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The gVOF package implements several accurate and efficient geometric volume of fluid (VOF) methods 
on arbitrary grids, either structured or unstructured with convex or non-convex cells, based on 
multidimensional unsplit advection and piecewise linear interface calculation (PLIC) schemes, with the 
purpose of facilitating and extending the use of advanced unsplit geometric VOF methods in new or 
existing computational fluid dynamics codes. The package includes a complete and self-contained set of 
routines for VOF initialization, interface reconstruction and fluid advection, and uses as external libraries 
a set of publicly available in-house tools to perform several analytical and geometrical operations. 
These operations may involve handling of high-complex non-convex flux polyhedra, even with self-
intersecting faces, which are robustly and efficiently treated in this work without the need of costly 
techniques based on convex decomposition. Results for the accuracy, computational efficiency, and 
volume (local and global) conservation properties of different combinations of the implemented advection 
and reconstruction methods are presented for several numerical tests on structured and unstructured 
grids. An extensive comparison with results obtained by other authors using advanced geometric VOF 
methods shows the outstanding performance of the gVOF package in terms of efficiency and accuracy. 
To demonstrate the performance of the package in solving complex two-phase flow problems, the 
implemented methods are combined with an existing in-house code to simulate the impact of a water 
drop on a free surface.

Program summary
Program Title: gVOF
CPC Library link to program files: https://doi .org /10 .17632 /9gmn6gsb6p .1
Licensing provisions: GPLv3
Programming language: FORTRAN and C, with C interfaces
External routines/libraries: VOFTools (https://doi .org /10 .17632 /brrgt645bh .3) and isoap (https://doi .
org /10 .17632 /4rcf98s74c .1) libraries
Nature of problem: The software package includes efficient and accurate routines for volume of fluid 
initialization, reconstruction of interfaces and fluid advection on arbitrary grids, either structured or 
unstructured with convex or non-convex cells, which are used to implement advanced unsplit geometric 
VOF methods. In particular, the package includes a fluid volume fraction initialization method, six PLIC 
reconstruction methods and three multidimensional unsplit advection methods. Routines to visualize 
interfaces and compute reconstruction errors; tests to assess the accuracy, computational efficiency, 
and volume conservation of the implemented methods for the reconstruction and advection of complex 
interfaces on arbitrary grids; and a user manual have also been included in the supplied package.
Solution method: Basically, the implemented methods, which can be used on grids with polyhedral cells of 
arbitrary geometry, have the following general characteristics. The methods implemented for fluid volume 
fraction initialization and reconstruction error calculation are based on a recursive grid refinement 
procedure to compute the fluid volume bounded by cell edges and an implicitly-defined fluid interface. 
The six implemented interface reconstruction methods are the following: a least-squares gradient 
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interface reconstruction method; three isosurface-based interface reconstruction methods; an extension 
to 3D of the iterative Swartz interface reconstruction; and a least-squares fit interface reconstruction 
method. Three unsplit advection methods, which are based on edge-matched, face-matched and non-
matched flux polyhedra and are valid for 3D arbitrary grids, are implemented. All the implemented 
methods can be combined by the user to solve different tests on arbitrary grids. The implemented 
routines can be used in FORTRAN or C. The OpenMP application programming interface is used to 
improve the computational efficiency.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

There are many methods for interface capturing. Among them (see, for example, Reference [1] for a complete review), the volume 
of fluid (VOF) method is one of the most popular. This method uses an auxiliary function, referred to in this work as f , to implicitly 
capture the interface. Mass conservation is among its main advantages and the recent improvements in the computation of geometric 
characteristics such as interface curvature (e.g., [2–10]) or orientation (e.g., [9,11–17]) make this method even more competitive compared 
to others. The VOF methods could be classified in two main groups: (1) algebraic and (2) geometric methods. In algebraic type VOF 
methods, the auxiliary function f is usually represented algebraically by a polynomial or trigonometric function while in geometric type 
VOF methods, a discretized version of f is represented geometrically by the region delimited by the considered cell and the interface, 
which is generally defined by a line in two dimensions (2D) or a plane in three dimensions (3D). The geometric VOF methods, although 
they require a relatively high complex implementation, are more accurate in the computation of fluxes through cell faces and may be more 
computationally efficient since only the closest cells to the interface are involved in the computation (algebraic VOF methods involve larger 
grid cell stencils). However, probably due to the above geometric implementation complexity, algebraic VOF methods are still widely used 
in many commercial (for example, STAR-CCM+ or ANSYS Fluent) and non-commercial codes (for example, the OpenFOAM interface flow 
solver interFoam). A recent review of interface-capturing methods for two-phase flows [18] concludes that geometric VOF methods are 
among the most promising interface-capturing methods for future investment. An overview of different geometric VOF methods, mainly 
focused on unstructured grids and three dimensions, is recently presented in [19].

Geometric VOF methods basically consist of two steps: interface reconstruction and fluid advection. At each time interval, these two 
steps can be computed in only one stage using unsplit schemes or in multiple stages using split schemes that perform one dimensional 
advection for each spatial dimension (2 stages in 2D or 3 stages in 3D). The most advanced geometric VOF methods used today generally 
involve unsplit schemes with PLIC (piecewise-linear interface calculation) reconstruction, although competitive geometric VOF methods 
based on split schemes can also be found, e.g., in [14,20,21]. PLIC reconstruction is being used since the first implemented geometric VOF 
method [22] and prevails over the less accurate piecewise-constant SLIC (simple line interface calculation) reconstruction [23]. Unsplit 
schemes, although they require higher complex geometric operations than split schemes, especially in 3D, are computationally efficient 
because only one interface reconstruction per time interval is required and have the potential to be readily implemented on unstructured 
grids. This work is focused on these schemes.

Among others, Kothe et al. [24], Rider and Kothe [25], Harvie and Fletcher [26,27], López et al. [15,16] and Pilliod and Puckett [12], for 
2D, and Rider and Kothe [25], Miller and Colella [28], Liovic et al. [13], Hernández et al. [29], López et al. [17], and more recently Owkes 
and Desjardins [30] or Marić et al. [31] for 3D, developed geometric-unsplit VOF methods, but only results on structured square or cubic 
grids were provided. Some of the first results on 2D unstructured grids can be found, for example, in the works by Mosso et al. [32,33]. 
Successful implementations of unsplit geometric VOF methods coupled with a level set method were also developed by Ningegowda 
and Premachandran [34] and Cao et al. [35] on 2D structured and unstructured grids, respectively. Due to the highly complex geometric 
operations involved in these methods, very scarce results can be found in the literature on 3D grids with non-cubic cells. Thanks to using 
the VOFTools routines, which have also been used by many of the authors referenced in this section, the first results on grids with 
non-cubic cells were obtained by López and Hernández [36]. Later, Ivey and Moin [37] and Jofre et al. [38] implemented methods that 
use, like in the edge-matched flux polygon advection (EMFPA) method proposed by López et al. [15] and following the suggestion made 
by Hernández et al. [29], the velocities in cell vertices to construct flux regions in cell faces on 3D unstructured grids, minimizing overlaps 
between them and reducing bounding errors in the fluid volume fraction distribution. Very recently, Ngo et al. [39] developed a similar 
geometric-unsplit VOF method coupled with a level set method and provided results on unstructured triangular and tetrahedral grids. 
Ivey and Moin [40] proposed the non-intersecting flux polyhedron advection (NIFPA) method that uses an iterative procedure to satisfy 
conservation and boundedness of the liquid volume fraction irrespective of the underlying flux polyhedron geometry on structured and 
unstructured grids. A recent advanced geometric VOF method based on isosurface constructions for general grids with arbitrary polyhedral 
cells was proposed by Roenby et al. [41] and improved later in [42] by using reconstructed distances to PLIC interfaces.

The main objective of this work is to implement a publicly available software which includes several accurate and efficient PLIC 
reconstruction and unsplit advection methods with the purpose to spread their use to simulate complex interface dynamics in arbitrary 
grids, with convex or non-convex cells. In particular, the following nine methods, described in Section 2, are implemented:

(i) Six PLIC-based reconstruction methods:
• an interface reconstruction method based on a least-squares gradient technique proposed by Barth and Frederickson [43] (Sec-

tion 2.1.1),
• three new versions of the isosurface-based interface reconstruction methods proposed by López et al. [17] (Section 2.1.2),
• a 3D version of the iterative Swartz [44] interface reconstruction method (Section 2.1.3), and
• a 3D version of the least-squares fit interface reconstruction methods of Scardovelli and Zaleski [11] and Aulisa et al. [14].

(ii) Three unsplit advection methods:
2
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• an extension to 3D arbitrary grids of the edge-matched flux polygon advection, also referred to hereafter as EMFPA (edge-matched 
flux polyhedron advection), method proposed by López et al. [15] (Section 2.2.1),

• a new version of the face-matched flux polyhedron advection (FMFPA) method proposed by Hernández et al. [29] (Section 2.2.2), 
and

• an extension to 3D arbitrary grids of the unsplit advection method proposed in [25], which will be referred to as non-matched flux 
polyhedron advection (NMFPA) method (Section 2.2.3).

Also, a fluid volume fraction initialization method based on the refinement procedure proposed in [7,45] and routines for interface visual-
ization are implemented.

To the best of our knowledge, this is the first freely available package based on state-of-the-art unsplit geometric VOF solvers with a 
wide range of possibilities for efficient and accurate initialization of the fluid volume fraction and solution of complex interfacial dynamics 
on unstructured grids, with convex or non-convex cells, avoiding decomposition into convex sub-cells. The initialization routine allows 
obtaining the required degree of accuracy by using the appropriate refinement level. Depending on the accuracy, fluid volume conservation 
or computational efficiency required by the user, eighteen different geometric VOF combinations can be chosen between unsplit advection 
and PLIC reconstruction routines. Results that compare favorably with previous ones can be obtained efficiently with gVOF using any 
arbitrary grid, with second-order accuracy and excellent fluid volume conservation.

A brief description of the routines included in the gVOF package is presented in Section 3 and further details can be found in the user 
manual included in the supplied software. In Section 4, an analysis of accuracy, computational efficiency, and volume conservation prop-
erties of different combinations of the implemented advection and reconstruction methods is carried out for several numerical tests using 
structured and unstructured grids with convex and non-convex polyhedral cells. Also, an exhaustive comparison with results obtained 
with previous advanced geometric-unsplit VOF methods is included. The implemented package has been combined with an existing code 
developed by our group [7,16,29,46,47] to simulate complex phenomena involved in the impact of a water drop onto a free surface, and 
its results are presented in Section 5. Finally, the parallel performance of the gVOF package is assessed in Section 6. To avoid doing an 
excessively long work, the detailed analysis of the high number of parameters involved in the implemented algorithms will be published 
elsewhere.

2. Problem statement

The gVOF package solves the time-evolution equation

∂ f

∂t
+ ∇ · (u f ) − f ∇ · u = 0, (1)

where the function f is equal to 1 in the fluid and 0 otherwise, and u is the velocity field. This equation is integrated over a time interval 
from tn to tn+1 and a given cell, �, of volume V� , to obtain, at each time step,

F n+1 = F n − 1

V�

tn+1∫
tn

∫
�

∇ · (u f )d�dt + F n+1 + F n

2V�

tn+1∫
tn

∫
�

∇ · u d�dt, (2)

where F is a discretized version of the function f , whose value in each cell of the computational grid is the fraction of the cell occupied 
by the fluid. F will be denoted hereafter as fluid volume fraction. As suggested by Rider and Kothe [25], the application of the last term in 
Eq. (2), even for incompressible flows, can help to improve the local and global volume conservation. Note that this term must be null if 
the velocity vector field u is discretely solenoidal. The first integral in Eq. (2) represents the net volume of fluid advected out of the cell. 
This volume is computed geometrically using an unsplit advection method, for which the fluid interface must be previously reconstructed 
using a PLIC method. Both reconstruction and advection represent the most complex and time-consuming steps in any advanced geometric 
VOF code. Below, the methods implemented in the gVOF package for these two steps are briefly described.

2.1. Interface reconstruction

Based on the value of F , the grid cells are classified in two types:

• uniform, if F < ε or F > 1 − ε , and
• interfacial, otherwise,

where ε is a small value close to zero (in the order of 10−10). For all the uniform cells, the volume fraction is cut off before reconstructing 
as

F =
{

1, if F > 1 − ε

0, if F < ε.
(3)

For each interfacial cell, the interface is represented by a planar interface defined as

n · x + C = 0, (4)

where the unit vector n normal to the interface and pointing into the fluid is firstly determined from any of the methods amenable to 
arbitrary grids described below, and then, the constant C is computed so that the interface splits the cell � of volume V� into two sub-
cells of volumes F V� and (1 − F )V� . In this work, the CIBRAVE (coupled interpolation-bracketed analytical volume enforcement) method 
3
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of López et al. [48] is generally used to compute C , except when using grids with rectangular parallelepiped cells, for which the efficient 
analytical method of Scardovelli and Zaleski [49] is used. The implementation of these two volume conservation enforcement methods is 
included in the VOFTools package [50–52].

This work implements into the gVOF package: a weighted least-squares gradient technique (Section 2.1.1), also known as Youngs’ 
method, which shows very good performance in terms of efficiency and accuracy in regions where the grid resolution is not enough; three 
methods based on isosurface extractions (Section 2.1.2), which generally show superior accuracy in regions with enough grid resolution; 
and two interface reconstruction methods which can be applied iteratively (Sections 2.1.3 and 2.1.4).

2.1.1. Least-squares gradient interface reconstruction, LSGIR
The unit vector normal to the interface, n, is obtained for every interfacial cell from the gradient of the fluid volume fraction distribu-

tion ∇F as

n = ∇F

|∇F | (5)

using a weighted least-squares technique [43], amenable to any grid. This technique, which can be considered as an extension of the 
Youngs’ finite difference approximations for ∇F [53] to arbitrary grids [24,25], has been implemented as follows.

A stencil involving neighbor cells of every interfacial cell is considered, in which each neighbor cell k, with geometric centers given 
by xk ≡ (xk, yk, zk), shares at least one vertex with the interfacial cell, with geometric center given by x ≡ (x, y, z). Then, the sum 

n∑
k=1

(
F̃k − Fk

)2
, over all the n neighbor cells, of the quadratic differences between the Taylor series expanded F̃k and Fk values, is mini-

mized using a weighted least-squares fit that yields the following equation for the volume fraction gradient:

∇F =
(

AT A
)−1

AT b, (6)

where

A =

⎛⎜⎜⎜⎝
w1(x1 − x) w1(y1 − y) w1(z1 − z)
w2(x2 − x) w2(y2 − y) w2(z2 − z)

...
...

...

wn(xn − x) wn(yn − y) wn(zn − z)

⎞⎟⎟⎟⎠ , (7)

b =

⎛⎜⎜⎜⎝
w1(F1 − F )

w2(F2 − F )
...

wn(Fn − F )

⎞⎟⎟⎟⎠ , (8)

and the weight

wk = 1

|x − xk|β (9)

is used to soften the influence of remote stencil points on the results of the least squares approximation. A detailed analysis of the effect 
of the β parameter on the accuracy of the LSGIR method will be published elsewhere.

2.1.2. Isosurface-based interface reconstruction
The vector n is obtained with the aid of the isosurface extracted from the volume fraction distribution interpolated at cell vertices, F ∗ . 

For every interfacial cell whose maximum and minimum interpolated F ∗ values satisfy the condition

F ∗
min < 0.5 < F ∗

max, (10)

the isosurface corresponding to the isovalue 0.5 is constructed using the procedure proposed by López et al. [54] (see the example of 
Fig. 1).

The interfacial cells that do not satisfy the condition of Eq. (10) or produce more than one isosurface, situations that frequently occur 
in regions of low grid resolutions, are reconstructed using the LSGIR method, which, as mentioned, performs well in such cases.

Below, three different variants of the interface reconstruction based on isosurface extraction will be briefly described. Considerations 
for the domain boundaries can be found in [17] and further details will be published elsewhere.

Local level contour-based interface reconstruction, LLCIR. The extracted isosurface, which generally is non-planar, is triangulated using its 
geometric center, which is obtained by simple averaging the position vectors of the isosurface vertices, as it is sketched in the example of 
Fig. 2, and the interface unit vector n in the considered interfacial cell is obtained from a weighted average of the unit vector normals to 
the isosurface triangles (see the example in Fig. 3). Different weighted parameters, based on angles, edge lengths or areas of the isosurface 
triangles, are considered in the implemented package and a detailed analysis of the performance of each one will be carried out elsewhere.

Extended level contour-based interface reconstruction, ELCIR. The vector n is obtained from an extended triangulated isosurface involving 
adjacent cells. The extension to adjacent cells is made by connecting the geometric centers of the set of vertices of the extracted iso-
surfaces, as sketched in the example of Fig. 4(a), resulting in a new triangulated surface (see the extended triangulated surface in the 
example of Fig. 4(b)) from which n is finally obtained by averaging as mentioned above (Fig. 3). If the extended triangulated surface yields 
an orientation that differs by more than 1.2 rad with respect to that provided by the LLCIR method, the vector n is obtained from the 
previous local triangulated isosurface.
4
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Fig. 1. Isosurface extracted on an irregular polyhedral cell from the volume fraction values interpolated at its vertices.

Fig. 2. Triangulation of the isosurface of Fig. 1 used in the LLCIR method.

Fig. 3. Interface orientation vector, n, obtained by averaging the unit vectors normal to the triangles. The angle α, along with other parameters of each triangle, are used for 
some of the weight factors included in the gVOF package that can be applied to obtain the average interface normal.

Conservative level contour-based interface reconstruction, CLCIR. After applying the ELCIR method and the volume conservation procedure 
on each interfacial cell to obtain the position of the PLIC interface (Fig. 5 shows the reconstructed PLIC interface that encloses the fluid 
volume corresponding to the value of F in the cell), the vertices of the extended triangulated surface are translated to the geometric 
centers of the set of vertices of the corresponding PLIC interfaces (see the example in Fig. 6(a)), resulting in a conservative extended 
triangulated surface (Fig. 6(b)) from which n is again obtained by averaging. A filter like that used in the above section for orientation 
differences higher than 1.2 rad is also applied here.

2.1.3. Swartz interface reconstruction, SWIR
The unit normal vector n is obtained using a procedure based on the iterative second-order interface reconstruction method of 

Swartz [44], which uses the fact that for a pair of certain neighbor interfacial cells there exists a “common orientation” that can be 
obtained from the fluid volume fractions in the two cells. Neighbor cells are those sharing at least one vertex. For a given interfacial 
5
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Fig. 4. Sketch of the ELCIR method. (a) Extension to an adjacent cell by connecting the geometric centers of the set of vertices of the extracted isosurfaces. (b) Triangulated 
surface extended to the geometric centers of the set of vertices of the isosurfaces extracted from adjacent cells.

Fig. 5. PLIC interface that encloses the fluid volume F V� in the cell.

cell, n is computed by averaging its common orientations with some of the neighbor interfacial cells, as described below. The method 
implemented in this work is similar, although with some considerations, to the variants described by Dyadechko and Shashkov [55] and 
Garimella et al. [56], which are somewhat different from the previous description given by Mosso et al. [32].

For a given interfacial cell, two types of iterations (inner and outer) are performed as follows. The inner iteration is applied over every 
valid neighbor interfacial cell until the common orientation reaches a prescribed tolerance, while the outer iteration involves all its valid 
neighbor interfacial cells as follows.
6
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Fig. 6. Sketch of the CLCIR method. (a) Connection to an adjacent cell by joining the geometric centers of the set of vertices of the corresponding PLIC interfaces. (b) Resulting 
triangulated surface involving adjacent interfacial cells.

Inner iteration. A pair of neighbor interfacial cells are valid to perform the inner iteration if their interface orientations obtained in the 
previous outer iteration differ by less than 45◦ . Every valid pair must be iterated over as follows until the difference of the common 
orientation is below 10−6 rad.

1. Connect the geometric centers of the set of vertices of the paired PLIC interfaces.
2. Compute the perpendicular to the common segment joining the geometric centers.
3. Use this perpendicular to estimate the common orientation and locate the PLIC interfaces to conserve the associated fluid volume 

fractions.

Outer iteration. The interface orientation computed in the previous outer iteration is updated by the new orientation if it differs by 
less than 30◦/Iout, where Iout is the number of repetitions performed in the outer iteration, and the PLIC interface is located to match 
the corresponding fluid volume fraction. It should be mentioned that the update of an interface orientation is made only after the new 
orientation is computed over all the interfacial cells. The outer iteration is repeated until the angle between the previous (Iout − 1) and 
current (Iout) computed interface orientation reaches a value lower than a prescribed tolerance or a maximum nout of repetitions (the 
prescribed tolerance and the maximum number of repetitions of the outer iteration can be set by the gVOF user). The previous interface 
orientation values for the first outer iteration (Iout = 1) are obtained using the LSGIR method from Section 2.1.1.

2.1.4. Least squares fit interface reconstruction, LSFIR
The unit normal vector n is obtained using a version applied to arbitrary polyhedral grids of the least-squares fit interface reconstruc-

tion methods presented by Scardovelli and Zaleski [11] and Aulisa et al. [14].
The interface is first reconstructed using the LSGIR method of Section 2.1.1 and the geometric center of the set of vertices of every 

reconstructed PLIC interface is computed. Using the centroid of the polygonal PLIC interface, like in [14], instead of the above geometric 
center provides similar results at the cost of a higher CPU time. The interface orientation of a given interfacial cell is updated from the 
orientation of the plane passing through its PLIC geometric center x that minimizes the distances δk to every PLIC geometric center xk of 
neighbor interfacial cell k. The solution is obtained using a least-squares procedure that minimizes the functional H defined by
7
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Fig. 7. Example of a flux region constructed on a cell face (shaded region).

H =
nvalid∑

k

wkδ
2
k , (11)

where nvalid is the total number of valid neighbor interfacial cells and the weight wk = 1/|xk − x|2.5 (the exponent 2.5 is roughly obtained 
by trial-and-error analysis). A neighbor interfacial cell is valid if it satisfies the same condition imposed for the inner iteration in the SWIR 
method. The LSFIR method can be applied using the outer iteration described in Section 2.1.3.

2.2. Fluid advected through cell faces

The following procedure is applied to determine the net volume of fluid advected out of the cell (first integral in Eq. (2)). On each 
polygonal cell face j of I vertices, the flux region of volume

Vd j =
(

u
n+ 1

2
j · n j

)
A j�t, (12)

where n j is the unit vector normal to it pointing out of the cell, u
n+ 1

2
j is the velocity vector at its center and intermediate time tn+ 1

2 =
1
2

(
tn + tn+1

)
, and A j is its area, is delimited by I + 2 flux region faces (see the example of Fig. 7 corresponding to a quadrilateral cell face 

(shaded region)), one of which is planar and coincides with the considered cell face (first flux region face) and the other I + 1 flux region 
faces may be non-planar, self-intersected and have curved edges: I faces that have a common edge with the first flux region face (each 
one of these faces can be considered as the streak surfaces emanating from the corresponding common edge) and the last one is opposite 
to the first one. To make this complex flux region computationally affordable, its edges and faces will be approximated by straight lines 
and planar surfaces, respectively. Hereafter this discrete flux region will be denoted as flux polyhedron �p

j and may be non-convex and 
even have self-intersecting faces.

Three different schemes, the edge and face matched flux polyhedron advection schemes described respectively in Sections 2.2.1 and 
2.2.2, and the non-matched flux polyhedron advection scheme described in Section 2.2.3, are used to construct the flux polyhedron �p

j . 
Hereafter, the unsplit advection procedure implemented in 3D in combination with the construction of edge-matched, face-matched, or 
non-matched flux polyhedra will be referred to as EMFPA, FMFPA or NMFPA method, respectively.

The volume of fluid V F j advected through the cell face j, which is taken to be positive when the fluid leaves the cell and negative 
otherwise, will depend on the shapes of �p

j and the fluid regions determined by the reconstructed PLIC interfaces in cells intersected by 
�

p
j . Note that donating regions from several cells need to be considered. This is the most expensive task, in which recursive intersections 

between half-spaces and the generally non-convex �p
j are required to compute V F j (the resulting truncated fluid regions are highlighted 

with red dashed lines in the 2D example of Fig. 8). The use of the non-convex tools proposed in [45] allows to perform these recursive 
intersections efficiently without the need to additionally decompose �p

j , which will have a very positive impact on the computational 
efficiency of the whole advection scheme. The details of the procedure used to perform the recursive intersection operations will be 
published elsewhere.

Finally, the new volume of fluid fraction at tn+1 is obtained from Eq. (2) as

F n+1 =
[

F n
(

1 + VdT

2V�

)
− V F T

V�

](
1 − VdT

2V�

)−1

, (13)

where

VdT =
∑

j

Vd j (14)

is the total net flux volume in the cell (second integral in Eq. (2)), and
8
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Fig. 8. 2D example for the computation of V F j . The truncated fluid regions are highlighted with red dashed lines. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

V F T =
∑

j

V F j (15)

is the total net volume of fluid that leaves (or enters) the cell (first integral in Eq. (2)), and the summations extend over all the faces of 
the considered grid cell.

The gVOF package does not use additional algorithms to redistribute the very small liquid volumes which are out of the limits given 
by the volume fraction. Instead, the updated F n+1 value is finally adjusted by simply making

F n+1 = max
[
min(F n+1,1.0),0.0

]
. (16)

2.2.1. Edge-matched flux polyhedron
The procedure used to construct an edge-matched flux polyhedron is analogous to that of the 2D version proposed by López et al. [15], 

in which the flux polygons on cell edges that have a vertex in common are constructed by having an edge with a common orientation, 
thus avoiding over/underlaps between flux polygons, provided that the time interval is low enough. In 3D, the proposed procedure also 
avoids over/underlaps between flux polyhedra on cell faces with a common vertex. The flux region corresponding to a given cell face of I
vertices is delimited by a polyhedron �p

j with 5I + 1 faces and 3I + 1 vertices as described below (see the example of Fig. 9).

The first face of �p
j is matched to the considered cell face. It will be assumed that all the computational cells are composed by planar 

faces. Each vertex i (white circles in Fig. 9) of the first face is transported back in time along its streak line by solving

dx

dt
= u. (17)

The following approximation is used in this work to integrate Eq. (17) from t = tn+1 to tn with x(t) = xi at t = tn+1

xI+i = xi − �tu
n+ 1

2
i , (18)

where xI+i is the position vector of the transported face vertex i at time tn (gray circles in Fig. 9). All the results presented in this work 

were obtained with u
n+ 1

2
i defined at the intermediate time tn+ 1

2 = 1
2 (tn + tn+1).

Each edge of the first face and the approximated streak lines corresponding to the back-traced of its vertices delimit a flux face which 
is generally non planar. The next step is to replace this generally non-planar face by four triangles using its geometric center obtained by 
simple averaging of vertex positions (white square in Fig. 9), as shown in the sketch of Fig. 9.

The remaining flux region face is delimited by the I back-traced vertices, producing a generally non planar face which is also trian-
gulated to obtain a surface of I triangles. Instead of directly using the geometric center of the I back-traced vertices in the triangulation, 
9



J. López and J. Hernández Computer Physics Communications 277 (2022) 108400
Fig. 9. Example of an edge-matched flux polyhedron construction. The arrows represent the velocity vectors on the cell face vertices.

Fig. 10. Example of a face-matched flux polyhedron construction. The arrows represent the velocity vectors on the centers of the cell face edges.

which would produce a flux region without the required volume, this geometric center is translated in the direction normal to the face 
(volume adjustment line indicated in Fig. 9) so that the volume of the flux polyhedron coincides with Vd j (the final point is depicted with 
a rhombus symbol in Fig. 9). This approach is like that used in [30].

2.2.2. Face-matched flux polyhedron
A face-matched flux polyhedron �p

j is constructed using a new version of the procedure proposed in [29]. This new procedure produces 
flux polyhedra defined by 2I + 1 faces and vertices (see the example of Fig. 10), which obviously is computationally less expensive 
compared to the flux polyhedra produced by the EMFPA method (this can be clearly seen by comparing the examples in Figs. 9 and 10). 
Following the work in [29], the basic idea is to ensure that the flux polyhedra constructed on cell faces with a common edge have a face 
with a common orientation. The details of this face-matched flux polyhedron construction are given below.

As in Section 2.2.1, the first face of �p
j coincides with the considered cell face. Each face of �p

j that has a common edge with the first 
face is made parallel to the velocity vector at the center of the common edge (white circles in Fig. 10). The vertices of the remaining face 
of the flux region (gray circles in Fig. 10), which are initially obtained by back tracing along the lines of intersection of the planes that 
contain the faces contiguous to the cell face, determine a generally non-planar flux region face which is adjusted by triangulation using 
the same volume conservation enforcement mentioned in the above section. This approach is found to be more robust than that used by 
Hernández et al. [29] to impose the volume constraint of �p

j , although also slightly more complex geometrically (in [29], �p
j is defined by 

only I + 2 faces and 2I vertices). As it was mentioned, the FMFPA method, either the original or the new version, avoids over/underlaps 
10
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Fig. 11. Example of a non-matched flux polyhedron construction. The arrow represents the velocity vector at the face center.

between flux polyhedra constructed on cell faces with a common edge, although over/underlaps may still occur between flux polyhedra 
constructed on cell faces with only a common vertex.

2.2.3. Non-matched flux polyhedron
A non-matched flux polyhedron �p

j is constructed using solely the velocity vector defined at the center of face j. The procedure 
described below, which could be considered as an extension to 3D arbitrary grids of the procedure described by Rider and Kothe [25], 
produces a flux polyhedron defined by I + 2 faces and 2I vertices (see the example of Fig. 11), which further reduces the geometric 
complexity of the methods described in Sections 2.2.2 and 2.2.1. Liovic et al. [13] developed a similar procedure which was applied to 
cubic grids. Note that with this procedure the absence of over/underlaps between flux polyhedra constructed on cell faces with some 
vertex (just one or both) in common is not warranted.

As in Sections 2.2.1 and 2.2.2, the first face of �p
j is made coincident with the considered cell face. Each vertex of the first face is 

transported back in time from an expression like that of Eq. (18), but using a unique velocity vector (the face center velocity vector) for all 
the other face vertices. Because of this, (1) each edge of the first face and the approximated streak lines corresponding to the back-traced 
of its vertices delimit a flux face which is planar, (2) the I back-traced vertices also delimit a planar flux region face, and (3) the resulting 
volume of the flux polyhedron must coincide with the volume Vd j . Therefore, the triangulation of non-planar faces and the additional 
step used in the EMFPA and FMFPA methods to impose the volume constraint given by V�

p
j
= Vd j are not required.

3. Description of the routines

The files included in the supplied software package are listed in Table 1. The gVOF software is implemented in FORTRAN. OpenMP
application programming interface [61] is used to parallelize its execution on shared-memory architectures. To enable the software to be 
used with C codes, the declarations in C of the implemented routines are also included in the distributed software. The relevant arrays 
are pre-allocated for user-specified values of the parameters ns, nv, nf, np and nn (all these parameters are defined in the files dim.h,
dimpol.h and dimgrid.h files for FORTRAN codes and dimc.h, dimpolc.h and dimgridc.h for C codes).

The main routines implemented to solve Eq. (1) are presented below (a brief description of each is summarized in Table 2). It must 
be mentioned that gVOF requires the VOFTools v5 [45,52] and isoap [54,57] external libraries. For the sake of brevity, the calling 
convection and the list of input and output parameters for each routine described hereafter, as well as others auxiliary routines not 
mentioned here, are left to be provided in the user manual included in the supplied software package.

3.1. Grid construction

The defgrid routine has been implemented to construct the computational grid. The grid is defined by a structure like that used 
by other codes, such as OpenFOAM [58]. The computational domain is divided into discrete non-overlapping polyhedral cells to form the 
grid. Each polyhedral cell is defined by a set of nodes and is bounded by planar polygonal faces. These faces may be internal or belong 
to a grid boundary. An internal face is shared by two cells, which are referred to in the example of Fig. 12 as owner and neighbor cells, 
while a face located in the domain boundary belongs to only one cell. The nodes of each face are arranged sequentially so that the vector 
joining two consecutive nodes leaves the face to the left (counterclockwise order) when viewed from outside the owner cell (see the node 
order illustrated in the example of Fig. 12).

The neigbcell routine has been implemented to obtain the list of cells that share at least one node with a given cell and the
compgrid routine has been implemented to compute different geometric parameters related with the cells and faces of the computational 
grid, such as sizes, areas, volumes, geometric centers, or orientations, among others.
11
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Table 1
Description of the gVOF package content.

File/directory Name Description

gvof.f source code of routines used to implement different advanced unsplit geometric VOF methods with PLIC reconstruction

usergvof.f source code of user-defined routines and functions to be used in the tests

cgvof.h declaration of the main routines included in the file gvof.f to be used in C codes

cusergvof.h declaration of user-defined routines and functions included in the file usergvof.f to be used in C codes

testrec.f FORTRAN test for interface reconstruction problems

testrec.c C test for interface reconstruction problems

testvof.f FORTRAN test for interfacial dynamics problems

testvof.c C test for interfacial dynamics problems

gvofvardef text file with input data for the tests

Makefile.linux and Makefile.mac script examples for the set of tasks to construct the gvof library and make executable files for tests in C and FORTRAN
on different platforms

user-manual-gvof.pdf user manual in pdf format

readme information about the contents of the supplied software package

COPYING copy of the GNU General Public License, Version 3
grids directory with non-uniform grid samples for tests (details about the grids included in the supplied software package are 

given in Section 4)

Table 2
Brief description of the main routines included in the gVOF package.

Name Description

defgrid constructs the grid

neigbcell obtains the list of cells that share at least one node with a given cell

compgrid computes different geometric parameters related with the cells and faces of the grid

printgrid writes the geometry of the grid to a file in VTK format

initfgrid initializes the fluid volume fraction in the grid cells

taggrid interpolates the fluid volume fraction to the grid nodes and tags the nodes, faces and cells of the grid

clcir reconstructs the PLIC interfaces using the isosurface-based CLCIR method

elcir reconstructs the PLIC interfaces using the isosurface-based ELCIR method

llcir reconstructs the PLIC interfaces using the isosurface-based LLCIR method

lsgir reconstructs the PLIC interfaces using the gradient of the fluid volume fraction distribution

swir reconstructs the PLIC interfaces using the iterative SWIR method

lsfir reconstructs the PLIC interfaces using the LSFIR method

recerr computes the interface reconstruction errors

printplic writes the PLIC interfaces to a file in VTK format

printvoxel remeshes the main grid onto a Cartesian grid (voxel grid) preserving the fluid volume and writes the computed 
fluid volume fraction at the voxel grid nodes to a file in VTK format

faceflux computes the volume of fluid advected during a time interval through the grid faces

emfp constructs a flux polyhedron using the EMFPA method

fmfp constructs a flux polyhedron using the FMFPA method

nmfp constructs a flux polyhedron using the NMFPA method

vofadv advances the volume fraction distribution to the next time step

The printgrid routine has been implemented to write the geometry of the constructed grid to a file in VTK (visualization toolkit 
[59]) format which can be visualized by using, for example, the ParaView program [60]. As an example, Fig. 13 shows four different 
types of grids included in the supplied software with around 203 cells in a unit domain.

3.2. Fluid volume fraction initialization

The initfgrid routine has been implemented to initialize the fluid volume in the grid cells using an accurate refinement procedure 
[7,45,52], which allows to obtain the volume fraction of the fluid contained in a convex or non-convex polyhedral cell. The shape of the 
fluid interface is defined by implicit external functions. The degree of refinement (given by the number of divisions along each coordinate 
axis of the Cartesian cell superimposed to a given cell in which the fluid volume fraction is computed) can be increased by the users to 
improve the accuracy of the initialization. Detailed assessments of the accuracy of this initialization procedure can be found in [7,45,48].

3.3. Grid tagging

The nodes, faces and cells of the grid are tagged as described below to improve the computational efficiency of the implemented 
interface reconstruction and fluid advection algorithms (note that these algorithms only need to be applied in a region close to the 
interface). The taggrid routine first computes the volume of fluid fraction at every grid node (F ∗) using an inverse distance weighting 
12
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Fig. 12. Owner and neighbor cells that share a common face, with indication of the sequential order of nodes that define the shared face.

Fig. 13. Grids with around 203 cells in a unit domain (convex cells on the top and non-convex cells on the bottom): (a) uniform grid with rectangular parallelepipedal cells 
and non-uniform grids with (b) convex and non-convex cells ((c) distorted cubic and (d) irregular polyhedrical cells).

interpolation from the volume fractions in the cells that share it. To illustrate the tagging procedure used in gVOF, the 2D example of 
Fig. 14 is used for clarity, although the package works on 3D. As it will be seen in Section 4.2.4, the users can simulate 2D (see the 
example in Fig. 15(a)) or axisymmetric (Fig. 15(b)) problems by using 3D grids with only one cell along one of the coordinates directions 
(circumferential direction for axisymmetric cases). The tags are assigned to nodes, faces and cells as, respectively,
13
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Fig. 14. 2D example of node (circle symbols), face (square symbols) and cell tagging.

Fig. 15. Examples of 3D grids used to solve (a) 2D and (b) axisymmetric problems.

Node tag =

⎧⎪⎨⎪⎩
−1 if F ∗ < ε,

1 if F ∗ > (1 − ε) or

0 otherwise,

Face tag =

⎧⎪⎨⎪⎩
−1 if all its nodes are tagged with −1,

1 if all its nodes are tagged with 1 or

0 otherwise,

and

Cell tag =

⎧⎪⎨⎪⎩
−1 if F < ε,

1 if F > (1 − ε) or

0 otherwise.

Provided that the CFL number is limited by a maximum value equal to 1, the following considerations about the above face tagging 
can be made. If a face is tagged with −1, the volumetric flux of fluid must be zero, and therefore, no geometric operation will be carried 
out to compute the flux of fluid. Note that any flux polyhedron constructed on a face tagged with −1 (� symbols in Fig. 14) will be far 
enough away from the fluid region. If a face is tagged with 1, the volumetric flux of fluid is approximately obtained in the gVOF package 
without geometrical operations from the fluid velocity defined at the considered face. Note that any flux polyhedron constructed on a 
face tagged with 1 (� symbols in Fig. 14) will be completely inside the fluid region. Otherwise, a flux polyhedron must be constructed 
using the EMFPA, FMFPA or NMFPA method (Sections 2.2.1, 2.2.2 or 2.2.3, respectively) at the considered face and a series of recursive 
14
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Fig. 16. 2D example with a sketch of the reconstruction error definition (shaded region).

Fig. 17. Comparison between the spherical interface resulting from PLIC using the printplic routine (left picture) and voxelization using the printvoxel routine (right 
picture) in a non-convex irregular polyhedral grid.

truncation operations are needed to obtain the corresponding volumetric flux of fluid. Also note that only the cells tagged with 0 are 
interfacial (thick lines in Fig. 14) and any of the interface reconstruction routines described in the next section must be applied to all of 
them to obtain the corresponding PLIC interfaces.

3.4. Interface reconstruction

The lsgir, llcir, elcir, clcir, swir and lsfir routines have been implemented to reconstruct the PLIC interfaces using, 
respectively, the least-squares gradient interface reconstruction of Section 2.1.1, the three isosurface-based interface reconstruction of 
Section 2.1.2, the iterative Swartz interface reconstruction of Section 2.1.3 and the least squares fit interface reconstruction of Section 2.1.4.

The recerr routine has been implemented to compute the errors of the PLIC reconstruction of an interface given by an implicitly 
defined function. The reconstruction error is defined within a given cell as the volume enclosed by the true interface and the PLIC interface 
(shaded region in the 2D example in Fig. 16). To compute this volume, a procedure like that used in the initfgrid routine to compute 
the initial fluid volume in a cell is used. Additionally, this routine returns the fluid volume initialization error which is computed as the 
relative absolute difference between the exact volume of the fluid body and total initialized fluid volume.

To visualize the reconstructed interface, the following two routines have also been implemented. The printplic routine writes the 
reconstructed PLIC interface into a VTK-format file. Due to the discontinuities of the PLIC reconstructed in adjacent cells, this interface 
representation may be unpleasant for visualization purposes. To get a smoother visualization, the printvoxel routine remeshes the 
main grid onto a Cartesian grid (voxel grid) where a new volume fraction distribution is computed by truncation from the PLIC interface 
reconstructed on the main grid to exactly preserve the total fluid volume, and writes the computed fluid volume fraction at the voxel 
grid nodes to a VTK-format file, which can be visualized using programs like ParaView [60] (see the comparison in Fig. 17 between the 
spherical interface resulting from PLIC using the printplic routine (left picture) and from voxelization using the printvoxel routine 
(right picture) in a non-convex irregular polyhedral grid). The details and assessment of the voxelization procedure implemented in this 
routine will be published elsewhere. It must be mentioned that the isovtkgrid routine, which is part of the isoap library [54,57], is 
also used in this work to write isosurfaces extracted on arbitrary grids.
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3.5. Fluid advection

The faceflux routine has been implemented to compute the volume of fluid advected during a time interval through the grid faces 
using the EMFPA (Section 2.2.1), FMFPA (Section 2.2.2) or NMFPA (Section 2.2.3) method by calling, respectively, the emfp, fmfp or nmfp
subroutine also included in the gVOF package. This routine also returns the volumes of the flux polyhedra constructed at the grid faces.

The vofadv routine has been implemented to advance the volume fraction distribution to the next time step by solving Eq. (13) using 
the volumetric fluxes computed from the above routines.

4. Tests and performance analysis

Two test files are included in the supplied software package to assess the performance of the implemented algorithms to solve different 
static (Section 4.1) and dynamic (Section 4.2) problems with prescribed velocity fields using arbitrary grids. The following grids with 
convex and non-convex cells are considered (further details of the generation of grids used in this work can be found in [54] and some of 
these non-uniform grids are also included in the supplied software package):

• Uniform grids of rectangular parallelepiped cells.
• Unstructured grids with tetrahedral cells obtained using the program TetGen [62].
• Structured grids with non-convex cells obtained by distorting cubic cells. Each of the eight corner vertices of every initial uniform 

cubic cell of size h is randomly moved to the surface of a sphere with radius 0.25h and centered in the corresponding initial vertex 
position. The faces of the distorted cell, which are generally non-planar, are triangulated by joining its center with two consecutive 
vertices of each face, which results in a non-convex polyhedron of 14 vertices and 24 triangular faces.

• Unstructured grids with non-convex irregular polyhedral cells obtained with the aid of TetGen [62] and two OpenFOAM’s programs 
[58] (tetgenToFoam and polyDualMesh). The faces of the cells generated in this way are generally non-planar and must be 
triangulated, as for the distorted cubic grids, by joining its center with two consecutive vertices of each face.

• Unstructured grids of different types available at [63] which were used to compare our results with those presented in [41].

The grid size N is obtained as

N = Ñ1/D
CELL (19)

where ÑCELL is the number of grid cells in an equivalent unit domain (note that for the cases presented below with a domain different to 
a unit one, ÑCELL will not coincide with the true number of grid cells NCELL) and D is the dimensions number of the problem (2 and 3 
for 2D and 3D problems, respectively). Note that in this work the 2D simulations are performed using 3D grids with only one cell along 
one of the coordinate directions.

In this and the following sections, CPU-times are estimated using the same resources as in Section 6 for the assessment of the parallel 
performance of the gVOF package, with a number of threads equal to twice the number of available cores to take advantage of the 
hyper-threading capability of the machine. For the LSGIR method of Section 2.1.1, a value β = 1.5 in the weight of Eq. (9) was used, which 
provides good results, especially for the cubic grids. For the isosurface-based interface reconstruction methods of Section 2.1.2, the weight 
factor introduced by Max [64] was used for cubic grids, the weight factor given by the angle α of each triangular face of the constructed 
isosurface (see the sketch of Fig. 3) if α ≤ π/2 or π − α otherwise, was used for the tetrahedral and distorted cubic grids and the weight 
factor, also introduced by Max [64], given by the area of each triangular facet was used for the non-convex irregular polyhedral grids. For 
the SWIR method of Section 2.1.3 and the LSFIR method of Section 2.1.4, a tolerance of 10−3 rad and nout = 4 for the outer iteration are 
used (different values of the tolerance and maximum number of repetitions of the outer iteration can be set by the gVOF). A detailed 
analysis of the different weightings and iteration parameters available in the gVOF package will be published elsewhere. A volume fraction 
tolerance ε of 10−12 is used for all the results, except for the 2D deformation test of Section 4.2.4 and a particular case mentioned later, 
for which ε = 10−10 is used. Ten divisions along each coordinate direction are used to initialize the fluid volume fraction and compute 
the reconstruction error on each interfacial cell.

4.1. Static test cases

Algorithm 1 Interface reconstruction test.
1: Define the test case and allocate arrays for grid construction
2: Call defgrid and allocate arrays for reconstruction and assessment
3: Call printgrid
4: Call neigbcell
5: Call compgrid
6: Call initfgrid
7: Call taggrid
8: Call clcir, elcir, llcir, lsgir, swir or lsfir to reconstruct the interface
9: Call printplic, isovtkgrid or printvoxel to print the interface shape

10: Call recerr to obtain the reconstruction error E L1
rec

11: Deallocate arrays

The test used to assess the performance of the different interface reconstruction methods implemented in the gVOF package is briefly 
presented in Algorithm 1. Two static interface reconstruction test cases are considered:

1. Sphere of radius 0.325 centered at (0.525, 0.464, 0.516).
16



J. López and J. Hernández Computer Physics Communications 277 (2022) 108400
Fig. 18. Error E L1
rec (left pictures) and CPU time (right pictures) for the reconstruction of the spherical fluid body using (a) cubic, (b) distorted cubic, (c) tetrahedral and (d) 

non-convex irregular polyhedral grids.

2. Torus centered at (0.525, 0.464, 0.516) with minor and major radius of 0.1 and 0.2.

Figs. 18 and 19 show the error E L1
rec (left pictures), which is obtained by summing the error volumes computed in all the interfacial 

cells, and execution time (right pictures) for the reconstruction of the spherical and toroidal fluid bodies using different grids. It should 
be mentioned that changes in the relative differences in CPU time between methods could be observed depending on the architecture or 
compilation options used in the comparison. For the grids with cubic, non-convex distorted cubic and tetrahedral cells, the CLCIR, SWIR 
and LSFIR methods are the most accurate providing similar accuracy with second-order convergence. However, the iterative SWIR method 
is clearly less computationally efficient being, on average, 20 and 100 times more time consuming than the CLCIR and LSGIR methods, 
17
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Fig. 19. Same results as in Fig. 18, but for the toroidal fluid body.

respectively. Note that the computational efficiency of the CLCIR and LSFIR methods is relatively similar. For the grids with non-convex 
irregular polyhedral cells, the LSFIR method is the most accurate exhibiting second-order convergence. The LSGIR method is the least time 
consuming, showing very good performance at low grid resolutions. As an example, Figs. 20 and 21 show the reconstructed PLIC interfaces 
for the spherical and toroidal fluid bodies using the CLCIR method and different grids with N = 40.

4.2. Dynamic test cases with prescribed velocity field

Algorithm 2 presents the test used for the assessment of the coupling between the different interface reconstruction and advection 
methods implemented in the gVOF package to solve dynamic problems. Extensive comparisons with some results available in the literature 
18



J. López and J. Hernández Computer Physics Communications 277 (2022) 108400
Fig. 20. PLIC interfaces for the spherical fluid body reconstructed using the CLCIR method and (a) cubic, (b) distorted cubic, (c) tetrahedral and (d) non-convex irregular 
polyhedral grids with N = 40.

and obtained using other advanced geometric VOF methods are included in this section. Other results, which can also be found in the 
literature, are left out of this comparison for several reasons, among which, apart from brevity, are: the use of unstructured grids which 
are not provided and cannot be easily reproduced to be able to compare or the lack of information about parameters required for a 
rigorous comparison.

Algorithm 2 Fluid advection test.
1: Define the test case and allocate arrays for grid construction
2: Call defgrid and allocate arrays for reconstruction, advection, and assessment
3: Call printgrid
4: Call neigbcell
5: Call compgrid
6: Call initfgrid
7: Call taggrid
8: Call clcir, elcir, llcir, lsgir, swir or lsfir and print the interface
9: t0 = 0 and t = 0

10: Set the velocity field at the initial instant t0

11: Set the initial time step �t
12: while t + �t < tend do
13: t0 = t and t = t0 + �t
14: Set the velocity field at the instant 1

2 (t0 + t)
15: Call faceflux
16: Call vofadv
17: Call taggrid
18: Call clcir, elcir, llcir, lsgir, swir or lsfir and print, if required, the interface
19: Set the time step �t
20: end while
21: Errors computation
22: Deallocate arrays
19
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Fig. 21. Same results as in Fig. 20, but for the toroidal fluid body.

The time step �t used to solve Eq. (1) is determined at each instant t from the following expression

�t = min

⎡⎣ min
i=1,··· ,NCELL

(hxi )

max
j=1,··· ,NFACE

(|u j|) ,

min
i=1,··· ,NCELL

(hyi )

max
j=1,··· ,NFACE

(|v j|) ,

min
i=1,··· ,NCELL

(hzi )

max
j=1,··· ,NFACE

(|w j|)

⎤⎦CFL, (20)

where CFL is the Courant-Friedrich-Levy number, u j , v j and w j are the components of the velocity vectors at the centers of every grid 
face j, NFACE is the number of faces in the grid, and hxi , hyi and hzi are the sizes along the corresponding coordinate axis of the minimum-
size rectangular parallelepiped that encloses every cell i. Other strategies can be found in the literature to fix the time step from the CFL 
number. For example, Roenby et al. [41], and Scheufler and Roenby [42], adjusted the time step by using a CFL number that only concerns 
cells near the interface, or Ivey and Moin [40] fixed the time step by choosing a sufficiently low CFL number to maintain the bounding 
volume errors close to the machine precision. Some authors are not very clear on this respect, therefore the comparisons should be seen 
with certain reservations given the great influence of the chosen time step on the final accuracy.

To quantify the accuracy of the interface shape, the following error norm, used for example by López et al. [15], López et al. [17] or 
Owkes and Desjardins [30], among others, is considered:

E L1
shape(t) =

NCELL∑
i=1

V�i

∣∣F e
i (t) − Fi(t)

∣∣ , (21)

where F e
i (t) and Fi(t) are, respectively, the exact and computed fluid volume fraction of cell i at instant t . Other authors, such as Roenby 

et al. [41], used the same error norm but relative to the exact total fluid volume:
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Table 3
Results for the translation test using tetrahedral grids and CFL = 0.5. Compar-
ison with results from [41]. The CPU times reported in [41] were obtained 
using a single core of an Intel Xeon 3.1 GHz CPU (E5-2687W).

Grid size, N E L1
shape∗ (t = 4) E L1

vol(t = 4) E L1
bound tcpu (s)

gVOF (FMFPA, CLCIR)

41 3.1 × 10−2 5.7 × 10−10 7.7 × 10−12 22

71 1.3 × 10−2 4.6 × 10−9 1.1 × 10−11 162

gVOF (FMFPA, SWIR)

41 3.1 × 10−2 3.7 × 10−10 1.1 × 10−12 104

71 1.3 × 10−2 1.5 × 10−9 2.4 × 10−12 601

gVOF (FMFPA, LSFIR)

41 3.9 × 10−2 3.4 × 10−10 1.0 × 10−11 22

71 1.6 × 10−2 2.5 × 10−9 1.0 × 10−11 145

isoAdvector [41]

41 4.6 × 10−2 5.1 × 10−13 −− 157

71 2.1 × 10−2 3.9 × 10−12 −− 1411

MULES [41]

71 4.2 × 10−1 2.9 × 10−14 −− 7306

E L1
shape∗(t) =

NCELL∑
i=1

V�i

∣∣F e
i (t) − Fi(t)

∣∣
NCELL∑
i=1

V�i F e
i (t)

. (22)

To quantify the change in the total fluid volume, the following error norm is used

E L1
vol(t) =

∣∣∣∣∣∣
NCELL∑
i=1

V�i F e
i (t) −

NCELL∑
i=1

V�i F i(t)

∣∣∣∣∣∣ . (23)

To quantify the unboundedness of the volume of fluid fractions (values lower and higher than 0.0 and 1.0, respectively), the error norm 
used by Owkes and Desjardins [30] is also considered in this work

E L∞
bound(t) = max

[
− min

i=1,··· ,NCELL
V�i F i(t), max

i=1,··· ,NCELL

V�i (Fi(t) − 1)

]
. (24)

The corresponding maximum and average values produced during the simulation are obtained, respectively, as

E L∞
bound = max

i=1,··· ,NSTEP

E L∞
bound(ti) (25)

E L1
bound =

NSTEP∑
i=1

E L∞
bound(ti)

NSTEP
, (26)

where NSTEP is the number of time steps required to complete the numerical test. It must be emphasized that unlike other VOF methods 
referenced to compare, the gVOF package, as mentioned, does not use special algorithms to redistribute the very small liquid volumes out 
of the bounds 0 and 1 for the volume fraction F .

Results for the total execution time tcpu = trec + tadv, where trec and tadv are the total CPU times consumed by the reconstruction and 
advection steps, respectively, and its average value per time step ̃tcpu are also presented below.

All the results presented in this section were obtained using the exact velocity field at both the face centers and cell vertices. It has 
been checked that when the velocities at the cell vertices are interpolated from the prescribed velocities at the face centers using a simple 
average, the accuracy values of the interface shape estimated using any of the error norms considered in this work are very close to 
those presented below. For the complex 3D deformation test of Section 4.2.3, the observed variations in the estimated accuracy by using 
prescribed or interpolated velocities at the cell vertices are in the order of only 1%, being negligible for the finest grids.

4.2.1. Translation test
This test is used to compare with the results obtained by Roenby et al. [41] using unstructured grids available in [63]. A sphere of fluid 

with radius 0.25, which is initially centered at (0.5, 0.5, 0.5) in a domain [0, 1] × [0, 1] × [0, 5], is translated by a velocity field given by 
(0, 0, 1) from time 0 to tend = 4. Table 3 compares the E L1

shape∗ (t = 4) error values obtained using gVOF, combining the FMFPA method with 
the CLCIR, SWIR and LSFIR methods, and those obtained using two VOF methods: the algebraic VOF MULES (multidimensional universal 
limiter with explicit solution) [65] and the geometric VOF isoAdvector [41], both implemented in the OpenFOAM software [58]. All these 
results correspond to CFL = 0.5. Note that for this test, the final shape errors are reduced on average by 35% compared to the results 
obtained using the isoAdvector method and 97% compared to the MULES method, which represents a significant improvement in accuracy. 
The computational efficiency of the FMFPA and CLCIR methods, which produce errors like those obtained using the SWIR method but with 
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Fig. 22. Results for the translation case obtained using the FMFPA and CLCIR methods, the tetrahedral grid with N = 41 and CFL = 0.5. The grid is clipped and made partially 
transparent to better see the PLIC interfaces reconstructed at t = 0 (top picture) and t = tend (bottom picture).

lower consumed CPU times, can also be observed in the results presented in the table. It must be considered that the execution times 
reported in [41] were obtained using a processor different to that used in this work and, therefore, those results should be viewed as a 
qualitative reference rather than for direct comparison. It must be mentioned that the EMFPA and NMFPA methods give almost identical 
results (not reported in the table) in terms of shape accuracy since the advection errors for this test are negligible using any of the 
implemented advection methods. For this test, however, the EMFPA and NMFPA methods consume CPU-times around a 20% higher and 
only 1% lower, respectively, than that consumed by the FMFPA method. The errors reported in Table 3 are due to the reconstruction step 
and to the roundoff errors of the geometric operations involved during the simulation. A more detailed analysis on this subject will be 
carried out elsewhere.

Fig. 22 shows the PLIC interface at t = 0 (top picture) and t = tend (bottom picture) obtained using the tetrahedral grid with N = 41. 
The grid is clipped and made partially transparent to better see the reconstructed PLIC interfaces. A visual comparison with the isoAdvector 
and MULES methods is presented in Fig. 23, where results for the isosurfaces, corresponding to the 0.5 isovalue of the fluid volume fraction, 
extracted at the end of the translation test (t = tend) can be seen. It can be observed that the extracted isosurfaces obtained using the 
FMFPA and CLCIR methods are better adjusted to the exact surfaces represented in transparent red color than those of the isoAdvector 
method (the differences with the exact solution can be clearly appreciated by observing colors change and specially the gap between the 
extracted isosurface and the exact sphere on the left of each picture) and considerably much better than those of the MULES method, 
which produces a highly distorted fluid body even for this simple translation test.

4.2.2. Rotation test
In this test, a sphere of fluid with radius 0.15, which is initially centered at (0.5,0.75,0.5), is rotated to complete a revolution at 

tend = 2π around an axis parallel to the z-axis and centered in a domain [0, 1] ×[0, 1] ×[0, 1]. The results obtained with gVOF (the FMFPA 
method combined with the CLCIR, SWIR and LSFIR methods and the NMFPA method combined with the CLCIR method) are compared in 
Table 4 with those obtained by Jofre et al. [38], using an advection method similar to the EMFPA method and the second-order LVIRA 
[66] reconstruction method, and Scheufler and Roenby [42], using a new version of the isoAdvector method (isoAdvector-plicRDF) which 
is improved by a distance function reconstructed from PLIC interfaces. All these results were obtained using CFL = 1. As in the above test, 
the EMFPA method produces an accuracy almost identical to that of FMFPA method but with higher time consumptions. Note that the final 
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Fig. 23. Isosurfaces, corresponding to the 0.5 isovalue of the fluid volume fraction, extracted on the tetrahedral grids with N = 41 (top pictures) and 71 (bottom pictures) 
at the end of the translation test (t = tend). Results obtained using (a) gVOF (FMFPA and CLCIR), (b) isoAdvector [41] and (c) MULES [41] methods. The exact solution is 
represented in transparent red color.

shape errors are reduced around 50% with respect to those of isoAdvector-plicRDF and around 30% with respect to those obtained by Jofre 
et al. [38], which represents a significant accuracy improvement. Results for the computational efficiency and volume conservation are also 
included in the table. The FMFPA method produces out of bounds volume errors close to the machine precision and shows a very good 
computational efficiency (the advantage of the CLCIR and LSFIR methods in this respect is clearly seen in the table). It is also noteworthy 
that the NMFPA method is less accurate than the FMFPA method and not strictly conservative due to the over/underlaps between flux 
polyhedra.

4.2.3. 3D deformation test
In this test proposed by Enright et al. [67], a sphere of fluid with radius 0.15 and initially centered at (0.35,0.35,0.35) in a domain 

[0, 1] × [0, 1] × [0, 1], is deformed in the following velocity field:

u(x, y, z, t) =2 sin2(πx) sin(2π y) sin(2π z) cos(πt/tend),

v(x, y, z, t) = − sin(2πx) sin2(π y) sin(2π z) cos(πt/tend),

w(x, y, z, t) = − sin(2πx) sin(2π y) sin2(π z) cos(πt/tend),

⎫⎪⎪⎬⎪⎪⎭ (27)

for tend = 3. This test produces a high deformation requiring a very fine grid to correctly solve the thinnest fluid structures.
A comparison with the results obtained using the isoAdvector method [41] is presented in Table 5 for cubic grids and in Table 6

for a tetrahedral grid (when using this grid and the NMFPA methods, ε has been increased to 10−10 to attenuate the effect of the 
over/underlaps). From the above results, it is evident the advantage in accuracy of the gVOF algorithms (on average, a reduction of around 
60% in the shape errors is observed in Table 5). This improvement can be visually observed from results like those shown in Fig. 24. 
When using cubic grids, the FMFPA results are slightly more accurate than the NMFPA results and almost identical to the EMFPA results. 
The EMFPA method increases the consumed CPU-time in around 20% and 30% compared to the FMFPA and NMFPA methods, respectively. 
When using the tetrahedral grid, the EMFPA method is slightly more accurate but with an increment of around 45% and 70% in the 
consumed CPU time compared to the FMFPA and NMFPA methods, respectively. Although the shape error value for the case with the 
tetrahedral grid of Table 5 and the isoAdvector method is not available, a volume variation of 0.63% and a CPU time of around 3 days at 
the end of the test were reported in [41] using a single core of an Intel Xeon 3.10 GHz CPU (E5-2687W). The very good performance and 
computational efficiency of gVOF, especially when using the CLCIR or LSFIR methods, is clearly observed in the tables.

Now, a comparison with the isoAdvector-plicRDF method [42] and many of the most advanced geometric-unsplit VOF methods re-
cently published is presented in Tables 7 and 8 (the last three combined EMFPA-like advection methods with second-order reconstruction 
methods). For ease of comparison, Fig. 25 shows in charts the corresponding values of E L1

shape(t = 3) and ̃t .
On average, all the methods included in the table show second-order convergence and gVOF provides the lowest shape errors. Although 

SWIR and LSFIR are the most accurate methods for N ≤ 128, the CLCIR method provides acceptable shape errors with a very good 
computational efficiency and higher accuracy when the grid resolution is sufficiently high to correctly solve the thinnest fluid structures 
at the maximum fluid body deformation time. In [31], where an unsplit advection EMFPA-like advection method is combined with a 
J. López and J. Hernández Computer Physics Communications 277 (2022) 108400
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Table 4
Results for the rotation test using cubic grids and CFL = 1. Comparison with results 
from [42] and [38]. The execution times ̃tcpu reported in [42] were obtained using 
four cores of a dual Intel Xeon 2687W v2 processor.

Grid size, N E L1
shape(t = 2π) E L1

vol(t = 2π) E L∞
bound(t = 2π) t̃cpu (s)

gVOF (NMFPA, CLCIR)

32 6.74 × 10−4 1.5 × 10−4 7.4 × 10−8 0.0055

64 2.06 × 10−4 6.7 × 10−5 2.2 × 10−8 0.019

128 6.52 × 10−5 3.0 × 10−5 1.5 × 10−9 0.090

256 2.31 × 10−5 1.3 × 10−5 1.0 × 10−10 0.64

gVOF (FMFPA, CLCIR)

32 3.33 × 10−4 8.7 × 10−18 6.9 × 10−19 0.0055

64 9.31 × 10−5 2.3 × 10−17 2.7 × 10−20 0.020

128 2.40 × 10−5 7.3 × 10−17 2.7 × 10−19 0.092

256 6.34 × 10−6 1.8 × 10−16 2.5 × 10−19 0.65

gVOF (FMFPA, SWIR)

32 3.65 × 10−4 3.8 × 10−17 4.0 × 10−19 0.013

64 9.11 × 10−5 0.0 2.7 × 10−20 0.040

128 2.38 × 10−5 5.9 × 10−17 2.7 × 10−19 0.16

256 6.37 × 10−6 6.6 × 10−17 2.5 × 10−19 0.94

gVOF (FMFPA, LSFIR)

32 3.62 × 10−4 2.3 × 10−17 1.5 × 10−18 0.0074

64 9.30 × 10−5 3.6 × 10−17 2.7 × 10−20 0.019

128 2.38 × 10−5 3.8 × 10−17 2.4 × 10−19 0.092

256 6.35 × 10−6 9.7 × 10−17 1.4 × 10−19 0.66

isoAdvector-plicRDF [42]

32 7.50 × 10−4 3.5 × 10−18 5.4 × 10−21 0.034

64 1.86 × 10−4 2.7 × 10−16 7.4 × 10−22 0.1

128 4.77 × 10−5 3.6 × 10−15 8.9 × 10−23 0.44

256 1.41 × 10−5 2.5 × 10−14 5.4 × 10−14 2.6

Jofre et al. [38]

32 5.47 × 10−4 −− −− −−
64 1.29 × 10−4 −− −− −−
128 3.46 × 10−5 −− −− −−

Table 5
Results for the 3D deformation test using cubic grids and CFL = 0.5. Comparison 
with results from [41], where the execution times tcpu were obtained using a single 
core of an Intel Xeon 3.1 GHz CPU (E5-2687W).

Grid size, N E L1
shape∗ (t = 3) E L1

vol(t = 3) E L∞
bound(t = 3) tcpu (s)

gVOF (NMFPA, CLCIR)
64 1.52 × 10−1 8.2 × 10−6 4.0 × 10−10 11
128 3.13 × 10−2 4.0 × 10−6 2.3 × 10−10 106
256 4.40 × 10−3 1.8 × 10−6 1.3 × 10−11 1426
gVOF (FMFPA, CLCIR)
64 1.39 × 10−1 6.8 × 10−17 4.0 × 10−19 13
128 3.04 × 10−2 6.6 × 10−17 1.4 × 10−19 113
256 4.23 × 10−3 5.5 × 10−15 6.8 × 10−20 1455
gVOF (EMFPA, CLCIR)
64 1.39 × 10−1 3.6 × 10−17 1.4 × 10−19 16
128 3.04 × 10−2 5.2 × 10−18 1.2 × 10−19 135
256 4.23 × 10−3 5.5 × 10−15 1.0 × 10−19 1617
gVOF (FMFPA, SWIR)
64 7.39 × 10−2 3.5 × 10−18 1.2 × 10−19 31
128 2.15 × 10−2 2.6 × 10−17 1.4 × 10−19 248
256 4.39 × 10−3 5.4 × 10−15 7.8 × 10−20 2672
gVOF (FMFPA, LSFIR)
64 7.65 × 10−2 4.9 × 10−17 1.2 × 10−19 12
128 1.90 × 10−2 5.7 × 10−17 8.7 × 10−20 112
256 4.41 × 10−3 5.5 × 10−15 7.7 × 10−20 1505
isoAdvector [41]
64 2.2 × 10−1 3.7 × 10−15 0 173
128 4.7 × 10−2 3.7 × 10−14 3.0 × 10−13 2626
256 1.2 × 10−2 2.3 × 10−13 1.1 × 10−10 46706
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Fig. 24. Isosurfaces extracted on a cubic grid with N = 128 at the instant of maximum deformation (top pictures) and end instant of the test (bottom pictures). The results 
are compared with those presented in [41] using the isoAdvector method.

Fig. 25. Values of the error E L1
shape(t = 3) (left picture) and average CPU time ̃t (s) (right picture) from (a) Table 7, and (b) Table 8 (the results obtained using the FMFPA and 

LSFIR methods are also included for comparison).
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Table 6
Same results as in Table 5, but using the tetrahedral grid with 
N = 317 from [63].

E L1
shape∗ (t = 3) E L1

vol(t = 3) E L∞
bound(t = 3) tcpu (s)

gVOF (NMFPA, CLCIR)

4.06 × 10−3 3.3 × 10−8 4.7 × 10−12 4217

gVOF (FMFPA, CLCIR)

4.01 × 10−3 2.6 × 10−9 1.3 × 10−13 4985

gVOF (EMFPA, CLCIR)

3.94 × 10−3 4.0 × 10−9 8.4 × 10−14 7196

gVOF (EMFPA, SWIR)

4.63 × 10−3 9.8 × 10−9 5.4 × 10−14 39128

gVOF (EMFPA, LSFIR)

7.92 × 10−3 1.22 × 10−8 4.9 × 10−12 7783

isoAdvector [41]

−− 8.9 × 10−5 −− � 259200

Table 7
Results for the 3D deformation test using cubic grids and CFL = 0.5. Comparison 
with results from (the resources used to execute the tests is included in paren-
theses) [42] (4 cores of a dual Intel Xeon 2687W v2).

Grid size, N E L1
shape(t = 3) E L1

vol(t = 3) E L∞
bound(t = 3) t̃cpu (s)

gVOF (FMFPA, CLCIR)

32 6.24 × 10−3 1.0 × 10−16 1.6 × 10−19 0.0074

64 1.97 × 10−3 6.8 × 10−17 4.0 × 10−19 0.026

128 4.29 × 10−4 6.6 × 10−17 1.4 × 10−19 0.12

256 5.98 × 10−5 5.5 × 10−15 6.8 × 10−20 0.74

gVOF (FMFPA, SWIR)

32 3.55 × 10−3 3.0 × 10−16 1.7 × 10−19 0.019

64 1.04 × 10−3 3.5 × 10−18 1.2 × 10−19 0.064

128 3.04 × 10−4 2.6 × 10−17 1.4 × 10−19 0.25

256 6.20 × 10−5 5.4 × 10−15 7.8 × 10−20 1.30

gVOF (FMFPA, LSFIR)

32 3.95 × 10−3 1.4 × 10−16 1.9 × 10−19 0.0090

64 1.08 × 10−3 4.9 × 10−17 1.2 × 10−19 0.025

128 2.69 × 10−4 5.7 × 10−17 8.7 × 10−20 0.12

256 6.24 × 10−5 5.5 × 10−15 7.7 × 10−20 0.77

isoAdvector-plicRDF [42]

32 8.36 × 10−3 1.1 × 10−16 2.1 × 10−14 0.058

64 3.25 × 10−3 9.7 × 10−16 6.4 × 10−20 0.15

128 6.57 × 10−4 3.7 × 10−15 1.1 × 10−15 0.52

256 9.54 × 10−5 2.0 × 10−14 2.4 × 10−16 2.63

modified version of the Swartz reconstruction method proposed by Dyadechko and Shashkov [55], zero bounding errors are reported, 
which is somewhat surprising given the high geometric complexity of the unsplit advection method. The results obtained by Owkes 
and Desjardins [30] and Jofre et al. [38], who also use EMFPA-like advection methods and, respectively, the second-order ELVIRA and 
LVIRA reconstruction methods [12], are relatively similar and on average their shape errors are around 90% higher than those of gVOF. 
A visual comparison with the results obtained with the isoAdvector-plicRDF method, which shows an accuracy close to that of Owkes 
and Desjardins [30] and Jofre et al. [38], can also be seen on Fig. 26, where the improvement achieved using gVOF is clearly seen. Note 
that SWIR method better preserves the integrity of the thin fluid structures (the LSFIR method has a similar behavior in this respect). 
The NIFPA-1 method proposed by Ivey and Moin [40] combined with the embedded height-function method proposed also by Ivey and 
Moin [9] provides accuracies comparable to those of other advanced geometric unsplit VOF methods. Although, as it was mentioned, the 
results of ̃tcpu included in the table should only be considered as a qualitative reference, one of the reasons for the clear advantage of
gVOF with respect to others in terms of computational efficiency, is the use of the non-convex version of VOFTools [45,52], which avoids 
the use of costly techniques to decompose the generally non-convex flux polyhedra into convex sub-polyhedra.

Fig. 27 shows the PLIC interfaces for the 3D deformation test at different instants obtained using gVOF (EMFPA and CLCIR), CFL = 0.5
and different grids of N = 160 with convex and non-convex cells, where the capacity of gVOF to solve tests of high interface deformation 
on 3D arbitrary grids can be clearly seen.

4.2.4. 2D deformation test
In this test introduced by Bell et al. [68], a cylinder of fluid with radius 0.15, symmetry axis parallel to the y-axis and initially centered 

at (0.5,0,0.75) in a domain [0, 1] × [0, 1] × [0, 1], is deformed in the following velocity field:
J. López and J. Hernández Computer Physics Communications 277 (2022) 108400
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Table 8
Continuation of Table 7. Comparison with results from [40] (no execution time re-
ported; the results were obtained with CFL sufficiently low to get E L1

vol(8) < 10−12), 
[30] (4 cores of a dual Intel Xeon X5670), [38] (no execution time reported) and 
[31] (4 cores of an Intel Xeon E5-2680 v3).

Grid size, N E L1
shape(t = 3) E L1

vol(t = 3) E L∞
bound(t = 3) t̃cpu (s)

NIFPA-1 [40]∗

33 6.8 × 10−3 < 1.4 × 10−14 < 1.4 × 10−14 −−
65 2.2 × 10−3 < 1.4 × 10−14 < 1.4 × 10−14 −−
129 4.9 × 10−4 < 1.4 × 10−14 < 1.4 × 10−14 −−
257 1.3 × 10−4 < 1.4 × 10−14 < 1.4 × 10−14 −−
Liovic et al. [13]

32 7.41 × 10−3 −− −− −−
64 1.99 × 10−3 −− −− −−
128 3.09 × 10−4 −− −− −−
256 7.03 × 10−5 −− −− −−
Owkes and Desjardins [30]

32 6.98 × 10−3 1.2 × 10−15 1.2 × 10−17 0.78

64 2.10 × 10−3 2.5 × 10−15 2.3 × 10−17 2.85

128 5.63 × 10−4 1.7 × 10−14 2.8 × 10−17 12.2

256 1.01 × 10−4 3.9 × 10−14 4.7 × 10−17 45.5

Jofre et al. [38]

32 6.92 × 10−3 −− −− −−
64 2.43 × 10−3 −− −− −−
128 6.37 × 10−4 −− −− −−
Marić et al. [31]

32 5.86 × 10−3 2.5 × 10−15 0.0 0.69

64 1.56 × 10−3 6.0 × 10−15 0.0 2.81

128 3.08 × 10−4 1.6 × 10−14 0.0 12.0

Fig. 26. PLIC interfaces at t = 1.5 (in red color) and t = 3 (in blue color) obtained using the isoAdvector-plicRDF method [42] (left pictures) and gVOF, combining FMFPA 
method with CLCIR and SWIR methods (middle and right pictures, respectively), for the 3D deformation test with two cubic grids with N = 64 (top pictures) and 128 
(bottom pictures), and CFL = 0.5.
27



J. López and J. Hernández Computer Physics Communications 277 (2022) 108400
Fig. 27. PLIC interfaces for the 3D deformation test at t = 1.0, 1.5, 2.0 and 3.0 (from top to bottom) obtained using gVOF (EMFPA and CLCIR), CFL = 0.5 and (a) cubic, 
(b) non-convex distorted cubic and (c) tetrahedral grids with N = 160.

u(x, y, z, t) = − 2 sin2(πx) sin(π z) cos(π z) cos(πt/tend),

v(x, y, z, t) =0,

w(x, y, z, t) =2 sin2(π z) sin(πx) cos(πx) cos(πt/tend),

⎫⎪⎪⎬⎪⎪⎭ (28)

for tend = 8. Note that this 2D deformation test is simulated in this work using 3D grids with a single cell along the y-axis. These quasi-2D 
grids will be denoted hereafter as square or triangular grids.

Table 9 compares the E L1
shape∗ error values at t = 8 obtained using gVOF (combining the FMFPA method with the CLCIR, SWIR and 

LSFIR methods) and CFL = 0.5 with those obtained using the isoAdvector and MULES methods [41] on square and unstructured grids 
available in [63] (the results corresponding to the MULES method were obtained using CFL = 0.1). A substantial reduction of the error 
values, being on average around a 60% with respect to the isoAdvector method and higher than 90% with respect to the MULES method, 
has been achieved by the gVOF code. The corresponding PLIC interfaces obtained with gVOF (FMFPA and CLCIR) at t = 4 (dark blue color) 
and t = 8 (red color) can be seen in Fig. 28 (the exact fluid region at t = 8 is depicted in light blue color). Note that for 2D problems, 
the EMFPA and FMFPA methods produce equivalent flux polyhedron shapes, although, as mentioned, the EMFPA method uses more faces 
and vertices for each flux polyhedron to construct the flux region, affecting this, obviously, to the computational efficiency. As expected, 
28
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Table 9
E L1

shape∗ error values at t = 8 for the 2D deformation test using different grids and CFL = 0.5. 
Comparison with the isoAdvector and MULES methods [41]. The results presented for MULES 
were obtained in [41] using CFL = 0.1.

Grid size, gVOF, FMFPA+ isoAdvector MULES

N CLCIR SWIR LSFIR [41] [41]

Square grids

100 2.71 × 10−2 1.57 × 10−2 1.61 × 10−2 4.7 × 10−2 –

200 7.60 × 10−3 3.60 × 10−3 3.82 × 10−3 1.2 × 10−2 7.2 × 10−2

400 1.24 × 10−3 1.32 × 10−3 1.77 × 10−3 2.3 × 10−3 –

Triangular grids [63]

140 3.30 × 10−2 2.23 × 10−2 2.23 × 10−2 5.4 × 10−2 –

281 8.77 × 10−3 5.47 × 10−3 6.15 × 10−3 2.0 × 10−2 6.6 × 10−1

564 2.45 × 10−3 8.18 × 10−4 1.62 × 10−3 9.5 × 10−3 –

Fig. 28. PLIC interfaces (in blue for t = 4 and in red for t = 8) obtained using FMFPA and CLCIR methods with CFL = 0.5 and different grids. (a) Square grids with N = 100, 
200 and 400. (b) Triangular grids with N = 140, 281 and 564. The exact solution at the end of the test is represented in light blue color.

the results obtained using the NMFPA method, which are omitted in this test for brevity, are less accurate than those obtained using the 
EMFPA or FMFPA method.

Now, Table 10 compares the E L1
shape(8) error values obtained using gVOF (combining now the EMFPA method with the CLCIR and 

SWIR methods) with those obtained using several of the most advanced geometric VOF methods developed to date. The shape error 
reduction achieved by gVOF for this test of high deformation is around 60% and 50% compared to the methods implemented by Owkes 
and Desjardins [30] and Marić et al. [31], respectively, and around 80% and 70% compared to the isoAdvector-plicRDF method of Scheufler 
and Roenby [42] and NIFPA-1 method of Ivey and Moin [40], respectively, which represents a remarkable achievement.
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Table 10
E L1

shape error values at t = 8 for the 2D deformation test using square grids and different CFL values. Comparison 
with recent advanced geometric-unsplit VOF methods.

Grid size, gVOF, EMFPA + Owkes and isoAdvector- Marić NIFPA-1

N CLCIR SWIR Desjardins [30] plicRDF [42] et al. [31] [40]*

CFL = 1

64 3.51 × 10−3 4.15 × 10−3 – 8.70 × 10−3 5.74 × 10−3 –

128 8.85 × 10−4 7.20 × 10−4 – 2.27 × 10−3 1.45 × 10−3 –

256 1.94 × 10−4 2.14 × 10−4 – 1.61 × 10−3 3.77 × 10−4 –

512 6.37 × 10−5 4.45 × 10−5 – 1.93 × 10−3 – –

1024 1.59 × 10−5 1.35 × 10−5 – 2.75 × 10−3 – –

CFL = 0.5

64 6.35 × 10−3 4.37 × 10−3 7.75 × 10−3 1.26 × 10−2 – 1.2 × 10−2

128 1.19 × 10−3 8.18 × 10−4 1.87 × 10−3 2.61 × 10−3 – 2.7 × 10−3

256 2.07 × 10−4 1.72 × 10−4 4.04 × 10−4 5.71 × 10−4 – 5.4 × 10−4

512 5.45 × 10−5 4.11 × 10−5 8.32 × 10−5 1.04 × 10−4 – 1.7 × 10−4

1024 1.32 × 10−5 1.11 × 10−5 2.35 × 10−5 3.50 × 10−5 – 4.6 × 10−5

* These results were obtained for N + 1 and a CFL sufficiently low to get E L1
vol(8) < 7 × 10−14.

5. Coupling gVOF with an in-house CFD code

To show the performance of gVOF coupled with an in-house code that solves the flow conservation equations (previous results obtained 
with this code coupled with VOF and level-set methods can be found in [7,16,29,46]), the impact of a water drop onto a free surface 
is solved. The code solves the conservation equations on both sides of the interface using a projection method. The projection step 
incorporates a continuous surface tension model based on the balanced-force algorithm proposed by François et al. [69], in which the 
interface curvature is computed using the height function technique that incorporates the improvements proposed in [7] and [8]. The 
pressure Poisson equation resulting from the projection step, which is the most expensive part of the code, is solved using a preconditioned 
Krylov solver with the help of LIS (library of iterative solvers) [70]. A CFL number of 0.2 was used to determine the time step as

�t = min

⎛⎝√[ρl + ρg
]

h3

4πσ
,

h

umax

⎞⎠CFL,

where ρl and ρg and the densities of the liquid and gas phases, respectively, σ is the surface tension coefficient, h is the cell size and 
umax is the maximum absolute value of the velocity components at each instant.

A water drop of diameter D = 2.9 mm impacting a deep water pool with velocity U = 2.5 m s−1 is considered. The Froude and Weber 
numbers are F r = 220 and W e = 248, respectively. Due to the symmetry of the problem, only one quarter of the physical domain was 
considered. The computational domain used was 8D × 3.5D × 3.5D . The pool depth was 4.5D , the water drop was initially located at a 
height equal to 6.0D and the domain was discretized on a grid of 175 × 70 × 70 cells. To reach the desired impact velocity, a fictitious 
gravitational force was used to accelerate the drop. Fig. 29 shows results for the 0.5-isosurfaces obtained using the EMFPA and CLCIR 
methods at different instants after the drop had made contact with the pool surface (right pictures). A relatively good degree of agreement 
can be observed with the visualization results obtained experimentally in [29] (left pictures; note that the images of the interface are 
magnified when observed through water). A quantitative comparison can be seen in Fig. 30, where numerical and experimental results 
of the evolution of the free-surface depth at the symmetry axis, Dc , are compared. A reasonable agreement can be observed for the 
cavity depth evolution during growth and collapse processes. Note that the numerical predictions obtained using the EMFPA and FMFPA 
methods are very closed for this drop impact test. On average, the CPU time consumed by the advection and reconstruction schemes 
represent around 20% of the total. In all simulations, the net change in total volume at the end of the test was lower than 4 × 10−6%.

6. Parallel performance

To assess the parallel performance of the gVOF package, the 3D deformation test of Section 4.2.3 was executed using an increasing 
number of threads. The gfortran compiler with -O3 optimization and the OpenMP application programming interface [61] were used 
on an iMac Pro 2017 with an 18-core Intel Xeon W 2.3 GHz CPU. Each iteration is performed over a single cell and is treated independently 
in the parallel loop. The distribution of loop iterations among threads is left to be done automatically by the compiler. The same conditions 
as in Table 7 but using the EMFPA and CLCIR methods, and a cubic grid with N = 256 are considered for this analysis. The top picture in 
Fig. 31 shows the total CPU times of the interface reconstruction and fluid advection as a function of the number of threads used during 
the execution of the test case. The corresponding speedup achieved with respect to the execution with one thread is also shown in Fig. 31
(bottom picture). Note that fluid advection spends around twenty times the CPU time consumed by the interface reconstruction when 
using a single thread, while this difference tends to reduce to around ten when the number of threads increases. It should be mentioned 
that the automatic distribution of loop iterations used in this work may cause uneven progress during execution, which could explain 
the slight changes in speedup observed in Fig. 31. Future work will investigate additional considerations based, for example, on the VOF 
fraction distribution or local grid resolution, to better control how loop iterations are distributed.
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Fig. 29. Water drop impact test. Comparison between the experimental results for the interface shape [29] (left pictures) and numerical predictions for the 0.5-isosurfaces 
obtained using the EMFPA and CLCIR methods (right pictures) at different instants after the drop had made contact with the pool surface.

7. Conclusions

The gVOF package, which is provided as open source, includes routines for the implementation of advanced geometric VOF methods 
on arbitrary grids that achieve accuracies and computational efficiencies which are cutting edge. The package uses the VOFTools and
isoap libraries to implement a VOF initialization method and several PLIC interface reconstruction and unsplit advection methods valid 
for arbitrary grids with convex or non-convex cells. The routines are written in FORTRAN and can be used with C codes through interface 
routines included in the distributed software. To improve the computational efficiency, the OpenMP application programming interface is 
used. To assess the performance of the package, interface reconstruction and advection tests are also included in the supplied software. A 
thorough comparison with existing state-of-the-art geometric VOF methods has been carried out and has provided very favorable results. 
Also, the package has been incorporated into an existing in-house code to simulate the impact of a water drop on a free surface. The 
numerical results have been compared with experimental results, and a good agreement has been found.
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Fig. 30. Comparison between numerical predictions for the drop impact test of Fig. 29 and experimental results [29] for the evolution of the free-surface depth, Dc , at the 
symmetry axis.

Fig. 31. Total CPU time consumed by interface reconstruction and fluid advection (top picture) and speedup with respect to the execution with one thread (bottom picture), 
as a function of the number of threads, obtained for the 3D deformation test using gVOF (EMFPA and CLCIR), a cubic grid with N = 256 and CFL = 0.5, on an 18-core Intel 
Xeon W 2.3 GHz CPU.
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Appendix A. Nomenclature

A = matrix in Eq. (7); area of the cell face

b = vector in Eq. (8)

C = constant that determines the position of the PLIC interface

D = drop diameter

Dc = free-surface depth at the symmetry axis

D = dimensions number (2 for 2D and 3 for 3D)

E L1
bound = average E L∞

bound(t) value during the complete simulation

E L∞
bound = maximum E L∞

bound(t) value during the complete simulation

E L∞
bound(t) = maximum unboundedness error of the fluid volume at a time t

E L1
rec = interface reconstruction error

E L1
shape = interface shape error

E L1
shape∗ = relative interface shape error

E L1
vol = fluid volume error

f = auxiliary VOF function

F = fluid volume fraction (discretized version of f )

F̃ = Taylor series expanded value of F

F e = exact fluid volume fraction of a cell

F ∗ = fluid volume fraction interpolated at a grid node

F r = Froude number

h = cubic cell size

hx,hy,hz = sizes along the coordinate axis x, y, z of the minimum-size rectangular parallelepiped that encloses a cell

I = number of vertices of the first face in a flux polyhedron

n = current time step

n = unit vector normal to the interface pointing into the fluid or normal to the cell face pointing out of the cell

N = grid size

NCELL = number of grid cells in the computational domain

NFACE = number of grid faces in the computational domain

NSTEP = number of time steps required to complete the advection test

ÑCELL = number of grid cells in an equivalent unit domain

t = time

t0 = previous time in an advection test

tadv = total CPU time consumed by the advection step

tcpu = total execution CPU time

tend = end time of an advection test

trec = total CPU time consumed by the reconstruction step

t̃cpu = average total execution CPU time per time step

U = impact velocity

u = velocity vector

umax = maximum absolute value of the velocity components

u, v, w = components of u

Vd = volume of the flux region
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VdT = total net flux volume at the cell

V F = volume of the fluid advected through a cell face

V F T = total net volume of fluid that leaves (or enters) the cell

V� = volume of the grid cell �

w = weighting factor

W e = Weber number

x = position vector

x, y, z = Cartesian coordinates

Subscripts

i = face vertex index

j = cell face index

k = neighbor grid cell index

Superscripts

n = time step

Greek characters

α = facet angle in the triangulated isosurface

β = parameter in Eq. (9)

�t = time step

ε = fluid volume fraction tolerance

� = grid cell

�p = flux polyhedron

ρg = gas density

ρl = liquid density

σ = surface tension coefficient

Acronyms

CFD = computational fluid dynamics

CFL = Courant-Friedrich-Levy number

CIBRAVE = coupled interpolation-bracketed analytical volume enforcement

CLCIR = conservative level contour interface reconstruction

ELCIR = extended level contour interface reconstruction

EMFPA = edge-matched flux polygon/polyhedron advection

FMFPA = face-matched flux polyhedron advection

LLCIR = local level contour interface reconstruction

LSFIR = least-squares fit interface reconstruction

LSGIR = least-squares gradient interface reconstruction

NIFPA = non-intersecting flux polyhedron advection

NMFPA = non-matched flux polyhedron advection

PLIC = piecewise linear interface calculation

SLIC = simple line interface calculation

SWIR = Swartz interface reconstruction

VOF = volume of fluid
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