The one-period ahead predictions of the switching model with adaptive and trend heuristics
are shown in the left panels of Fig. 5 for one of the groups from the negative feedback treatment
and for two groups from the positive feedback treatment. In the right panels the dynamics
of the impacts of the two heuristics are shown. In all these simulations the parameters of
the model are as before, 8 = 1.5, § = 0.1 and n = 0.1. Fig. 5(a) shows the price behavior
in the negative feedback market. The prices predicted by the HSM take slightly longer to
converge than the price outcomes of the experiments. After an initial phase the adaptive
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Model H Negative Feedback [ Positive Feedback [ 12 groups
fundamental 2.5712 46.8344 24.7028
adaptive 2.3001 2.9992 2.6497
trend 21.1112 0.9260 11.0186
mixed 7.9798 1.0518 4.5158
HSM 3.2967 0.9065 2.1016

Table 1 MSEs of 5 different models over 47 time periods of the experiment. The results are averaged over
all 6 experimental groups of the negative feedback treatment (2nd column), and over 6 out of 7 experimental
groups in the positive feedback treatment (3rd column), see footnote 11. The last column displays the joint
result for 12 experimental groups.

heuristic starts to clearly dominate the trend heuristic, explaining the price convergence to
the fundamental level. Fig. 5(b) shows the price dynamics in the positive feedback market
with a large deviation of the initial price from the fundamental value. The price deviates from
the fundamental value persistently, oscillates and does not show any sign of convergence. The
trend heuristic dominates during this simulation. Finally, Fig. 5(c) shows a different outcome
in the positive feedback market, when the initial price is close to the fundamental value.
The price dynamics now stays consistently above but close to the fundamental value and the
impacts of the two heuristics are more or less balanced during the simulation.

4.2 Model optimization

The one-period ahead predictions by the heuristic switching model can be compared with
similar predictions obtained by the other models. As a fitness measure we will use the mean
squared error (MSE) of the model’s predictions over k periods. For experimental group the

MSE is given by
49

1
MSEp =2 > (o™ — pplod)?,
t=50—k

where pS* X is the realized price in group X of the experiment and pM°d is the one-period

ahead prediction of the model Mod, taken all information up to and including period ¢t — 1
into account. When these MSEs are computed over the data in G different groups and then
averaged, the result is denoted as MSEg.

Table 2 shows the MSEs of five different models over the last k = 47 periods (i.e., for
t =3,...,49).1° The second column shows the MSE computed over 6 groups of the negative
feedback experiment, the third column shows the MSE computed over 6 groups of the positive
feedback experiment!!, and the last column gives the MSE over all these 12 groups. We
compare the following five models: 'fundamental’ model, corresponding to the RE, according to
which the prediction is 60 every period; two models with homogeneous expectations, ’adaptive’
and “trend’, when expectations generated by, respectively, (6) and (7) are directly plugged into
the laws of motion; heterogeneous expectations model where these two heuristics are combined
with fixed impacts equal to 50% each period; and the heuristic switching model described in
Section 3.4. The benchmark values of parameters have been used in these models, w = 0.75,
v=1,8=1.5,§ =0.1 and n = 0.1. The MSEs for the best among the five models are shown
in bold.

As expected from the previous analysis, in the negative feedback environment the funda-
mental model works well, and the adaptive model is better than the trend model. In contrast,
in the positive feedback environment the trend model works very well, the adaptive model is

10 The errors of the first three periods are not taken into account for the following reason. Both heuristics
of the HSM require two prices to be initialized (for adaptive heuristic we set p§ = pOG’r X). Therefore, at time

t = 2 the first performances of the heuristics are obtained when their first predictions, p}, ,, are compared with

experimental price pQGr X The performances determine the impacts and only from period ¢ = 3 the HSM is
able to generate price prediction. For comparison, in all other models we compute errors also from ¢t = 3. We
also have computed similar MSEs on the data starting from periods t = 4,5 and 6 and obtained very similar
results.

11 We eliminated one of the groups of the positive feedback experiment as an outlier. In this group at time
t = 7 one of the participants predicted 5250, making, presumably, a typing error (in previous three period
the predictions of this participant were 50.0, 52.0 and 51.0). As a result, the realized price was 877.8 and was
above 100 for another four periods.
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Model H Negative Feedback [ Positive Feedback [ 12 groups
MSE 2.3001 2.9992 2.6497
benchmark w 0.75 0.75 0.75
AIC 2070.3458 2220.0313 2150.1399
adaptive BIC 2070.3458 2220.0313 2150.1399
MSE 2.3001 1.8218 2.3680
optimized D 0.75 1.00 0.91
AIC 2072.3451 1940.8575 2088.7528
BIC 2076.6802 1945.1926 2093.0879
MSE 21.1112 0.9260 11.0186
v 1.00 1.00 1.00
benchmarl AIC 3320.6515 1557.2206 2953.9288
trend BIC 3320.6515 1557.2206 2953.9288
MSE 1.9237 0.7480 2.2940
optimized o —0.33 0.71 —0.16
AIC 1971.5531 1438.7973 2070.8502
BIC 1975.8881 1443.1323 2075.1852
MSE 7.9798 1.0518 4.5158
(w,,n) (0.75,1.00,0.50) (0.75,1.00,0.50) (0.75,1.00,0.50)
benchmark AIC 2771.9429 1629.0202 2450.8370
mixed BIC 2771.9429 1629.0202 2450.8370
MSE 2.3001 0.7568 2.6276
optimized (w, 7, 7) (0.75,1.00,0.76) (0.75,1.00,0.38) (0.75,1.00,1.00)
AIC 2072.3458 1445.4272 2147.4263
BIC 2076.6809 1449.7623 2151.7614
MSE 3.2967 0.9065 2.1016
(8,n,6) (1.50,0.10,0.10) (1.50,0.10,0.10) (1.50,0.10,0.10)
benchmark (w, %) (0.75,1.00) (0.75,1.00) (0.75,1.00)
AIC 2273.3741 1545.1924 2019.4464
BIC 2273.3741 1545.1924 2019.4464
MSE 2.3001 0.7329 1.5402
(B,9,6) (1.44,1.00,0.00) (0.01,0.96,0.34) (0.02,0.97,0.00)
HSM optimized 1 | (w,~) (0.75,1.00) (0.75,1.00) (0.75,1.00)
AIC 2076.3458 1431.2754 1850.1692
BIC 2089.3510 1444.2806 1863.1743
MSE 1.9225 0.7088 1.5051
(8,1,6) (1.46,1.00,0.15) (0.48,0.85,0.00) (0.37,0.87,0.00)
optimized 2 | (w,4) (0.98,—2.00) (0.83,0.75) (0.75,0.75)
AIC 1979.2104 1416.4752 1841.1650
BIC 2000.8857 1438.1504 1862.8403

Table 2 Fit of 9 different models over 47 time periods of the experiment. The fit is performed over all 6
experimental groups of the negative feedback treatment (2nd column), and over 6 out of 7 experimental groups
in the positive feedback treatment (3rd column), see footnote 11. The last column displays the joint fit for 12
experimental groups. The entries show the values of three fitness criteria MSE, AIC and BIC, and the values
of corresponding parameters.

worse and the fundamental models perform very bad. Consider now a forecasting method of
averaging the predictions of the two heuristics (line 'mixed’ in Table 2). Performance of this
model with heterogeneous expectations but fixed, equal weights is better than the average
performance of the heuristics in a given environment. However, in every environment and also
for all 12 groups, this model still performs considerably worse than the best of the two simple
heuristics. Finally, the heuristic switching model performs better than the other models in
the positive feedback environment and is worse than the adaptive heuristic in the negative
feedback environment. It is also the best performing among these 5 models when the MSEs are
averaged over 12 experimental groups. As opposed to the model with constant equal weights,
the HSM makes the best out of two homogeneous heuristics.

A comparison of the models on the basis of the mean squared errors is not completely
satisfactory, since the HSM has more additional parameters. To address this issue one can
relate minimization of the MSE with maximization of a certain likelihood function and then
evaluate the fitness of the models using the two criteria commonly used to penalize models
for additional parameters, the Akaike Information Criterion and the Bayesian Information
Criterion. See Appendix A for details. According to the Akaike Information Criterion better
models should have lower value of AIC = 2n+kG In(MSEy ) —2C, where k = 47 is the number
of observations in one group, G is the number of groups in the sample, n is the number of
parameters of the model and C is a constant which depends on the sample size but does not
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[ 0% [ +10% —10% | +20% —20% | +30% —30% | +40% —40%

1.5051 | 1.5052 1.5052 | 1.5053 1.5055 | 1.5054 1.5061 | 1.5056  1.5072
1.5051 | 1.56109 1.5158 | 1.5156 1.5654 | 1.5163 1.6037 | 1.5166 1.6350
1.5051 | 1.5051  1.5051 | 1.5051 1.5051 | 1.5051  1.5051 | 1.5051  1.5051
B,n 1.5051 | 1.56114 1.5188 | 1.5160 1.5745 | 1.5168 1.6190 | 1.5171 1.6585
B,6 1.5051 | 1.5052  1.5052 | 1.5053 1.5055 | 1.5054 1.5061 | 1.5056 1.5072
7,0 1.5051 | 1.56109 1.5158 | 1.5156 1.5654 | 1.5163 1.6037 | 1.5166 1.6350
B8,n,0 1.5051 | 1.5114 1.5188 | 1.5160 1.5745 | 1.5168 1.6190 | 1.5171 1.6585
MSE 1.5051 1.6556 1.8061 1.9566 2.1072

93 ™

Table 3 Robustness test of the heuristics switching model. For one, two or three parameters we report the
value of MSE (over 47 time periods in 12 experimental groups) of the model resulting in a given percentage
change of every of these parameters. The last row shows the corresponding percentage increase of the benchmark
value of MSE, 1.5051.

depend on the model. According to the Bayesian Information Criterion better models should
have lower value of BIC = nln(kG) + kG In(kMSEy) — 2C.

Table 2 shows the MSEs, AICs and BICs for the adaptive and trend homogeneous models
and the heuristic switching model. In each case we do not only show the statistics for the model
with the benchmark values of the parameters but also optimize the model by searching for the
parameter values which minimize the MSE.'? The corresponding parameters values are also
given. The best (i.e., smallest) statistics are shown in bold. Under the negative feedback the
optimized model with trend heuristic is better according to AIC and BIC. Notice, however,
that the maximum for the HSM model is obtained when constrained on v is binding by
artificially chosen value of —2. More importantly, the best model results in a negative value
of v, which is difficult to interpret and would lead to very bad fit under the positive feedback.
Under the positive feedback according to all criteria, the best performing model is the HSM
when it is optimized both with respect to the three learning parameters, 5, n and ¢ and to the
two parameters of the heuristics, w and . Finally, when all 12 groups are taken into account,
all three specifications of the HSM outperform the other considered models according to each
fitness measure. Even if penalized for 5 parameters, the fully optimized HSM is better in
one-period ahead prediction than other considered specifications.

4.3 Robustness

Finally, we briefly discuss the issue of robustness. A model is said to be robust if a change
in parameter values does not immediately result in a change of the model’s characteristics.
A good prediction model should yield good results even if parameters are slightly changed.
If, for example, the parameter value for S in the HSM is increased by, say, ten percent, this
should not lead to a dramatic change in price dynamics. In the experiments it is unlikely that
the agents held stringent parameters from which they do not deviate. The general results of
the model should, therefore, hold even if the parameters of the model change slightly.

In order to test the model on robustness we compare the MSE of the best-fitted model
with the MSEs of 4 X 2 x 8 = 64 other models. Each of these alternative models is obtained by
changing one, two or three learning parameters (3, n and §) by £10%, +20%, +30% or +40%
with respect to their estimated values reported in the bottom right cell of Table 2. We do not
vary the values of two other parameters w = 0.75 and v = 0.75. Table 3 shows the results
of this exercise obtained for the last 47 time periods in all the experimental groups (except
for one group from the positive feedback experiment, see footnote 11). For a comparison, the
last row shows the corresponding percentage increase of the MSE of the best-fitted model. We
observe that changes of parameters of 10% and 20% do not lead to a significant change in
the model performance. Even after a 40% change of the optimal values of the parameters, the
resulting models perform better than homogeneous models. We conclude, that the heuristic
switching model is fairly robust with respect to the changes of the parameter values.

12 The search is made by fmincon routine in MATLAB, and we controlled the results using the grid search.
We implemented the following constraints: w € [0, 1], v € [-2,2], 8 > 0, n € [0,1], and ¢ € [0, 1].
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5 Conclusion

This paper analyzed the experimental results of markets with negative and positive feedbacks
in Heemeijer, Hommes, Sonnemans, and Tuinstra (2009). Estimations of individual forecasting
rules in that paper showed that participants relied on simple first-order forecasting heuristics,
anchoring their expectations to past prices and past predictions and extrapolating past trends.
The estimated individual rules tended to attach positive weight to the trend term in the
positive feedback treatments but did not attach weight to this term in the negative feedback
treatments. The aggregate dynamics was also very different between the two treatments. The
heuristic switching model, simulated in this paper, provides an explanation why this difference
in individual forecasting and aggregate price behavior took place.

Several models have been compared with the aggregate price dynamics from the experi-
ment. None of the single heuristic models could provide qualitative features observed in both
negative and positive feedback experimental environments. In contrast, the switching model
was able to reproduce experimental “stylized facts”. In fact, a parsimonious model where
agents switch between the adaptive and the trend heuristics does well in explaining the most
important characteristics of the price dynamics observed in the experiment. Consistently with
the experiment, in the negative feedback market the simulations showed strong oscillations in
the first periods followed by quick convergence towards the equilibrium price. In the positive
feedback market the model exhibited persistent deviations from the equilibrium price and slow
oscillations. The price outcomes of the model were also dependent on the initial price with
more persistent oscillations when the initial state deviated more from the fundamental price,
similarly to the outcome of the experiments.

APPENDIX

A Likelihood Method

‘We use likelihood technique to compare the predictive power of different models. Recall that for the price in the
experimental group X is denoted as ]otGr X and that p%VIOd (0) stays for a price prediction made by a model Mod
with parameters . We confine ourselves to the one-step ahead predictions using data from an experimental
group. In this case the information set consists of all prices in the experimental group X up to and included
period t — 1 and the prediction error at time ¢ is p%od(e) fptGr X Assuming that these errors are independent

and normally distributed with mean 0 and variance 02, we can define the likelihood function

1 Mod _ Gr X)\2
exp (7 (py™°°(0) — py ) ) 7
oV 2m 202

49
L(9,U2;6Xp. data) = H
Groups t=3

(11)

where for each group we include the last k = 47 periods in the sample (see footnote 10). The first product in
(11) is over all the groups whose data are used in the estimation. In Table 2 three cases are shown: when the
likelihood is computed over 6 groups with negative feedback, over 6 groups with positive feedback, and over
all 12 groups.

Consistently with the notation in Section 4.2 the mean squared error in one group is given by

49
1
MSE, == Y. (pMd(0) — pfr X)2.
k t=50—k

When we compute (11) over data from G groups, we denote the mean squared error over all groups as MSE ¢,
which is a mean of squared errors over kG data points.
Maximization of the likelihood function is equivalent to maximization of

T (pMOd(Q) _ pGr X)Q
In L(6, 02; exp. data) = Z _Z (— 1 257 L —ln(o\/27r)) =
Groups t=tg

(12)
- _gMSEkG(e) — kGIn(ov/2r) .

Denote by é, 6 the parameter values under which the log-likelihood is maximized. They satisfy the set of first
order conditions (f.o.c.). The f.o.c. with respect to # do not depend on o and are identical to the f.o.c. for
minimization of the MSE. This justifies that the parameters of the learning model found by minimization of
the MSE will also maximize the likelihood. The f.o.c. with respect to o is given by

kG A kG
TIMSE(f) - - =
g

0,
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and, therefore, 62 = MSE (0). Plugging this result in (12) we find that

max [ln L(9,5%; exp. data)] =In L(OA7 &2; exp. data) =

,o

T =7 (S (0) 4 1mem)

In MSEga(0) + In(27) ) = (13)
kG N
= 77 In MSExq(0) + C,

where the constant C = —kG(1 + In(27))/2 depends on the number of observations but not on the model.
For a model with n parameters the Akaike Information Criterion is defined as

AIC =2n —2In L(é, 62; exp. data),
while the Bayesian Information Criterion is defined as
BIC = nIn(kG) — 21In L(6, 6%; exp. data).
Plugging the log-likelihood found in (13) into the last two formulas, we find that
AIC = 2n 4 kG In MSE,¢ (§) — 2C, (14)

and
BIC = nIn(kG) + kG In MSE, ¢ (9) — 2C . (15)
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