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GLP-1 analogues: a new
therapeutic approach to prevent
ductopenia in cholangiopathies?

Ulrich Beuers," Burkhard Goke?

Incretins have attracted the attention of
the medical community for a century.'
They are secreted from the gastrointest-
inal tract into the splanchnic circulation
in response to nutrient ingestion and
enhance glucose-stimulated insulin secre-
tion.” Glucagon-like peptide-1 (GLP-1) and
glucose-dependent insulinotropic poly-
peptide (GIP) are the two incretins
identified in animals and man. They are
thought to be responsible for about
50-70% of glucose-stimulated insulin
secretion after a meal? GLP-1 has
attracted particular attention since its
identification 20 years ago because of its
potent insulinotropic activity, inhibition
of glucagon secretion, retardation of
gastric emptying and also an anorectic
effect. GLP-1 is a post-translational pro-
teolytic product of the proglucagon gene
and is formed by enteroendocrine L cells
mainly residing in the distal ileum and
colon. The effects of GLP-1 on o, B and &
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cells of pancreas islets and on other target
organs including the lung, heart, kidney,
intestine and various regions of the central
nervous system are mediated via a specific
7-transmembrane-spanning,  G-protein-
coupled GLP-1 receptor (GLP-1R).” In
pancreatic B cells, GLP-1 stimulates insulin
biosynthesis and secretion via receptor-
mediated activation of classic cAMP- and
(Ca*);-dependent signalling pathways. It
also enhances P cell proliferation via
protein kinase A (PKA)- and mitogen-
activated protein kinase (MAPK)-depen-
dent signalling, and inhibits P cell apopto-
sis  via phosphatidylinositol  3-kinase
(PI3K)- and protein kinase B (PKB)/Akt-
dependent pathways.

The active peptide, a GLP-1(7-36)
amide, is rapidly degraded to its inactive
metabolite, GLP-1(9-36) by dipeptidyl-
peptidase-4 (DPP-4, CD26), a ubiqui-
tously expressed enzyme. The plasma
half-life of GLP-1 is very short (<2 min),
making it unattractive for therapeutic
application. Therefore, promising thera-
peutic strategies in type 2 diabetes melli-
tus focus today on administration of
bioactive DPP-4-resistant GLP-1 analogues
or homologues and DPP-4 inhibitors. The
former are of particular interest as a
potent DPP-4-resistant GLP-1R agonist
isolated from lizard, exendin-4, is available

for administration as an antidiabetic drug
in humans.®

The recent identification of both GLP-1R
expression and GLP-1 secretion by prolifer-
ating cholangiocytes has set the stage for
unravelling novel and intriguing functions
of GLP-1 in the hepatobiliary tract.*
Cholangiocytes are the target of immune-
mediated attack in various chronic chole-
static hepatobiliary disorders in adults and
children which slowly progress to cirrhosis
and liver failure. Among these, primary
biliary cirrhosis (PBC) and primary scleros-
ing cholangitis (PSC) are the most frequent
adult diseases, leading to death after about
10-15 years without adequate treatment.
Chronic cholangiopathies are characterised
by increasing transdifferentiation of prolif-
erating cholangiocytes towards a neuroen-
docrine cell type.” Finally, an imbalance
occurs between enhanced cholangiocyte
death via apoptosis that prevails over
adaptive cholangiocyte proliferation result-
ing in ductopenia.® The proliferative
response of cholangiocytes as a key repair
mechanism of the liver in various types of
liver injury—arising from proliferation of
pre-existing bile ductular cells, but also
from differentiated progenitor cells’—and
their central role in fibrogenesis are appar-
ently linked to their transdifferentiation
into neuroendocrine cells and, thereby,
their ability to secrete different growth
factors, neuropeptides, hormones and cyto-
kines, in order to communicate in a
paracrine fashion with neighbouring cho-
langiocytes and other liver cells. The
proliferative response is, thereby, mediated
by neuropeptides, such as neural growth
factor (NGF), dopamine, acetylcholine,
epinephrine and calcitonin gene-related
peptide (CGRP), or neuroendocrine hor-
mones, such as growth hormone (GH)/

Gut July 2009 Vol 58 No 7


http://gut.bmj.com/
http://group.bmj.com/

Downloaded from gut.bmj.com on September 29, 2010 - Published by group.bmj.com

insulin-like growth factor (IGF) 1, oestro-
gens, prolactin and GLP-1.*°

In the present issue of Gut, Marzioni et
al (see page 990) further characterised the
potential role of GLP-1 in the polyphonic
cholangiocyte response to cholestatic
injury.” They show in an elegant series
of experiments that the stable GLP-1
agonist, exendin-4,° prevents glycocheno-
deoxycholic acid (GCDCA)-induced Bax
mitochondrial translocation, cytochrome
c release and caspase 3 activation (in other
words: bile acid-induced apoptosis) in rat
cholangiocytes in vitro via a PI3K-depen-
dent mechanism.” Furthermore, exendin-4
prevents cholangiocyte apoptosis and bile
duct loss in bile duct-ligated rats exposed
in vivo to CCly, an experimental model
of ductopenic cholangiopathies.” The
authors, thereby, substantiate their for-
mer speculation that GLP-1 analogues
might be effective in slowing down
ductopenic cholangiopathies.® Still, this
is the first rodent in vivo model of short-
term injury in which an antiapoptotic and
protective effect of GLP-1 has been
demonstrated. This in vivo model also
does not exactly reflect the liver involve-
ment in ductopenic disorders in humans.
Therefore, confirmation of these promis-
ing effects of GLP-1 in additional experi-
mental models including one mimicking
advanced chronic cholestasis is warranted.
Adverse effects of GLP-1 analogues such
as nausea and vomiting may hinder some
patients with cholestatic disorders from
obtaining long-term treatment, whereas
hypoglycaemia due to GLP-1 monother-
apy is mostly not observed. A number of
other concerns need to be addressed
before GLP-1 analogues can be considered
for clinical evaluation in patients with
cholestatic ductopenic disorders such as
PBC or PSC.

Ursodeoxycholic acid (UDCA) is the
standard treatment for PBC. Up to two-
thirds of patients show an adequate
response towards UDCA with a good
long-term prognosis not requiring addi-
tional medical treatment.® Taurine-conju-
gated UDCA (TUDCA) has potent
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anticholestatic and antiapoptotic proper-
ties.” Like exendin-4 in cholangiocytes,
TUDCA has been shown to antagonise
GCDCA-induced apoptosis in hepato-
cytes by inhibiting Bax mitochondrial
translocation,”  mitochondrial ~ cyto-
chrome c release and caspase 3 activation
in a PI3K-dependent fashion." The pro-
tective action of TUDCA on cholangio-
cytes” like that on hepatocytes’ ™ in
experimental cholestasis is mediated in
part by Ca®/cPKCa-dependent mechan-
isms, and GLP-1, like TUDCA in chole-
static hepatocytes, stimulates pancreatic
B cell secretion via Ca’-dependent
mechanisms.” Considering these potential
similarities in the mechanisms of action of
GLP-1 and TUDCA at the cellular level,
one might doubt that just the one-third of
patients with PBC who do not respond
adequately to UDCA treatment and are in
need of alternative/additive treatment
options® might adequately respond to
GLP-1 analogues. For these patients,
treatment strategies with mechanisms
of action clearly different from UDCA
conjugates might be advantageous. There-
fore, it appears crucial to demonstrate an
additive antiapoptotic and cytoprotective
effect on cholangiocytes of GLP-1 analo-
gues beyond that of UDCA amides in
experimental cholestasis before clinical
studies are designed.

Patients with other inflammatory bili-
ary diseases such as PSC and, to some
degree in adults, cystic fibrosis-associated
liver disease carry a risk of developing
cholangiocarcinoma during the long-term
course of their disease. GLP-1 analogues
exert not only antiapoptotic, but also
proliferative effects on pancreatic B cells.”
An antiapoptotic and proliferative treat-
ment strategy might be potentially harm-
ful in a disease with a lifetime risk of
10-15% of developing cholangiocarci-
noma like PSC. Thus, GLP-1 does not
appear attractive as a long-term treatment
in these disorders.

In summary, the authors are to be
congratulated for this innovative study
and their extensive previous work in this

field* ® which has unravelled a fascinating
cross-talk between the liver, bile ducts
and the gut." Still, it may become difficult
to identify the patient population which
might possibly benefit from treatment
with GLP-1 analogues. The authors know
best that there remains a long way to go.
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