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ABSTRACT

We present an efficient numerical method for integrating planetary radiation over a planetary disk, which is especially interesting for
simulating signals of extrasolar planets. Our integration method is applicable to calculating the full flux vector of the disk-integrated
planetary radiation, i.e. not only its observed flux (irradiance), but also its state of polarization (linear and circular). Including po-
larization is important for simulations of the light reflected by a planet, in particular, because this will generally be polarized. Our
integration method is based on the expansion of the radiation field of a spherical, horizontally homogeneous planet into generalized
spherical functions. With the expansion coefficients, the flux vector of the disk-integrated, reflected starlight can be obtained rapidly
for arbitrary planetary phase angles. We describe the theory behind the disk-integration algorithm and results of accuracy tests. In
addition, we give some illustrative examples of the application of the algorithm to extrasolar planets.

Key words. methods: numerical – polarization – radiative transfer – stars: planetary systems

1. Introduction

During the past decades, the spatial resolution of the obser-
vations of planets in our solar system has increased signifi-
cantly. This increase stems from planetary missions such as
Voyager, Galileo, and Cassini-Huygens, from space-bound tele-
scopes like the Hubble Space Telescope, and from the devel-
opment of ground-based adaptive optics systems. Together with
this increasing spatial resolution, the spatial resolution of numer-
ical simulations for the interpretation of observations of solar
system planets has increased, too. Consequently, efficient nu-
merical methods to integrate reflected starlight across a plane-
tary disk have received little attention lately. Recent discoveries
of extrasolar planets, however, have renewed interest in such nu-
merical integration methods.

Because extrasolar planets are very faint compared to their
parent star, and because the angular distance between a star and
an orbiting planet is very small, observing the planet itself by de-
tecting the stellar light it reflects or the thermal radiation it emits
is extremely difficult. Consequently, almost all of the known ex-
trasolar planets have been found by indirect methods, in which
not the planet itself but rather its influence on its parent star is de-
tected. Although very useful for detecting an extrasolar planet,
indirect detection methods give, however, little information on
the planet itself, apart from its mass and some orbital elements.
Information on the physical structure and chemical composition
of a planet, for example, can be derived from direct observations
of the planetary radiation. To succeed in detecting the very faint
planetary radiation, dedicated instruments and space missions

� Present address: SRON Netherlands Institute for Space Research,
Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands.
�� Present address: Statistics Netherlands (CBS), Prinses Beatrixlaan
428, 2273 XZ Voorburg, The Netherlands.

are being designed, such as the Planetfinder instrument that has
been designed for use on one of ESO’s VLTs and ESA’s Darwin
mission (Fridlund 2004) with space telescopes flying in forma-
tion and performing infrared interferometry. With Planetfinder,
the aim is not only to detect giant, gaseous extrasolar planets
but also to characterize them, i.e. to derive the chemical com-
position, sizes, and spatial distributions of the atmospheric con-
stituents, such as haze and/or cloud particles. The Darwin mis-
sion will concentrate on terrestrial extrasolar planets.

Recently, the first direct observations of extrasolar planets
have been reported (Chauvin et al. 2004, 2005; Charbonneau
et al. 2005; Deming et al. 2005). Chauvin et al. (2004) present
infrared adaptive-optics images and spectra showing water va-
por in the atmosphere of a giant planet candidate around a
brown dwarf. The observations of Charbonneau et al. (2005)
and Deming et al. (2005) concern the infrared, thermal radiation
of close-in extrasolar planets. The thermal signal of the planet
could be deduced from the combined signal of the star and the
planet by subtracting the stellar signal that was obtained at the
time the planet was occulted by its star.

Direct observations of extrasolar planets, such as the images
and spectra measured by Chauvin et al. (2004), will pertain to
disk-integrated planetary radiation for years to come. For the
numerical simulations that are used to (1) interpret such obser-
vations in terms of the physical structure and chemical compo-
sition of an extrasolar planet, and (2) fine-tune instruments for
direct detection, it is therefore essential to accurately integrate
planetary radiation over the planetary disk. Planetary radiation
consists of thermally emitted radiation and reflected starlight.
Thermal radiation that is emitted by the planet should usually be
integrated over the planetary disk as a whole, whereas the inte-
gration of reflected starlight can be limited to the region of the
disk that is illuminated by the star. Obviously, this illuminated

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20054364

http://www.edpsciences.org/aa
http://dx.doi.org/10.1051/0004-6361:20054364


670 D. M. Stam et al.: Integrating polarized light over a planetary disk

region varies with the planetary phase angle, i.e. the angle be-
tween the star and the observer as seen from the center of the
planet. Another difference between integrating thermal radiation
and reflected starlight is that thermal radiation will usually be
unpolarized, whereas reflected starlight will usually be polarized
because it has been scattered by particles in the planetary atmo-
sphere and/or it has been reflected by the planetary surface, if
present. In this article, we concentrate on the integration of the
reflected light over the planetary disk.

The disk-integration method we describe is based on the ex-
pansion method proposed by van de Hulst (1980), except that
ours is an extended version that is applicable to integrating full-
intensity vectors, thus not only the intensity but also the state of
polarization (linear and circular) of the planetary radiation over
the disk. Including the state of polarization of the light when
integrating radiation over a planetary disk significantly com-
plicates the problem, because in general both the degree and
the direction of polarization varies across the disk. The disk-
integration algorithm was first described in de Rooij (1985), and
has been used in a study of the phase function and polarization
of Titan (Stammes 1992), but has never been made available to
the general public before. Since the discovery of extrasolar plan-
ets, the recent and (most certainly) future direct detections of
these planets have renewed the interest in and need for efficient
disk-integration methods. In this paper, we describe both the the-
ory behind the disk-integration method, and a 5-step numerical
recipe for its use. In addition, we offer some illustrative exam-
ples of the application of the algorithm to extrasolar planets.

Although complicated, including polarization in the disk-
integration method is worthwhile, because it enables the numeri-
cal simulation of polarization observations of extrasolar planets,
such as those planned with an instrument like Planetfinder (Feldt
et al. 2003) on the VLT. Because polarimetry is a strong tool
both for the detection and the characterization of extrasolar plan-
ets (see Seager et al. 2000; Stam 2003; Hough & Lucas 2003;
Saar & Seager 2003; Stam et al. 2004), increased interest in the
polarization of extrasolar planets is to be expected. Even with-
out explicit polarization observations, using a vector representa-
tion of the reflected starlight instead of a scalar approximation
is important in order to obtain accurate results when calculat-
ing fluxes (Sromovsky 2005; Stam & Hovenier 2005), and when
interpreting flux observations that have been performed with a
polarization-sensitive instrument (Stam et al. 2000). In this arti-
cle, we concentrate on describing the method for integrating the
intensity and state of polarization of reflected starlight. Note that
simplifying the extended disk-integration method to integrating
intensities only, thus ignoring polarization, is straightforward.

Basically, for a given planetary phase angle, one can inte-
grate reflected starlight over a planetary disk by calculating the
intensity and state of polarization of reflected starlight at various
locations across the disk, e.g. assuming a locally plane-parallel
planetary atmosphere and/or surface, and using a cubature for-
mula to integrate them (see Horak 1950). For each phase an-
gle, this involves radiative transfer calculations for numerous
combinations of the solar zenith angle, viewing zenith angle,
and azimuthal angle. In particular when disk-integrated full-flux
vectors (fluxes and polarization) are required for a number of
phase angles, e.g. to study the planet’s phase function, such cal-
culations take huge amounts of computing time. This integra-
tion method was used to interpret the polarization of Venus by
Hansen & Hovenier (1974). Monte Carlo simulations for full-
flux vectors and various planetary phase angles will also require
huge amounts of computing time.

For our disk-integration method, we expand the azimuthal-
dependent local reflection matrix of the planet (which describes
the transformation of a locally incident beam of light into a lo-
cally reflected beam for different combinations of solar zenith
angles and viewing zenith angles) into a Fourier series. We
assume that the planet is spherical, with a plane-parallel at-
mosphere and/or surface, and that the incident light is uni-
directional. The resulting (azimuth-angle-independent) Fourier
coefficients are the actual input for the disk-integration algo-
rithm. With these Fourier coefficients, we can directly calculate
the coefficients of the expansion of the planetary scattering ma-
trix (which describes the transformation of light that is incident
on the planet into light that is reflected back to space) into gen-
eralized spherical functions that depend on the planetary phase
angle. The expansion coefficients themselves are independent of
the planetary phase angle. By substituting the expansion coef-
ficients in the series expansion with the generalized spherical
functions, the planetary scattering matrix can be efficiently ob-
tained for any value of the planetary phase angle.

The strong advantage of our disk-integration method is that
a single calculation of the local reflection matrix of the planet
(for various combinations of solar and viewing zenith angles)
suffices to obtain the disk-integrated planetary radiation for any
value of the planetary phase angle. We calculate the local reflec-
tion of a planet with an adding-doubling algorithm that directly
provides the Fourier coefficients of the expansion of the local
reflection matrix in the azimuthal angle (de Haan et al. 1987).
Obviously, the accuracy of the integration algorithm increases
with the number of solar-zenith angles and viewing-zenith an-
gles for which the local reflection matrix is calculated. However,
because the computing time also increases with the number of
angles, it is up to the user to determine the optimum number of
angles. This optimum number will also depend on the reflection
properties of the model planet (for example, a planetary model
atmosphere that only contains molecules will require fewer an-
gles to reach a given accuracy than one that contains particles
with sharp angular features in their single-scattering phase func-
tion, see Sect. 4) and the required planetary phase angles.

A disadvantage of our disk-integration method is that in its
basic version, it only handles horizontally homogeneous planets,
whereas real planets can be inhomogeneous due to e.g. bands
of clouds or a patchy surface. However, many types of asym-
metries can be simulated by a weighted sum of calculations for
different horizontally homogeneous planets, in particular when
the planet’s rotation is fast compared to the integration time of
the observation. For example, a patchy surface can be approxi-
mately accounted for by combining calculations for planets with
different surface albedos.

The outline of this paper is as follows. In Sect. 2, the nu-
merical disk-integration method is described. In Sect. 3, we test
the method by comparing its results with results from indepen-
dent, e.g. analytical, methods. Section 4 contains sample calcu-
lations of the flux and polarization of light reflected by two giant
gaseous model planets. For these sample calculations, we used
various numbers of solar zenith angles and viewing zenith angles
in the calculation of the local reflection matrix, to investigate the
influence of the number of angles on the accuracy of the integra-
tion for the two different planetary atmospheres and for different
phase angles. Section 5 contains the summary and a discussion
of the performance of the integration algorithm, both in com-
putational speed and in accuracy. Here, we will also propose a
possible further improvement in the efficiency.
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2. Numerical method

2.1. Intensity and flux vectors

The intensity and state of polarization of a quasi-monochromatic
beam of light can be described by an intensity vector I as follows
(Chandrasekhar 1950; Hovenier & van der Mee 1983; Hovenier
et al. 2004)

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I
Q
U
V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (1)

Here, Stokes parameter I is the intensity, Q and U describe
the linear polarization, and V describes the circular polariza-
tion. All the Stokes parameters of vector I have the dimension
W m−2 sr−1 Hz−1. In this paper, we also use the flux vector
πF = π [F,Q,U,V], of which all Stokes parameters have the
dimension W m−2 Hz−1.

Parameters Q and U of vectors I and πF are defined with
respect to a reference plane. In this paper, we use two types of
reference planes. First, at each given location on the planet, Q
and U are defined with respect to the local meridian plane, i.e.
the plane through the local zenith that also contains the direction
of propagation of the light. Second, when integrated over the
planetary disk, Q and U are defined with respect to the planetary
scattering plane, i.e. the plane through the centers of the star and
the planet that also contains the observer.

The orientation of the planetary scattering plane with respect
to e.g. the optical plane of an Earth-bound polarimeter depends
on the orientation of the planetary orbit. Stokes parameters can
be transformed from one reference plane to another (e.g. from a
planetary scattering plane to a polarimeter’s optical plane) using
a so-called rotation matrix L. This rotation matrix is defined as

L(β) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 cos 2β sin 2β 0
0 − sin 2β cos 2β 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2)

Angle β is the angle between the two reference planes, measured
rotating in the anti-clockwise direction from the old to the new
reference plane when looking in the direction of propagation
(β ≥ 0).

2.2. Polarization properties

From the Stokes parameters, we can derive the polarization prop-
erties of the light that is reflected by the planet. Using the pa-
rameters of intensity vector I (Eq. (1)) as an example, the total
degree of polarization of the reflected starlight is defined as

Pt =

√
Q2 + U2 + V2

I
, (3)

the degree of linear polarization, which we will concentrate on
in this paper, as

P =

√
Q2 + U2

I
, (4)

and the degree of circular polarization as

Pc =
V
I
· (5)

Similar expressions apply for the degree of polarization of flux
vector πF.

The direction of linear polarization with respect to the refer-
ence plane, χ, can be found from individual Stokes parameters
as follows

tan 2χ = U/Q. (6)

The convention is to choose the value of χ in the inter-
val 0 ≤ χ < π, and such that cos 2χ has the same sign as Q.
Assuming the planet is mirror-symmetric with respect to the
planetary scattering plane, the disk-integrated Stokes parameter
U will be zero with respect to the scattering plane (Hovenier
1970). In that case and if Q � 0, χ equals either 0 or π/2. If
U = 0, we can use an alternative definition of the degree of
linear polarization, i.e.

Ps = −Q
I
, (7)

or, for fluxes, Ps = −Q/F. With this definition, we add infor-
mation about the direction of linear polarization. Namely, for
Ps > 0, the light is polarized perpendicular to the planetary scat-
tering plane (χ = π/2), while for Ps < 0, it is polarized parallel
to this plane (χ = 0). Note that when Stokes parameters are cal-
culated or measured with respect to a reference plane other than
the planetary scattering plane, e.g. an instrumental optical plane,
U can differ significantly from zero, regardless of any mirror-
symmetry of the planet. We refer to Hovenier et al. (2004) for a
more detailed treatment of the subjects in Sects. 2.1 and 2.2.

2.3. The planetary scattering matrix

To calculate the observed flux vector of light that has been re-
flected by a spherical, horizontally homogeneous planet (thus,
intensity vectors integrated over the illuminated part of the plan-
etary disk), we describe the reflection process, analogous to scat-
tering by an ensemble of particles, by a matrix multiplication.
The vector describing the reflected flux (in W m−2 Hz−1) as re-
ceived at a distance d from the planet (where d is much larger
than the planet’s radius r), can be written as

πFr(Θ) = c S(Θ) F0. (8)

Here, Θ is the total scattering angle (0◦ ≤ Θ ≤ 180◦), πF0 the
flux vector describing the starlight that is incident on the planet,
S the so-called planetary scattering matrix, and c a constant of
normalization. The total scattering angleΘ equals 180◦−α, with
α the phase angle, i.e. the angle between the star and the ob-
server as seen from the center of the planet. The starlight that is
incident on the planetary atmosphere is assumed to be unidirec-
tional, with a flux πF0 (in W m−2 Hz−1) measured perpendicu-
larly to the direction of propagation, where F0 is the first element
of F0. Integrated over the stellar disk, the light emitted by solar
type stars can be considered to be unpolarized (see e.g. Kemp
et al. 1987). In that case, F0 is simply described by the vector
F01, with 1 the unit column vector [1, 0, 0, 0]. In principle, how-
ever, the incident stellar light can have any state of polarization.
Also, initially unpolarized stellar light can become polarized be-
fore it reaches the planet, such as when it is scattered by circum-
stellar dust. We therefore describe the disk-integration algorithm
for the most general case of arbitrarily polarized incident light.

Using the planetary scattering plane as the reference plane
and assuming a planet that is mirror-symmetric with respect to
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this reference plane, the planetary scattering matrix S is given by
(see Hovenier 1969, 1970)

S(Θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a1(Θ) b1(Θ) 0 0
b1(Θ) a2(Θ) 0 0

0 0 a3(Θ) b2(Θ)
0 0 −b2(Θ) a4(Θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (9)

Element a1 is usually referred to as the planetary phase function.
In case the incident light is unpolarized, the only elements of S
that are needed to calculate the flux vectors of the light that is
reflected by the planet are a1 and b1 (cf. Eq. (8)). In case the
incident light is unpolarized and one is only interested in the
reflected flux, only matrix element a1 is needed.

The planetary scattering matrix S is normalized so that
the average of the planetary phase function over all directions
equals the planet’s quasi-monochromatic Bond (or spherical)
albedo AB, i.e.

1
4π

∫
4π

a1(Θ) dω =
1
2

∫ π

0
a1(Θ) sin θ dθ ≡ AB, (10)

where dω is an element of solid angle. The Bond albedo is de-
fined as the fraction of incident, unpolarized starlight that is re-
flected by the planet in all directions. Thus, we can also write

AB ≡ d2

π2r2 F0

∫
4π
πFr(Θ) dω, (11)

with r the radius of the planet, and πFr the reflected flux, i.e. the
first element of flux vector πFr. Using Eq. (8), Eq. (11) can be
written as

AB ≡ c d2

π2 r2

∫
4π

a1(Θ) dω. (12)

The normalization constant c now follows from equating
Eq. (10) to Eq. (12). We thus find

πFr(Θ) =
πr2

4d2
S(Θ) F0. (13)

Thus, for a planet with a radius r and with the incident light
having a flux vector πF0, the flux vector of the reflected light
as measured at a distance d from the planet can be calculated
once the planetary scattering matrix S is known. Note that to
calculate the degree and direction of polarization of the reflected
light (Eqs. (3)−(7)) only S and F0 are required, as r and d drop
out of the equations.

To compute the planetary scattering matrix S, we express it
in terms of the reflection matrix R of a locally plane-parallel
planet.

2.4. The local reflection matrix

Given a locally plane-parallel and horizontally homogeneous
planetary atmosphere containing randomly oriented and opti-
cally inactive particles for each of which a mirror particle is
present, optionally bounded below by a homogeneous, flat, re-
flecting surface, the local reflection matrix R can be computed
with any appropriate radiative transfer algorithm. We prefer us-
ing an efficient algorithm (de Haan et al. 1987) based on the
adding-doubling method (Hovenier et al. 2004) that fully in-
cludes multiple scattering and polarization.

Directions at the top of the atmosphere are specified by the
cosine of the angle θ between the direction of propagation and
the upward vertical, µ = | cos θ|, and the azimuthal angle, φ.

The azimuthal angle is measured from an arbitrary vertical plane
and clockwise when looking up. The direction of the incident
starlight is denoted by (µ0, φ0), with µ0 = | cos θ0|, and that of
the light that is reflected towards the observer by (µ, φ). Since we
assume a horizontally homogeneous planet, only the azimuthal
difference φ − φ0 is relevant.

For a given planet model, directions µ, µ0 and angle φ − φ0,
the intensity vector of the locally reflected starlight, defined with
respect to the planetary scattering plane, is given by

I(µ, µ0, φ − φ0) = µ0, L(κ)R(µ, µ0, φ − φ0) L(κ0)F0 (14)

≡ µ0 R′(µ, µ0, φ − φ0) F0. (15)

Here, matrix R describes the local reflection of incident starlight,
with the local meridian plane (the plane through the local zenith
that also contains the direction of propagation of the light) as
the reference plane. The matrices L are rotation matrices, which
are used to change between reference planes (see Eq. (2). In
Eq. (14), κ0 is the angle of rotation from the planetary scatter-
ing plane to the local meridian plane of the incident light, and κ
is the angle of rotation from the local meridian plane of the re-
flected light back to the planetary scattering plane. Because the
variables κ0 and κ can be expressed in the variables θ, θ0, φ and
φ0 (see Sect. 2.6), they have not been written out explicitly in
Eq. (15). Note that in the case that the incident starlight is un-
polarized, the rotation around κ0 can be omitted (cf. Eq. (2)). In
the case that the incident starlight is unpolarized and one is only
interested in the reflected flux, the rotations around κ0 and κ can
both be omitted, leaving R′ = R.

The next step towards computing the planetary scattering
matrix S is to integrate the intensity vector I of the locally re-
flected starlight (Eq. (15)) over the illuminated part of the plan-
etary disk.

2.5. Integration over the planetary disk

The flux of the reflected light at a distance d from the planet
(with d much larger than the planet’s radius r), as described by
Eq. (13), follows from integration of the intensity vector of the
locally reflected light (Eq. (15)) over the illuminated part of the
planetary disk. Thus,

πFr(Θ) =
1
d2

∫
� µ I(µ, µ0, φ − φ0) dO (16)

=
1
d2

∫
� µ µ0 R′(µ, µ0, φ − φ0) F0 dO, (17)

with µ dO/d2 the solid angle under which a surface element dO
on the planet is seen by the observer. From Eqs. (13) and (17)
we then derive that

S(Θ) =
4
π r2

∫
� µ µ0 R′(µ, µ0, φ − φ0) dO. (18)

The integration over the illuminated part of the planetary disk
can be performed using the spherical coordinates µ and κ (see
Fig. 1). Using dO = r2 dκ dµ, Eq. (18) can be written as

S(Θ) =
4
π

∫ +1

0

∫ κ+

κ−
µ µ0 R′(µ, µ0, φ − φ0) dκ dµ. (19)

The integration boundaries κ± = κ±(µ,Θ) coincide with the ter-
minator, i.e. the border between day and night that is visible on
the planet (see Fig. 1).

Equation (19) can be simplified by recognizing that the
hemisphere above the planetary scattering plane (the “northern”
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+
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µµ
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κ

+

−

µ
κ
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−

−

+

µ

+
0µ

Fig. 1. A sketch of the integration over the illuminated part of the plan-
etary disk as seen by the observer, for a phase angle α of 60◦ (on the
left) and for α = 120◦ (on the right). For the integration, the spherical
coordinates µ and κ (see Eq. (19)) or µ and µ0 (see expression (36))
are used. For µ = cos 50◦ (the outer circle drawn within both planetary
disks), we indicate the integration boundaries κ+ and κ−, and µ+0 and
µ−0 (see Eqs. (37) and (38)). For integration along circle µ = cos 50◦,
µ−0 = µ cosα+ (1− µ2)

1
2 sinα and µ+0 = 0, as the integration stops at the

terminator. For integration along the small circle in the disk on the left,
µ−0 = µ cosα + (1 − µ2)

1
2 sinα and µ+0 = µ cosα − (1 − µ2)

1
2 sinα. For

integration along the small circle in the disk on the right, µ−0 = 0 and
µ+0 = 0.

hemisphere) is identical to the one below (the “southern” hemi-
sphere). Since each point X on the northern hemisphere corre-
sponds to a point X′ on the southern hemisphere that is sym-
metrical with respect to the planetary scattering plane, we have
(Hovenier 1970)

R′(µ, µ0, φ0 − φ) = ∆ R′(µ, µ0, φ − φ0)∆, (20)

with ∆ = diag(1, 1,−1,−1) (i.e. a matrix with (1, 1,−1,−1)
along the diagonal and zero’s everywhere else). Matrix S of the
whole planet can thus easily be obtained from the matrix per-
taining to only one, e.g. the northern, hemisphere, using

S(Θ) = SN(Θ) + ∆SN(Θ)∆, (21)

where SN is the matrix of the northern hemisphere, given by (see
Eq. (19))

SN(Θ) =
4
π

∫ +1

0

∫ κ+

0
µ µ0 R′(µ, µ0, φ − φ0) dκ dµ. (22)

In principle, we can thus (i) calculate R using a plane-parallel
model planetary atmosphere, for various combinations of µ, µ0,
and angle φ − φ0, (ii) calculate R′ for different locations on the
planet, (iii) evaluate Eq. (22) for a given value of Θ, and finally
(iv) use Eq. (21) to obtain the planetary scattering matrix S(Θ).
In practice, a numerically more efficient algorithm can be used
as described in detail in the next sections. In Sect. 2.11, this al-
gorithm is summarized in the form of a numerical recipe com-
prising 5 practical steps.

2.6. Expansion in generalized spherical functions

Instead of using Eqs. (20)−(22), a more efficient approach nu-
merically is to calculate the coefficients for the expansion of the
elements of matrix S into so-called generalized spherical func-
tions (see Gel’fand et al. 1963; Hovenier & van der Mee 1983;
Hovenier et al. 2004). As seen later, once these expansion co-
efficients are available, the elements of the planetary scattering
matrix can easily and efficiently be calculated for any value of
the total scattering angle Θ. This expansion method was origi-
nally proposed by van de Hulst (1980) for the scalar case (thus,
without polarization).

The calculation of the expansion coefficients appears to be
started best with a complex notation for the intensity and flux
vectors and scattering matrices. In the complex notation (indi-
cated by a hat), an intensity vector is given by

Î ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Î+2

Î+0

Î−0

Î−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Q + iU
I + V
I − V

Q − iU

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 i 0
1 0 0 1
1 0 0 −1
0 1 −i 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I
Q
U
V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≡ TI. (23)

Note that the indices run as +2, +0, −0, −2. Using F̂r = TFr
(the flux version of Eq. (23) and Eq. (13)), the relation between
S and Ŝ is found to be

Ŝ(Θ) = TS(Θ)T−1 or S(Θ) = T−1Ŝ(Θ)T. (24)

The inverse matrix T−1 is given by

T−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 1 0
1 0 0 1
−i 0 0 i
0 1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (25)

The next step towards the expansion coefficients of S is the ex-
pansion of the elements of the complex planetary scattering ma-
trix Ŝ in generalized spherical functions. This expansion reads

Ŝ k,n(Θ) =
∞∑

l=max(|k|,|n|)
Ŝ l

k,nPl
k,n(cosΘ), (26)

with the indices k and n equal to +2, +0, −0, or −2. Here, the Ŝ l
k,n

are elements of the complex expansion coefficients matrix Ŝl,
and the Pl

k,n are generalized spherical functions (see Gel’fand
et al. 1963; Hovenier & van der Mee 1983; Hovenier et al. 2004),
for which there is no difference between the indices +0 and −0.
They satisfy the relations

Pl
k,n(x) = Pl

−k,−n(x) = Pl
n,k(x) = (−1)l+k−nPl

−k,n(−x). (27)

Due to the reciprocity and mirror symmetry of the reflection pro-
cess, the complex expansion coefficients themselves obey the
following symmetry relations

Ŝ l
k,n = Ŝ l

n,k = Ŝ l
−k,−n. (28)

In order to calculate the complex expansion coefficients ma-
trix Ŝl (which will then be substituted in Eq. (24)), we next ap-
ply the following orthogonality relation for generalized spheri-
cal functions (Eq. (B.9) in Hovenier et al. 2004) to both sides of
Eq. (26)

(−1)k+n
∫ +1

−1
Pl

k,n(x) P j
k,n(x) d(x) =

2
2l + 1

δl j, (29)

with δl j the Kronecker delta function. We thus transform Eq. (26)
into

Ŝ l
k,n =

(
l +

1
2

) ∫ +1

−1
Pl

k,n(cosΘ)Ŝ k,n(Θ) d(cosΘ). (30)

By using R̂′ = TR′T−1 (cf. Eq. (24)) we next obtain the com-
plex expression of Eq. (19), which describes the relation be-
tween the planetary scattering matrix S and the local reflection
matrix R′. Inserting this complex expression into Eq. (30) and
writing u = cosΘ then give

Ŝ l
k,n=

4l + 2
π

∫ +1

−1

∫ +1

0

∫ κ+

κ−
B̂l

k,n(u, µ, µ0, φ − φ0) µ µ0 dκ dµ du, (31)
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where B̂l
k,n(u, µ, µ0, φ − φ0) stands for Pl

k,n(u) R̂′k,n(µ, µ0, φ − φ0).
Next, we want to change to integrals over µ, µ0, and φ − φ0,
since we assume that the local reflection matrix R has been cal-
culated for various combinations of these variables. Therefore,
we first write the “northern hemisphere” part of the triple inte-
gral in Eq. (31) as (cf. Eq. (22))
∫ +1

−1

∫ +1

0

∫ κ+

0
B̂l

k,n(u, µ, µ0, φ − φ0) µ µ0 dκ dµ du. (32)

Now, the integration over variable κ is replaced by an integration
over µ0. Using spherical trigonometry, we can derive (see Fig. 1)
that

sin κ = (1 − µ2
0)

1
2

sin(φ − φ0)
sinΘ

(33)

and that

µ0 = −µ cosΘ + (1 − µ2)
1
2 sinΘ cos κ. (34)

Thus,

∂µ0

∂κ
= −(1 − µ2)

1
2 (1 − µ2

0)
1
2 sin(φ − φ0). (35)

When also changing from variable u = cosΘ to cosα, with α the
phase angle of the planet, Eq. (32) can be written as
∫ +1

−1

∫ +1

0

∫ µ+0

µ−0

B̂l
k,n(u, µ, µ0, φ − φ0)

∂κ

∂µ0
µ µ0 dµ0 dµ d cosα. (36)

The integration boundaries µ−0 and µ+0 depend on α and µ. The
following cases can be distinguished (see Fig. 1)

µ−0 =
{

0 if cosα ≤ −(1 − µ2)
1
2

µ cosα + (1 − µ2)
1
2 sinα if cosα > −(1 − µ2)

1
2

(37)

µ+0 =

{
0 if cosα ≤ (1 − µ2)

1
2

µ cosα − (1 − µ2)
1
2 sinα if cosα > (1 − µ2)

1
2

(38)

(note that when µ−0 = 0, µ+0 will also be 0). We will now re-
place the integration over cosα in Eq. (36) by an integration over
(φ − φ0), using

cosα = µ µ0 − (1 − µ2)
1
2 (1 − µ2

0)
1
2 cos(φ − φ0). (39)

Thus (see also Eq. (35)),

∂ cosα
∂(φ − φ0)

= (1 − µ2)
1
2 (1 − µ2

0)
1
2 sin(φ − φ0) ≡ −∂µ0

∂κ
(40)

and, having started from Eq. (31), we finally arrive at the fol-
lowing expression for the elements of the complex expansion
coefficients matrix Ŝl

Ŝ l
k,n =

4l + 2
π

×
∫ 2π

0

∫ +1

0

∫ +1

0
B̂l

k,n(u, µ, µ0, φ − φ0) µ µ0 dµ0 dµ d(φ − φ0), (41)

with B̂l
k,n(u, µ, µ0, φ−φ0) = Pl

k,n(u) R̂′k,n(µ, µ0, φ−φ0). In Eq. (41),
we have extended the integration over (φ − φ0) from [0, π]
to [0, 2π] to include the southern hemisphere of the planet.
Expansion coefficients Ŝ l

k,n thus pertain to the whole illuminated
part of the planetary disk. In the next section, we demonstrate
how the integral in Eq. (41) can be simplified by expanding the
complex local reflection matrix R̂′ into a Fourier series.

2.7. Expansion in Fourier coefficients

The expansion of the complex local reflection matrix R̂′ into
a Fourier series is started with writing R̂′ as (see Eqs. (24)
and (15))

R̂′(µ, µ0, φ − φ0) = T R′(µ, µ0, φ − φ0) T−1 (42)

= TL(κ) R(µ, µ0, φ − φ0) L(κ0)T−1 (43)

≡ L̂(κ) R̂(µ, µ0, φ − φ0) L̂(κ0), (44)

with L̂ = TLT−1 and R̂ = TRT−1. In the complex notation,
a rotation matrix L̂ has a convenient diagonal form, with ele-
ments L̂k,n(β) = exp(−ikβ)δk,n (with k equal to +2, +0, −0, or
−2). Using Eq. (44), each matrix element R̂′k,n in Eq. (41) can
thus be replaced by

R̂′k,n(µ, µ0, φ − φ0) = e−ikκ R̂k,n(µ, µ0, φ − φ0) e−inκ0 . (45)

The complex matrix R̂ can be expanded into a Fourier series as
follows

R̂(µ, µ0, φ − φ0) =
+∞∑

s=−∞
R̂s(µ, µ0)e−is(φ−φ0). (46)

Here, R̂s denotes Fourier coefficient s. Next, we insert Eqs. (45)
and (46) into Eq. (41), and invoke the addition theorem for the
generalized spherical functions (Eq. (B.48) in Hovenier et al.
2004). After integration over the azimuthal angle (φ − φ0), we
then arrive at

Ŝ l
k,n = 4(2l + 1) (47)

×
l∑

s=−l

(−1)s
∫ +1

0

∫ +1

0
Pl

n,s(−µ) R̂s
k,n(µ, µ0) Pl

s,k(µ0) µ µ0 dµ0 dµ.

Defining matrices Pl
s(u) = diag(Pl

s,2(u), Pl
s,0(u), Pl

s,0(u), Pl
s,−2(u))

(here, we used Pl
s,−0 = Pl

s,0, according to Eq. (27)), the complex
expansion coefficients matrices can hence be written as

Ŝl = 4(2l + 1) (48)

×
l∑

s=−l

(−1)s
∫ +1

0

∫ +1

0
Pl

s(−µ) R̂s(µ, µ0) Pl
s(µ0) µ µ0 dµ0 dµ.

For computational purposes it is desirable to rewrite the com-
plex expansion coefficients matrices of the planetary scattering
matrix into real ones. This will be done in the next section.

2.8. Real expansion coefficients matrices

To derive the relations between the complex and the real expan-
sion coefficients, we start with the latter. The matrix elements
of the real planetary scattering matrix S (see Eq. (9)) can be
expanded in the following series

a1(Θ) =
∞∑

l=0

αl
1 Pl

0,0(cosΘ). (49)

a2(Θ) + a3(Θ) =
∞∑

l=2

(αl
2 + α

l
3) Pl

2,2(cosΘ). (50)

a2(Θ) − a3(Θ) =
∞∑

l=2

(αl
2 − αl

3) Pl
2,−2(cosΘ). (51)
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a4(Θ) =
∞∑

l=0

αl
4 Pl

0,0(cosΘ). (52)

b1(Θ) =
∞∑

l=2

βl
1 Pl

0,2(cosΘ). (53)

b2(Θ) =
∞∑

l=2

βl
2 Pl

0,2(cosΘ). (54)

The real expansion coefficients are elements of the real expan-
sion coefficients matrix Sl, as follows

Sl =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
αl

1 β
l
1 0 0

βl
1 α

l
2 0 0

0 0 αl
3 β

l
2

0 0 −βl
2 α

l
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (55)

By explicit multiplication of the matrices in Eq. (24) and by us-
ing the relations from Eqs. (27) and (28), the relations between
the complex and the real expansion coefficients can be derived.
We thus find

αl
1 = Ŝ l

0,0 + Ŝ l
0,−0. (56)

αl
2 = Ŝ l

2,2 + Ŝ l
2,−2. (57)

αl
3 = Ŝ l

2,2 − Ŝ l
2,−2. (58)

αl
4 = Ŝ l

0,0 − Ŝ l
0,−0. (59)

βl
1 = Ŝ l

0,2 + Ŝ l
0,−2. (60)

βl
2 = −i(Ŝ l

0,2 − Ŝ l
0,−2). (61)

The relations between the real expansion coefficient matrices Sl

and the complex ones Ŝl (see Eq. (49)) as expressed with the re-
spective expansion coefficients in Eqs. (56)−(61), are described
by the following matrix product

Sl =
1
2

(1 + i∆) T−1 Ŝl T (1 − i∆) (62)

(recall that ∆ = diag(1, 1,−1,−1)). Substitution of Eq. (49) into
Eq. (62) will lead to the relation between the real and the com-
plex expansion coefficients matrices. Before we do that, how-
ever, we replace the complex Fourier coefficients matrices R̂s

that appear in Eq. (49) by real matrices. The relation between
the complex and the real Fourier coefficients matrices is derived
in the next section.

2.9. Real Fourier coefficient matrices

Using R = T−1R̂T (Eq. (24)), Eq. (46), and the following real
Fourier series expansion (Hovenier 1971)

R(µ, µ0, φ − φ0) =
+∞∑
s=0

(2 − δs,0) (63)

× [
Rs

c(µ, µ0) cos s(φ − φ0)+ Rs
s(µ, µ0) sin s(φ − φ0)

]
,

where the 4× 4 matrix Rs
c (Rs

s) has 2× 2 zero submatrices in the
upper (lower) right and lower (upper) left corners, and where R0

s
is chosen equal to zero, we find that

Rs
c =

1
2

[
T−1 R̂−sT+ T−1R̂sT

]
. (64)

Rs
s =

i
2

[
T−1 R̂−sT− T−1R̂sT

]
. (65)

Here we have omitted the explicit (µ, µ0) dependence of the
Fourier coefficients matrices. Writing (see de Haan et al. 1987)

Rs = Rs
c − ∆Rs

s , (66)

we get

Rs =
1
2

(1 − i∆)T−1R̂−sT +
1
2

(1 + i∆)T−1R̂sT. (67)

This equation can be simplified by combining the following
relation (see the symmetry relations given by Hovenier 1969)

R(µ, µ0, φ − φ0) = ∆R(µ, µ0, φ0 − φ)∆, (68)

with (see Eq. (46))

R(µ, µ0, φ − φ0) =
+∞∑

s=−∞
T−1 R̂s T e−is(φ−φ0). (69)

We thus find

T−1 R̂−sT = ∆T−1R̂sT∆. (70)

Substituting Eq. (70) into Eq. (67) and using 1
2 (1−i∆)× (1+i∆) =

1 yields the following expressions for the Fourier coefficients
matrices of the complex reflection matrices R̂

R̂s =
1
2

T (1 − i∆) Rs (1 + i∆) T−1. (71)

R̂−s =
1
2

T (1 − i∆)∆ Rs ∆(1 + i∆) T−1. (72)

The substitution of these expressions into Eq. (49) will be
described in the next section.

2.10. The final expression

The substitution of Eqs. (49), (71), and (72) into Eq. (62)
gives an elaborate expression that can be made more
readable by defining yet another type of matrix, namely
Ql

s(u) = 1
2 (1 + i∆) T−1 Pl

s(u)T (1 − i∆), or

Ql
s(u) = (73)

1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2Pl
s,0(u) 0 0 0

0 Pl
s,−2(u) + Pl

s,2(u) Pl
s,−2(u) − Pl

s,2(u) 0

0 Pl
s,−2(u) − Pl

s,2(u) Pl
s,−2(u) + Pl

s,2(u) 0

0 0 0 2Pl
s,0(u)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

From Eq. (27), it follows that

Ql
s(u) = ∆Ql

−s(u)∆. (74)

Substituting Eqs. (49), (71), (72), (73), and (74) into Eq. (62)
gives the following final expression for the real planetary expan-
sion coefficients matrices

Sl = (2l + 1)

⎡⎢⎢⎢⎢⎢⎢⎣R0
l +

l∑
s=1

(−1)s
(
Rs

l + ∆Rs
l∆

)⎤⎥⎥⎥⎥⎥⎥⎦ , (75)

where the matrices Rs
l are defined by

Rs
l = 4

∫ +1

0

∫ +1

0
Ql

s(−µ) Rs(µ, µ0) Ql
s(µ0) µ µ0 dµ0 dµ. (76)

Here, the matrices Rs are the Fourier coefficients matrices of
the local reflection matrix R (Eq. (67)). With the Rs

l and Sl, the
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elements of the planetary scattering matrix S can be obtained
from Eqs. (49)−(54) and Eq. (55).

In case the incident starlight is unpolarized, only the ele-
ments a1 and b1 of S (Eq. (9)) are needed to calculate the flux
vector and the degree of polarization of the light that is reflected
by the planet. This means that in that case only the elements αl

1
and βl

1 of the expansion coefficients matrices Sl are needed,
which implies that only the first column of the matrices Rs

l ,
and thus only the first column of Rs (see Eqs. (76) and (73)),
has to be calculated. In case the incident starlight is unpolar-
ized and one is only interested in the reflected flux, only the
(1,1)-elements of these matrices are needed. Warning: even if
only the (1,1)-element of the local reflection matrix R of a plan-
etary atmosphere is needed, polarization should be taken into
account for calculating this element when there is some fraction
of the light that is multiple scattered. Otherwise, errors up to sev-
eral percent can be introduced in the calculated disk-integrated
reflected flux and related quantities like the geometric albedo
(Sromovsky 2005; Stam & Hovenier 2005).

2.11. Numerical recipe

For a given model of a planetary atmosphere, the elements of the
planetary scattering matrix S(Θ) can thus be obtained using the
following recipe:

1. Calculate the local reflection matrix R(µ, µ0, φ−φ0) using for
example an adding-doubling algorithm.

2. Use Eqs. (64) and (66) to find the Fourier coefficients matri-
ces Rs(µ, µ0).

3. Compute the matrices Rs
l from Eqs. (73) and (76).

4. Compute the planetary expansion coefficients matrices Sl us-
ing Eq. (75), which yields the expansion coefficients αl

1, αl
2,

αl
3, αl

4, βl
1, and βl

2 (see Eq. (55)).
5. Using Eqs. (49)−(54), all elements of the planetary scatter-

ing matrix S (see Eq. (9)) can then be calculated for any value
of the total scattering angle Θ or phase angle α.

It is important to note that the calculation of the local reflection
matrix R (step 1) can be done with an arbitrary radiative transfer
algorithm. We prefer to use the adding-doubling algorithm as
described by (de Haan et al. 1987), which directly yields the
Fourier coefficients matrices Rs (step 2).

We perform the integrations in Eq. (76) (step 3) using Gauss-
Legendre quadrature (see e.g. Press et al. 1986). For this inte-
gration, the values of µ and µ0 at which the Rs are calculated
are chosen at Gauss-Legendre quadrature abscissae. Thus, for an
integration with M abscissae, the Fourier coefficients are calcu-
lated at an M × M grid of (µ, µ0)-pairs. The number M required
to reach a given integration accuracy will strongly depend on the
composition and structure of the planetary model atmosphere,
because the smoother the local reflection matrix R, the fewer
abscissae will be needed. Because the smoothness of the local
reflection matrix generally varies with µ, µ0 and φ − φ0, the ap-
propriate M will also depend on the total scattering angle Θ (or
phase angle α). The accuracy of the disk-integration algorithm
and its dependence on M will be explored in Sect. 3.

When calculating the elements of the planetary scatter-
ing matrix (step 5), the value of l where the summations in
Eqs. (49)−(54) should be broken off has to be chosen carefully.
Typically, the absolute value of the expansion coefficients starts
with a sharp increase with l, but then decreases steadily with l,
until a loss of numerical accuracy leads to a rapid increase in the
absolute value of the coefficients. We thus break off a summation

just before the absolute values of the expansion coefficients start
to increase again.

2.12. Related quantities

From the planetary scattering matrix S and its expansion coeffi-
cients, various useful, related quantities can be calculated, such
as the Bond albedo, the geometric albedo, and the phase integral
of the planet.

The Bond albedo is given by (see Eqs. (10)−(13) and
Eq. (49))

AB =
d2

πr2πF0

∫
4π

Fr(Θ) dω (77)

=
1

4π

∫ 2π

0

∫ π

0
a1(Θ) sinΘ dΘ dφ (78)

=
1
2

∞∑
l=0

∫ π

0
αl

1 Pl
0,0(cosΘ) sinΘ dΘ (79)

= α0
1. (80)

The Bond albedo thus equals the (1,1)-element of the expansion
coefficients matrix S0 (see Eq. (55)) (see the warning at the end
of Sect. 2.10).

The geometric albedo p of a planet is the ratio of the ob-
served flux of the planet (see Eq. (13)) when the phase angle α
equals 0◦ (or Θ = 180◦) to the observed flux of a Lambertian
surface (i.e. a surface that reflects all incoming radiation isotrop-
ically and completely depolarized) that receives the same incom-
ing flux and that subtends the same solid angle (i.e. πr2/d2, with
r the planetary radius and d the distance between the planet and
the observer) on the sky. Thus,

p =
Fr(180◦) d2

F0 πr2
=

1
4

a1(180◦), (81)

with a1 the (1,1)-element of the planetary scattering matrix S
(see Eq. (9)), which is also called the planetary phase function.

The planetary phase function can be renormalized such that
it equals one when the phase angle is zero (at Θ = 180◦). The
integral of this normalized, so-called classical phase function
over all scattering directions times two defines the phase integral,
which is usually denoted by q. Thus,

q = 2
∫ π

0

a1(Θ) sinΘ
a1(180◦)

dΘ. (82)

The phase integral equals the ratio of the Bond albedo to the
geometric albedo, thus q = AB/p.

Note that in this paper we have assumed quasi-
monochromatic radiation. When comparing results of numerical
simulations with observations, such wavelength dependence
should, of course, be accounted for.

3. Numerical tests

To test the accuracy of our disk integration algorithm, we com-
pare planetary scattering matrices as obtained with our numeri-
cal integration method with those obtained with other methods.
Because in most applications the starlight that is incident on the
planetary atmosphere will be assumed to be unpolarized, we will
only describe the tests for the elements a1 and b1 of the planetary
scattering matrix S (see Eq. (9)).
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Fig. 2. The absolute error ∆a1 in the numerically calculated phase func-
tion a1 of a Lambertian reflecting planet (the dashed line in Fig. 7a),
if the number of Gauss-Legendre abscissae M equals 8 (solid line), or
16 (dashed line). The errors are calculated as the numerically calculated
values minus the analytically calculated values.

3.1. Testing element a1 using a Lambertian sphere

The analytical expression for the phase function of a spherical
planet with a Lambertian, perfectly reflecting surface and no at-
mosphere is given by (see van de Hulst 1980) (see the dashed
line in Fig. 7a)

a1(Θ) =
8

3π
(sinΘ − Θ cosΘ) . (83)

The geometric albedo p of this planet equals 2/3 (see Eq. (81)),
and since this planet reflects all incoming radiation, its Bond
albedo AB equals one (see Eq. (80)). The Fourier series ex-
pansion (see Eq. (64)) of the local reflection matrix R of a
Lambertian surface has only one non-zero coefficient matrix,
namely R0, of which the (1,1)-element equals one and all other
elements equal zero. Equation (83) can thus only be used to test
the accuracy of the numerical integration of a1, and the related
Bond albedo AB and geometric albedo p.

Figure 2 shows the absolute errors ∆a1 in the numerically
calculated phase function as functions of the scattering angle Θ,
for M equal to 8 and 16. We choose to show absolute errors
rather than relative ones, because the phase function approaches
zero for scattering angles close to 0◦. The errors for M = 4, 32,
64, and 128 have been calculated but are not shown in the figure.

For M ≥ 16, the absolute value of the error ∆a1 is smaller
than 5 × 10−6 across the whole scattering-angle interval, except
for the forward scattering angles (Θ < 2◦) and the backward
scattering angles (Θ > 178◦). In particular, whenΘ = 0◦ or 180◦,
|∆a1| reaches almost 2 × 10−5. For M = 8, |∆a1| < 5 × 10−5 for
3◦ < Θ < 177◦, and increases up to 1×10−4 forΘ = 0◦ and 180◦.
For M = 4, |∆a1| < 2 × 10−3 for 10◦ < Θ < 170◦, and increases
up to almost 4 × 10−3 for Θ = 0◦ or 180◦.

For the Bond albedo AB, the relative error in the numerically
calculated value is smaller than 10−6%, and thus negligible, even
for M as small as 4. The relative errors in the numerically calcu-
lated geometric albedo p are as small as 10−1% for M = 4, about
10−3% for M = 8, and as small as 10−4% for M ≥ 16.

These results suggest that the accuracy of our numerical inte-
gration algorithm is in principle very high, at least for element a1
of the scattering matrix and for the related Bond and geometric
albedo.

3.2. Testing element b1 using single scattering

There is no numerical reason why the integration of element b1
(or any of the other elements) of the scattering matrix would lead
to different errors than the integration of element a1. However,
the integration of element b1 of the planetary scattering matrix S
can be tested indirectly by comparing the degree of polariza-
tion Ps (Eq. (7)) of light reflected by a planet with a model at-
mosphere in which only single scattering takes place (assuming
incident unpolarized starlight), with Ps of initially unpolarized
light that is singly scattered by an ensemble of atmospheric par-
ticles (thus, without the integration over the planetary disk). For
each scattering angle Θ, these two cases should yield the same
degree of polarization, namely Ps = −b1/a1, with b1 and a1 ei-
ther elements of the planetary scattering matrix or elements of
the scattering matrix of the ensemble of atmospheric particles.

3.2.1. Molecules

First, we perform the single-scattering test with Rayleigh-
scattering molecules, the scattering matrix of which is given
in Hovenier et al. (2004). We assume a depolarization factor
of 0.02, a typical value for a planetary atmosphere that consists
mainly of hydrogen, such as Jupiter’s. Figure 3 shows the an-
alytically calculated phase function a1 and degree of polariza-
tion Ps of light singly scattered by an ensemble of molecules.
The phase function is normalized such that its average over all
directions equals unity. The polarization curve is symmetrical
around Θ = 90◦, and decreases gradually towards zero in both
the forward (Θ = 0◦) and the backward (Θ = 180◦) scattering
directions.

In Fig. 4, we show the absolute errors ∆Ps in the numerically
calculated, disk-integrated Ps of a planet with a single-scattering
molecular atmosphere that is bounded below by a black surface
for M = 8 and 16. Errors calculated for M = 4, 32, 64, and 128
will be discussed below, but are not shown in the figure. At each
value of the total scattering angle Θ, the error ∆Ps is calculated
as the numerically calculated Ps minus the analytically calcu-
lated Ps. As can be seen in Fig. 4, the errors in the numerically
calculated Ps are generally small, but increase (in absolute sense)
with decreasing Θ, i.e. with the decreasing area of the disk that
is illuminated and visible. For Θ = 0◦ and Θ = 180◦, ∆Ps equals
zero, regardless of the value of M.

For M = 4 (not shown in Fig. 4), |∆Ps| < 0.03 for Θ > 30◦,
and the maximum error (of about 0.1) occurs around Θ = 15◦.
For M = 8, |∆Ps| < 0.001 for Θ > 15◦. At scattering an-
gles smaller than 3◦, |∆Ps| shows two sharp peaks, but remains
smaller than 0.02. For M = 16, |∆ Ps| < 0.0001 forΘ > 5◦, while
the largest error (0.001) occurs close to Θ = 1◦. For M ≥ 32
(not shown in Fig. 4), |∆ Ps| < 10−5 for scattering angles larger
than about 3◦.

Our error calculations clearly show that the errors in Ps are
generally small (in particularly when M ≥ 16). The largest errors
occur at small (but non-zero) scattering angles, when only a thin
crescent of the planetary disk is illuminated and visible. Apart
from the fact that at these small scattering angles our assump-
tion of a plane-parallel model atmosphere is not valid anymore,
these small angles are not even very useful for the polarimetry
of extrasolar planets. Namely, at such small scattering angles,
the angular distance between the extrasolar planet and its parent
star will be very small, which will make it extremely difficult to
spatially resolve the light reflected by the planet from the direct
starlight, in particular because most of the planet’s nightside is
in view and thus, there is hardly any reflected light available for
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Fig. 3. a) The analytically calculated phase function a1 of light singly
scattered by an ensemble of molecules with depolarization factor 0.02.
The phase function is normalized such that its average over all direc-
tions equals unity. b) The analytically calculated degree of polarization
Ps = −b1/a1 of this scattered light.

observations. Furthermore, at these angles, the degree of polar-
ization of the light reflected by the planet is very close to zero,
making polarimetry very difficult.

Concluding, our numerical integration algorithm is an accu-
rate tool for calculating Ps and b1 at least when the elements a1
and b1 of the scattering matrix of the atmospheric particles are
smooth functions of the single scattering angle, i.e. without sharp
angular features.

3.2.2. Aerosol particles

Because the matrix elements describing Rayleigh scattering are
smooth functions of the scattering angle, we performed a sec-
ond single scattering test using atmospheric aerosol particles that
were chosen especially for the sharp angular features in their
scattering matrix elements, namely the model D particles that
are presented by de Rooij & van der Stap (1984) with their opti-
cal properties at λ = 0.70 µm. We preferred using a wavelength
of 0.55 µm (to keep in line with our other work). Like de Rooij
& van der Stap (1984), we used a refractive index of 1.33; the
single scattering albedo of the aerosol particles is thus 1.0. The
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Fig. 4. The absolute errors ∆Ps in the numerically calculated, disk-
integrated Ps of a planet with a single scattering molecular atmosphere
bounded below by a black surface as functions of the total scattering an-
gle Θ, for M = 8 (solid line) and M = 16 (dashed line). The errors are
calculated as the numerically calculated values minus the analytically
calculated values.

scattering matrix elements of the model D particles were calcu-
lated using Mie theory (van de Hulst 1957). Figure 5 shows the
analytically calculated phase function a1 and degree of polariza-
tion Ps of light singly scattered by an ensemble of model D par-
ticles at λ = 0.55 µm. Note that the feature at scattering angles
slightly smaller than 150◦ in both a1 and Ps is the primary rain-
bow. The feature at scattering angles slightly smaller than 180◦
is generally referred to as the glory.

In Fig. 6, we show the absolute errors ∆Ps in the numer-
ically calculated, disk-integrated Ps of a planet with a single-
scattering atmosphere that contains only model D particles and
that is bounded below by a black surface, for M = 8, 16, and 32.
Errors calculated for M = 4, 64, and 128 will be discussed be-
low, but are not shown in the figure. Interestingly, for all values
of M, the largest (in absolute sense) errors in this case appear
not at small but at large scattering angles (Θ > 175◦) (the slight
increase in the errors with decreasing Θ at the smallest scatter-
ing angles still occurs but is negligible compared to the errors
at the largest scattering angles). The errors at the largest scatter-
ing angles are due to the sharp peaks in Ps at these angles (see
Fig. 5b). Note that at Θ = 0◦ and 180◦, the errors vanish for all
values of M.

Using the model D particles and M = 4 (not shown in Fig. 6),
the error ∆Ps shows a similar scattering angle dependence as the
analytically calculated Ps (Fig. 5b), with a maximum error of
about 0.5 aroundΘ = 160◦. For M = 8, the largest errors are on
the order of 0.1. The sharp peak in |∆Ps| up to 0.2 at Θ = 177◦
coincides with the sharp peak in the analytically calculated Ps
(Fig. 5b). For M = 16, |∆Ps| < 0.01 for Θ < 166◦. As for M = 8,
the largest error (of 0.25) occurs at Θ = 177◦. For M = 32,
|∆Ps| is generally much smaller than 0.005, except at the largest
scattering angles, where an error of almost 0.04 occurs (nearΘ =
177◦). With M = 64 (not shown in Fig. 6), the sharp peak at Θ =
177◦ is almost resolved, so the largest errors in this scattering
angle region are reduced to below 0.005. With M = 128, the
largest errors in |∆Ps| are even smaller than 0.0005.

Apparently, for the planetary atmosphere with model D par-
ticles, the errors at the largest scattering angles are generally
larger than those at the smaller scattering angles, for each value
of M. This is most probably due to the angular features in Ps
at the largest scattering angles (cf. Fig. 5b). The errors at the
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Fig. 5. a) The analytically calculated phase function a1 of light singly
scattered by an ensemble of model D particles (de Rooij & van der Stap
1984) at λ = 0.55 µm. The phase function is normalized such that its
average over all directions equals unity. b) The analytically calculated
degree of polarization Ps = −b1/a1 of this scattered light.

largest scattering angles are still sufficiently small to safely con-
clude that our numerical integration algorithm also works well
for calculating Ps when it has very sharp angular features.

4. Sample integrations

In Sect. 3, we have tested our numerical disk-integration algo-
rithm by comparing its results with results obtained using other
algorithms. The model planets used in Sect. 3 represent special
cases, such as having a single-scattering atmosphere. In this sec-
tion, we present properties of the disk-integrated light that is re-
flected by two model planets with more realistic, multiple scat-
tering atmospheres. We compare scattering matrix elements a1
(the phase function) and b1, degrees of polarization, and Bond
and geometric albedos for different values of the number of
Gaussian abscissae M.

4.1. A molecular model atmosphere

Figure 7 shows for λ = 0.55 µm and unpolarized incident
light the phase function a1 and the degree of polarization Ps
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Fig. 6. The absolute errors ∆Ps in the numerically calculated, disk-
integrated Ps of a planet with a single scattering atmosphere that con-
tains only model D aerosol and that is bounded below by a black sur-
face as functions of the total scattering angle Θ, for M = 8 (solid line),
16 (dashed line), and 32 (dotted line). The wavelength λ = 0.55 µm.
The errors are calculated as the numerically calculated values minus
the analytically calculated values.

as functions of the scattering angle Θ for a model atmosphere
that contains only molecules and that is bounded below by a
black surface. The atmospheric absorption optical thickness is
chosen equal to zero, and the molecular depolarization factor
is 0.02 (Hansen & Travis 1974). The atmospheric scattering op-
tical thickness is 5.75 (at 0.55 µm). This optical thickness is rep-
resentative of a Jupiter-like atmosphere down to a pressure of
5.6 bars. At 0.55 µm, the geometric albedo p of this planet is
0.6471 (i.e. 1

4 a1(180◦)) and its Bond albedo is 0.8141. The num-
ber of Gaussian abscissae M used for these calculations is 128.
Calculations with a larger number of abscissae did not have a
noticeble effect on the results, so that we can use the results for
M = 128 as a reference when employing lower values of M.

For comparison in Fig. 7a, we have also plotted the phase
function of a Lambertian reflecting planet (Eq. (83)), scaled to
the geometric albedo of the planet with the molecular atmo-
sphere (i.e. 0.6471). Clearly, the model planet with the Jupiter-
like molecular atmosphere is darker for 60◦ < Θ < 180◦ (or
0◦ < α < 120◦) than a Lambertian reflecting planet with the
same geometric albedo.

There are a number of differences between the degree of po-
larization Ps of this planet with a multiple-scattering molecu-
lar atmosphere (Fig. 7b) and that of light singly scattered by
molecules (Fig. 3b). Firstly, because of the multiple scattering,
the maximum degree of polarization Ps of the light reflected by
this planet is much lower than that of the singly-scattered light,
namely 0.37 versus 0.96. Secondly, for the planet, the scatter-
ing angle at which Ps achieves its maximum value is 87◦, ver-
sus 90◦ for the singly-scattered light. Thirdly, at scattering an-
gles smaller than 17.6◦, when only a crescent of the planet is
visible, Ps of the planet is negative (thus, the light is polarized
parallel to the reference plane through the planet, the observer,
and the star), whereas Ps of the singly scattered light remains
positive. The negative polarization at small scattering angles is
mainly due to second-order scattered light (see van de Hulst
1980). The dashed line in Fig. 7b shows Ps as expected for a
Lambertian reflecting planet. Obviously, because the reflection
by a Lambertian reflecting planet is unpolarized, Ps = 0 inde-
pendent of Θ.
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Fig. 7. a) The numerically calculated (M = 128) phase function a1 for
a planet with a purely molecular model atmosphere bounded below by
a black surface with an optical thickness of 5.75 (solid line) and the
analytically calculated phase function of a Lambertian reflecting planet
(dashed line), and b) the degree of polarization Ps for the planet with the
molecular model atmosphere and the Lambertian planet, all as functions
of the total scattering angle Θ.

In Fig. 8, we have plotted the absolute errors ∆a1 and ∆Ps
when the planetary scattering matrix elements calculated for
M = 128 are compared to those calculated for M = 8, 16,
and 32. The errors for M = 4 and M = 64 have been calculated
and will be discussed, but are not shown in the figure. Similarly,
the errors in scattering matrix element b1 have not been plotted,
but will be discussed.

For a planet with a molecular model atmosphere, the error
|∆a1| in the phase function a1 (Fig. 8a) due to using less than
128 Gaussian abscissae, is on the order of 0.005 when M = 4 for
all scattering angles (not shown in the figure), generally smaller
than 10−4 when M = 8, except when Θ < 4◦ (∆a1 = 0.00026
when Θ = 0◦), and when Θ > 167◦ (∆a1 = 0.0013 when
Θ = 180◦). For M = 16, |∆a1| < 10−5 across most of the scat-
tering angle interval; for Θ < 2◦ the error is somewhat larger,
in particular, when Θ = 0◦, ∆a1 = 2 × 10−5. For M = 16 and
Θ > 165◦, the errors increase up to 0.00028 when Θ = 180◦. For
M = 32 and 3◦ < Θ < 160◦, |∆a1| < 5 × 10−7. When Θ = 0◦,
∆a1 = 2.5 × 10−6, and when Θ = 180◦, ∆a1 = 6 × 10−5. Finally,
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Fig. 8. The absolute errors on the curves in Fig. 7 when M = 8 (solid
line), 16 (dashed line), or 32 (dotted line), instead of 128 in a) the phase
function a1, and b) the degree of polarization Ps. The errors are cal-
culated as the results for M = 128 minus the results at another value
of M.

when M = 64 (not shown in Fig. 8a), |∆a1| < 10−7, except when
Θ > 177◦; in particular, when Θ = 180◦, ∆a1 = 10−5.

The errors in scattering matrix element b1 (not shown in a
figure), are about 50% smaller than those in element a1, and they
show a similar scattering-angle dependence. A difference is that
the errors in b1 vanish at Θ = 0◦ and at Θ = 180◦ regardless of
the value of M. At these two scattering angles, b1 itself equals
zero, too.

The errors in Ps (Fig. 8b) are generally largest at small scat-
tering angles, except at Θ = 0◦, where all errors vanish regard-
less of the value of M, like those in b1. For M = 4 (not shown
in Fig. 8b), the largest ∆Ps is 0.15, which occurs near Θ = 15◦.
When Θ > 50◦, |∆Ps| < 0.01. For M = 8, |∆Ps| < 0.001 when
Θ > 20◦, and |∆Ps| < 0.0001 when Θ > 40◦. Note that the two
sharp peaks in ∆Ps occur in the scattering angle range where
Ps < 0. For M = 16, |∆Ps| has a sharp peak equal to 0.03 around
Θ = 1◦, and decreases rapidly with increasingΘ; whenΘ > 10◦,
|∆Ps| < 5 × 10−5. A similar rapid decrease of |∆Ps| with Θ is
seen for M = 32; there is a sharp peak equal to 0.004 around
Θ = 1◦, and when Θ > 30◦, |∆Ps| < 2 × 10−7. For M = 64, fi-
nally, the maximum error is about 4×10−4 (aroundΘ = 1◦), and
when Θ > 10◦, |∆Ps| < 4× 10−8. Thus, as seen before, when one
requires simulations for scattering angles equal or close to 0◦,
a larger number of Gaussian abscissae should be used for the
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calculation of a1, b1, and Ps, than when one is only interested
in simulations for larger scattering angles (i.e. smaller phase an-
gles).

The relative errors in the numerical simulations of the Bond
and geometric albedo are small when comparing albedos calcu-
lated using M < 128 to those calculated using M = 128. The
relative error in the geometric albedo p is smaller than 0.05%
for M as small as 8. The calculations of the Bond albedo are
even more accurate: with 8 abscissae, the relative error is only
2.5 × 10−6%.

4.2. A model atmosphere with aerosol particles

We performed similar calculations to those in Sect. 4.1 with
aerosol particles added to the molecular model atmosphere. For
the aerosol particles, we chose, as in Sect. 3.2.2, the model D
particles described by de Rooij & van der Stap (1984) because
of the sharp features in their scattering matrix elements (see
Fig. 5). To enhance the influence of the scattering matrix of
the aerosol particles, a large aerosol optical thickness is cho-
sen, namely 3.25, yielding a total atmospheric optical thickness
of 9.0 (at λ = 0.55 µm). The aerosol particles are well-mixed
throughout the atmosphere; i.e. the atmosphere is homogeneous.
We will refer to this model atmosphere with aerosol particles and
bounded below by a black surface, as the aerosol atmosphere.

Figure 9 shows a1 and Ps as functions of Θ at λ = 0.55 µm
for the aerosol atmosphere. For comparison, this figure also
contains the curves for the purely molecular model atmosphere
(see Sect. 4.1). The geometric albedo of the planet with the
aerosol atmosphere is 0.6688, and its Bond albedo is 0.8281 (at
λ = 0.55 µm). For these calculations, we used M = 128.

As can be seen in Fig. 9a, adding the model D particles to
the molecular model atmosphere hardly changes the planetary
phase function even though 1) the single-scattering phase func-
tion of the particles differs significantly from the molecular sin-
gle scattering phase function (compare Figs. 3a and 5a), and
2) the aerosol optical thickness is relatively large. The largest
difference between the two phase functions shown in Fig. 9a is
in the backward scattering direction, for Θ > 160◦. The angular
feature in the phase function of the planet with the aerosol at-
mosphere that shows up at these scattering angles can be traced
back to a feature in the particles’ single-scattering phase function
(see Fig. 5a).

Figure 9b shows that the scattering angle dependence of Ps
for the planet with the aerosol atmosphere differs significantly
from that of the planet with the purely molecular atmosphere.
Not only is Ps for the aerosol atmosphere lower than for the
molecular atmosphere across most of the scattering-angle inter-
val (20◦ < Θ < 170◦), but it also shows some angular features
that are related to features in the aerosol’s single scattering de-
gree of polarization (see Fig. 5).

In Fig. 10, we have plotted the absolute errors in a1 and Ps
when instead of M = 128, we use M = 16, 32, or 64 for the
aerosol atmosphere. Results for matrix element b1 and for M = 8
are not shown, but will be discussed. When only 4 Gaussian
abscissae were used for this model atmosphere loaded with
model D aerosol particles, our adding-doubling algorithm did
not converge very well, so in this section, we ignore M = 4.

For the planet with the aerosol atmosphere, the error |∆a1| in
the phase function a1 is smaller than 0.03 for M = 8 (not shown
in Fig. 10a) when Θ < 140◦. At the largest scattering angles,
|∆a1| reaches a maximum of about 0.15 at Θ = 177◦ for M = 8.
This large error is due to the sharp angular feature exhibited in
the single scattering by model D aerosol particles (see Fig. 5).
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Fig. 9. The numerically calculated a) phase function a1, and b) degree
of polarization Ps for a planet with a molecular atmosphere containing
model D aerosol (de Rooij & van der Stap 1984), as functions of the
total scattering angle Θ, for M = 128 and λ = 0.55 µm (dashed lines).
The total optical thickness of this aerosol atmosphere is 9.0 (at a wave-
length of 0.55 µm). For comparison, the curves for a purely molecular
model atmosphere (with optical thickness 5.75) (see Fig. 7) have also
been included (solid lines). Both atmospheres are bounded below by a
black surface.

For M = 16, ∆a1 shows a strong angular dependence, reflect-
ing angular features in the single scattering phase function of
the model D particles (see Fig. 5a). For 6◦ < Θ < 140◦, the er-
rors remain smaller than 0.002 (in absolute sense). The largest
error, i.e. of 0.03, occurs at Θ = 177◦, and is related to the sharp
angular feature in the single scattering by model D aerosol par-
ticles (see Fig. 5). For M = 32, the errors in |a1| are smaller
than 10−4 when Θ < 140◦. With an increasing scattering an-
gle up from 140◦, |∆a1| increases up to 0.013 at Θ = 180◦. For
M = 64, the errors in |a1| are smaller than 5 × 10−5, except for
Θ > 150◦. The error |∆a1| is largest at Θ = 180◦, i.e. 0.003.

The errors in scattering-matrix element b1 are similar to
those in a1, not only in value but also in their angular depen-
dence. The only difference is that the errors in b1 converge to
zero at Θ = 0◦ and Θ = 180◦, where b1 itself equals zero.

Figure 10b shows the absolute errors in Ps. For all values
of M, ∆Ps equals zero at Θ = 0◦ and Θ = 180◦. For M = 8
(not shown in Fig. 10b), |∆Ps| < 0.05 at most scattering angles,
except for intermediate scattering angles, i.e. 50◦ < Θ < 130◦.
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Fig. 10. The absolute errors in a) the phase function a1, and b) the de-
gree of polarization Ps of the planet with the same aerosol atmosphere
as in Fig. 9, when using M = 16, 32, or 64, instead of 128. The errors
are calculated as the results for M = 128 minus the results at another
value of M.

Around Θ = 90◦, |∆Ps| reaches a maximum value of 0.10. The
location of this maximum error coincides with a local minimum
in Ps of the singly-scattered light (see Fig. 5b). For M = 16, |∆Ps|
is smaller than 0.008 for all scattering angles. For M = 32, |∆Ps|
is smaller than 10−4 for 40◦ < Θ < 170◦. With Θ decreasing
from 40◦, |∆Ps| increases to reach a sharply-peaked maximum
value of 0.01 at Θ = 1◦. With Θ increasing from 170◦, |∆Ps|
increases, but remains smaller than 0.001. For M = 64, |∆Ps| is
smaller than 5 × 10−5 for 30◦ < Θ < 170◦. For scattering angles
smaller than 30◦, |∆Ps| reaches a maximum value of 0.005 (at
Θ = 1◦). For scattering angles larger than 170◦, |∆Ps| reaches a
maximum value of 0.00015 (near Θ = 178◦).

As for the case with the purely molecular model atmosphere
(Sect. 4.1), the numerical simulations of the Bond albedo AB
and the geometric albedo p are quite insensitive to the number
of Gaussian abscissae. Compared to results for M = 128,
the relative error in p is smaller than 1% for M = 16, and
about 4% for M as small as 8. The relative error in AB is smaller
than 0.01% with as little as 8 Gaussian abscissae.

5. Summary and discussion

In the previous sections, we have described and tested our disk-
integration method for light reflected by a spherical planet. The

method is based on the expansion of the radiation field of a hor-
izontally homogeneous planet into generalized spherical func-
tions. Our tests for the planetary phase function a1, b1, and the
degree of linear polarization Ps of the reflected light (assum-
ing unpolarized incoming light) show that for a given planetary
model atmosphere, the accuracy of the method depends strongly
on 1) the number M of Gaussian abscissae that are used in the
integration of the Fourier coefficients of the planetary reflection
matrix, and 2) the scattering angle Θ (i.e. 180◦ − α, with α the
planetary phase angle).

We calculated the errors of our disk-integration method for
two planetary model atmospheres: one containing only gaseous
molecules, and the other containing gases and model D aerosol
particles (see de Rooij & van der Stap 1984). We chose these
model D aerosol particles, because light that is scattered by these
particles shows very strong angular features, both in intensity
and polarization (see Fig. 5). The model atmosphere contain-
ing these particles thus provides an extreme case for our disk-
integration algorithm.

We found that for a model planet with an atmosphere con-
taining only gaseous molecules, the absolute error |∆a1| in the
planetary phase function a1, is smaller than 10−5 across most
of the scattering interval for M ≥ 16. The absolute errors |∆Ps|
in Ps, are smaller than 5 × 10−5 for M ≥ 16 (except at scatter-
ing angles smaller than about 10◦. For the model atmosphere
containing both molecular gases and model D aerosol parti-
cles (with optical thicknesses of, respectively, 5.75 and 3.25 at
0.55 µm), M should be larger than 32 to keep the absolute er-
rors in the disk-integrated a1 and Ps smaller than 10−4. Note
that light that has been singly scattered by model D aerosol
particles shows sharp angular features in both the intensity and
the degree of polarization. These angular features are the main
source of errors for the disk-integration algorithm, simply be-
cause the number of Gaussian abscissae should be chosen large
enough to resolve the angular features. In general, the elements
of the single-scattering matrix of aerosol particles will be much
smoother functions of the scattering angle than those of the
model D particles. Obviously, when the elements of the atmo-
spheric single-scattering matrix (which is a weighted sum of
the scattering matrices of the various atmospheric constituents)
are smooth functions of the scattering angle, lower values of
M, e.g. 16, will be sufficient. Scattering matrix elements that
are smooth functions of the scattering angle can be expected
e.g. when the aerosol particles are small compared to the wave-
length, when these particles have irregular shapes (see Volten
et al. 2005), or when there are few aerosol particles compared to
gaseous molecules.

The errors in the disk-integrated a1, b1, and Ps depend, for
a given value of M, on the scattering angle Θ. Generally, the
angular variation of the errors depends strongly on the angular
dependence of the single-scattering phase function of the parti-
cles in the planetary atmosphere: at scattering angles where this
phase function shows sharp features, the errors of the integration
algorithm will be relatively large for a given number M. This re-
lation between the angular features in the single-scattering phase
function of the atmospheric particles and the number of geome-
tries or locations on the planet required for integrating reflected
light over the planetary disk will probably hold for any disk-
integration algorithm.

These types of errors in the disk-integrated a1, b1, and Ps
usually occur at the largest scattering angles (when most of the
planet’s dayside is in view), because at these geometries, narrow
angle features in the single-scattering phase functions of spher-
ical atmospheric particles, in particular, such as haze or cloud
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patricles are quite common (see Fig. 5, and examples in Hansen
& Travis 1974). Relatively large errors in a1 can also be found
at the smallest scattering angles, where only a narrow crescent
of the planet is illuminated and in view. The errors in b1 are sim-
ilar to those in a1, except that they equal zero at Θ = 0◦ and
Θ = 180◦, where b1 itself equals zero.

The relatively large errors in a1 that occur at the smallest
scattering angles also show up in the absolute error in Ps, simply
because Ps = −b1/a1. At Θ = 0◦ and Θ = 180◦, however, the
errors in Ps are zero, like those in b1 (assuming unpolarized inci-
dent light). The error in Ps is, like that in a1 and b1, also sensitive
to the scattering-angle dependence of the scattering functions of
the atmospheric constituents: the sharper the angular features in
the single scattering, the larger the errors that can be expected at
those angles in the disk-integrated Ps.

For a given value of M, the largest errors in the disk-
integrated a1, b1, and Ps are thus generally found at the smallest
and largest scattering angles. In practise, it will not be necessary
to use extra high values of M to minimize such errors, because
the smallest and largest scattering angles are not very useful for
direct observations of extrasolar planets. Namely, at such scat-
tering angles, the angular distance between the extrasolar planet
and its parent star is very small, which will make it extremely
difficult to spatially resolve the light reflected by the planet from
the direct, unscattered starlight. Even if no attempt is made for
spatially resolving the planet, for example because the polarized
signal of the planet will be searched for in the unpolarized sig-
nal of the star (Seager et al. 2000; Hough & Lucas 2003), these
scattering angles are of little use, because Ps can be expected to
be close to zero (see Figs. 7b and 9b).

The errors resulting from applying our disk-integration algo-
rithm to a specific model planet usually decrease with an increas-
ing number of Gaussian abscissae M. The time required for com-
puting the disk-integrated flux vector of the light reflected by the
model planet is mainly spent in two numerical routines, namely
one for calculating the Fourier coefficients Rs of the local re-
flection matrix and one for integrating these coefficients over the
planetary disk (and hence obtaining the planetary reflection ma-
trix S). It appears that the computing time required for the disk-
integration is negligible compared to what is required for calcu-
lating the reflection function of a plane-parallel atmosphere, in
particular for M ≥ 32. The time required for computing disk-
integrated flux vectors will thus mainly depend on the efficiency
of the radiative transfer calculations of the user.

We use an efficient adding-doubling algorithm (de Haan
et al. 1987) for the radiative transfer calculations. With our
computer code (in Fortran’77), the time required for computing
the Fourier coefficients increases strongly with the number of
Gaussian abscissae M (see de Haan et al. 1987). When planning
large numbers of calculations of disk-integrated flux vectors, e.g.
for the interpretation of observations, it is obviously advanta-
geous to keep M as small as possible. A method to minimize
both M and the errors in the disk-integrated a1 and Ps, would be
interpolation between Fourier coefficients of the local reflection
matrix R as follows. The Fourier coefficients Rs are calculated
at an N × N grid of (µ, µ0)-pairs, and before integrating these
Fourier coefficients over the planetary disk, they are interpolated
onto an M × M grid (with M > N). Test calculations we per-
formed show that this method works very well across most of
the scattering-angle region, i.e. N can be as small as 1

2 M with-
out a significant increase in the errors. The method works less
well for scattering angles where errors are due to sharp angu-
lar features in the single-scattering phase function of the atmo-
spheric particles. Not surprisingly, at such angles, N should still

be chosen high enough to resolve these angular features, other-
wise the integration errors increase too much upon interpolation
of the Fourier coefficients. Nevertheless, an interpolation method
is worth being implemented, in particular for planetary atmo-
spheres containing particles with rather smooth phase functions,
and being explored further.

Finally, we will briefly discuss another optimization for the
disk-integration method as described in this article. Namely, for
a given value of M, the largest errors in the disk-integrated a1
and Ps are generally due to sharp angular features in the single-
scattering matrix of the particles in the planetary model atmo-
sphere. These errors could be reduced without increasing M by
treating light that has been singly scattered within the planetary
atmosphere separately from the multiple-scattered light, since
the elements of the planetary scattering matrix of the multiple-
scattered light are much smoother functions of the scattering an-
gle than those of the singly scattered light (see de Haan et al.
1987; Hovenier et al. 2004, for an explanation of how to sepa-
rate singly from multiple-scattered light when using an adding-
doubling method).
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