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ABSTRACT

Potent antiviral RNAi can be induced by intracellular
expression of short hairpin RNAs (shRNAs) and arti-
ficial microRNAs (miRNAs). Expression of shRNA
and miRNA results in target mRNA degradation
(perfect base pairing) or translational repression
(partial base pairing). Although efficient inhibition
can be obtained, error-prone viruses such as
human immunodeficiency virus type 1 (HIV-1) can
escape from RNAi-mediated inhibition by mutating
the target sequence. Recently, artificial miRNAs
have been shown to be potent RNAi inducers due
to their efficient processing by the RNAi machinery.
Furthermore, miRNAs may be more proficient in
suppressing imperfect targets than shRNAs. In this
study, we tested the knockdown efficiency of
miRNAs and shRNAs against wild-type and RNAi-
escape HIV-1 variants with one or two mutations
in the target sequence. ShRNAs and miRNAs can
significantly inhibit the production of HIV-1 variants
with mutated target sequences in the open reading
frame. More pronounced mutation-tolerance was
measured for targets in the 3’ untranslated region
(3’ UTR). Partially complementary sequences within
the 3’ UTR of the HIV-1 RNA genome efficiently
act as target sites for miRNAs and shRNAs. These
data suggest that targeting imperfect target sites
by antiviral miRNAs or shRNAs provides an alter-
native RNAi approach for inhibition of pathogenic
viruses.

INTRODUCTION

RNAi against chronic virus infections requires a stable
gene therapy to durably protect cells against virus replica-
tion (1–3). Such a gene therapy involves vector-mediated
RNAi that can be induced by intracellular expression of
antiviral microRNA (miRNA) mimics or short hairpin

RNAs (shRNAs). miRNA mimics are expressed as pri-
mary miRNA transcripts (pri-miRNAs) in the nucleus
that are cleaved by the RNAse III-like endonuclease
Drosha and its cofactor DGCR8 into precursor
miRNAs (pre-miRNAs), which are hairpin RNAs of
�70 nucleotides (nts) (4). The pre-miRNA is transported
to the cytoplasm by Exportin-5 and further processed
by the RNAse III-like enzyme Dicer into an imperfect
�22 nt miRNA duplex (5,6). The single stranded mature
miRNA is incorporated into the RNA-induced silencing
complex (RISC) and directs the complex to complemen-
tary mRNA sequences (7,8) to cause mRNA cleavage
or translational repression depending on the complemen-
tarity between the miRNA and the mRNA target (7,8).
ShRNAs are perfect hairpins of 19–29 bp with a small
apical loop and a 30 UU overhang. Such shRNA
constructs are usually expressed in the nucleus from a poly-
merase III promoter (9,10). The shRNA is translocated
to the cytoplasm by Exportin-5 and processed by Dicer
into functional 21-nt small interfering RNA duplexes
(siRNAs) with 2-nt 30 overhangs. The siRNA duplex is
loaded into RISC. The passenger strand of the siRNA is
cleaved, released and degraded (11–13), whereas the guide
strand directs RISC to cleave the perfectly complementary
mRNA (14).

It has been previously shown by us and others also that
potent and specific inhibition of the human immunodefi-
ciency virus type 1 (HIV-1) can be obtained using artificial
antiviral miRNAs or shRNAs (15–18). However,
prolonged culturing of HIV-1 infected human T cells
that express an antiviral shRNA resulted in the emergence
of RNAi-escape viruses (19–21). These escape viruses have
acquired deletions or point mutations in the target
sequence that prevent RNAi-mediated inhibition. Even
when highly conserved HIV-1 sequences are targeted in
essential open reading frames, the virus can escape by
selecting silent codon changes, thus leaving the encoded
protein unaltered (22,23). To avoid viral escape, one can
use combinatorial RNAi that involves targeting of
multiple HIV-1 sequences simultaneously (15,16,24,25).
An alternative would be to test whether an escape-proof
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RNAi-mediated inhibition strategy can be designed,
which should remain active on targets with one or two
mutations. While shRNAs are usually designed to cleave
a perfect complementary mRNA target, miRNAs can
translationally repress a target mRNA by pairing with
their ‘seed region’ (nucleotide positions 2–8) to multiple
imperfect targets in the 30 UTR (26–30). Recent studies
confirmed that cellular miRNAs can inhibit viral gene
expression by directing RISC to partially complementary
viral sequences (31–33). For example, a set of cellular
miRNAs are involved in the establishment of HIV-1
latency by targeting partially complementary sequences
in the 30 UTR of the viral RNA genome (31,34). These
miRNAs also appear to determine the non-susceptibility
of resting peripheral blood monocytes for a productive
HIV-1 infection by establishing a latent provirus (35).

In this study, we tested the inhibitory effect of miRNAs
and shRNAs on imperfect HIV-1 target sequences in
the open reading frames and 30 UTR of the mRNAs.
We showed that shRNAs and miRNAs can significantly
inhibit the production of HIV-1 variants with mutated
target sequences in the open reading frame. Furthermore,
shRNAs and miRNAs can inhibit multiple imperfect
targets in the 30 UTR of the HIV-1 RNA genome. These
data suggest that targeting of partially complementary
sequences can provide an alternative RNAi approach for
durable inhibition of error-prone viruses.

MATERIALS AND METHODS

DNA constructs

Hairpin RNA constructs used in this study were described
previously (15,24). The pLAI plasmid encoding the HIV-1
isolate LAI (36) was used to produce virus upon transfec-
tion of the human embryonic kidney (HEK) 293T cells.
For the A mutants, a single (8A or 15A) or double
(8A and 15A) mutation was introduced in the target
sequence of pLAI. For the D mutants, single mutations
were introduced at position 6 or 11 and double mutations
were introduced at position 8/11 and 13/15 in the target
sequence. These mutations have been previously observed
in a large-scale HIV-1 escape study (22). Mutations were
introduced by fusion PCR using an oligonucleotide
containing the mutations.

The previously described firefly luciferase expression
vector pGL3-Nef (21) was used to construct the luciferase
reporter constructs Luc-I, Luc-II and Luc-III. An HIV-1
fragment of approximately 600, 1000 and 1600 bp was PCR
amplified using the full-length molecular clone pLAI as
template with primers Luc-I f: GGAATTCATTATCGT
TTCAGACCCACCTC and Luc-I r: AACTGCAGGCT
GCCTTGTAAGTCATTGGTC; Luc-II f: GGAATTCC
ACACCTCAGGTACCTTTAAGAC and Luc-II r: AAC
TGCAGTCACCAGCGTTTCTGGGTGAGC; Luc-I f
and Luc-III r. The PCR fragments were purified from agar-
ose gel, digested with EcoRI and PstI and inserted into the
corresponding sites of the pGL3-Nef. The luciferase report-
er constructs encoding the ACDE wild-type targets
ACDEwt and the mutated targets ACDEm1 and ACDEm2

were constructed by annealing oligonucleotides and

inserting into the EcoRI and PstI sites of the pGL3
vector. The luciferase reporter ACDEm1 with the ACDE
target was altered by the introduction of observed viral
escape mutations (22): G8A in target A and D, A6G in tar-
get C, and a G6A mutation in target E. Luciferase reporter
ACDEm2 encodes the ACDE target with a point mutation
at position 15 in each target.

Cell culture and transfection

The HEK 293T cell line was cultured in Dulbecco’s
modified Eagle’s medium (DMEM; Invitrogen,
Carlsbad, CA, USA) containing 10% fetal calf serum
(FCS), 100U/ml penicillin, 100U/ml streptomycin and
minimal essential medium non-essential amino acids
(DMEM/10% FCS) at 378C and 5% CO2. For luciferase
and HIV-1 inhibition assays, HEK 293T cells were seeded
in 24-well plates at a density of 1.3� 105 cells per well in
0.5ml DMEM/10% FCS without antibiotics. The next
day, transfections were performed using Lipofectamine
2000 reagent (Invitrogen) according to the manufacturer’s
instructions.

Luciferase assays

HEK 293T cells were co-transfected with 100 ng of firefly
luciferase reporter plasmids (pGL3; Promega, Madison,
WI, USA), 1 ng of renilla luciferase expression plasmid
(pRL-CMV) and different amounts of hairpin RNA
expression constructs. The renilla plasmid served as an
internal control for cell viability and transfection
efficiency. To obtain equal DNA concentrations,
pBluescript SK� (pBS) (Promega) was added to the trans-
fection mixtures. Two days post-transfection, luciferase
and renilla expression were measured with the Dual-
Luciferase Reporter Assay System (Promega) according
to the manufacturer’s protocol. The relative luciferase
activity was calculated as the ratio between the firefly
and renilla luciferase expression and corrected for
between-session variation (37).

HIV-1 inhibition assays

Inhibition of virus production was determined by
co-transfection of 250 ng HIV pLAI, 1 ng pRL-CMV
and different amounts of hairpin RNA constructs into
HEK 293T cells. We added pBS to obtain equal DNA
concentrations in all transfections. Two days post-
transfection, the CA-p24 levels in the culture supernatant
was determined by ELISA as described previously (38).
The transfected cells were lysed and renilla luciferase
expression was determined using 10 ml of the lysates with
the Renilla Luciferase Assay System (Promega) according
to the manufacturer’s instructions. Relative virus produc-
tion was calculated as the ratio between the CA-p24 level
and the renilla luciferase activity, and corrected for
between-session variation (37).

In silico analysis of miRNA targets in the HIV-1
RNA genome

To screen for putative target sites for miRNAs in the 30

UTR of the HIV-1 RNA genome, we used the miRanda
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algorithm. The identification was performed for the sense
and antisense sequences of the miRNA constructs A, C, D
and E versus the HIV-1 molecular clone LAI. The
miRanda scoring matrix used for this analysis allows
G–U ‘wobble’ bp, which are important for the accurate
detection of RNA :RNA duplexes. Complementarity-
scoring for individual positions was: +5 for G–C, +5
for A–U, +2 for G–U and �3 for all other nt pairs.
Affine penalties were used for gap-opening (�8) and
gap-extension (�2). The threshold was set at a cut-off
value of 90. The algorithm applied the following empirical
rules (with position 1 defined as the 50 end of the miRNA):
(i) no mismatches at positions 2 to 5; (ii) fewer than five
mismatches between positions 3–12; (iii) at least one mis-
match between positions 9 and L-5 (where L is total align-
ment length); and (iv) fewer than two mismatches in the
last five positions of the alignment. The analysis of pos-
sible miRNA target sites in the resulting candidate
sequences were tested with the new rna22 algorithm for
miRNA heteroduplex prediction (39).

RESULTS

Inhibition of HIV-1 by miRNA and shRNA

We induced antiviral RNAi with vectors expressing an
shRNA or miRNA that target the pol or tat/rev genes of
HIV-1 (target A or D in Figure 1A). Both types of
constructs were designed to encode the same guide
strand RNA. The �50 nt shRNAs are characterized
by a perfect hairpin stem of 19 or 21 bp and a small
loop, whereas the �70 nt miRNAs contain multiple
mismatches in the hairpin stem (Figure 1B). We previ-
ously analysed the shRNA-derived siRNAs and the
processed mature miRNAs by Northern blotting and
showed that guide RNAs of similar sizes were expressed
(15). For the miRNA against the A target, we tested two
variations; as single hairpin miA or double hairpin tran-
script miA2. The miA2 construct encodes miA and an
irrelevant miRNA in a single transcript. We first
determined the knockdown efficiency of these inhibitors
on wild-type, fully complementary mRNA targets in a
luciferase reporter (Figure 1C). Luciferase expression in
the presence of the pBS control was set at 100%.
Profound inhibition was observed for miA and shA on
Luc-A. The miA2 construct was previously shown to be
more effective than the single miA construct (15), a result
that was confirmed in this study (Figure 1C). Inhibition
observed in the Luc-D system was even more potent,
both for miD and shD. We also tested the ability of
the antiviral constructs to inhibit HIV-1 production
by co-transfection with the molecular clone pLAI
(Figure 1D). Virus production in the presence of pBS
was set at 100%. Dose-dependent inhibition of HIV-1
production was observed, and the constructs against
target D were again more potent. In general, inhibition
by the antiviral shRNAs and miRNAs was equally
effective, both with luciferase reporters and in the
HIV-1 production assay.

Inhibition of RNAi-escape mutants by shRNA
and miRNA

To test the ability of antiviral miRNAs and shRNAs to
inhibit targets that are not perfectly complementary, we
analyzed the inhibitory effect of miA and shA on the pro-
duction of HIV-1 RNAi-escape mutants. We introduced
point mutations in the HIV-1 genome that were selected in
previous virus evolution experiments with the shA

inhibitor: G8A, G15A and the double mutant G8A/
G15A (22) (Figure 2A). We tested the ability of miA,
miA2 and shA to inhibit the mutant viruses, and the
wild-type HIV-1 construct was included for comparison
(Figure 2B). As expected, we measured potent knockdown
of wild-type HIV-1 with miA, miA2 and shA. A significant
reduction of 20–50% in knockdown efficiency was
observed for all three inhibitors on the two HIV-1
genomes with a point mutation in the target sequence.
The knockdown efficiency of miA and shA was still
�60% for the escape viruses with a single mutation
(G8A and G15A) and approximately 40% for the escape
virus with two point mutations (G8A/G15A). To test
whether the reduction in viral production was due to
degradation of HIV-1 mRNAs, we performed Northern
blots analyses. We observed a significant reduction in the
amount of the full-length 9-kb HIV-1 genomic RNA in
the presence of the antiviral miRNA or shRNA (results
not shown).

A similar strategy was used for target D, in which we
introduced single point mutations (A6C or G11A) or
double mutations (G8A/G11A and A13G/G15A) that
were detected in previous virus evolution experiments
(22) (Figure 3A). Efficient HIV-1 inhibition was scored
for miD and shD (Figure 3B). Single and double point
mutations in the target sequence resulted in a loss of
inhibition. Only shD retained a 40% inhibition efficiency
on the A13G/G15A escape virus. Taken together, these
results demonstrate that introduction of one or two
point mutations in a target can lead to a loss in
knockdown efficiency by both the miRNA and the
shRNA inhibitors. However, depending on the actual
target sequence, still up to 60% inhibition of virus pro-
duction can be obtained even if the target contains two
point mutations. Thus, both shRNAs and artificial
miRNA mimics show a variable degree of mutation toler-
ance when targeting HIV-1 escape viruses.

Knockdown of reporter constructs with multiple
imperfect targets in the 3’ UTR

Cellular miRNAs generally regulate gene expression
by targeting multiple sites within the 30 UTR of gene
transcripts. Similarly, mutation-tolerant RNAi against
HIV-1 may require multiple targets in the 30 UTR of the
transcript. To test this scenario, we constructed luciferase
reporters with four 30 UTR targets: ACDE, each with and
without point mutations (Figure 4A). The new targets C
and E correspond to HIV-1 gag and untranslated leader
(ldr) sequences (Figure 1A). The introduced point muta-
tions mimic the sequence variation observed in RNAi-
escape virus variants (22). Each target in ACDEm1 has a
single point mutation either at position 6 or 8, which does
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not affect base pairing with the miRNA ‘seed region’.
Each target in ACDEm2 has a point mutation at position
15, which is in the centre of the ‘seed region’. This set of
reporters was subsequently tested with the antiviral
miRNA polycistron miACDE that encodes four active
miRNAs against wild-type HIV-1 (15). For comparison,
we used the construct shACDE that encodes four shRNAs

against the same targets (24). We titrated the amount of
miRNA and shRNA constructs in co-transfection with the
ACDEwt reporter in HEK 293T cells to obtain similar
inhibitory activities (Figure 4B). The normalized firefly
luciferase expression in the absence of inhibitor was set
at 100%. We observed potent inhibition of ACDEwt by
miACDE and only a slightly reduced inhibition of the
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mutant reporters ACDEm1 and ACDEm2 (Figure 4B, left
panel). Similarly, we observed potent inhibition of the
ACDEwt and mutant ACDEm1 and ACDEm2 reporters
by shACDE (Figure 4B, right panel). These findings show
that artificial antiviral miRNAs and shRNAs can inhibit
the expression of luciferase reporters that contain multiple
partially complementary sequences within the 30 UTR.
We then wondered whether miRNA-induced silencing

of a single target is differently affected by a point mutation
when it is located in the 30 UTR. To test this, we
co-transfected the same set of wild-type and mutant
luciferase reporters (ACDEwt, mutants ACDEm1 and
ACDEm2) with miA2 or shA into HEK 293T cells. We
again titrated the amount of miRNA and shRNA con-
struct to obtain equal inhibitory activities on the wild-
type reporter. Normalized firefly luciferase expression in
the absence of inhibitor was set at 100%. Potent inhibition
of the wild-type luciferase reporter was observed for the
miA2 construct. Luciferase silencing was only marginally
affected by mutation of target A at position 8 or 15 in
mutant reporter ACDEm1 or ACDEm2 (Figure 4C, left
panel). Inhibition by shA seemed more sensitive to the
introduced target mutations, especially for mutant m1

(Figure 4C, right panel). In fact, this trend was also
witnessed in the shACDE context (Figure 4B, right panel).
We next examined whether the same trend could be
observed using an miRNA and shRNA against target D.
Luciferase silencing was significantly affected by mutation
of target D at position 8 in the mutant reporter ACDEm1

and in particular by the mutation at position 15 in mutant
reporter ACDEm2 (Figure 4D). The knockdown
efficiencies were similarly affected by the miD and shD

inhibitors. Consistent with the target A results, partial
inhibition was retained upon mutation of the target
sequence suggesting that shRNAs and artificial miRNAs
can exhibit mutation-tolerance when targeting multiple as
well as single sites within the 30 UTR of mRNAs.

Targets in the 3’ UTR of the HIV-1 RNA genome for
miACDE and shACDE

Our findings suggest that designed miRNAs can function
like cellular miRNAs by partial base pairing with multiple
targets in the 30 UTR. We therefore wondered whether the
antiviral mi/siRNAs derived from the miACDE and shACDE

constructs could repress HIV-1 gene expression by
targeting putative miRNA target sites within the HIV-1
30 UTR. To study this, we used the miRanda algorithm to
predict potential target sites in the 30 UTRs of all spliced
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HIV-1 transcripts for each individual siRNA expressed
from these constructs (39). The perfect complementary
siRNA targets for miACDE and shACDE are depicted in
the HIV-1 genome (Figure 5, upper part). Interestingly,
the miRanda algorithm found multiple potential target
sites in the 30 UTR for each individual siRNA, depicted
as colored squares in Figure 5. We focused on the 30 UTR
domain that is shared by all HIV-1 transcripts (40),
marked in Figure 5, and blown up in the lower panel.

To determine the functionality of the putative miRNA
targets, we cloned these sequences as 30 UTR in luciferase
reporter constructs. To study the impact of the multitude
of target sites on the knockdown efficiency of the antiviral
miRNA polycistron, we constructed three luciferase
reporter constructs with different 30 UTR domains:
Luc-I, Luc-II and the combined segment Luc-III
(Figure 5, lower panel). Luc-I and Luc-II contain appro-
ximately the same number of target sites, but the targets in
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of the three luciferase constructs by miA2 and shA was determined by co-transfection. Luciferase expression in the presence of pBS was set at 100%.
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Luc-I are dispersed, whereas the target sites in Luc-II are
clustered. Luc-III combines the putative target sites
encoded by Luc-I and Luc-II. We co-transfected the
three luciferase reporter constructs with the antiviral
miACDE and shACDE constructs into HEK 293T cells. As
controls, we included the individual miRNA or shRNA
constructs. Normalized firefly luciferase expression in the
absence of inhibitor (pBS control) was set at 100%. As a
negative control, we used a construct expressing a
scrambled hairpin (hSCR). We did not detect knockdown
of the Luc-I reporter construct by the individual miRNA
or shRNA constructs (Figure 6A). Targeting of multiple
targets by miACDE or shACDE also did not result in
knockdown of luciferase expression. Similarly, we did
not detect significant inhibition of the Luc-II reporter
by miACDE or shACDE (Figure 6B).
Finally, we assessed whether the antivirals were able to

inhibit Luc-III that encodes all putative 30 UTR targets of
HIV-1 RNA. We observed up to 60% inhibition of report-
er gene expression by all single miRNA constructs and all

shRNA constructs except shE (Figure 6C). The combined
expression of multiple antiviral miRNAs by miACDE did
not further enhance the inhibition of Luc-III compared to
the single miRNA constructs. In contrast, shACDE resulted
in enhanced knockdown of Luc-III compared to the
individual shRNA constructs. To test whether inhibition
of Luc-III was sequence-specific, we performed the same
experiment with single wild-type miRNA controls
(Awt,Bwt,Cwt,Dwt,Ewt and Awt-Ewt (Figure 6D). The
scrambled hairpin hSCR was used as negative control
and shACDE as positive control that yielded �50% knock-
down. We did not observe any significant knockdown of
the Luc-III reporter with the individual wild-type
miRNAs and the wild-type Awt-Ewt cluster.

DISCUSSION

A major challenge to obtain durable HIV-1 inhibition
by means of induced RNAi is the prevention of viral
escape via the selection of RNAi-resistant virus variants.

gag
pol

vif
vpr env

tat

rev

vpu5′ LTR 3′ LTR

nef

A

E

siRNA
targets 

AAA
Gag/Pol (~9 kb)

AAA
Env/Vif/Vpr/Vpu (~4 kb)

AAA
Tat/Rev/Nef (~2kb) 

miA

miC

miD

miE

miRNA
targets 

nef

env

Luciferase
reporters 

I

II

III

C

D

Figure 5. Putative miRNA target sites in the HIV-1 30 UTR for miACDE and shACDE. The HIV-1 genome is shown with the perfect target sites for
miACDE and shACDE depicted in different colors. Putative miRNA target sites (color-coded) were predicted by computational analysis. Three
luciferase reporter constructs were generated with part of all putative 30 UTR targets.
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Both shRNAs and artificial miRNAs have been used to
induce antiviral RNAi. These antiviral molecules are usu-
ally designed to cleave fully complementary viral target
mRNAs. In this study, we set out to test whether artificial
miRNAs and shRNAs can repress HIV-1 gene expression
by targeting partially complementary viral sequences.
Cellular miRNAs allow mismatches with their 30 UTR
targets for translational repression. Therefore, translation-
al inhibition of viral gene expression by artificial miRNAs
may be sustained on viral escape variants that have
acquired point mutations within the target sequence. To
test if a durable therapy can be designed in this manner,
we tested inhibition of wild-type and RNAi-escape HIV-1
variants by miRNA and shRNA constructs (15,16).
Depending on the target sequence, we observed a rela-

tively strong (up to 60%) RNAi-mediated inhibition of
HIV-1 escape viruses by both the miRNAs and shRNAs
that target well-conserved sequences in viral open reading
frames, despite the use of low amounts of inhibitory
constructs. Although RNAi-escape viruses were previous-
ly shown to replicate in the presence of the specific RNAi
inducer, their replication is in some cases delayed (21).
Moreover, escape viruses that have acquired a single
point mutation can also acquire additional mutations
over time (21). These results suggest that partially comple-
mentary sequences are still targeted and that the virus
needs to acquire additional mutations to optimize its
resistance phenotype. Consistent with these results, other
studies have reported that mismatched siRNAs or
miRNAs resulted in a significant degree of translational
repression when mRNAs contain target sequences in the
coding region of non-viral genes (41–43). One study
reported that reduced protein expression was still
observed when up to four clustered mismatches were pre-
sent in the centre of the duplex between the siRNA and
the target (41). Another possibility is that HIV-1 can
tolerate RNAi pressure, despite the fact that partially
complementary target sequences are significantly targeted.
This may be due to the expression of the viral RNAi
suppressor protein Tat (44–46). However, it is currently
unknown to what extent RNAi suppressors interfere with
RNAi therapeutics (1).
Efficient miRNA-mediated inhibition requires targeting

of multiple partially complementary sites within the 30

UTR of mRNAs. Therefore, we also tested the miRNA-
and shRNA-mediated inhibition on luciferase reporters
with multiple target sites in the 30 UTR. We found that
shRNA- and miRNA-induced gene repression was only
slightly reduced when a point mutation was introduced
in the target sites. We observed similar effects when the
luciferase reporters were attacked by a single inhibitor.
These combined results indicate that designed miRNAs
and shRNAs can function like cellular miRNAs by
acting on imperfect targets in the 30 UTR. Although
miRNAs and shRNAs have been shown to be functionally
interchangeable for inducing translational repression or
mRNA cleavage (47,48), miRNAs also have greater
inhibitory efficiency compared to conventional shRNAs
(15,17,49,50). This is mainly due to the fact that
miRNAs are better substrates for the RNAi machinery
than shRNAs (50). Another possibility is that miRNA
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Figure 6. Validation of putative 30 UTR targets for miACDE and
shACDE. (A) HEK 293T cells were co-transfected with 100 ng Luc-I
reporter, 1 ng pRL and 100 ng of the hairpin RNA constructs.
Luciferase expression in the presence of pBS was set at 100%. The
scambled hairpin hSCR was included as a negative control. (B, C).
As described for (A), but instead Luc-II or Luc-III was used.
(D) As described for (C), but now wild-type miRNA controls were
used (Awt, Bwt, Cwt, Dwt and Ewt and Aw–Ewt) to test the sequence-
specificity. As a positive control, the shACDE was used. Averages and
SDs represent four independent transfections.
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mimics are more efficient in activating translational
repression because they are processed via the natural
miRNA pathway, whereas shRNA processing skips the
Drosha cleavage step. Furthermore, there may be func-
tional differences between a RISC complex loaded with
a miRNA or siRNA. Cellular miRNAs and endogenous
siRNAs can interact with one or more of the four
Argonaute proteins (Ago1–4) (51,52), and it currently
remains unclear whether these inhibitors show distinct
binding preferences (53).
In general, we observed more potent inhibition when

the target was located in the 30 UTR of a reporter
transcript. However, it is difficult to directly compare the
levels of inhibition when targeting an open reading frame
versus the same target sequence within the 30 UTR.
Consistent with our results, a recent report showed that
the knockdown efficiency is significantly reduced when a
miRNA partially base pairs with a target in the open read-
ing frame compared to the regular 30 UTR position (54).
Interestingly, the same study demonstrated that the
knockdown efficiency of a perfectly base paired miRNA
is not affected by the target position. These results indicate
that the effectivity of miRNA-mediated gene repression is
dependent on the location of the target.
Via computational analysis, we identified multiple

putative miRNA targets within the HIV-1 30 UTR for
our combination inhibitory molecules, the four shRNA
construct shACDE (24) and the miACDE polycistron that
encode four antiviral siRNAs or miRNAs (15). Using
luciferase reporters with these 30 UTR targets, we found
that the reporter with the maximum number of targets was
inhibited up to 60% by both antiviral miRNAs and
shRNAs. In contrast, reporters bearing less target sites
could not be inhibited by the miRNAs or shRNAs. This
finding suggests that the presence of multiple target sites in
the complete 30 UTR of HIV-1 may allow additional
inhibition by the antiviral miRNA molecules. It is import-
ant to note that there are other critical factors that influ-
ence the inhibition by miRNAs and siRNAs, including
RISC accessibility of the targets and the distance between
the target sites (55–59). Thus, the presence of multiple
partially complementary target sites in the 30 UTR of
mRNAs does not necessarily result in knockdown of
these mRNAs. It is therefore needed to experimentally
validate the targets. Nonetheless, these results suggest
that potential off-target effects on sites of bystander
mRNAs is a genuine concern for the development of
any RNAi-based gene therapy. This off-targeting risk
should be critically assessed in relevant in vivo models
prior to an eventual clinical application (1).
It has recently been shown that cellular miRNAs can

target and inhibit the expression of viral transcripts.
Although these miRNAs are only partially complemen-
tary to the viral mRNAs, they have a profound inhibitory
effect on viral gene expression and consequently viral
replication (31–33). In case of HIV-1, multiple cellular
miRNAs were shown to contribute to viral latency by
targeting multiple sites in the 30 UTR (31). Furthermore,
HIV-1 is able to change (i.e. reduce) the miRNA expres-
sion profile of infected cells (60). In this study, we show
that antiviral miRNAs and shRNAs can effectively target

putative miRNA targets in the HIV-1 30 UTR, resulting in
reduced gene expression. Naturally occurring virus-
encoded miRNA target sites are retained within the viral
genome despite the fact that they contribute to reduced
viral replication. Similarly, therapeutic miRNAs may pro-
vide a modest inhibition of viral gene expression that
does not easily trigger the emergence of escape variants,
allowing a sustained attenuation of virus replication over
an extended period. For the design of such an miRNA
therapy, one should preferentially target multiple
sequences within the 30 UTR.

In conclusion, we present data that both antiviral
miRNAs and shRNAs can repress gene expression via
partially complementary target sequences in the 30 UTR
and to a lesser extent in the open reading frame. Potent
knockdown was observed for miRNAs and shRNAs that
bind to a single target or multiple targets with one or two
mismatches in the 30 UTR of a reporter transcript.
Multiple imperfect target sites in the 30 UTR are required
to obtain a significant knockdown efficiency of miRNAs
and shRNAs. These findings indicate that designed
miRNAs and shRNAs can function like cellular
miRNAs on imperfect targets in the 30 UTR. Targeting
multiple viral sequences in the 30 UTR by antiviral
miRNAs or shRNAs may provide a successful alternative
RNAi strategy for durable suppression of escape-prone
viruses.
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