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Abstract

In this paper, we define a translation operator in a general form to allow for the application of the weighted harmonic
ean in different applications. We outline the main steps to follow to define adapted methods using this tool. We give a

ractical example by improving the behavior of a nonlinear reconstruction operator defined in nonuniform grids, which was
nitially meant to work well with strictly convex data. With this improvement, the reconstruction can be now applied to data
oming from smooth functions, retaining the expected maximum approximation order even around the inflection point areas,
nd maintaining convexity properties of the initial data. This adaptation can be carried out for general nonuniform grids,
lthough to get the theoretical results about the approximation order, we require to work with quasi-uniform grids. We check
he theoretical results through some numerical experiments.

2022 The Author(s). Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in
imulation (IMACS). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A high quantity of reconstruction operators have emerged in the last decades to attend to the demands of diverse
pplications in applied mathematics and industry [2,3,13,14]. Normally, polynomials are considered because of
heir simplicity and fast computation, and more specifically piecewise polynomials to avoid using high degree
olynomials. High order polynomials involve larger stencils to build the reconstructions, which makes them more
ulnerable to be affected by the presence of potential discontinuities in the data, apart from being well known for
roducing spurious maxima and minima known as Runge phenomena.
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Nonlinear reconstructions allow adaptation to the available data and they also permit the preservation of
ertain properties inherent to the initial data. One of such properties is convexity, which is intimately related
o curve and surface design. In this context, some nonlinear operators have appeared in the literature in the
ast few years [4–6,9,10,15]. In particular, we pay attention to the Piecewise Polynomial Harmonic (PPH)
econstruction [5,7,17,21,22,25], which was defined in nonuniform grids to preserve the convexity of the initial
ata under certain restrictions [22]. This reconstruction works well with data coming from strictly convex functions,
ut it fails to guarantee the approximation order in the vicinity of inflection points. This drawback comes directly
rom the heart of the definition itself of the PPH reconstruction operator, that is, the use of the weighted harmonic
ean of two positive quantities. However, the problem can be solved by using a modified mean with a translation

trategy.
In this paper, we introduce the definition of what we call a translation operator. We give a more general definition

f the translation operator than the one that appears in [9], which deals with only two variables. This translation
trategy can be applied in different fields to solve the problem of applying the harmonic mean whenever one of
he arguments has different sign than another one or is null. As an example, we give some hints on how to define
onlinear adapted reconstructions which use this strategy and keep the required order of approximation. In particular,
e apply this operator to the weighted harmonic mean obtaining a new adapted mean which retains similar properties

s the original one, which is a crucial issue to be inserted into the construction of the improved PPH reconstruction
perator. Our main concern about improving the approximation order around inflection points is to generate a tool
hat retains the approximation order in the whole domain for smooth functions and maintains local convexity in the
onvex areas. This convexity preservation property in smooth areas was proven in [22] under certain constraints.
lso in [22] is made evident that the PPH reconstruction, both in uniform and in nonuniform grids, is relevant
ot only as an adapted reconstruction for smooth functions with isolated jump discontinuities (see [5,23]) but as a
econstruction that preserves convexity of the initial data.

We study several possible options for the translation operator to work in combination with the PPH reconstruction
perator. In particular, we define a new way of choosing the best option depending on the specific data to which it
s going to be applied. Part of this work has been inspired by the ideas given in [9].

Recent works deal with nonlinear reconstruction methods and nonuniform grids in different fields such as the
olution of hyperbolic conservation laws [12,16,18,19] and the application of subdivision schemes [1,11,20].

The paper is organized as follows: Section 2 is dedicated to giving the definition and to study the translation
perator in the general case of n variables. In Section 3, we analyze the behavior of the improved PPH reconstruction
perator concerning the approximation order. In Section 4, we give a new way of selecting the translation parameter
epending on the data. In Section 5, we present some numerical tests to confirm the theoretical results. Finally, some
onclusions are provided in Section 6.

. The translation operator

Given n real values x1, . . . , xn , let us define the extended weighted harmonic mean Ṽ (x1, . . . , xn) as follows.

Ṽ (x1, . . . , xn) =

⎧⎪⎨⎪⎩
1∑n

i=1
wi

xi

=

∏n
k=1 xk∑n

i=1 wi
∏n

k=1
k ̸=i

xk
, if xi > 0 ∀ i,

0 otherwise.

(1)

And the weighted arithmetic mean by,

M(x1, . . . , xn) =

n∑
i=1

wi xi . (2)

For the sake of simplicity, let us call them Ṽ and M without making explicit reference to their arguments if it
is not strictly needed.

These two means have very interesting properties that make them suitable for the definition of nonlinear
reconstruction operators among other applications, see [22] for example, where their versions with two variables

were used. There are two main properties of these means that we want to recall. Their proofs can be found in [8].
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Lemma 1. Let xi > 0, i = 1, . . . , n be n positive real numbers and wi > 0, i = 1, . . . , n the corresponding
eights with

∑n
i=1 wi = 1. Then, the weighted harmonic mean Ṽ is bounded as follows

Ṽ ≤
x1

w1
.

Lemma 2. Let xi > 0, i = 1, . . . , n be n positive real numbers and wi > 0, i = 1, . . . , n the corresponding
eights with

∑n
i=1 wi = 1. If xi = O(1), ∀i = 1, . . . , n, and |x1 − xi | = O(h), ∀i = 2, . . . , n, then,

the weighted harmonic mean Ṽ and the weighted arithmetic mean M satisfy⏐⏐M − Ṽ
⏐⏐ = O(h2).

Lemma 1 is related to the quality of adaptation of the methods to the presence of potential singularities. Lemma 2
s related to maintaining the same approximation order in a new nonlinear method as in its linear counterpart, from
hich it has been derived.
It happens, as we will explain in a moment, that in practice, the arguments of the means may be of different

igns, and then neither the harmonic mean nor its extended version Ṽ is performing as expected. In particular,
Lemma 2 is no longer necessarily true. To solve this problematic behavior we introduce a newly adapted version
of the weighted harmonic mean. We first give a more general definition of a translation operator T . In [9], the
translation operator was used in the case of 2 variables for a specific problem in the field of nonlinear splines.
Since harmonic means of several variables appear in many applications we find it useful to give a more general
definition.

Definition 1. Given h > 0, a translation operator T is any function T : Rn
→ R satisfying

1. T (0, . . . , 0) = 0,
2. T (x1, . . . , xn) = T (σ (x1), . . . , σ (xn)), where σ is any permutation of n elements,
3. T (−x1, . . . ,−xn) = −T (x1, . . . , xn),
4. sign(x1 + T (x1, . . . , xn)) = · · · = sign(xn + T (x1, . . . , xn)), ∀ (x1, . . . , xn) ̸= (0, . . . , 0),
5. if (x1, . . . , xn) ̸= (0, . . . , 0), with |s| = max{|x1|, . . . , |xn|},

(a) if ∃ s1 : |s1| = |s|, sign(s1) ̸= sign(s),
then sign(x1 + T (x1, . . . , xn)) > 0, . . ., sign(xn + T (x1, . . . , xn)) > 0,

(b) if ∄ s1 : |s1| = |s|, sign(s1) ̸= sign(s),
then sign(x1 + T (x1, . . . , xn))sign(s) > 0, . . ., sign(xn + T (x1, . . . , xn))sign(s) > 0,

6. min{|x1 + T (x1, . . . , xn)|, . . . , |xn + T (x1, . . . , xn)|} = O(1), ∀ (x1, . . . , xn) ̸= (0, . . . , 0).

Property 4 of Definition 1 avoids the division by zero in (1), eliminating the case in which the sign of the
arguments does not coincide. This solves the inconveniences that generates reducing the mean to zero in expression
(1). Property 5 guarantees that the translation is done towards the largest of the arguments in absolute value. Finally,
property 6 will be needed to prove similar lemmas to Lemmas 1 and 2, what in turn will allow us to prove adaptation
in case of discontinuities and full order accuracy in the case of applying the technique that we are going to describe
to define new nonlinear reconstruction operators.

This translation operator could potentially be applied in several fields where the formulation of the problems
brings arithmetic means into the scene. Let us explain for example how to use it for the definition of new adapted
reconstruction operators. The steps would be the following,

1. Start with a linear reconstruction operator.
2. Rewrite it by making appear arithmetic means of divided differences (or any other smoothness indicator).

Be sure that the terms affected by any potential singularity remain only in some of the arguments of the
arithmetic mean, but not in all of them. At least one divided difference must be free of any singularity.

3. Substitute the arithmetic means for translated harmonic means.

We are now ready to present the adapted weighted harmonic mean. First, we need to extend to the n variable

case the definitions of weighted arithmetic and harmonic means.
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Definition 2. We define the translated weighted harmonic mean as,

J (x1, . . . , xn) = Ṽ (x1 + T (x1, . . . , xn), . . . , xn + T (x1, . . . , xn)) − T (x1, . . . , xn), (3)

here T (x1, . . . , xn) is an appropriate translation operator.

For this new mean we can give the following technical lemmas.

emma 3. For all (x1, . . . , xn) ∈ Rn , the J (x1, . . . , xn) mean satisfies J (−x1, . . . ,−xn) = −J (x1, . . . , xn).

Proof.

J (−x1, . . . ,−xn) = Ṽ (−x1 + T (−x1, . . . ,−xn), . . . ,−xn + T (−x1, . . . ,−xn)) − T (−x1, . . . ,−xn)

= Ṽ (−(x1 + T (x1, . . . , xn)), . . . ,−(xn + T (x1, . . . , xn))) + T (x1, . . . , xn)

= −Ṽ (x1 + T (x1, . . . , xn), . . . , xn + T (x1, . . . , xn)) + T (x1, . . . , xn) = −J (x1, . . . , xn).

□

From now on, we will drop the arguments of the translation operator T for the sake of simplicity. They are easily
inferred by the context.

Lemma 4. For all (x1, . . . , xn) ∈ Rn , the translated weighted harmonic mean is bounded as follows,

|J (x1, . . . , xn)| ≤ max
{

|x1 + T |

w1
, |T |

}
. (4)

roof. Since Ṽ (x1 + T, . . . , xn + T ) and T have the same sign,

|J (x1, . . . , xn)| ≤ max
{
|Ṽ (x1 + T, . . . , xn + T )|, |T |

}
.

ccording to Lemma 1 we have that

|Ṽ (x1 + T, . . . , xn + T )| ≤
|x1 + T |

w1
.

Then,

|J (x1, . . . , xn)| ≤ max
{

|x1 + T |

w1
, |T |

}
.

□

Lemma 5. Let a > 0 be a fixed positive real number, T be a translation operator, and let (x1, . . . , xn) ∈ Rn

be such that |xi + T | ≥ a, ∀ i = 1, . . . , n. If |x1 − xi | = O(h), ∀ i = 2, . . . , n, then the translated weighted
harmonic mean is a second order approximation to the weighted arithmetic mean M(x1, . . . , xn) =

∑n
i=1 wxi xi ,

i.e.,

|M(x1, . . . , xn) − J (x1, . . . , xn)| = O(h2). (5)

Proof. Using the definition of J (x1, . . . , xn) we get

|M(x1, . . . , xn) − J (x1, . . . , xn)| = |M(x1, . . . , xn) − Ṽ (x1 + T, . . . , xn + T ) + T |

= |M(x1 + T, . . . , xn + T ) − Ṽ (x1 + T, . . . , xn + T )|.

and applying Lemma 2 we have that

|M(x1 + T, . . . , xn + T ) − Ṽ (x1 + T, . . . , xn + T )| = O(h2).

□

Notice that Lemmas 4 and 5 correspond to an extension of previous Lemmas 1 and 2.
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Remark 1. The bound obtained in Lemma 4 can be improved for particular choices of the translation T , due to the
fact that in the general case, one applies the triangular inequality in the proof to reach the result, and this step can
be refined for a given T . See for example the definition of the translation T̃ in (6) and its corresponding Lemma 6.

We are going now to use this technique for the improvement of the nonlinear reconstruction PPH on nonuniform
grids, see [22]. The new ingredient consists in the substitution of weighted harmonic means by their translated
version. We start by using the above definition of a translation operator and previous lemmas in order to give a
particular translation operator in the two variable case, which we will use in our numerical examples.

One possible definition of translation T fulfilling previous Definition 1 is obtained by

T̃ (x, y) =

{
s ϵ if xy > 0,

s(min {|x |, |y|} + ϵ) otherwise, (6)

here ϵ = O(1) is a constant and s is defined using the sign function as

s =

{
sign(y) if |x | ≤ |y|,

sign(x) otherwise.

Notice that, we will also drop the arguments of the translation operator T̃ for the sake of simplicity.
The proposed new mean is then given by

J̃ (x, y) = Ṽ (x + T̃ , y + T̃ ) − T̃ , (7)

nd verifies the following specific lemma, which improves the bound in Lemma 4.

emma 6. For all (x, y) ∈ R2, the translated weighted harmonic mean J̃ is bounded as follows

| J̃ (x, y)| ≤

⎧⎪⎪⎨⎪⎪⎩
|x |

wx
+

wy

wx
ϵ if |x | ≤ |y|,

|y|

wy
+

wx

wy
ϵ otherwise.

Proof. Let us suppose without loss of generality that |x | ≤ |y|. We consider four possible different cases, and we
prove the result separately for each case.

Case A. x ≤ 0, y > 0. In this case T̃ = −x + ϵ > 0.

J̃ (x, y) = Ṽ (ϵ, y − x + ϵ) + x − ϵ.

Now, we observe that,

Ṽ (ϵ, y − x + ϵ) ≥ ϵ,

Ṽ (ϵ, y − x + ϵ) <
1

wx
ϵ.

If Ṽ (ϵ, y − x + ϵ) + x − ϵ ≥ 0,

| J̃ (x, y)| < |x | +
wy

wx
ϵ.

If Ṽ (ϵ, y − x + ϵ) + x − ϵ < 0,

| J̃ (x, y)| = ϵ − x − Ṽ (ϵ, y − x + ϵ) ≤ |x |.

Case B. x ≥ 0, y < 0. In this case T̃ = −x − ϵ < 0.

J̃ (x, y) = Ṽ (−ϵ, y − x − ϵ) + x + ϵ.

Observing that

Ṽ (−ϵ, y − x − ϵ) ≤ −ϵ,

Ṽ (−ϵ, y − x − ϵ) > −
1

ϵ.

wx
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If Ṽ (−ϵ, y − x − ϵ) + x + ϵ ≥ 0,

| J̃ (x, y)| = Ṽ (−ϵ, y − x − ϵ) + x + ϵ ≤ |x |.

If Ṽ (−ϵ, y − x − ϵ) + x + ϵ < 0,

| J̃ (x, y)| ≤ |x | +
wy

wx
ϵ.

Case C. x > 0, y > 0. In this case T̃ = ϵ > 0.

J̃ (x, y) = Ṽ (x + ϵ, y + ϵ) − ϵ.

We are going to use that in this case,

Ṽ (x + ϵ, y + ϵ) ≥ x + ϵ,

Ṽ (x + ϵ, y + ϵ) <
1

wx
(x + ϵ).

Since in this case Ṽ (x + ϵ, y + ϵ) − ϵ ≥ 0, then,

| J̃ (x, y)| <
|x |

wx
+

wy

wx
ϵ.

ase D. x < 0, y < 0. In this case T̃ = −ϵ < 0.

J̃ (x, y) = Ṽ (x − ϵ, y − ϵ) + ϵ.

In this case using that,

Ṽ (x − ϵ, y − ϵ) ≤ x − ϵ,

Ṽ (x − ϵ, y − ϵ) >
1

wx
(x − ϵ),

nd observing that Ṽ (x − ϵ, y − ϵ) + ϵ < 0, we get,

| J̃ (x, y)| <
|x |

wx
+

wy

wx
ϵ.

□

3. Improved PPH reconstruction operator

In this section we introduce the modified mean defined in the previous section into the definition of the PPH
reconstruction operator [22], giving rise to the following definition.

Definition 3 (Translated PPH Reconstruction). Let X = (xi )i∈Z be a nonuniform mesh. Let f = ( fi )i∈Z be a
equence in l∞(Z). Let D j and D j+1 be the second order divided differences defined by,

D j := f [x j−1, x j , x j+1] =
f j−1

h j (h j + h j+1)
−

f j

h j h j+1
+

f j+1

h j+1(h j + h j+1)
,

D j+1 := f [x j , x j+1, x j+2] =
f j

h j+1(h j+1 + h j+2)
−

f j+1

h j+1h j+2
+

f j+2

h j+2(h j+1 + h j+2)
,

(8)

nd for each j ∈ Z let us consider the modified values { f̃ j−1, f̃ j , f̃ j+1, f̃ j+2} built according to the following rule,

• Case 1: If |D j | ≤ |D j+1|{
f̃i = fi , j − 1 ≤ i ≤ j + 1,

f̃ j+2 =
−1 (γ j,−1 f j−1 + γ j,0 f j + γ j,1 f j+1) +

J j .
(9)
γ j,2 γ j,2
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• Case 2: If |D j | > |D j+1|{
f̃ j−1 =

−1
γ j,−1

(γ j,0 f j + γ j,1 f j+1 + γ j,2 f j+2) +
J j

γ j,−1
,

f̃i = fi , j ≤ i ≤ j + 2,
(10)

here γ j,i , i = −1, 0, 1, 2 are given by,

γ j,−1 =
h j+1 + 2h j+2

2h j (h j+1 + h j )(h j + h j+1 + h j+2)
,

γ j,0 =
1

2h j+1(h j + h j+1 + h j+2)

(
h j+1 + 2h j

h j+1 + h j+2
−

h j+1 + 2h j+2

h j

)
,

γ j,1 =
1

2h j+1(h j + h j+1 + h j+2)

(
h j+1 + 2h j+2

h j+1 + h j
−

h j+1 + 2h j

h j+2

)
,

γ j,2 =
h j+1 + 2h j

2h j+2(h j+1 + h j+2)(h j + h j+1 + h j+2)
,

(11)

with hi = xi+1 − xi , and J j = J (D j , D j+1), with J the translated weighted harmonic mean defined in (3) or in (7)
ith the weights w j,0 and w j,1 given by,

w j,0 =
h j+1 + 2h j+2

2(h j + h j+1 + h j+2)
,

w j,1 =
h j+1 + 2h j

2(h j + h j+1 + h j+2)
= 1 − w j,0.

(12)

e define the translated PPH nonlinear reconstruction operator as,

P P H T (x) = P P H T j (x), x ∈ [x j , x j+1], (13)

here P P H T j (x) is the unique third degree interpolation polynomial which satisfies,

P P H T j (xi ) = f̃i , j − 1 ≤ i ≤ j + 2. (14)

The coefficients for this new reconstruction operator match exactly with the coefficients of the original PPH
econstruction except for the substitution of Ṽ j = Ṽ (D j , D j+1) for J j .

We can prove now the following result about the order of approximation attained by the reconstruction. We want
o point out that the order improves in the vicinity of inflection points due to the considered translation, which is
n improvement with respect to the original reconstruction procedure, see Theorem 1 in [23].

We are going to study the approximation order of the given reconstruction for functions of class C4(R) with an
solated jump discontinuity at a given point µ. We consider only the case of working with σ quasi-uniform grids,
ccording to the following definition.

efinition 4. A nonuniform mesh X = (xi )i∈Z is said to be a σ quasi-uniform mesh if there exist hmin = mini∈Z hi ,
hmax = maxi∈Z hi , and a finite constant σ such that hmax

hmin
≤ σ .

The next theorem proves full order of accuracy, that is fourth order of accuracy, in all intervals except the interval
containing the singularity and the two adjacent intervals. We observe that the approximation order is reduced to
second-order in the two adjacent intervals, but it is not completely lost.

Theorem 1. Let f (x) be a function of class C4(R\{µ}), with a jump discontinuity at the point µ. Let X = (xi )i∈Z
be a σ quasi-uniform mesh in R, with hi = xi − xi−1, ∀i ∈ Z, and f = ( fi )i∈Z, the sequence of point values of
the function f (x), fi = f (xi ). Let us consider j ∈ Z such that µ ∈ [x j , x j+1]. Then, the reconstruction P P H T (x)
satisfies,

1. In [xi , xi+1], i ̸= j − 1, j, j + 1, then

max | f (x) − P P H T (x)| = O(h4).

x∈[xi ,xi+1]
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2. In [x j−1, x j ] ∪ [x j+1, x j+2],

max
x∈[x j−1,x j ]∪[x j+1,x j+2]

| f (x) − P P H T (x)| = O(h2),

where h = maxi∈Z{hi }.

Proof. We do the proof point by point.
1. Given x ∈ [xi , xi+1], the reconstruction operator is built as P P H T (x) = P P H Ti (x).

We recall that second order divided differences amount to second order derivatives at an intermediate point
divided by two, i.e.,

Di =
f ′′(µ1)

2!
, Di+1 =

f ′′(µ2)
2!

,

with µ1 ∈ (xi−1, xi+1) and µ2 ∈ (xi , xi+2). Due to the properties of the translation T in Definition 1, we have that,

Di + T̃ = O(1), Di+1 + T̃ = O(1) and Di+1 − Di = O(h),

and from Lemma 5 we get that,

Mi − J̃i =
wi,0wi,1(Di+1 − Di )2

wi,0 Di+1 + wi,1 Di + T̃
= O(h2). (15)

sing this information and the specific form of the coefficients ai,s and ãi,s s = 0, 1, 2, 3, of the cubic Lagrange
interpolation polynomial and of the translated PPH reconstruction operator respectively, see [22], one can easily get
that,

|̃ai,s − ai,s | = O(h4−s), s = 0, 1, 2, 3. (16)

hus,

|P P H Ti (x) − P L i (x)| ≤

3∑
s=0

|̃ai,s − ai,s |

⏐⏐⏐(x − xi+ 1
2

)s⏐⏐⏐ = O(h4),

where P L i (x) is the Lagrange interpolatory polynomial. Taking into account again the triangular inequality,

| f (x) − P P H Ti (x)| ≤ | f (x) − P L i (x)| + |P L i (x) − P P H Ti (x)| = O(h4),

sing that Lagrange interpolation also attains fourth order of accuracy.
. In order to prove Point 2, let us suppose without loss of generalization, that x ∈ [x j−1, x j ]. The other case
s proven analogously. Since, by hypothesis, the function f (x) is smooth in [x j−2, x j ] and it presents a jump
iscontinuity in the interval [x j , x j+1], we have D j−1 = O(1) and D j = O(1/h2). Therefore |D j−1| ≤ |D j | .

Let P L2 j−1(x) be the second degree Lagrange interpolatory polynomial built using the three pairs of values
x j−2, f j−2), (x j−1, f j−1), (x j , f j ).

P L2 j−1(x) = â j−1,0 + â j−1,1

(
x − x j− 1

2

)
+ â j−1,2

(
x − x j− 1

2

)2
,

where

â j−1,0 =
f j−1 + f j

2
−

h2
j

4
D j−1,

â j−1,1 =
− f j−1 + f j

h j
,

(17)
â j−1,2 = D j−1.
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The difference between these coefficients and the ones of P P H T j−1(x), see [22], is given by,

ã j−1,0 − â j−1,0 =
h2

j

4

(
D j−1 − J j−1

)
,

ã j−1,1 − â j−1,1 =
h2

j

4h j−1 + 2h j
(D j−1 − J j−1),

ã j−1,2 − â j−1,2 = −(D j−1 − J j−1),

ã j−1,3 = −
2

2h j−1 + h j
(D j−1 − J j−1).

(18)

Taking into account Eqs. (18), Lemma 4 and the triangular inequality we obtain,

|J j−1(D j−1, D j )| ≤ max{
1

w j−1,0
|D j−1 + T |, |T |},

|D j−1 − J j−1| ≤ |D j−1| + max{
1

w j−1,0
|D j−1 + T |, |T |} = O(1),

|̃a j−1,s − â j−1,s | = O(h2−s), s = 0, 1, 2, 3,

|P P H T j−1(x) − P L2 j−1(x)| ≤

3∑
s=0

|̃a j−1,s − â j−1,s |

⏐⏐⏐(x − x j− 1
2

)s⏐⏐⏐ = O(h2),

| f (x) − P P H T j−1(x)| ≤ | f (x) − P L2 j−1(x)| + |P L2 j−1(x) − P P H T j−1(x)| = O(h2).

□

emark 2. If one pays attention to the proof of point 2 in Theorem 1 and considers the definition of the particular
ranslation proposed in (6) and Lemma 6, then it is easy to reach the conclusion that the smaller the ϵ the better the
ccuracy obtained in the two intervals adjacent to the jump discontinuity. However, in order for the proof of point
to work, ϵ must still be O(1), so that it is possible to avoid the reduction of order close to inflection points where

he second order divided differences could be O(h) and, therefore, Lemma 5 would not be applicable. A nonlinear
hoice of the value of ϵ seems to be appropriate.

emark 3. In the intervals adjacent to the jump discontinuity, one can get third order of accuracy in the cases
here there is a change of sign between the two consecutive second divided differences involved in either [x j−1, x j ]
r [x j+1, x j+2], just by considering a translation of the type T̃ in (6) with an adapted value of ϵ, small enough in
hose intervals, at least ϵ = O(h). In this cases we will have,

max
x∈[x j−1,x j ]∪[x j+1,x j+2]

| f (x) − P P H T (x)| = O(h3).

he reason for this fact comes from the expression of the adapted mean J̃ in these cases, Case A and Case
of Lemma 6, combined with the proof of the second point of Theorem 1 by estimating now the difference

D j−1 − J j−1| = O(h).

. Nonlinear choice of the parameter ϵ in the translation operator

It turns out that it is better to take a small ϵ near a potential jump discontinuity, but it must remain O(1) at zones
here there is the possibility of having second order divided differences Di of order O(h), just as it happens close

o inflection points. This assessment is also observed in the numerical experiments.
This is the reason why we propose a strategy to choose ϵ automatically depending on the data. Inspired by the

moothness indicators proposed in [9,24], see Remark 4, we propose an ϵ with the following expression,

ϵ j :=
hα

j

|D j | + |D j+1| + ξ
, (19)

here α := [β(|D j |+ |D j+1|)] is the integer part of I S j := β(|D j |+ |D j+1|), which stands as a kind of smoothness
ndicator. The parameter ξ = h4 is included to avoid divisions by zero. The parameter β is taken into account to
ake the ϵ smaller as we get apart from the inflection points. This fact will result in obtaining a reconstruction
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almost equal to the original PPH reconstruction in smooth areas without inflection points, allowing the preservation
of convexity (see [22]). We have considered β = 1 in our numerical experiments. The parameter α is large when
a jump discontinuity affects the stencil used to obtain it and, in turn, this situation will result in a very small value
of ϵ j in that area. On the other hand, this indicator provides α = 0 near an inflection point for sufficiently small
grid sizes and, therefore, ϵ j = O(h−r ), for some r > 0. Thus, ϵ is guaranteed to be large in this region.

Remark 4. In [24] Jiang and Shu propose to obtain smoothness indicators using something similar to the total
variation, but based on the L2 norm so that the result is smoother than the total variation. The proposed formula is
ust a sum of the L2 norms of the derivatives of the interpolation polynomials in the cell-averages over the interval
x j−1/2, x j+1/2). Those indicators are more related to the localization of critical points instead of inflection points.

Moreover, for our case, expression (19) is cheaper computationally since D j and D j+1 are already computed.

5. Numerical experiments

In this section, we present a simple numerical test to validate the theoretical results. Our experiment computes
the approximation order of the considered reconstructions in several areas corresponding with the different points
in Theorem 1. In particular, we measure the approximation order in the following areas, identified with the given
symbols:

A0: In the interval containing the jump discontinuity.
A1: In a region where the function is smooth without inflection points and far away from them.
A2: In a region where the function is smooth but contains an inflection point.
A3: In a region close to the inflection point without containing it.
A4: In the subinterval just to the right of the one containing the singularity.

We deal with the following piecewise polynomial reconstruction operators of third degree:

• Lagrange: piecewise centered Lagrange interpolation polynomial.
• PPH: nonlinear reconstruction operator given in [22].
• PPHT, ϵ = 0.5: translated version of the PPH reconstruction operator given in Definition 3.
• PPHT, ϵ = 0.05: translated version of the PPH reconstruction operator given in Definition 3.
• PPHT, ϵ j : translated version of the PPH reconstruction operator given in Definition 3 using an adaptive value

of the parameter ϵ according to expression (19).

Let X0
= (0, 3, 8, 11, 17, 23, 25, 27, 31, 32, 36, 37.5, 38, 39.3, 40)

π

20
be a nonuniform grid in [0, 2π ] and f (x)

the following smooth function with a jump discontinuity at x = 1.2π , and an inflection point at x =
3π
2 ,

f (x) :=

{
sin x x < 1.2π,

cos x + 10 x ≥ 1.2π.

his function has also inflection points at x = 0, π , but we will be dealing with the indicated regions, letting aside
those inflection points. The results for those cases give similar conclusions and they have not been reported. In fact,
the numerical tests that have been carried out with different functions presenting well separated inflection points
and isolated jump discontinuities give similar results as the one shown in this article. For example, if the jump size
is smaller, then the approximation errors are in turn smaller, but the approximation orders present exactly the same
behavior (maybe with the need for smaller grid sizes).

In our experiment we have taken for the grid X0 the following regions A0
0 = [0, 2π ], A0

1 = [2, 3], A0
2 = [4, 5],

A0
3 = [ 31π

20 , 6.2], A0
4 = [ 25π

20 , 4]. Notice that these intervals correspond to the initial grid X0 and they need to vary
appropriately among the scales k to satisfy the requirements of the definition of the associated region.

Given the initial abscissas x0
i , i ∈ I0 = {0, . . . , 14}, we consider the set of nested grids X k

= {xk
i }i∈I k , where

xk
2i = xk−1

i , xk
2i+1 =

xk−1
i +xk−1

i+1
2 , and I k

= {xk
0 , . . . , xk

nk
}, k = 0, 1, . . . , 7, with nk = 2nk−1 − 1, n0 = 14. For each

evel of resolution k, we build the corresponding reconstruction Rk(x) using the data (xk
i , f (xk

i )), i ∈ Ik computing
he approximation errors in the infinity norm with respect to the original function using a denser set of abscissas,
.e., we compute a numerical approximation of,
Ek := ∥ f (x) − Rk(x)∥∞.
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Table 1
Approximation errors Ek and approximation orders p in the infinity norm obtained at iteration k, k = 1, . . . , 7,

by using the considered reconstruction operators, Lagrange PPH, PPHT with ϵ = 0.5, PPHT with ϵ = 0.05, and
PPHT with adapted ϵ j in the region A0.

Approximation errors in A0

k Lagrange P P H P P H T, ϵ = 0.5 P P H T, ϵ = 0.05 P P H T, ϵ j

k = 0 5.6495 5.0072 4.8870 4.9125 4.9153
k = 1 9.4448 9.3051 9.1754 9.1740 9.1738
k = 2 9.3578 9.3588 9.5194 9.5194 9.5195
k = 3 9.3587 9.3591 9.5207 9.5208 9.5208
k = 4 9.3591 9.3593 9.5214 9.5214 9.5214
k = 5 9.3593 9.3594 9.5217 9.5217 9.5217
k = 6 9.3594 9.3595 9.5219 9.5219 9.5219
k = 7 9.3595 9.3595 9.5220 9.5220 9.5220

Approximation orders in A0

k Lagrange P P H P P H T, ϵ = 0.5 P P H T, ϵ = 0.05 P P H T, ϵ j

k = 1 −7.4 × 10−1
−8.9 × 10−1

−9.1 × 10−1
−9.0 × 10−1

−9.0 × 10−1

k = 2 1.3 × 10−2
−8.3 × 10−3

−5.3 × 10−2
−5.3 × 10−2

−5.3 × 10−2

k = 3 −1.3 × 10−4
−5.4 × 10−5

−2.1 × 10−4
−2.0 × 10−4

−2.0 × 10−4

k = 4 6.5 × 10−5
−2.9 × 10−5

−1.0 × 10−4
−9.9 × 10−5

−9.9 × 10−5

k = 5 3.3 × 10−5
−1.5 × 10−5

−5.0 × 10−5
−5.0 × 10−5

−4.9 × 10−5

k = 6 1.6 × 10−5
−7.4 × 10−6

−2.4 × 10−5
−2.5 × 10−5

−2.4 × 10−5

k = 7 8.1 × 10−6
−3.7 × 10−6

−1.2 × 10−5
−1.2 × 10−5

−1.2 × 10−5

Then, we compute the numerical approximation order as,

p = log2
Ek−1

Ek
, k = 1, . . . , 7.

Notice that due to Theorem 1 we can assume that for fine enough grids,

Ek ≈ C
(
hk)p

, with hk
:= max

i∈Ik\{0}

hk
i , hk

i := xk
i − xk

i−1, hk
=

hk−1

2
.

In Tables 1, 2, 3, 4, 5 we present the errors committed by the considered reconstruction operators, and their
corresponding approximation orders. We have used as initial nodes the defined nested grids X k . The errors and
orders appear separately for each kind of region A0, A1, A2, A3 and A4.

In Table 1, we can see that neither of these methods is designed to adapt in the interval containing the jump
discontinuity since it is impossible to localize exactly the discontinuity just working with the point values of the
function. The largest error comes near the jump discontinuity for Lagrange reconstruction, as it can be observed in
the column corresponding to this reconstruction. In the region A1 all the reconstruction operators attain fourth order
of accuracy, p = 4, as it can be seen in Table 2. Regions A2 and A3 correspond to the vicinity of an inflection point,
where the nonlinear PPH reconstruction operator reduces the approximation order to third order. We can observe in
Tables 3, 4, how all the translated versions get closer to fourth order in these two regions, A2 and A3. Albeit, the
version with larger ϵ and adapted ϵ j perform in a better way than with smaller ϵ in these cases. Finally, in Table 5
we can see how the nonlinear reconstruction operators reach second-order of accuracy in the intervals to the right
and the left of the interval containing the jump discontinuity, while the linear Lagrange reconstruction operator
completely loses the order of approximation. In the case of the adapted translated version, we get third-order due
to the observation given in Remark 3.

In Fig. 1, we plot the function f (x) and the Lagrange, and PPHT (with ϵ j adapted) reconstructions obtained
from the initial grids X k, k = 0, 1, 2. We can see that around the singularity, Lagrange reconstruction loses the
approximation order and the Gibbs phenomena appear. In this zone, PPHT reconstruction performs more properly,
avoiding any Gibbs effects. We can see that no oscillations appear in the PPHT reconstruction even for the coarsest
grid. These observations can be seen more clearly in Fig. 2, where we have plotted a zoom of this region for k = 3
for both operators Lagrange and P P H T . We also point out that the oscillations due to the jump discontinuity in

Lagrange reconstruction do not diminish to zero with the subdivision level.
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Table 2
Approximation errors Ek and approximation orders p in the infinity norm obtained at iteration k, k = 1, . . . , 7,

by using the considered reconstruction operators, Lagrange PPH, PPHT with ϵ = 0.5, PPHT with ϵ = 0.05, and
PPHT with adapted ϵ j in the region A1.

Approximation errors in A1

k Lagrange P P H P P H T, ϵ = 0.5 P P H T, ϵ = 0.05 P P H T, ϵ j

k = 0 3.7038 1.9182 × 10−2 1.4586 × 10−1 2.7869 × 10−2 4.4601 × 10−2

k = 1 7.3685 × 10−4 6.5968 × 10−3 1.4201 × 10−3 4.6348 × 10−3 9.5688 × 10−4

k = 2 6.2735 × 10−5 8.3401 × 10−4 9.4378 × 10−5 4.5210 × 10−4 6.9863 × 10−5

k = 3 4.0575 × 10−6 3.4729 × 10−5 5.8493 × 10−6 2.2392 × 10−5 4.4229 × 10−6

k = 4 2.5733 × 10−7 2.6086 × 10−6 3.6925 × 10−7 1.5670 × 10−6 2.7765 × 10−7

k = 5 1.5978 × 10−8 1.8126 × 10−7 2.3181 × 10−8 1.0414 × 10−7 1.7329 × 10−8

k = 6 1.0021 × 10−9 1.0730 × 10−8 1.4459 × 10−9 6.3099 × 10−9 1.0840 × 10−9

k = 7 6.2737 × 10−11 6.5331 × 10−10 9.0272 × 10−11 3.8843 × 10−10 6.7782 × 10−11

Approximation orders in A1

k Lagrange P P H P P H T, ϵ = 0.5 P P H T, ϵ = 0.05 P P H T, ϵ j

k = 1 12.2953 1.5399 6.6824 2.5881 5.5426
k = 2 3.5540 2.9836 3.9114 3.3578 3.7757
k = 3 3.9506 4.5859 4.0121 4.3356 3.9815
k = 4 3.9789 3.7348 3.9856 3.8369 3.9937
k = 5 4.0094 3.8472 3.9935 3.9115 4.0019
k = 6 3.9950 4.0784 4.0030 4.0447 3.9987
k = 7 3.9976 4.0377 4.0015 4.0219 3.9994

Table 3
Approximation errors Ek and approximation orders p in the infinity norm obtained at iteration k, k = 1, . . . , 7,

by using the considered reconstruction operators, Lagrange PPH, PPHT with ϵ = 0.5, PPHT with ϵ = 0.05, and
PPHT with adapted ϵ j in the region A2.

Approximation errors in A2

k Lagrange P P H P P H T, ϵ = 0.5 P P H T, ϵ = 0.05 P P H T, ϵ j

k = 0 7.5463 × 10−1 8.3447 × 10−3 2.3123 × 10−2 5.6651 × 10−3 2.9178 × 10−3

k = 1 4.2214 × 10−5 7.8190 × 10−4 1.9193 × 10−4 6.4427 × 10−4 6.7164 × 10−5

k = 2 3.4996 × 10−6 2.4763 × 10−4 1.8960 × 10−5 1.0918 × 10−4 5.3926 × 10−6

k = 3 3.0851 × 10−7 3.0993 × 10−5 1.2028 × 10−6 8.7545 × 10−6 4.8008 × 10−7

k = 4 2.2334 × 10−8 3.8754 × 10−6 7.5666 × 10−8 6.3675 × 10−7 3.3935 × 10−8

k = 5 1.4894 × 10−9 4.8446 × 10−7 4.7431 × 10−9 4.3337 × 10−8 2.2339 × 10−9

k = 6 9.5977 × 10−11 6.0559 × 10−8 2.9687 × 10−10 2.8345 × 10−9 1.4299 × 10−10

k = 7 6.0880 × 10−12 7.5699 × 10−9 1.8566 × 10−11 1.8137 × 10−10 9.040 × 10−12

Approximation orders in A2

k Lagrange P P H P P H T, ϵ = 0.5 P P H T, ϵ = 0.05 P P H T, ϵ j

k = 1 14.1257 3.4158 6.9126 3.1364 5.4411
k = 2 3.5925 1.6588 3.3395 2.5609 3.6386
k = 3 3.5038 2.9982 3.9784 3.6406 3.4896
k = 4 3.7880 2.9995 3.9907 3.7812 3.8224
k = 5 3.9064 2.9999 3.9957 3.8770 3.9251
k = 6 3.9559 3.0000 3.9980 3.9344 3.9655
k = 7 3.9787 3.0000 3.9990 3.9661 3.9835

In Fig. 3, we analyze the numerical behavior of the truncation parameter ϵ and the effect of the parameter β

introduced in its definition. As we can see the large values of ϵ correspond with the areas around the inflection
points of the function and the parameter takes values very close to ϵ = 0 in the three intervals around the jump
discontinuity. The effect of β is more noticeable as we increase its value from β = 1 to β = 100, setting the
value of the parameter ϵ closer to zero for the smooth areas without inflection points. This fact makes the translated
version of this reconstruction similar to the original PPH reconstruction operator in smooth convex areas.
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Table 4
Approximation errors Ek and approximation orders p in the infinity norm obtained at iteration k, k = 1, . . . , 7,

by using the considered reconstruction operators, Lagrange PPH, PPHT with ϵ = 0.5, PPHT with ϵ = 0.05, and
PPHT with adapted ϵ j in the region A3.

Approximation errors in A3

k Lagrange P P H P P H T, ϵ = 0.5 P P H T, ϵ = 0.05 P P H T, ϵ j

k = 0 6.3455 × 10−4 2.2239 × 10−3 1.2150 × 10−3 1.9915 × 10−3 8.6245 × 10−4

k = 1 9.0640 × 10−5 2.9306 × 10−4 1.4797 × 10−4 2.5484 × 10−4 1.1640 × 10−4

k = 2 9.2479 × 10−6 3.4429 × 10−5 1.6629 × 10−5 3.0064 × 10−5 1.2170 × 10−5

k = 3 6.5454 × 10−7 2.7653 × 10−6 1.0760 × 10−6 2.3029 × 10−6 8.1262 × 10−7

k = 4 4.3080 × 10−8 2.0098 × 10−7 6.8410 × 10−8 1.6202 × 10−7 5.1976 × 10−8

k = 5 2.7567 × 10−9 4.3976 × 10−8 4.6111 × 10−9 2.2983 × 10−8 3.2797 × 10−9

k = 6 1.7424 × 10−10 4.6559 × 10−9 2.9178 × 10−10 1.8210 × 10−9 2.0587 × 10−10

k = 7 1.0951 × 10−11 5.0457 × 10−10 1.8375 × 10−11 1.3610 × 10−10 1.2895 × 10−11

Approximation orders in A3

k Lagrange P P H P P H T, ϵ = 0.5 P P H T, ϵ = 0.05 P P H T, ϵ j

k = 1 2.8075 2.9238 3.0376 2.9662 2.8893
k = 2 3.2929 3.0895 3.1535 3.0835 3.2577
k = 3 3.8206 3.6381 3.9500 3.7065 3.9046
k = 4 3.9254 3.7823 3.9753 3.8291 3.9667
k = 5 3.9660 2.1923 3.8910 2.8176 3.9862
k = 6 3.9838 3.2396 3.9821 3.6578 3.9937
k = 7 3.9919 3.2059 3.9891 3.7420 3.9969

Table 5
Approximation errors Ek and approximation orders p in the infinity norm obtained at iteration k, k = 1, . . . , 7,

by using the considered reconstruction operators, Lagrange PPH, PPHT with ϵ = 0.5, PPHT with ϵ = 0.05, and
PPHT with adapted ϵ j in the region A4.

Approximation errors in A4

k Lagrange P P H P P H T, ϵ = 0.5 P P H T, ϵ = 0.05 P P H T, ϵ j

k = 0 7.5463 × 10−1 7.3017 × 10−3 2.3122 × 10−2 4.9884 × 10−3 2.9178 × 10−3

k = 1 6.1204 × 10−1 2.3996 × 10−3 3.3130 × 10−3 4.8664 × 10−4 1.7116 × 10−4

k = 2 6.1887 × 10−1 6.1993 × 10−4 8.0841 × 10−4 9.8797 × 10−5 1.9854 × 10−5

k = 3 6.2234 × 10−1 1.5738 × 10−4 1.9971 × 10−4 2.2119 × 10−5 2.3812 × 10−6

k = 4 6.2409 × 10−1 3.9636 × 10−5 4.9635 × 10−5 5.2260 × 10−6 2.9126 × 10−7

k = 5 6.2496 × 10−1 9.9451 × 10−6 1.2372 × 10−5 1.2697 × 10−6 3.6003 × 10−8

k = 6 6.2540 × 10−1 2.4908 × 10−6 3.0887 × 10−6 3.1290 × 10−7 4.4750 × 10−9

k = 7 6.2562 × 10−1 6.2325 × 10−7 7.7161 × 10−7 7.7664 × 10−8 5.5778 × 10−10

Approximation orders in A4

k Lagrange P P H P P H T, ϵ = 0.5 P P H T, ϵ = 0.05 P P H T, ϵ j

k = 1 0.3021 1.6054 2.8031 3.3577 4.0914
k = 2 −0.0160 1.9526 2.0350 2.3003 3.1078
k = 3 −0.0081 1.9779 2.0172 2.1591 3.0597
k = 4 −0.0040 1.9893 2.0085 2.0815 3.0314
k = 5 −0.0020 1.9948 2.0042 2.0412 3.0161
k = 6 −0.0010 1.9974 2.0021 2.0207 3.0082
k = 7 −0.0005 1.9987 2.0010 2.0104 3.0041

Remark 5. The numerical experiment has been carried out using a finite interval, that in principle, falls out from
he scope of Theorem 1. However, the results are also true for the finite case away from the boundaries, and the proof
emains exactly the same. Notice that any finite discretization of a finite interval is a σ quasi-uniform grid according

to Definition 4. The boundaries have been treated by using non-centered third-degree Lagrange polynomials so that
if we take into account that the discontinuity and the inflection point are placed far from the boundaries, they do
not affect the attained numerical approximation order.
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I

Fig. 1. In black solid line: function f (x). In green solid line: the straight line joining the extreme points of the jump interval [xk

j , xk
j+1].

n blue dotted line: Lagrange reconstruction. In red dotted line: PPHT reconstruction with adapted ϵ j . Void circles stand for initial nodes,
filled circles for nodes at the k subdivision level. Top-left: Lagrange k = 0, top-right: PPHT k = 0, middle-left: Lagrange k = 1,
middle-right: PPHT k = 1, bottom-left: Lagrange k = 2, bottom-right: PPHT k = 2.
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Fig. 2. Zoom of the region around the jump discontinuity for subdivision grid level k = 3. Left: Lagrange, right: P P H T with adapted ϵ j .

Fig. 3. Values of the ϵ parameter in (19) along different intervals for the x variable. Top-left: for β = 1 in the interval [0, 2π ], top-right:
for β = 1 in the interval [3.7, 3.8], bottom-left: for β = 100 in the interval [0, 2π ], bottom-right: for β = 100 in the interval [3.7, 3.8].

Remark 6. The presented translation strategy and the reconstruction operator used, both could be defined for
functions with several variables in a nonseparable way, by observing the fact that, we need to define appropriate
substitutes for divided differences, and we have to use a linear reconstruction method as the base method to be
422
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written in terms of weighted arithmetic means of the defined divided differences. These weighted arithmetic means
will be in turn replaced by adequate translated nonlinear weighted means. The authors are working to develop such
a scheme for two dimensional functions in triangular meshes.

6. Conclusions

Using the general definition of a translation operator given in [9], and previously mentioned in [5], we have
onsidered several specific cases. In particular, we have studied a way of choosing a translation adaptively depending
n the specific data to which it is going to be applied. In turn, this translation operator has been used to extend the
efinition of the already existing PPH reconstruction operator on nonuniform grids [22,23] to work appropriately
ith functions that are not necessarily strictly convex. We give a corresponding theorem ensuring the pursued
bjective of getting fourth-order of approximation at the smooth parts of the function, independently of the presence
r not of inflection points. Finally, we have performed some numerical experiments to check the behavior of the
roposed adaptation.
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