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A B S T R A C T   

In this article, the thermal inactivation of two Salmonella strains (Salmonella Enteritidis CECT4300 and Salmonella 
Senftenberg CECT4565) was studied under both isothermal and dynamic conditions. We observed large differ-
ences between these two strains, with S. Senftenberg being much more resistant than S. Enteritidis. Under 
isothermal conditions, S. Senftenberg had non-linear survivor curves, whereas the response of S. Enteritidis was 
log-linear. Therefore, weibullian inactivation models were used to describe the response of S. Senftenberg, with 
the Mafart model being the more suitable one. For S. Enteritidis, the Bigelow (log-linear) inactivation model was 
successful at describing the isothermal response. Under dynamic conditions, a combination of the Peleg and 
Mafart models (secondary model of Mafart; t* of Peleg) fitted to the isothermal data could predict the response of 
S. Senftenberg to the dynamic treatments tested (heating rates between 0.5 and 10 ◦C/min). This was not the case 
for S. Enteritidis, where the model predictions based on isothermal data underestimated the microbial concen-
trations. Therefore, a dynamic model that considers stress acclimation to one of the dynamic profiles was fitted, 
using the remaining profiles as validation. In light of this, besides its quantitative impact, variability between 
strains of bacterial species can also cause qualitative differences in microbial inactivation. This is demonstrated 
by S. Enteritidis being able to develop stress acclimation where S. Senftenbenberg could not. This has important 
implications for the development of microbial inactivation models to support process design, as every industrial 
treatment is dynamic. Consequently, it is crucial to consider different model hypotheses, and how they affect the 
model predictions both under isothermal and dynamic conditions.   

1. Introduction 

Access to safe food is a basic requirement for human health, while at 
the same time, food safety and security are becoming increasingly 
difficult. Although anyone may contract a foodborne disease, pop-
ulations such as small children, elderly people, pregnant women, 
immunocompromised people and those living in poverty or who are 
food insecure are particularly vulnerable (FAO, 2021). According to the 
European Food Safety Authority (EFSA) One Health 2020 Zoonoses 
report, salmonellosis is the second most commonly reported gastroin-
testinal infection in humans and the main cause of food-borne outbreaks 
in the EU/EEA in 2020. In total, 52,702 confirmed cases of salmonellosis 

in humans were reported with an EU notification rate of 13.7 cases per 
100,000 population. Salmonella caused 22.5% of all food-borne out-
breaks and the vast majority (57.9%) of the salmonellosis food-borne 
outbreaks were caused by S. Enteritidis (Authority & European Centre 
for Disease Prevention and Control, 2021). Therefore, Salmonella spp. 
are one of the most relevant hazards to the food industry and are often a 
main aspect of quality control systems. 

Over the past decades, food safety management has switched to a 
more risk-based approach to achieve food safety control (Koutsoumanis 
& Aspridou, 2016). In this sense, Quantitative Microbial Risk Assess-
ment (QMRA), is currently the reference approach to ensure food safety 
and also the basis for decision-making (WHO, 2021). The risk associated 
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with a given hazard is described using quantitative indicators (e.g. ex-
pected number of cases or probability of illness per serving). Therefore, 
the reliability of a QMRA is strongly dependent on the availability and 
quality of mathematical models able to describe the microbial response 
to the conditions encountered within the food chain. 

In this study, mathematical models were selected to describe the 
inactivation of Salmonella spp. Although different technologies can be 
used for microbial inactivation (Mañas & Pagán, 2005), thermal treat-
ment is still one of the most effective and easiest applied techniques to 
most food products (Peng et al., 2017). One of the main limitations of 
the predictive models currently available is that, due to experimental 
limitations, they were developed based on data gathered under 
isothermal conditions. Several scientific studies have questioned the 
validity of these models for dynamic treatments (i.e. with non-constant 
temperature), showing that models fitted to isothermal data often failed 
to predict the microbial response under dynamic conditions (Clemente- 
Carazo et al., 2020; Garre, Huertas, et al., 2018; Hassani et al., 2006; 
Stasiewicz et al., 2008; Valdramidis et al., 2007). One hypothesis to 
describe this deviation is stress acclimation, which is based on the 
concept that microbial cells respond to sublethal stresses by increasing 
their thermal resistance (Khan et al., 2022; Richter et al., 2010). 
Therefore, if the heating phase is sufficiently long, it would increase the 
stress resistance in the microbial cells, thus increasing their chance to 
survive the treatment (Garre, Huertas, et al., 2018). 

A second main limitation of currently available microbial inactiva-
tion models is the impact of variability. In the context of microbial 
inactivation models, variability includes differences in the observed 
microbial response due to genetic and physiological differences between 
the cells. It is thus different to uncertainty, which includes experimental 
error and other sources of misinformation that can be reduced by 
gathering additional data with increased quality (Nauta, 2000). Several 
recent studies have attempted to assess the variability of microbial 
inactivation at different levels and to quantify its relevance (Aspridou & 
Koutsoumanis, 2015; den Besten et al., 2018; Harrand et al., 2021). 
However, to the best of our knowledge, a single study has evaluated the 
relevance of strain variability under dynamic conditions (Clemente- 
Carazo et al., 2020). Consequently, in this study, we advance in the 
understanding of variability in microbial inactivation under dynamic 
conditions by comparing the responses of two strains of Salmonella spp. 
(S. Enteritidis CECT 4300 and S. Senftenberg 4564). Two strains were 
considered in our study to evaluate the implications of variability in heat 
resistance in biological safety management. Strain selection was moti-
vated by one being a reference strain commonly used in thermal resis-
tance studies, while the other being a variant of remarkably high heat 
resistance. This approach will inform whether results obtained for 
reference strains are extrapolable for strains with extreme phenotypes, a 
question of high relevance for the study of variability in predictive 
microbiology. 

2. Materials and methods 

2.1. Bacterial culture and media 

Experiments were performed using Salmonella enterica serovar 
Enteritidis CECT 4300 and Salmonella enterica serovar Senftenberg CECT 
4565. Both strains were provided by the Spanish Type Culture Collection 
(CECT, Valencia, Spain). They were selected due to their unique char-
acteristics. S. Enteritidis is usually considered as a reference strain for 
this species, while S. Senftenberg is a well-known heat-resistant strain 
(Clemente-Carazo et al., 2021; Guillén, Marcén, Mañas, et al., 2020). 

The bacterial strains were stored at – 80 ± 2 ◦C (20% glycerol) until 
use. To perform experiments, fresh cultured plates were grown weekly 
in trypticase soy agar (TSA, Scharlau Chemie, Barcelona, Spain) for each 
strain. The fresh cultures were incubated for 24 h at 37 ± 1 ◦C in an 
incubator. Then, a single colony from the fresh culture plate was 
transferred to 10 mL of trypticase soy broth (TSB; Scharlau Chemie) and 

incubated at 37 ± 1 ◦C for 24 h. At this time, the cultures had already 
attained the stationary growth phase, with a concentration of approx. 
109 CFU/mL. 

2.2. Thermal treatments 

Thermal treatments were carried out using a Mastia thermoresis-
tometer (Conesa et al., 2009). Before starting the treatment, the vessel 
was filled with 400 mL of peptone water (10 g/L peptone from casein 
(Scharlau Chemie) and 5 g/L NaCl (Scharlau Chemie) as the standard 
heating medium, to avoid other effects, e.g. complex matrixes such as 
food items. In order to achieve a homogeneous temperature distribution, 
the vessel of the thermoresistometer was constantly stirred during the 
treatment. The heating medium was inoculated with 0.2 mL of the 
bacterial suspension in order to achieve approximately 106 CFU/mL. 

Isothermal experiments were performed at different sampling times 
and temperatures for the two strains. Experiments with S. Enteritidis 
were carried out at 55, 57.5, and 60 ◦C. On the other hand, for S. Sef-
tenberg, thermal treatment was performed at higher temperatures (60, 
62.5, 65 and 67.5 ◦C) due to the heat resistance of the strain. Once the 
temperature in the vessel was stable, the bacterial suspension was 
inoculated. The heating medium was adjusted to pH 7.0 for both strains 
during treatments. 

For dynamic conditions, five different temperature profiles were 
tested for each strain with varying heating rates (supp. Table 1). In each 
of them, the thermoresistometer was set to the initial temperature of the 
treatment. Once the temperature of the medium stabilised, it was 
inoculated with the cell suspension and the selected heating ramp was 
initiated. 

The same procedure for both isothermal and dynamic profiles was 
followed for determining the viable cell count. Sterile test tubes were 
used to collect a sample of 3 mL at pre-set intervals and after appropriate 
serial dilutions in sterile 0.1% peptone water, they were plated in TSA 
and incubated at 37 ◦C for 48 h. A minimum of two experiments were 
performed per condition, with freshly prepared cultures. 

2.3. Modelling microbial inactivation under isothermal conditions 

For the analysis of isothermal inactivation, the log-linear Bigelow 
model and the Mafart and Peleg inactivation models from the Weibull 
family were chosen. 

The Bigelow model assumes a log-linear relationship between the 
fraction of survivors (S) and the treatment time (t), as shown in Equation 
(1). 

log10S = −
t

D(T)
(1) 

The slope of the inactivation curve is quantified by parameter D(T); 
also known as the D-value, which is equal to the time required to reduce 
the microbial population tenfold. Its relationship with temperature (T) is 
supposed to be log-linear (Equation (2)). 

log10D(T) = log10Dref −
T − Tref

z
(2) 

The sensitivity of the D-value to temperature changes is quantified by 
the z-value (z), equivalent to the temperature increase required to 
reduce the D-value by 90%. This model introduces a reference temper-
ature (Tref) without a biological interpretation but with an impact on 
parameter identifiability. In this equation, the value of D calculated at 
Tref is represented by Dref. 

Under isothermal conditions, the primary model of the Mafart model 
(Mafart et al., 2002) is expressed as shown in Equation (3) where (T), 
usually called the δ-value at temperature T, can be interpreted as the 
time required for the first log-reduction of the microbial density for a 
treatment at temperature T. The p value corresponds to the shape factor 
of the Weibull distribution and describes the concavity direction of the 
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isothermal inactivation survivor curve. If p = 1, the shape of the 
isothermal survivor curve is log-linear and the results are equivalent to 
those obtained using the Bigelow model. When p is larger than one, the 
curve has a downward concavity, whereas when it is lower than one, 
there is a tail. 

log10S = −

(
t

δ(T)

)p

(3) 

Regarding the secondary model, the Mafart model hypothesises that 
the inactivation rate follows an exponential relationship with tempera-
ture (Equation (4)), similar to the Bigelow model. The z-value (z) is the 
temperature change that is required to achieve a tenfold reduction in the 
δ-value. The parameter δref represents the value of (T) estimated at the 
reference temperature. 

log10δ(T) = log10δref −
T − Tref

Z
(4) 

The Peleg model (Peleg & Cole, 1998) uses a different, equivalent 
parameterization of the primary model based of b(T) instead of δ(T) 
(Equation (5)). Furthermore, the shape factor is represented by n instead 
of p. Nonetheless, under isothermal conditions, both models are equiv-
alent via the identity (T) = (1/(T))p. 

log10S = − b(T)⋅tn (5) 

On the other hand, the Peleg model uses a different secondary model 
than Mafart’s. As shown in Equation (6), this model assumes a log- 
logistic relationship between b(T) and temperature. If the temperature 
is much lower than the critical temperature (Tc), then b(T) equals zero 
and no inactivation takes place. When the temperature exceeds Tc, b(T) 
has a linear relationship with temperature with slope k. In this model, 
there is a super-linear transition between both regimes. 

b(T) = ln
(
1 + ek⋅(T − Tc)

)
(6)  

2.4. Modelling microbial inactivation under dynamic conditions 

In this work, we used five different models to describe microbial 
inactivation under dynamic conditions: the Bigelow model, three Wei-
bullian models and the acclimation model proposed by Garre et al. 
(Garre, Huertas, et al., 2018). 

The Bigelow model can be extrapolated to dynamic conditions by 
calculating first derivatives with respect to time, assuming that the co-
efficients are constant (Equation (7)). 

dlog10S
dt

= −
1

D(T)
(7)  

where the value of D(T) at any time point is defined by the secondary 
model (Equation (2)). 

According to van Zuijlen et al. (2010), the Mafart model can be used 
for dynamic conditions by calculating first derivatives of its primary 
model (Equation (3)) considering that the coefficients remain constant. 
This results in the differential equation shown in Equation (8), where the 
symbols have the same interpretation as in Equation (3). 

dlog10S
dt

= − p⋅
(

1
δ(T)

)p

⋅tp− 1 (8) 

In this model, the value of δ(T) at any time point is given by the 
secondary model of the Mafart model (Equation (4)). 

The Peleg model adds an additional step to account for the fraction of 
the population that is already inactivated at any given time (Peleg & 
Penchina, 2000). This is accomplished by using an equivalent time t⋆ =

− (
log10S(t)

b(T) )
1/n instead of the treatment time, t. This results in differential 

Equation (9), where the symbols have the same interpretation as for the 
Peleg model under isothermal conditions (Equation (5)). 

dlog10S
dt

= − b(T)⋅n⋅
(
− log10S(t)

b(T)

)(n− 1)/n

(9) 

In a similar way as for the Mafart model, the value of b(T) at any time 
point is given by the secondary model (Equation (6)). 

Therefore, whereas for isothermal conditions the only difference 
between the Peleg and Mafart models is the secondary model, under 
dynamic conditions there is an additional difference: the use of t* in the 
Peleg model. Consequently, in this article, we also used an additional 
model (the Mafart/Peleg model in the rest of the manuscript) that in-
troduces t* into the Mafart model. 

In the Mafart model, the equivalent time, t*, can be calculated as. 

t⋆= (− δ(T)p⋅log10S)1/p (10) 

Then, substituting in (8), the differential equation of the Mafart/ 
Peleg model would be. 

dlog10S
dt

= − p⋅
(

1
δ(T)

)p

⋅( − δ(T)p⋅log10S)(p− 1)/p (11) 

Garre et al. (2018) followed a different modelling approach to 
describe microbial inactivation under dynamic conditions. Their model 
is based on the hypothesis that sublethal stress during the heating phase 
of a dynamic treatment induces a physiological response of the micro-
bial cells, increasing their resistance to the latter part of the heat treat-
ment (stress acclimation). They proposed an extension of the Bigelow 
model, where the inactivation rate (k) of the microbial concentration (N 
(t)) is the product of two terms: k = k1⋅k2 (Equation (12)). 

dN
dt

= − k1⋅k2⋅N(t) (12) 

The first term, k1, represents the effect of the instantaneous tem-
perature on the inactivation rate under the same assumptions as the 
Bigelow model as shown in Equation (13), where z is the z-value, Tref is a 
reference temperature without biological interpretation and Dref is the 
D-value (time to reduce the microbial count in 1 decimal logarithm 
during an isothermal treatment) at the reference temperature. 

k1 =
ln10
D(T)

=
ln10

D
(
Tref

)
10− (T − Tref )/z

(13) 

Stress acclimation is introduced in this model through the term k2. 
This model uses the hypothesis that the physiological state of the cell can 
be described by a theoretical variable, p(t). At the beginning of the 
experiment, p(t) = 0 indicating the lack of any stress acclimation. When 
the treatment temperature exceeds a stress-inducing temperature (Tsi) 
the value of this variable changes through the treatment up to p(t) = 1, 
indicating the maximum acclimation the microbial cell can develop. 
These hypotheses are included in the model through the empirical 
equation (14), where a and E are two rate parameters (Garre, Egea, 
et al., 2018). 

dP
dt

=

{
0 ; T < Tsi
a
(
1 − p

)
eE/(T− Tsi) ; T ≥ Tsi

(14) 

Then, in this model, the effect of the acclimation on the inactivation 
rate is described by an empirical equation (Equation (15)), where c is a 
model parameter that quantifies the relevance of the acclimation on the 
inactivation rate. In this model, the maximum acclimation results in an 
increase of the D-value by a factor of 1 + c. 

k2 =
1

1 + C⋅P(t)
(15)  

2.5. Numerical methods for model fitting and calculation of predictions 

The models were fitted to the data obtained under isothermal con-
ditions using the one-step approach with the bioinactivation package for 
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R (Garre et al., 2017). We used the fit_isothermal_inactivation function, 
which uses nonlinear regression through the Newton-Raphson algo-
rithm. For the models that use a reference temperature, this value was 
fixed to the medium of the temperature range as recommended by 
Peñalver-Soto et al. (2019). 

The acclimation model was fitted in two steps using the same 
approach as in Garre et al. (2018). First, the Bigelow model was fitted to 
the data under isothermal conditions using the one-step approach with 
bioinactivation. Then, the parameters of the acclimation model (c, a, e) 
were estimated from one dynamic experiment (with a heating rate of 
0.5 ◦C/min) using the adaptive Monte Carlo algorithm (Haario et al., 
2006) included in the FME package for R (Soetaert & Petzoldt, 2010). 
The convergence of the algorithm was assessed following the usual 
conventions (Brooks, 2011), needing 5,000 iterations with a burning 
length of 1,000 iterations and a covariance update every 500 iterations. 
For the fits, the value of Tsi was set to 37 ◦C. The data obtained for the 
other four dynamic profiles was used for model validation. 

Predictions under dynamic conditions were estimated by numerical 
integration. For the Mafart and Peleg models, we used the pre-
dict_dynamic_inactivation function of bioinactivation, which uses the Liv-
ermore Solver for Ordinary Differential Equations. (LSODA) algorithm 
(Hindmarsh, 1983). LSODA is a state-of-the-art numerical algorithm for 
solving ordinary differential equations (ODEs). Among other advance-
ments with respect to older methods (e.g. Runge-Kutta), it includes 
adaptive stepsize or an automatic switch between a solver for stiff or 
non-stiff ODEs. The predictions for the Mafart/Peleg and acclimation 
models were estimated using the LSODA algorithm through the deSolve 
R package (Soetaert et al., 2010). 

The goodness of the model fits and the predictions was evaluated 
based on the n residuals (e) using the Mean Error (ME = 1

n
∑n

i=1e) and 

Root Mean Squared Error (RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1e2
√

). The RMSE quantifies 
the magnitude of the noise of the residuals, being defined between 0 and 
+ infinite. On the other hand, the ME describes if there is a consistent 
bias between the model predictions and the observations, with negative 
values of ME indicating that the model predictions lay below the 
observations. 

All the calculations were implemented in R version 3.5.3. The code is 
available in the GitHub page of one of the co-authors (https://github. 
com/albgarre/acclimation-Salmonella). 

3. Results 

3.1. Inactivation of Salmonella Senftenberg under isothermal and 
dynamic conditions 

The inactivation of S. Senftenberg observed under isothermal condi-
tions is depicted in Fig. 1. The data points have a clear curvature, so the 
Weibull model is more suitable than the Bigelow one for describing the 
survivor curves. The plot shows the fit of both the Peleg (blue) and 
Mafart (red) models to the data, showing that the Mafart model de-
scribes the data better under isothermal conditions (RMSE = 0.35 log 
CFU/ml for Mafart; RMSE = 0.51 log CFU/ml for Peleg). This can be 
attributed to the different secondary models used in both modelling 
approaches. Although both models use an equivalent primary model, the 
Mafart model assumes a log-linear relationship between δ and temper-
ature, whereas the Peleg model assumes a log-logistic one. In view of the 
results illustrated in Fig. 1, this assumption of the Peleg model is less 
suitable than the assumptions of the Mafart model for our data on the 
inactivation of S. Senftenberg, especially at low temperatures. 

Consequently, the Mafart model with δ60 = 2.04 ± 0.42min; p = 0.

Fig. 1. Isothermal inactivation of S. Senftenberg at 60, 62.5, 65 & 67.5 ◦C. The black dots represent the experimental data; the red dashed line is the fit of the Mafart 
model; the blue dotted line is the fitting of the Peleg model. Models were fitted using the one-step approach. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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45 ± 0.03; z = 3.55 ± 0.15ºC was used to predict the response of this 
strain under dynamic conditions. Fig. 2 shows that these predictions 
have a clear bias with respect to the experimental data for every dy-
namic profile tested. This plot also shows that, in spite of its poor fit to 
the data gathered under isothermal conditions, the Peleg model fitted to 
isothermal data (Tc = 60.12 ± 0.37ºC; n = 0.33 ± 0.04; k =

0.74 ± 0.061ºC− 1) is able to describe the overall trend of the observa-
tions. This observation is further confirmed in Table 1, where the ME of 
each prediction is reported, showing ME for the Mafart model close to 1 
log CFU/ml for every dynamic profile and ME close to 0 log CFU/ml for 
the Peleg model. 

The poor predictive power of the Mafart model under dynamic 
conditions can be attributed to the second difference between the Mafart 

and Peleg models: the introduction of t* in the latter. The Peleg model is 
based on the hypothesis that the curvature of the survivor curves is due 
to a heterogeneous distribution of stress resistance within the popula-
tion. Then, t* accounts for the fraction of the population that had 
already been inactivated, defining an “equivalent time” at the instan-
taneous temperature. Therefore, for treatments with constant tempera-
ture, t* has no effect on the model predictions. However, for dynamic 
profiles, this introduces an additional difference between the Peleg and 
Mafart models besides their different secondary models. 

In order to obtain a unique model able to describe the inactivation of 
S. Senftenberg under both isothermal and dynamic conditions, we 
defined a “Mafart/Peleg model” that uses both a log-linear secondary 
model and introduces t* (Equation (10)). Note that, because t* has no 
influence under isothermal conditions, this model has the same 

Fig. 2. Comparison between predictions based on isothermal experiments and observed inactivation under dynamic conditions for S. Senftenberg. The temperature 
profiles included different heating rates: A) 0.5 ◦C/min, B) 1 ◦C/min, C) 2 ◦C/min, D) 5 ◦C/min, E) 10 ◦C/min. The black dots represent the experimental data; (-) 
prediction of the Mafart model based on isothermal data; (⋅⋅) prediction of the Peleg model based on isothermal data; (⋅-) prediction of the Mafart/Peleg model based 
on isothermal data; (-) temperature profile. 
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parameter estimates as the Mafart model (δ60 = 2.04 ± 0.42min; p =

0.45 ± 0.03; z = 3.55 ± 0.15ºC). As illustrated in Fig. 1, this model can 
predict the response of S. Senftenberg under dynamic conditions based 
on isothermal data. This is further confirmed in Table 1, with ME for the 
predictions of this model closer to 0 log CFU/ml. 

Doyle & Mazzotta (2000) gathered the D-values of Salmonella spp. 
reported in several publications. They observed that the D-value of S. 
Senftenberg at 60 ◦C in laboratory media ranged between 0.62 and 6.3 
min. Similar findings were reported for S. Enteritidis in a study by 
Clemente et al. (2021) where D60 was 0.08 ± 0.02 min. The D-values 
estimated in our study fall within the range of the literature and are 
comparable (S. Senftenberg D60 = 2.04 ± 0.42 min; S. Enteritidis D60 =

0.08 ± 0.03 min). 

3.2. Inactivation of Salmonella Enteritidis under isothermal and dynamic 
conditions 

The response of S. Enteritidis was very different to that of S. Senf-
tenberg under both isothermal and dynamic conditions, emphasising the 
relevance of strain variability for microbial inactivation. As expected, 
this bacterial strain had lower thermal resistance than S. Senftenberg 
CECT4565. Furthermore, the survivor curves were also qualitatively 
different. Unlike for S. Senftenberg, the survivor curves of S. Enteritidis 
CECT4300 did not clearly deviate from linearity. Indeed, as illustrated in 
Fig. 3, there is no difference between the model fits of Bigelow (D57.5 =

0.52 ± 0.02min; z = 2.92 ± 0.06ºC) and Mafart (δ57.5 = 0.47 ± 0.
05min; p = 0.88 ± 0.09; z = 2.86 ± 0.08ºC). 

Therefore, the Bigelow model was used to predict the inactivation of 
S. Enteritidis under dynamic conditions. As illustrated in Figs. 4 and 5, 
these model predictions based on isothermal data are clearly biassed 
with respect to the observations under dynamic conditions, predicting 

lower microbial counts than observed. Although the observed dynamic 
response could potentially be described using a Weibullian model fitted 
directly to the dynamic data, this model would not be able to describe 
the isothermal inactivation because these are linear (Fig. 3). On the 
other hand, the acclimation model by Garre et al. (2018) can be a good 
candidate to conciliate the microbial response observed for this strain 
under both isothermal and dynamic conditions. This model assumes that 
the earlier part of the dynamic treatment induces a physiological 
response that increases the stress resistance of the cell. This hypothesis is 
supported by the data, as the observations are higher than the pre-
dictions, indicating a higher stress resistance of the microbial cells. 
Furthermore, Table 2 shows that the ME of the model is much smaller for 
the profile with a heating rate of 10 ◦C/min than for slower heating, in 
line with the hypothesis of stress acclimation. 

Hence, the acclimation model was fitted to the experimental results 
obtained for a dynamic profile with a 0.5 ◦C/min heating rate. This 
profile was chosen because it had the longest heating time, allowing for 
a better observation of stress acclimation. Fig. 4 illustrates the fit of the 
model (c = 8.97 ± 0.26; E = 78.88 ± 2.65ºC; a = 10.36 ± 1.63), 
showing that the model could be fitted to the experimental data. Then, 
the model was validated by comparing the predictions of the acclima-
tion model against independent experiments obtained for three different 
heating rates. As depicted in Fig. 5, for every temperature profile tested, 
the model was able to predict the overall response of the microbial 
population. This is further confirmed in Table 2, where the ME and 

Table 1 
Statistical indexes evaluating the precision of the model predictions for 
S. Senftenberg for dynamic conditions based on the models fitted to data gathered 
under isothermal conditions.   

Mafart model Peleg model Mafart/Peleg 
model 

Heating 
rate (◦C/ 
min) 

ME 
(log 
CFU/ 
ml) 

RMSE 
(log 
CFU/ml) 

ME (log 
CFU/ 
ml) 

RMSE 
(log 
CFU/ml) 

ME (log 
CFU/ 
ml) 

RMSE 
(log 
CFU/ml) 

0.5  0.95  1.45  0.01  0.70  − 0.31  0.75 
1  1.56  2.02  − 0.57  0.74  − 0.63  0.80 
2  1.09  1.59  − 0.58  0.85  − 0.42  0.79 
5  0.88  1.29  − 0.34  0.45  − 0.12  0.24 
10  1.16  1.59  − 0.90  0.97  − 0.81  0.90  

Fig. 3. Inactivation of S. Enteritidis under isothermal conditions at 55, 57.5 & 60 ◦C. The black dots represent the experimental data; (–) fitting of the Bigelow model; 
(⋅⋅) fitting of the Mafart model. 

Fig. 4. Fitting of the acclimation model to the data obtained for S. Enteritidis 
for dynamic thermal profile with a heating rate of 0.5 ◦C/min. The dots 
represent the experimental data. (-) thermal profile (secondary y-axis); (⋅⋅) 
fitting of the acclimation model; (–) prediction of the Bigelow model based on 
isothermal data. 
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RMSE of the model predictions are reported. 

4. Discussion 

4.1. On the relevance of the hypothesis of inactivation models under 
isothermal and dynamic conditions 

The application of predictive models to describe industrial process-
ing treatments currently faces an important dilemma. Every treatment is 
dynamic (ingredients must be heated up and cooled down), but the 
majority of scientific data obtained in recent decades was obtained 
under isothermal conditions. This empirical approach is reasonable 
considering the type of equipment available in most microbiology lab-
oratories, but it also raises the question about the applicability of these 
models for the description of actual industrial processes. This is espe-
cially the case, considering the scientific evidence pointing out that 
models based on isothermal data may fail at predicting the microbial 
response under dynamic conditions (Clemente-Carazo et al., 2020; 
Corradini & Peleg, 2009; Hassani et al., 2006; Stasiewicz et al., 2008; 
Valdramidis et al., 2007). Although some studies have been able to 
predict the microbial response under dynamic conditions (Milkievicz 
et al., 2021), it is questionable whether they are a rule or an exception. 
Consequently, the development of models able to describe the microbial 
response under both isothermal and dynamic conditions is today an 
active field of research. 

If we wish to enhance microbial inactivation models, we must first 
realise that models are a collection of hypotheses, and how those hy-
potheses vary between isothermal and dynamic situations. Microbial 
inactivation by heat is extremely complex, so population-level models 
used in predictive microbiology apply extreme simplifications. The 
simplest hypothesis that can be made is that the resistance of the cells 
within the population is homogeneous. Therefore, differences in the 
time that individual cells survive a treatment would not be due to ge-
netic or physiological differences but just pure chance (Garre et al., 
2021). This hypothesis results in the first-order kinetics model that, 
under isothermal conditions, predicts a log-linear relationship between 
the microbial concentration and the treatment time. 

Plenty of scientific evidence has illustrated that, in most cases, the 
microbial response under isothermal conditions deviates from the log- 
linearity predicted by this simple model (van Boekel, 2002). A variety 
of models have used more complex hypotheses to describe this deviation 
(Aspridou & Koutsoumanis, 2020). One of the most common ones is the 
“vitalistic” approach, which considers that stress resistance is hetero-
geneous within the population. The most common vitalistic approach is 
based on the Weibull distribution (Peleg & Cole, 1998). Under 
isothermal conditions, this model hypothesis predicts survivor curves 
with an upwards or downwards curvature (Equation (5)). 

An alternative hypothesis to describe this curvature would be that 
stress resistance is homogeneous within the population but that it varies 
during exposure (e.g. due to a physiological response) according to a 
power law. Then, the D-value at any time point would be calculated as 
D(t) = (t/δ)p. Under isothermal conditions, this hypothesis results in 
predictions that are equivalent to those of the Peleg model. This does not 
imply that the primary models are the same, only that they are equiv-
alent under that particular condition (in the same way that the Mafart 
model with p = 1 is equivalent to the Bigelow model). Therefore, under 
isothermal conditions, any differences between these models are 
explained by the secondary models that describe how the inactivation 
rates are affected by the changes in the (constant) treatment 
temperature. 

The differences between both model approaches become evident for 
dynamic conditions. In order to account for a heterogeneous population, 
the inactivation model must include a correction term, done in the Peleg 
model through the term t⋆ = (− log10S/b)n (Peleg & Cole, 1998). This 
introduces an additional difference with respect to the Mafart model 
(van Zuijlen et al., 2010) that is only relevant under dynamic conditions. 
This can lead to situations where one modelling approach is more 
suitable for isothermal conditions (due to the secondary model), but the 
other one is more adequate for dynamic conditions (due to t*). This is 
the case in our research, where the Mafart model fitted better the 
isothermal response of S. Senftenberg, but it failed at describing its dy-
namic response. 

The availability of more advanced equipment during the last years 
has enabled the definition of novel models whose hypotheses are 
directly based on observations under dynamic conditions. An example of 
this novel approach is the acclimation model by Garre et al. (2018), 
which uses a similar hypothesis to the Mafart model under dynamic 
conditions, assuming that the stress resistance within the population is 
homogeneous and dynamic. However, it adds a more mechanistic hy-
pothesis, assuming that the sublethal parts of the dynamic treatment 
induce a physiological response of the microbial cells, increasing their 
resistance (stress acclimation). Accordingly, microbial inactivation 
under dynamic conditions would be a “race” between microbial inacti-
vation and the development of stress acclimation, as illustrated in Fig. 6. 
The application of a sublethal temperature would increase the resistance 
of the microbial cells (illustrated as % adaptation with a solid line in 
Fig. 6). If the heating is fast, the microbial cells are inactivated before 
they adapt. Consequently, there is barely any difference with respect to 

Fig. 5. Comparison between experimental data and model simulations for the profiles of S. Enteritidis heat treated in peptone water at different heating rates (A for 
1 ◦C/min, B for 2 ◦C/min, C for 10 ◦C/min). The dots represent the experimental data, the dotted line is the prediction calculated by the Bigelow model whereas the 
dashed line is the one of the proposed model. The solid line represents the temperature profile (secondary y-axis). 

Table 2 
Statistical indexes evaluating the precision of the model predictions for 
S. Enteritidis for dynamic conditions based on the models fitted to data gathered 
under isothermal conditions.   

Bigelow model Acclimation model 

Heating rate 
(◦C/min) 

ME (log 
CFU/ml) 

RMSE (log 
CFU/ml) 

ME (log 
CFU/ml) 

RMSE (log 
CFU/ml) 

0.51  − 9.08  13.07  0.191  0.711 

1  − 9.66  11.28  − 0.58  1.01 
2  − 6.28  10.08  0.26  0.59 
10  − 0.36  2.17  − 0.31  0.84  

1 Used to fit the acclimation model. 
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the predictions based on isothermal data (Fig. 6D). However, if the 
heating is slow, a significant level of acclimation takes place while the 
microbial population is still large, resulting in biassed predictions based 
on isothermal information (Fig. 6A). 

It is of high importance to understand these different hypotheses. 
Uncovering the mechanisms by which individual cells process infor-
mation and respond to changes is a major task in biological research. 
Differences in cell behaviour between individuals are always present to 
some degree in every population of cells, and the overall behaviours of a 
population may not be representative of the individual behaviours 
(Altschuler & Wu, 2010). It has been demonstrated in a variety of cell 
types, ranging from bacteria to mammalian cells, that heterogeneity in 
cellular response can exist despite isogenicity (Abdallah et al., 2013). 

4.2. Variability in microbial inactivation models is not just quantitative, 
but also qualitative 

Several scientific studies have focused during the last decade in the 
study of variability of the microbial response, trying to quantify its 
impact on inactivation kinetics (Abe et al., 2020; Aryani et al., 2015; den 
Besten et al., 2018; Garre et al., 2020; Guillén, Marcén, Álvarez, et al., 
2020; Harrand et al., 2021; Luu-Thi et al., 2014; van Asselt & Zwieter-
ing, 2006). However, all these studies have applied the hypothesis that 
the effect of variability is only “quantitative”. In other words, they have 
assumed that a unique model equation can describe the microbial ki-
netics and that strain variability can be described using different types of 
pooling (van Boekel, 2021). As demonstrated in this article, strain 
variability can also have a “qualitative” impact on microbial kinetics. In 
the case of S. Senftenberg CECT4565, the inactivation under isothermal 
conditions was nonlinear and the model fitted to this data was able to 

describe its response under dynamic conditions. S. Enteritidis CECT4300 
had a totally different response: log-linear survivor curves under 
isothermal conditions and a significant deviation under dynamic con-
ditions that could be attributed to stress acclimation. Therefore, our 
study shows that accounting for variability in microbial kinetics may 
require the use of different modelling approaches per strain, not just 
different model parameters. 

The relevance of this fact may be small for isothermal conditions, as 
linear survivor curves are a particular case of the nonlinear models most 
commonly used (Weibullian models; Geeraerd model) (Aspridou & 
Koutsoumanis, 2020). However, it can be of high relevance for inacti-
vation under dynamic conditions, due to the larger differences between 
the different modelling approaches. This was already indicated by 
Clemente-Carazo et al. (2020), who concluded that the relevance of 
variability under dynamic conditions may be different than under 
isothermal conditions. Consequently, future studies focused on the study 
of variability should consider the possibility that variability may also 
have a qualitative effect on the models, not just quantitative. 

This is also of high relevance for the interpretation of experimental 
data obtained using cocktails of strains. According to the results of this 
study, it is feasible that a cocktail of strains will include strains with 
qualitative differences in their responses (e.g. strains able to develop 
acclimation) that can affect which strain is more resistant under 
isothermal or dynamic conditions (Garre, Egea, et al., 2018). The use of 
a cocktail of strains would mask this qualitative variability, allowing 
only the observation of the response of the strain that is the most 
resistant in a particular situation. Therefore, this empirical approach can 
mask relevant information that can be helpful in the understanding of 
microbial inactivation. 

On the other hand, food matrices very rarely have a unique bacterial 

Fig. 6. Percentage of acclimation (-, calculated as p(t)*100) for S. Enteritidis heat treated in peptone water under dynamic conditions at different heating rates (A for 
0.5 ◦C/min, B for 1 ◦C/min, C for 2 ◦C/min and D for 10 ◦C/min). The observed microbial concentrations are illustrated as black dots. (–) predictions of the Bigelow 
model based on isothermal data. 
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strain. It is well known that strain variability impacts the thermal 
resistance of microbial cells requiring different values of the model pa-
rameters (den Besten et al., 2018). Our study has shown that, besides 
that “quantitative variability”, variability can also cause qualitative 
differences between bacterial strains. This raises a fundamental question 
for predictive microbiology. Most models were historically developed 
(and, in most cases, still are) with the goal of predicting the survivor 
curve of a single strain. Even when models were based on cocktails of 
strains, they would predict a single survivor curve that would corre-
spond to an ideal, worst-case-scenario strain. Considering that we 
cannot predict the particular strain that will fall in a food product, how 
can we validate that any model will predict the response of that strain? 
This is still an open question in the field that will likely be a topic of 
scientific discussion in the future. Nonetheless, the first step towards 
resolving this question is the identification of the relevant sources of 
variability under different scenarios. In this sense, our study provides 
additional insight, identifying an aspect of strain variability. 

Apart from that, our results have shown that S. Senftenberg 
CECT4565, in spite of being an extremely resistant strain under static 
conditions, is not able to develop stress acclimation unlike S. Enteritidis 
CECT4300. This result is in-line with a recent study from our group, 
where we observed that the application of a heat shock would not induce 
an increased thermal resistance in bacterial cells of this strain (Clem-
ente-Carazo et al., 2021). This points out the possibility of an upper limit 
for the stress resistance of microbial cells that cannot be surpassed by the 
induction of a physiological response. This hypothesis can be of high 
relevance for microbial risk assessment because bacterial cells within 
the food chain are subject to a variety of sub-lethal stresses (desiccation, 
acidification, competition, etc.) that can affect their resistance to stress. 
Hence, a better understanding of how sublethal stress can affect stress 
resistance of bacteria and how it is affected by variability is a potential 
avenue for the improvement of microbial risk assessment models. 

5. Conclusions 

This article has illustrated that the effect of strain variability in mi-
crobial inactivation is not just quantitative but also qualitative. For 
Salmonella Enteritidis CECT4300, we observed log-linear survivor 
curves under isothermal curves and stress acclimation under dynamic 
conditions. This behaviour was largely different from that of Salmonella 
Senftenberg CECT4565. This especially resistant strain had non-linear 
survivor curves under isothermal conditions and did not show stress 
acclimation under dynamic conditions. This different response required 
the application of two different modelling approaches for each strain 
(Weibullian models for S. Senftenberg, acclimation model for S. Enter-
itidis). This qualitative difference has not been described before in the 
context of dynamic microbial inactivation and emphasises the need to 
carefully evaluate different model hypotheses when describing vari-
ability in microbial inactivation. 
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Mañas, P., & Pagán, R. (2005). Microbial inactivation by new technologies of food 
preservation. Journal of Applied Microbiology, 98(6), 1387–1399. https://doi.org/ 
10.1111/j.1365-2672.2005.02561.x 

Milkievicz, T., Badia, V., Souza, V. B., Longhi, D. A., Galvão, A. C., da Robazza, W., et al. 
(2021). Modeling Salmonella spp. Inactivation in chicken meat subjected to 
isothermal and non-isothermal temperature profiles. International Journal of Food 
Microbiology, 344, Article 109110. https://doi.org/10.1016/j. 
ijfoodmicro.2021.109110 

Nauta, M. J. (2000). Separation of uncertainty and variability in quantitative microbial 
risk assessment models. International Journal of Food Microbiology, 57(1), 9–18. 

Peleg, M., & Cole, M. B. (1998). Reinterpretation of microbial survival curves. Critical 
Reviews in Food Science and Nutrition, 38(5), 353–380. https://doi.org/10.1080/ 
10408699891274246 

Peleg, M., & Penchina, C. M. (2000). Modeling microbial survival during exposure to a 
lethal agent with varying intensity. Critical Reviews in Food Science and Nutrition, 40 
(2), 159–172. https://doi.org/10.1080/10408690091189301 

Peñalver-Soto, J. L., Garre, A., Esnoz, A., Fernández, P. S., & Egea, J. A. (2019). 
Guidelines for the design of (optimal) isothermal inactivation experiments. Food 
Research International, 126, Article 108714. https://doi.org/10.1016/j. 
foodres.2019.108714 

Peng, J., Tang, J., Barrett, D. M., Sablani, S. S., Anderson, N., & Powers, J. R. (2017). 
Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for 
process design and effects on quality. Critical Reviews in Food Science and Nutrition, 57 
(14), 2970–2995. https://doi.org/10.1080/10408398.2015.1082126 

Richter, K., Haslbeck, M., & Buchner, J. (2010). The heat shock response: Life on the 
verge of death. Molecular Cell, 40(2), 253–266. https://doi.org/10.1016/j. 
molcel.2010.10.006 

Soetaert, K., & Petzoldt, T. (2010). Inverse modelling, sensitivity and Monte Carlo 
analysis in R using package FME. Journal of Statistical Software, 33(3). https://doi. 
org/10.18637/jss.v033.i03 

Soetaert, K., Petzoldt, T., & Setzer, R. W. (2010). Solving differential equations in R: 
Package deSolve. Journal of Statistical Software, 33(9). https://doi.org/10.18637/jss. 
v033.i09 

Stasiewicz, M. J., Marks, B. P., Orta-Ramirez, A., & Smith, D. M. (2008). Modeling the 
effect of prior sublethal thermal history on the thermal inactivation rate of 
Salmonella in ground turkey. Journal of Food Protection, 71(2), 279–285. https://doi. 
org/10.4315/0362-028X-71.2.279 

Valdramidis, V. P., Geeraerd, A. H., & Van Impe, J. F. (2007). Stress-adaptive responses 
by heat under the microscope of predictive microbiology: Modelling the microbial 
heat resistance. Journal of Applied Microbiology, 103(5), 1922–1930. https://doi.org/ 
10.1111/j.1365-2672.2007.03426.x 

van Asselt, E. D., & Zwietering, M. H. (2006). A systematic approach to determine global 
thermal inactivation parameters for various food pathogens. International Journal of 
Food Microbiology, 107(1), 73–82. https://doi.org/10.1016/j. 
ijfoodmicro.2005.08.014 

van Boekel, M. (2002). On the use of the Weibull model to describe thermal inactivation 
of microbial vegetative cells. International Journal of Food Microbiology, 74(1–2), 
139–159. https://doi.org/10.1016/S0168-1605(01)00742-5 
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