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CONDITIONAL AGES AND RESIDUAL SERVICE TIMES
IN THE M/G/1 QUEUE

Ivo Adan1 and Moshe Haviv2

1Department of Mathematics and Computer Science, Technische Universiteit Eindhoven,
Eindhoven, The Netherlands
2Department of Statistics, The Hebrew University of Jerusalem, Jerusalem, Israel

� In the article we study the M/G/1 queue, and collect results on the age, residual, and
length of service, conditional on the number of customers present in the system. Special attention
is given to the M/M/1 queue.

Keywords Conditional distribution; Single-server queue.

Mathematics Subject Classification 60K25; 90B22.

1. INTRODUCTION

Consider the standard M/G/1 queueing model. The queueing regime
can be any nonpreemptive, work-conserving, and nonanticipating one.
For example, it can be first-come, first-served. It is well known that under
stationary conditions, the age and residual of the service length of the
customer who is currently receiving service are distributed according
to the equilibrium distribution of the service time. That is, if G(x) is
the cumulative distribution function of the service length and x̄ is the
corresponding mean, the common density function of the age and the
residual of the service length is (1 − G(x))/x̄ . However, if additional
information is available, such as the number of customers currently
present in the system, this is no longer true.

There is, of course, an interest in these conditional distributions.
For example, customers who observe the queue length upon arrival and
have to decide whether or not to join queue, need to assess the residual

Received June 23, 2008; Accepted August 25, 2008
Address correspondence to Dr. Ivo Adan, Department of Mathematics and Computer Science,

Technische Universiteit Eindhoven, P.O. Box 513, Eindhoven 5600 MB, The Netherlands; E-mail:
iadan@win.tue.nl

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
e
i
t
 
v
a
n
 
A
m
s
t
e
r
d
a
m
]
 
A
t
:
 
0
7
:
2
0
 
5
 
J
u
l
y
 
2
0
1
0



Conditional Ages and Residual Service Times in the M/G/1 Queue 111

service time of the one in service (on top of how many are in the queue)
in order to be able to estimate their future waiting time; see Ref.[10] on
the behavior of a “smart” customer, and Refs.[1,5,8] for noncooperative
games resulting when all customers become smart. Also, there might be an
interest in assessing the age of service, when service is given in phases, and
each phase is performed by a different processor. Hence, knowledge or
estimation of the age can be utilized in order to set the required processor
on time. There is also an interest in assessing the total service time of the
one in service (which in fact equals the age plus the residual). This is, for
example, the case when customers are paying some amount for service,
which is a function of the actual service length.

In this article we derive the density function and the Laplace-Stieltjes
transform (LST) of the conditional age, residual, and length of service,
given the number of customers in the system. Special attention is given
to the case where it is assumed additionally that service times follow
an exponential distribution. Some of the reported results are known,
but in this article, all is put in one unified form. In particular, short,
straightforward, and probabilistic proofs will be given.

The article is organized as follows. First, in Section 2 we present some
preliminaries needed for our derivations. In Section 3 we deal with the
conditional age, while in Section 4 we do the same regarding the residual
service time. Section 5 comes with the conditional total service time. Some
concluding remarks and ideas for future research are given in Section 6.

2. MODEL

We consider the standard M/G/1 queue. Specifically, to a single server
queue, there is a Poisson arrival process whose rate is denoted by �. Service
times are independent and their common distribution function is denoted
by G(·) with density g (·). The mean service time is denoted by x̄ , and LST
of G(·) is

G̃(s) =
∫ ∞

x=0
e−sxg (x)dx , Re(s) ≥ 0� (1)

Service is granted on a first-come, first-served basis. As always, for stability,
we require that

� = �x̄ < 1,

and we assume that the system is in steady-state. Denote by Q the total
number of customers in the system (including the one in service) and
let �n be the steady state probability that Q = n, n ≥ 0. Recall that these
probabilities are also applicable at arrival and departure instants. It is well
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112 Adan and Haviv

known that �0 = 1 − �. The probability generating function (PGF) of �n is
denoted by

P (z) = E(zQ ) =
∞∑
n=0

�nzn , |z| ≤ 1� (2)

Also, the well-known Pollaczek–Khinchin formula relates the above two
transforms (1) and (2) via the following formula:

P (z) = (1 − �)
(1 − z)G̃(�(1 − z))

G̃(�(1 − z)) − z
� (3)

Further, let Q + denote the conditional number of customers in the system,
given that the server is busy, that is, Q + = Q |Q > 0, so

P(Q + = n) = �n

1 − �0
= �n

�
, n ≥ 1�

We denote by A and R the random variables that are the age and
residual, respectively, of the service length of the customer who is currently
receiving service. Finally, let L = A + R be the total length of the service
requirement of this customer. We like to remind the reader that A and R
are identically distributed (but of course they are not independent). Their
density function is fA(x) = fR(x) = (1 − G(x))/x̄ , valid for x ≥ 0. Hence,
their LST equals

R̃(s) = Ã(s) = E(e−sA) =
∫ ∞

x=0
e−sx fA(x)dx = 1 − G̃(s)

sx̄
�

The joint density of A and R is fA,R(x , y) = g (x + y)/x̄ and the joint LST is

J̃ (s, t) = E(e−sA−tR) = G̃(t) − G̃(s)
(s − t)x̄

�

The density function of L equals fL(x) = xg (x)/x̄ and its LST is

L̃(s) = − G̃ (1)(s)
x̄

,

where the notation f (n)(·) denotes the nth derivative of the function f (·).
Initiating with �0 = 1 − �, the rest of the limit probabilities can be

computed via the well-known recursion (see, e.g., Ref.[12], p. 178),

�i+1 = 1
�0

(
�i − �0�i −

i∑
j=1

�j�i+1−j

)
, i ≥ 0 (4)
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Conditional Ages and Residual Service Times in the M/G/1 Queue 113

where �i stands for the probability that exactly i customers arrive during a
single service time. In other words,

�i =
∫ ∞

t=0

(�t)i

i! e−�t g (t)dt , i ≥ 0�

Note that �0 = G̃(�), which, coupled with (4) for i = 0, leads to

�1 = �0
1 − �0

�0
= (1 − �)

1 − G̃(�)

G̃(�)
� (5)

An alternative to recursion (4), avoiding subtractions, is (see, e.g., Ref.[11])

�i+1 = 1
�0

(
�0�i +

i∑
j=1

�j�i+1−j

)
, i ≥ 0 (6)

where �i = ∑∞
j=i+1 �j .

In the next section we will start to study the conditional age.

3. CONDITIONAL SERVICE AGE

Let fA |Q+=n(·) denote the conditional density of the age of service
given Q + = n, n ≥ 1, customers are present in the system (including the
one in service). We next give an explicit expression for it for any n ≥ 1.
This result appeared in Ref.[2], but below a shorter and more revealing
proof is provided. Also, in the case where n = 1, expression (9) below
agrees with Ref.[12] (p. 392). The proof is based on the following simple
observation which is encapsulated in Lemma 3.1. We use Q b to denote
the number of customers that were in the queue at the instant of the
commencement of the current service, including the one being served.

Lemma 3.1. The probability distribution of Q b is equal to

P(Q b = 1) = �0 + �1, P(Q b = n) = �n , n ≥ 2� (7)

moreover, Q b is independent of A and R.

Proof of Lemma 3.1. First recall that the distribution of the number at
departure instants is the same as the distribution at a random time. Then,
with the exception of Q b = 1, the one who commences service sees Q b

customers (including himself), which is as many as left behind by the
previously serviced customer. The case where Q b = 1 is possible when the
previously serviced customer leaves behind zero or one customer. The
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114 Adan and Haviv

independence of A and R is obvious, as the service time does not depend
on the number in the system upon this service commencement. �

Theorem 3.1. The conditional density of the age fA |Q+=n(·), n ≥ 1, equals

fA |Q+=n(a) = �

�n
fA(a)

[
(1 − �)

(�a)n−1

(n − 1)! +
n∑

i=1

�i
(�a)n−i

(n − i)!
]
e−�a , a ≥ 0� (8)

In particular,

fA |Q+=1(a) = �

1 − G̃(�)
fA(a)e−�a = �

1 − G(a)

1 − G̃(�)
e−�a � (9)

Proof of Theorem 3.1. For any n ≥ 1,

fA |Q+=n(a) = fA(a)P(Q + = n |A = a)
P(Q + = n)

�

Note first that P(Q + = n) = �n/�. Hence, it remains to determine P(Q + =
n |A = a). In order to have n customers in the system at this stage
of service, there must have been i customers there upon this service
commencement for some i , 1 ≤ i ≤ n. Clearly,

P(Q + = n |A = a) =
n∑

i=1

P(Q b = i)e−�a (�a)
n−i

(n − i)! , n ≥ 1� (10)

Substituting equation (7) completes the proof. Finally, the special
expression for n = 1 is based on (5) above. �

Remark 3.1. From equation (8), we can see that in order to determine
fA |Q+=n(a), one needs to have in hand the values of �i , 0 ≤ i ≤ n.
In particular, there is no need to compute in advance the entire stationary
distribution of Q in order to compute this conditional density. This is
of particular importance, since the vector �i , i ≥ 0, can be computed
recursively, initiating with �0 = 1 − � as can be seen by equations (4)
or (6).

Example 3.1 (M/M/1). In the special case where service is exponen-
tially distributed with rate �, �i = (1 − �)�i , i ≥ 0 and fA(a) = �e−�a ,
equation (8) equals

fA |Q+=n(a) = �e−(�+�)a (�a)
n−1

(n − 1)! + �e−(�+�)a
n∑

i=1

(�a)n−i

(n − i)! � (11)
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Conditional Ages and Residual Service Times in the M/G/1 Queue 115

Also, since G̃(s) = �/(� + s), and hence G̃(�) = 1/(1 + �), equation (9)
equals

fA |Q+=1(a) = (� + �)e−(�+�)a , (12)

namely, in the case of an empty queue, the service age of the one in
service follows an exponential distribution with parameter � + �. Note that
equation (12) agrees with Ref.[12] (p. 392).

Using the identity∫ ∞

a=0
an−i e−(�+s)a fA(a)da = (−1)n−i Ã(n−i)(� + s),

it is now straightforward to find the LST of A |Q + = n, resulting in the
following corollary.

Corollary 3.1. The LST of A |Q + = n equals

E(e−sA|Q + = n) =
∫ ∞

a=0
e−sa fA |Q+=n(a)da

= �

�n

[
�0

(−�)n−1

(n − 1)! Ã
(n−1)(� + s) +

n∑
i=1

�i
(−�)n−i

(n − i)! Ã
(n−i)(� + s)

]
�

Example 3.2 (M/M/1). In this case the LST of the age, given a queue
length of n, n ≥ 1, equals

E(e−sA|Q + = n) = �1−n

[
��n−1

(� + � + s)n
+

n∑
i=1

�i ��n−i

(� + � + s)n−i+1

]
�

The following result gives the joint transform of A and Q +.

Theorem 3.2. For Re(s) ≥ 0, |z| ≤ 1, the joint transform of A and Q + is

E(e−sAzQ
+
) = (�0(z − 1) + P (z)) Ã(�(1 − z) + s) (13)

= (1 − �)zÃ(�(1 − z) + s)

1 − �Ã(�(1 − z))
� (14)

Proof of Theorem 3.2. Recall that Q b denotes the number of customers
present upon the service commencement. The number of Poisson arrivals
during the age A is denoted by N (A). Then, Q + = Q b + N (A), where, by
Lemma 3.1, Q b is independent of N (A) and A. Hence,

E(e−sAzQ
+
) = E(e−sAzN (A))E(zQ

b
)� (15)
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116 Adan and Haviv

By (7) we have

E(zQ
b
) =

∞∑
i=1

P(Q b = i)zi = �0(z − 1) + P (z)� (16)

Then equation (13) readily follows by substitution of equation (16) into
equation (15), together with

E(e−sAzN (A)) =
∫ ∞

a=0
e−saE(zN (a))fA(a)da

=
∫ ∞

a=0
e−sa e−�a(1−z)fA(a)da

= Ã(s + �(1 − z)),

where the second equality is based on the observation that N (a) is Poisson
distributed with mean �a, the PGF of which is equal to e−�a(1−z). By use of
equation (3), which can be rewritten as

P (z) = (1 − �)G̃(�(1 − z))

1 − �Ã(�(1 − z))
, (17)

version (14) readily follows. �

Example 3.3 (M/M/1). In the M/M/1 case, formula (14) reduces to

E(e−sAzQ
+
) = (�z − �z)(� + � − �z)

(� − �z)(� + � − �z + s)
�

By differentiating equation (14) with respect to s, multiplying by −1
and setting s = 0 yields

E(AzQ
+
) =

∞∑
n=1

E(A;Q + = n)zn

= −(1 − �)zÃ(1)(�(1 − z))

1 − �Ã(�(1 − z))
� (18)

In special cases, transform (18) can be inverted to obtain the conditional
expectations:

E(A |Q + = n) = E(A;Q + = n)
P(Q + = n)

�

One example, when the service time follows an exponential distribution,
is given next.
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Conditional Ages and Residual Service Times in the M/G/1 Queue 117

Example 3.4 (M/M/1). For the M/M/1 with arrival rate � and service
rate � we have

G̃(s) = Ã(s) = �

� + s
, �n = (1 − �)�n , n ≥ 0,

and substitution in equation (18) gives

E(AzQ
+
) = −(1 − �)z −�

(�+�(1−z))2

1 − � �

�+�(1−z)

= (1 − �)z
�(1 − �z)(1 + �(1 − z))

= 1 − �

��

{
1

1 − �z
− 1

1 − �z/(1 + �)

}
�

Hence,

E(A;Q + = n) = (1 − �)�n−1 1
�

(
1 − 1

(1 + �)n

)
, n ≥ 1�

Dividing by P(Q + = n) = (1 − �)�n−1 for n ≥ 1, we conclude that

E(A |Q + = n) = 1
�

(
1 − 1

(1 + �)n

)
, n ≥ 1� (19)

Hence, the more customers present, the longer the mean service age is.
Also, the unconditional mean age equals

E(A)=
∞∑
n=1

E(A |Q + =n)P (Q + =n)=
∞∑
n=1

1
�

(
1− 1

(1+ �)n

)
(1− �)�n−1 = 1

�
�

Note that the value for E(A) here is not solely due to the memoryless
property of service times, but rather due to the time-reversibility of
the M/M/1 queue (see also the second proof of Theorem 3.1.1).
Specifically, when the orientation of time is reversed, the M/M/1 queue
behaves statistically the same (under steady-state conditions). Thus, ages
in the original process correspond to residual service times in the
time-reversed process, which now by the memoryless property, follow the
exponential distribution with parameter �. For more on the concept of
time-reversibility, see Ref.[6].

Remark 3.2. It is clear from equation (8) that the joint probability-
density function p(n, a) for the pair (n, a), assuming (but not
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118 Adan and Haviv

conditioning) n ≥ 1, equals

p(n, a) = P(Q = n)fA |Q=n(a)

= �nfA |Q+=n(a)

= �fA(a)
[
(1 − �)

(�a)n−1

(n − 1)! +
n∑

i=1

�i
(�a)n−i

(n − i)!
]
e−�a , a ≥ 0�

An alternative result is given in Ref.[12] (pp. 388–392). Specifically, let

G(z, a) =
∞∑
n=1

p(n, a)zn , |z| ≤ 1, a ≥ 0�

Then, it is shown in Ref.[12] that

G(z, a) = G(z, 0)e−�(1−z)a(1 − G(a)), |z| ≤ 1, a ≥ 0

where

G(z, 0) = (1 − �)
�z(1 − z)

G̃(�(1 − z)) − z
�

In the following subsection we show that, for the special case of the
M/M/1 queue, the density of the conditional age can be found directly by
employing probabilistic arguments.

3.1. Conditional Age for the M/M/1

In this section, we consider the special case of exponential service times
with rate �. For the result, two proofs are presented.

Theorem 3.1.1. In an M/M/1 queueing system with an arrival rate of � and
a service rate of �, the conditional age of service A|Q + = n is distributed as

A|�Q + = n	 d= min�Y ,Z (n)	, n ≥ 1, (20)

where the random variables Y and Z (n) are independent, Y is exponentially distri-
buted with parameter �, and Z (n) is Erlang-n distributed with scale parameter �.

Proof 1 of Theorem 3.1.1. This proof is by direct verification. First note
that

P(min�Y ,Z (n)	 ≥ a) = P(Y ≥ a)P(Z (n) ≥ a) = e−�a
n−1∑
i=0

e−�a (�a)
i

i! �
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Conditional Ages and Residual Service Times in the M/G/1 Queue 119

Differentiating and multiplying by −1 yields for the density function of
min�Y ,Z (n)	 that

fmin�Y ,Z (n)	(a) = �e−�a
n−1∑
i=0

e−�a (�a)
i

i! + e−�a�e−�a (�a)
n−1

(n − 1)! (21)

which in fact coincides with equation (11). �

Proof 2 of Theorem 3.1.1. The proof of Theorem 3.1.1 is technical and
hence does not reveal why equation (20) holds. However, this equation
immediately follows from the time-reversibility property that is possessed
by the M/M/1 system. In the time-reversed queue-length process, every
arrival corresponds to a departure in the original process and vice versa.
Moreover, in an M/M/1 queue, the time-reversed queue-length process
is statistically identical to the original process (i.e., the M/M/1 queue
process is time-reversible). Now suppose there are n customers in the
system, for some n ≥ 1. Then the age of the one in service is, in the
time-reversed process, the residual of the interarrival time (which is
exponentially distributed with parameter �). This is true, except when
the residual interarrival time is greater than the sum of the (residual)
service times of the n customers currently in the system. In this case, the
age is the sum of these n service times. Thus, since exponential random
variables are memoryless, we can conclude that the age is the minimum
of an exponential random variable with parameter � and the sum of
n independent and exponential random variables, each of which with
parameter �. �

The representation in Theorem 3.1.1 leads to the mean conditional
age, and this result already appeared in equation (19). This result is now
restated and two more proofs are given below.

Theorem 3.1.2. In an M/M/1 queueing system with an arrival rate of � and
a service rate of �, the mean conditional age equals

E(A |Q + = n) = 1
�

− 1
�

1
(1 + �)n

, n ≥ 1� (22)

In particular, E(A |Q + = n) is increasing in n.

Proof 1 of Theorem 3.1.2. Denote E(A |Q + = n) by an , n ≥ 1. Suppose
there are n customers in the system and consider the time-reversed
process. Then an is the expected time until the first arrival or until the
system is empty, whichever happens first. Clearly, the expected time until
the first event is 1/(� + �). The event is an arrival with probability �/(� +
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�), and it is a departure with probability �/(� + �), in which case n − 1
customers remain in the system. Hence, by conditioning on the first event,
we get the recursion

an = 1
� + �

+ �

� + �
an−1, n ≥ 1 (23)

where a0 = 0. In particular, a1 = 1/(� + �). This is a system of difference
equations. A particular solution to this system is the constant 1/� and the
solution to the homogeneous system is �n/(� + �)n , n ≥ 1. Thus,

an = 1
�

+ C
�n

(� + �)n
, n ≥ 1,

for some constant C . As a1 = 1/(� + �), we conclude that C = −1/�.
This completes the proof. �

Remark 3.1.1. Alternatively, it is possible to prove that the expression
in equation (22) solves equation (23) uniquely by use of an induction
argument initiating with a1 = 1/(� + �).

Proof 2 of Theorem 3.1.2. Theorem 3.1.2 can also be proven by
straightforward integration:

E(A |Q + = n) =
∫ ∞

a=0
afA |Q+=n(a)da,

where fA |Q+=n(a) can be read from equation (21). However, it is even
simpler to use

E(A |Q + = n) = E(min�Y ,Z (n)	)

= E(Y ) − E(Y − Z (n) |Y > Z (n))P (Y > Z (n)),

where Y and Z (n) are defined in Theorem 3.1.1. From the memoryless
property of exponential random variables, we conclude that E(Y − Z (n) |
Y > Z (n)) = E(Y ) = 1/� and further that,

P (Y > Z (n)) =
(

�

� + �

)n

,

from which Theorem 3.1.2 immediately follows. �

The following is an immediate corollary of the previous theorem.
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Corollary 3.1.1. In an M/M/1 queueing system with an arrival rate of �,

lim
n→∞

E(A |Q + = n) = 1
�
�

Remark 3.1.2. The above corollary implies that in an M/M/1 queue, no
matter how long the queue is, the one in service cannot be blamed for
so far holding the server for a time longer than (on average) 1/�. Of
course, he will keep holding the server for a time which is exponentially
distributed with parameter �. Recall that the unconditional mean age is
1/� which is of course smaller than 1/�.

4. CONDITIONAL RESIDUAL SERVICE TIME

Our next step is to find the density of the residual service time,
conditioned on Q + = n, n ≥ 1. Clearly,

fR |A=a(r ) = g (a + r )
1 − G(a)

, a, r ≥ 0�

Also, given A, the random variables Q + and R are independent. Thus, with
the aid of Theorem 3.1 we get (as Ref.[2]) the following theorem.

Theorem 4.1. The conditional density of the residual service time fR |Q+=n(·),
n ≥ 1, equals

fR |Q+=n(r ) =
∫ ∞

a=0
fA |Q+=n(a)fR |A=a(r )da

(24)

= �

�n

∫ ∞

a=0

[
�0

(�a)n−1

(n − 1)! e
−�a +

n∑
i=1

�i
(�a)n−i

(n − i)! e
−�a

]
g (a + r )da, r ≥ 0�

Remark 4.1. The remark following Theorem 3.1 applies here too:
Only the stationary probabilities �i , 0 ≤ i ≤ n, are needed to compute
fR |Q+=n(r ).

Remark 4.2. For an alternative recursion to compute these conditional
densities and their LSTs, which does not call for the prior computation of
any stationary probabilities, see Ref.[7]. In fact, the recursion in Ref.[7] holds
also for the case where the arrival rates are queue-length dependent.

Example 4.1 (M/M/1). In case of exponential service times with
parameter �, we have

g (a + r )
x̄

= g (a)g (r ),
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and then the conditional density of the residual service time given in
equation (24), simplifies to

fR |Q+=n(r ) = �

�n

[
�0�n−1 +

n∑
i=1

�i�n−i

]
g (r ),

where �i denotes the probability of i arrivals during a service time.
The term between brackets can be recognized as the probability that
a departing customer leaves behind n − 1 customers, so it equals �n−1.
Hence, using the fact that ��n−1/�n = 1 for the M/M/1 queue, we get that

fR |Q+=n(r ) = ��n−1

�n
g (r ) = g (r ),

as expected. Indeed, in the M/M/1 model, Q + and R are independent.
Hence, due to this triviality, we do not exemplify further this section’s
result for this special case.

The following result gives the joint transform of R and Q +. This
transform appeared already in Ref.[13] (but note that in Ref.[13] the
transform is with respect to Q and not Q +).

Theorem 4.2. For Re(s) ≥ 0, |z| ≤ 1, the joint transform of R and Q + is

E(e−sR zQ
+
) = (�0(z − 1) + P (z))̃J (�(1 − z), s) (25)

= (1 − �)zJ̃ (�(1 − z), s)

1 − �Ã(�(1 − z))
� (26)

Proof of Theorem 4.2. We have (see the proof of Theorem 3.2),

E(e−sR zQ
+
) = E(e−sR zQ

b+N (A)) = E(e−sR zN (A))E(zQ
b
)�

Since E(zQ
b
) = �0(z − 1) + P (z) and

E(e−sR zN (A)) =
∫ ∞

a=0

∫ ∞

r=0
e−srE(zN (a))fA,R(a, r )da dr

=
∫ ∞

a=0

∫ ∞

r=0
e−sr e−�a(1−z)fA,R(a, r )da dr

= J̃ (�(1 − z), s),

equation (25) immediately follows. As previous, the final expression
utilizes equation (17). �
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By differentiating equation (25) with respect to s, multiplying by −1
and setting s = 0 yields

E(RzQ
+
) =

∞∑
n=1

E(R ;Q + = n)zn

= �0(z − 1) + P (z)
�(1 − z)

[
x̄ − 1 − G̃(�(1 − z))

�(1 − z)

]
,

which by substituting the Pollaczek–Khinchin formula (3) reduces to

E(RzQ
+
) = (1 − �)(�z − P (z) + �0)

��(1 − z)

= 1 − �

��(1 − z)

( ∞∑
i=1

�i z −
∞∑
i=1

�i zi
)

= 1 − �

��

∞∑
i=1

�i
z − zi

1 − z
= 1 − �

��

∞∑
i=1

�i

i−1∑
n=1

zn

= 1 − �

��

∞∑
n=1

zn
∞∑

i=n+1

�i �

Hence, we obtain

E(R ;Q + = n) = 1 − �

��

∞∑
i=n+1

�i , n ≥ 1� (27)

Dividing the above quantity by P(Q + = n) (which equals �n/�), yields the
following result, which also appeared in Ref.[4,9].

Theorem 4.3. The mean conditional residual service time equals

E(R |Q + = n) = 1 − �

�

1 − hn
hn

, n ≥ 1, (28)

where hn = �n/
∑∞

i=n �i , n ≥ 0.

Note that here, as in equation (8), in order to compute E(R |Q + = n),
n ≥ 1, all is required from the stationary probabilities are the first n + 1
among them, namely, �i , 0 ≤ i ≤ n, which as denoted above, can be
computed recursively starting with �0 = 1 − �. In fact, things simplify even
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124 Adan and Haviv

further. Specifically, from equation (28), and the facts that �0 = 1 − � and
that �1 = (1 − �)(1 − G̃(�))/G̃(�) (see equation (5)), we conclude that

E(R |Q + = 1) = x̄

1 − G̃(�)
− 1

�

(an expression that already appeared in Refs.[4,5,9]). This value can serve
as an initial value for a recursive computation of E(R |Q + = n). The
recursion itself is

E(R |Q + = n + 1) = 1 − �

�

∑∞
i=n+2 �i

�n+1

= 1 − �

�

∑∞
i=n+1 �i − �n+1

�n+1

= �n

�n+1

1 − �

�

∑∞
i=n+1 �i

�n
− 1 − �

�

= �n

�n+1
E(R |Q + = n) − 1 − �

�
, n ≥ 1,

which is also derived in Ref.[7].

Remark 4.3. Theorem 4.3 is so clean, suggesting that a much simpler
derivation should be feasible. Indeed, it can be established by the
application of Little’s law as done in Ref.[4]. For the sake of completeness,
the proof is repeated here. First, Theorem 4.3 can be stated as

qn+1 = ��nE(R |Q = n) + �qn+1x̄ , n ≥ 1, (29)

where qn = ∑∞
i=n �i , namely, the probability that the number of customers

in the system is at least n, n ≥ 1. Obviously, for all n ≥ 1,

E(R |Q = n) = E(R |Q + = n)�

We next prove equation (29) using Little’s law. Specifically, consider
position n + 1 in the system (or the nth in the queue) for n ≥ 1. Note that
the server corresponds to position one. The number of customers
in position n + 1 is zero or one with probabilities 1 − qn+1 and qn+1,
respectively. Thus, the expected number in this position is qn+1. Assume
now that all cross this position (including those who find n − 1 or less
customers upon arrival and move to their right position in no time).
The arrival rate to this position is hence �. Finally, we look at the expected
time spent in this position per customer. Those who arrive and find less
than n customers in the system, a fraction of 1 − qn−1 of the customers,
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spend zero time there. A fraction �n of the customers arrive straight there
and spend an expected time of E(R |Q = n). The rest, a fraction of qn+1,
join position n + 2 or higher and hence stay in position n + 1 a full service
period, whose mean is x̄ . Thus, by Little’s law, we get

qn+1 = �(�nE(R |Q = n) + qn+1x̄),

as promised.

Remark 4.4. Denoting by Wq the queueing time (excluding service),
we have

E(Wq |Q + = n) = (n − 1)x̄ + 1 − �

�

1 − hn
hn

, n ≥ 1�

5. CONDITIONAL SERVICE LENGTH

In this section, we derive the distribution of L, the total service time
(age plus residual) for the customer currently in service given the number
of customers in the system. We like to note that as opposed to the previous
two sections, the resulting process (Q (t),L(t)), where Q (t) is the number
of customers at time t , and where L(t) is the total service requirement for
the one being served at time t , is not a Markov process.

Theorem 5.1. The conditional density of the total service time fL |Q+=n(·),
n ≥ 1, equals

fL |Q+=n(
) = g (
)e−�


�n

[
(1 − �)

(
1 −

n−1∑
i=0

(�
)i

i!
)

+
n∑

i=1

�i

(
1 −

n−i∑
j=0

(�
)j

j !
)]
(30)

Proof of Theorem 5.1. We have

fL |Q+=n(
) =
∫ ∞

a=0
fA |Q+=n(a)fL |A=a(
)da

=
∫ 


a=0
fA |Q+=n(a)fL |A=a(
)da

=
∫ 


a=0
fA |Q+=n(a)

g (
)
1 − G(a)

da,

which by equation (8) expands to

fL |Q+=n(
) = �g (
)
�nx̄

∫ 


a=0

[
(1 − �)

(�a)n−1

(n − 1)! e
−�a +

n∑
i=1

�i
(�a)n−i

(n − i)! e
−�a

]
da�
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The result now follows from the fact that

∫ 


a=0
�
(�a)n−1

(n − 1)! e
−�ada = 1 −

n−1∑
i=0

(�
)i

i! e−�
�
�

Remark 5.1. Note that fL |Q+=n(
), n ≥ 1, is also function only of �i ,
0 ≤ i ≤ n.

Remark 5.2. It is clear that

∞∑
i=1

�n

1 − �0
fL |Q+=n(
) = 
g (
)

x̄
, 
 ≥ 0�

Coupled with Theorem 5.1, this leads to the conclusion that

∞∑
n=1

[
(1 − �)

(
1 −

n−1∑
i=0

(�
)i

i!
)

+
n∑

i=1

�i

(
1 −

n−i∑
j=0

(�
)j

j !
)]

e−�
 = �
� (31)

Note that the right-hand side is not a function of the service distribution.
This, of course, should then be the case regarding the left-hand side.
However, from inspecting the left-hand side of (31), this is far from being
obvious.

Theorem 5.1 immediately leads to the LST of L |Q + = n (cf.
Corollary 3.1).

Corollary 5.1. The LST of L|�Q + = n	 is equal to

E(e−sL |Q + = n) = 1
�n

[
�0

(
G̃(� + s) −

n−1∑
i=0

(−�)i

i! G (i)(� + s)
)

+
n∑

i=1

�i

(
G̃(� + s) −

n−i∑
j=0

(−�)j

j ! G (j)(� + s)
)]

�

In the same spirit as Theorems 3.2 and 4.2, we can derive the joint
transform of L and Q +, which is presented in the following theorem.

Theorem 5.2. For Re(s) ≥ 0, |z| ≤ 1, the joint transform of L and Q + is

E(e−sLzQ
+
) = (�0(z − 1) + P (z))̃J (s + �(1 − z), s)

= (1 − �)zJ̃ (s + �(1 − z), s)

1 − �Ã(�(1 − z))
�

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
e
i
t
 
v
a
n
 
A
m
s
t
e
r
d
a
m
]
 
A
t
:
 
0
7
:
2
0
 
5
 
J
u
l
y
 
2
0
1
0



Conditional Ages and Residual Service Times in the M/G/1 Queue 127

Finally, in order to find E(LzQ
+
), one simply needs to sum up E(AzQ

+
)

and E(RzQ
+
) as they appear in equations (18) and (27), respectively

(or one can use the joint transform in Theorem 5.2).

6. CONCLUDING REMARKS

In this article, we derived for the M/G/1 queueing model, the density
functions and the LSTs of the age, residual, and length of service for
the customer who is currently in service, given the queue length behind
him. We also derived the joint transforms of the queue length with any
of these three random variables. Special treatment and analysis was given
to the M/M/1 case. Some of the reported results were known, but all has
been put in one unified form. When different proofs highlighted various
probabilistic phenomena we presented them all.

Some interesting questions are still open. For example, what are the
distributions of the age and the residual queueing time of a customer
who is in line with m customers in front of him (including the one in
service) and n behind him? True, the residual queueing time issue can
be derived from our aforementioned analysis, as it equals R |Q + = n +
m + 1 plus m − 1 independent full service times, but this is not the case
regarding the age. Another challenging problem is to consider the G/M/1
model. Of course, the residual service time is a trivial task, but this is not
the case regarding the age. In particular, distributions at arrival epochs
may differ from those at random times. Other possible questions can
relate to correlation between random variables. In Ref.[3] one can find the
correlation between Q and R . A similar question can be asked regarding
the correlation between Q and A.
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