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Abstract∗ 
In this paper, we evaluate the adequacy of two widely used 
machine learning algorithms and a computational linguistic 
proposal to model L2 perceptual development. The three 
proposals are, in order, Nearest Neighbor, Naive Bayesian 
and Stochastic OT and the Gradual Learning Algorithm. We 
compared the three models’ outputs to those of Spanish 
learners of Dutch who were asked to categorize synthetic 
stimuli as one of the 12 Dutch vowels. The empirical results 
of the human learners show that L2 learners differ 
significantly from native listeners, but also that their 
perceptual spaces tend to become more native-like with L2 
proficiency. The results of the simulations show that all three 
algorithms are able to model listeners’ data to a certain extent 
but that Stochastic OT and the Gradual Learning Algorithm, 
i.e. the linguistic model, best reproduces L1 and L2 data. 

1. Introduction 
Anecdotal and empirical evidence shows that learning to 
perceive the sounds of a second language (L2) is a difficult 
task. Models such as the Speech Learning Model [1] and the 
Perceptual Assimilation Model [2] are among the most cited 
frameworks for explaining L2 perceptual development. 
However, they do not consider a formal/computational 
implementation of their proposals, which makes their 
predictions difficult to test and validate. Recently, a 
computational, formal linguistic framework, namely 
Stochastic OT [3] and the Gradual Learning Algorithm [4], 
has been applied to L2 perceptual learning [5, 6].  
 In an attempt to bridge the gap between two disciplines 
that deal with language learning, viz. linguistics and artificial 
intelligence, we compare the explanatory power of this 
linguistic formal model with two widely used learning 
algorithms within machine learning, namely Nearest 
Neighbor [7] and Naive Bayesian [8]. We chose these 
algorithms because they represent different paradigms with 
regard to the level of abstraction assumed in perceptual 
categorization, ranging from merely saving the data without 
any form of abstraction to storing only very abstract 
representations. Below, we first present empirical data from 
Dutch natives and L2 learners of Dutch and then the results of 
our simulations for each of the three different models. 
                                                                 
∗ The first three authors’ names are in alphabetical order. Kastelein 
and Weiand conducted the simulations and Escudero contributed with 
the empirical data, guidance for simulations, overview of the research, 
and writing of articles. All four authors contributed to the 
development of the mathematical analysis, while Van Son and 
Escudero conducted the statistical analysis.  

2. Native and L2 perception data 

2.1. Methodology 

Listeners: We tested 22 Dutch native listeners (11 males, 11 
females) and 23 Peninsular Spanish speakers (10 males, 13 
females) living in the Netherlands. Fourteen of the learners 
had beginning Dutch proficiency and nine advanced 
proficiency, as determined by a general comprehension test 
part of Dialang (www.dialang.org), which is a language 
assessment system based on the Council of Europe's Common 
European Framework of reference for language learning. The 
beginning learners had spent an average of 4 months in the 
Netherlands, while the advanced an average of 3 years. 
 Stimuli & procedure: The listeners heard 113 synthesized 
vowels with 14 F1 values and 10 F2 values. Along the F1 
dimension, the values of the stimuli ranged from 240 to 900 
Hz, while along the F2 dimension, they ranged from 580 to 
2700 Hz. The 14 F1 and 10 F2 values were equally distant 
along a mel scale. The tokens used for this paper had the 
same vowel duration, i.e., 200 ms. 
 Listeners were asked to classify each of the tokens as one 
of the 12 Dutch vowel monophthongs, namely 
/i, , y, u, , e, , ø, o, , , a/. The response options were 
the orthographic representations of these Dutch vowels, 
namely <ie, i, uu, oe, u, ee, e, eu, oo, o, a, aa> respectively, 
which were presented on a computer screen. The experiment 
was conducted using a Praat [8] experiment file which 
automatically recorded the listeners’ mouse clicks on the 
vowel responses. On average, listeners took 25 minutes to 
complete the task. 

2.2. Analysis  

We used F1 and F2 values of the stimuli in Hz to analyze the 
listeners’ perceptual vowel spaces. A representation of each 
vowel was constructed (and plotted) as an ellipsoid region in 
the vowel space, where mean F1 and F2 values for a vowel 
defined the centroid of the ellipse, and the tilt and size of the 
ellipse were determined by the Eigenspace of the vowel-
specific covariance matrix. 
 Once the centre and extents of the perceptual ellipses 
were established, we computed the Normalized Midpoint 
Distance (NMD) between pairs of ellipses, which is a 
measure that serves to quantify the distance between any two 
vowels in the vowel space. The NMD is determined by taking 
the Euclidean distance in Hz space between the centroids of a 
pair of vowels, given by the formula shown below, where xi 
and yi are the coordinates of the centroid µi of vowel i. 
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This distance is then normalized by the average of the 
distances between the centroid and the edge of the ellipse 
along the line connecting the two centroids. The radius along 
a line at angle θ, i.e., the distance between an ellipse’s 
centroid and its edge along the line connecting the two 
centroids, was calculated with the formula below, where a 
and b are the lengths of the major and minor axes and Φ is the 
rotation of the ellipse. 
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Given the total distance between the centroids and the radii of 
the ellipses along the line connecting them, the NMD can 
then be calculated by the formula below, where v1 and v2 are 
vowel 1 and vowel 2 respectively.  
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Thus, the size of a vowel space in terms of non-overlapping 
vowel areas can now be expressed as the difference between 
pairs of NMD values. An average minimal distance is defined 
by first selecting a central vowel as the vowel with the 
smallest summed squared distances with all the other vowels, 
which in this case gives 11 pairwise differences per listener 
group. Thus, the root mean squared distance, i.e., the root of 
the average squared distance between this vowel and all the 
other vowels, was used to measure how well the vowels in a 
certain perceptual vowel space are separated. That is, with 
this computation, the amount of vowel overlap on a 
perceptual space can be computed. 

2.3. Results 

This section shows the perceptual categorization of the 12 
Dutch vowels by the native Dutch listeners and the L2 
learners. For purposes of clear visualization, only the resulting 
ellipses for the three corner vowels are plotted together with 
the middle vowel. However, for the statistical analysis 
presented below, the categorizations for all 12 vowels were 
considered. The middle vowel needed to be the same for all 
groups and we chose /ø/ because its summed-squared distance 
was the lowest for the learners, and the second lowest by a 
small margin for the natives. Figures 1 and 2 show the vowel 
ellipses of the natives and beginning L2 learners, respectively. 
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Figure 1: Native Dutch listeners’ categorization. 
Linear average (across 11) pairwise NMD difference 
= 246.29. x axis: F1 in Hertz, y axis: F2 in Hertz. 
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Figure 2: Begnning L2 listeners’ categorization. 
Linear average pairwise NMD difference = 74.08 

As we can see, the vowel space of the natives is much larger 
than that of beginning learners. This large perceptual space 
difference is confirmed by a Wilcoxon Matched Pairs Signed 
Ranks test on the 11 distances computed separately for the 
two groups (W+ = 61, W-= 5, p ≤ 0.00977). The question now 
is whether L2 learners ever approximate a perceptual space 
similar to that of native listeners. Figure 3 shows the ellipses 
for the same vowels for the 7 advanced learners of Dutch. 
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Figure 3: Advanced L2 listeners’ categorization. 
Linear average pairwise NMD difference = 142.67. 

A visual comparison between Figures 1 and 3 suggests that 
the advanced L2 learners have a perceptual space which 
approximates the native vowel space better than that of the 
beginning learners. We used the same statistical test as above 
to compare the 11 pairwise differences of the Dutch natives 
and the advanced learners. The test did not reach significance 
(W+ = 55, W- = 11, p ≤ 0.0537). In contrast, a comparison of 
the 11 pair wise differences of the advanced learners with 
those of the beginning learners shows that they are 
significantly different (W+= 58, W- = 8, p ≤ 0.0244). These 
two tests together can be taken to mean that the advanced 
learners’ perceptual space is at least different from that of the 
beginning learners.  

 



3. Modelling 

3.1. The three models 

The Nearest Neighbor (kNN) algorithm is a so-called lazy 
learner, meaning that it does not require complicated learning 
procedures, but rather performs the necessary calculations at 
the time of classification of new instances. For the algorithm 
to work, each instance must be expressible as occupying a 
location in a high-dimensional Euclidean space. Learning 
simply occurs through storing each example with its 
corresponding label, which results in a space populated by all 
instances stored up until the current point in time. To classify 
a new instance, the algorithm calculates the Euclidean 
distance to each example in the instance space and looks at 
the closest neighboring point. The label of this point is 
assigned to the new instance. Several different labels may be 
stored at a single point. In such a case, one label is 
probabilistically chosen on the basis of the resulting point-
specific vowel frequency distribution. 
 The Naive Bayes (NB) classifier is a traditional statistical 
classification algorithm which relies on Bayes' well known 
formula for calculating conditional probabilities: 
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During training, the classifier attempts to maximize the 
likelihood of the training data by using the relative frequency 
estimation over attribute values, under an assumption of 
conditional independence between variables. This gives the 
conditional probability of individual attribute values, a1, ..., an 
given a class, cj, P(ai|cj). In the vowel perception case of the 
present study,, each vowel constitutes a single class and the 
classifier builds the model by estimating the relative 
frequency of attribute-value occurrences for the class given in 
the training data. When trying to classify an incomming 
stimulus, , the resulting frequency distribution model is used 
to calculate the probability of observing each of the candidate 
vowels, given the stimulus. Then, a class label is chosen from 
this set on the basis of this probability distribution. 
 The Gradual Learning Algorithm (GLA) is an error-
driven learning algorithm used in combination with 
Stochastic Optimality Theory  (SOT) [3], which is a linguistic 
theory originally used in phonology but also in other areas of 
linguistics. Within this theory, the optimal candidate for 
classification is selected from a set of generated candidates by 
means of a hierarchy of soft constraints. SOT differs from 
traditional OT [9] in that constraint rankings are not discrete 
and ordinal but rather arranged on a continuous scale, which 
means that the distance between constraints can be learned 
from training data. The GLA takes a set of constraints and 
input-output pairs augmented with frequency information and 
subsequently adjusts the ranking values of the constraints so 
that the number of errors, i.e., cases where the optimal 
candidate for an input does not match the output, is 
minimized. In addition, the ranking value varies due to a 
noise component that is added during evaluation, which 
makes the selection of the optimal candidate non-
deterministic.  

3.2. Simulations 

For the Dutch native simulation, the three algorithms were 
trained on 100% of the data from the 22 native Dutch 
listeners shown above. Figure 4 shows the resulting ellipses 

plots for each model. In the caption, we see the linear average 
pairwise NMD difference which each model yields between 
parentheses. The results of the same statistical test show that 
the simulated Dutch NB vowel space is significantly larger 
than that of the other two models (KNN: W+ = 66, W-= 0, p 
≤ 0.00098; SOT-GLA: W+ <= 66, W-= 0, p ≤ 0.00098). In 
addition, the vowel space of simulated Dutch SOT-GLA is 
significantly larger than that of simulated Dutch KNN (W+ = 
61, W-= 5, p ≤ 0.0098). As for the human data, the Dutch NB 
vowel space is significantly larger than that of the Dutch 
human listeners (W+ = 66, W-= 0, p ≤ 0.00098), while the 
Dutch humans were found not to differ significantly from 
either the KNN or SOT simulated Dutch (in both cases: W+ = 
50, W-= 16, p ≤ 0.148). This seems to suggest that both the 
KNN and the SOT-GLA simulations yield vowel spaces that 
compare well with the Dutch human data. 
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Figure 4: Simulated Dutch listeners. KNN = solid 
(211.80), NB = dashed (462.61), SOT-GLA = dotted 
(260.15).  

The simulations of the L2 learners started as simulated native 
speakers of Spanish because we assume that the initial state 
of L2 acquisition is a copy of the L1 categorization strategies 
[6]. Thus, the models were first trained on data from 
monolingual Spanish listeners classifying the same tokens as 
the Dutch natives and L2 learners but choosing from the five 
Spanish vowels, /i, e, a, o, u/. Thus, the classifications in the 
Spanish models were mapped onto the Dutch vowel inventory 
using a probabilistic transformation. This mapping scheme 
was manually constructed on the basis of observed 
correspondences between the Spanish vowel space of the 
monolingual native speakers on the one hand, and the Dutch 
vowel space of the beginning learners on the other, and 
subsequently refined. Figure 5 shows the beginning L2 results 
for the three models (Average pair wise NMD differences in 
the caption). 
 When simulating beginning L2 learners, the NB model 
yields a significantly different perceptual space from those of 
both the KNN (W+ = 65, W- = 1, p ≤ 0.002) and the SOT 
(W+ = 58, W-= 8, p ≤ 0.024) models. In addition, the latter 
two models produce significantly different vowel spaces (W+ 
= 58, W-= 8, p ≤ 0.024). As for the human L2 beginners, 
none of the models yields vowel spaces which are 
significantly different from the beginners’ vowel space (NB: 
W+ = 43, W- = 23, N = 11, p ≤ 0.4131; , SOT: W+ = 37, W- 
= 29, N = 11, p ≤ 0.7646; KNN W+ = 27, W- = 39, N = 11, p 
≤ 0.6377), which seems to suggest that all three models 
succeed in modelling human beginning L2 learners. 
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Figure 5: Simulated Beginning learner of Dutch. KNN 
= solid (71.4025), NB = dashed (102.32), SOT-GLA 
= dotted (94.74).  

To simulate advanced learners of Dutch, we fed the native 
Spanish models with an additional 30% of randomly chosen 
training examples from the native Dutch listeners’ data. It 
was assumed that 30% amounts to a third of the listeners’ 
lives, i.e. approximately 8-10 years of L2 exposure. For these 
learners, the categorization output is either a Dutch vowel 
based on their L2 experience or a vowel from a Spanish-to-
Dutch vowel mapping, according to the probabilistic mapping 
scheme that was used before. Figure 6 shows the simulated 
advanced learners’ results (average pair wise NMD difference 
in the caption). 
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Figure 6: Simulated Advanced learners. KNN = solid 
(86.18), NB = dashed (116.26), SOT-GLA = dotted 
(225.59). 

Thus, for advanced learners the SOT-GLA model yields a 
significantly different vowel space from those of both the 
KNN (W+ = 64, W- = 2, N = 11, p ≤ 0.00293 ) and the NB 
(W+ = 60, W- = 6, N = 11, p ≤ 0.01367 ) models. The latter 
two models also differ significantly from one another (W+ = 
59, W- = 7, N = 11, p ≤ 0.01855). As for the human advanced 
learners, neither the NB (W+ = 51, W- = 15, N = 11, p ≤ 
0.123) nor the SOT-GLA models (W+ = 55, W- = 11, N = 11, 
p ≤ 0.05371) yield vowel spaces which are significantly 
different from the advanced listeners’ vowel space, while the 
KNN does (W+ = 60, W- = 6, N = 11, p ≤ 0.01367). 

4. Discussion and conclusions 
Our results show that it is possible to quantify the dimensions 
of perceptual vowel spaces in both humans and simulated 
native and non-native listeners and how they are learned. 
Moreover, it has been shown that the characteristics of each 
type of perceptual vowel space can be compared 
meaningfully.  
 Our quantitative comparison of human native versus L2 
learners shows that beginning learners start with a smaller 
perceptual space than that of the natives but that with 
experience with the new language, advanced L2 learners can 
develop to mimic the native perceptual space. 
 With respect to the main aim of the present study, i.e. to 
compare models of human perceptual development, the 
choice of models/algorithms was specifically designed to give 
a continuum between amounts of information reduction in the 
perceptual storage of vowel tokens. That is, the KNN stores 
every vowel exemplar while the NB reduces all examples to 
probability distributions and SOT-GLA reduces them to 
discrete abstract categories and constraints. Our simulations 
show that NB does not succeed in reproducing the Dutch 
humans, KNN does not succeed in reproducing advanced L2 
learners, while SOT-GLA succeeds in reproducing all three 
sets of human data, i.e. native, beginning and advanced. 
 We argue that our simulations indicate that models of 
human sound perception which aim at explaining both L1 and 
L2 learning should be based on algorithms/frameworks which 
allow for strong abstraction and generalization, such as the 
SOT-GLA model which perfomed well in all our simulations. 
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