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This work presents an efficient parallel implementation of density-based topology optimization using
Adaptive Mesh Refinement (AMR) schemes to reduce the computational burden of the bottleneck of
the process, the evaluation of the objective function using Finite Element Analysis (FEA). The objective
is to obtain an equivalent design to the one generated on a uniformly fine mesh using distributed mem-
ory computing but at a much cheaper computational cost. We propose using a fine mesh for the opti-
mization and a coarse mesh for the analysis using coarsening and refinement criteria based on the
thresholding of design variables. We evaluate the functional on the coarse mesh using a distributed con-
jugate gradient solver preconditioned by an algebraic multigrid (AMG) method showing its computa-
tional advantages in some cases by comparing with geometric multigrid (GMG) and AMG methods in
two- and three-dimensional problems. We use different computational resources with small regulariza-
tion distances for such comparisons. We also evaluate the performance and scalability of the proposal
using a different number of computing cores and distributed computing hosts. The numerical results
show a significant increment of the computing performance for the overall computing time of the pro-
posal combining dynamic coarsening, adaptive mesh refinement, and distributed memory computing
architectures.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Topology optimization aims to find the optimal distribution of
material within a design domain by minimizing a cost function
subjected to a set of constraints. It is a powerful tool for engineers
and scientists providing innovative and high-performance concep-
tual designs at the early stages of the design process without
assuming any prior structural configuration. For this reason, it
applies to a broad spectrum of applications [1,2]. There exist sev-
eral topology optimization methods using different representa-
tions to describe the shapes they involve. Density-based topology
optimization operates on a fixedmesh of finite elements penalizing
the mechanical properties of elements. This penalization uses an
interpolation function to find the optimal void/solid material dis-
tribution that minimizes an objective function. The homogeniza-
tion method [3] and the Solid Isotropic Material Penalization
(SIMP) method [4,5] are the most popular density-based topology
optimization approaches, being the latter the most implemented
method in commercial software probably due to its simplicity
and feasibility. We can mention the implementation of the SIMP
method in OptiStruct [6–8] by Altair Engineering, Tosca Structure
[9,10] by Dassault Systems, MSC Nastran [11] by Hexagon, Genesis
[12] by Vanderplaats Research and Development, and Comsol Mul-
tiphysics [13] commercial software, to name but a few.

Density-based topology optimization models the mechanical
properties of finite elements using a power-law interpolation func-
tion between void and solid. The interpolation function relates the
design variable and Young’s modulus of finite elements. This strat-
egy allows us to use gradient-based optimization methods to
address the optimization problem. The number of optimization
variables is of paramount importance in the optimization process.
In the ideal case, the refinement of the mesh refinement increases
the accuracy of the Finite Element Analysis (FEA) and improves the
evaluation of the objective function. We usually capture more
details in the optimized design by increasing the number of design
variables obtaining an improved description of the boundaries
between the empty and the solid finite elements. For these reasons,
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we usually obtain more optimized designs by increasing the num-
ber of design variables. However, the use of ersatz material approx-
imation introducing a weak phase mimicking void material
induces errors in the FEA [14] but avoids the singularity of the
rigidity matrix. The tessellation cannot be too small since the prob-
lem becomes more and more badly conditioned as the discretiza-
tion size tends to zero [15]. This lack of precision can be an
obstacle to the optimization problem. Besides, the use of high-
resolution finite element models gives rise to a high-size system
of equations. Such systems should be solved efficiently to make
the process feasible, both in computing time and computational
resource requirements. The resolution of large systems of equa-
tions is a well-known computational challenge induced by the
constant-increasing in the required fidelity and complexity of
finite element models [16].

We can adopt different strategies to improve the computational
efficiency of density-based topology optimization. We can mention
the rescaling of large systems of equations to reduce the ill-
conditioning [17], the use of low accurate approximations [18] of
the analysis solution, and the use of efficient preconditioners
[19]. The reanalysis strategies that avoid the analysis of the modi-
fied design in the optimization procedure are also rewarding, such
as the approximate reanalysis [20] by only solving the system of
equations at an interval of iterations and approximating the solu-
tion at other iterations of the nested topology optimization pro-
cess. We also have to mention the multiresolution schemes,
which decouple analysis and design discretizations. They improve
the computational performance by using a coarse discretization for
the analysis and a fine discretization for the design variables
[21,22]. However, the iterative updates of the topology optimiza-
tion design variables depend on the analysis results, and the order
and type of finite elements limit the maximum resolution of the
design variables [23]. Finally, we also can improve the computa-
tional performance using High-Performance Computing (HPC) to
address the computationally intensive tasks of the topology opti-
mization process using multi-core [24–28] and many-core [29–
33] computing.

The Adaptive Mesh Refinement (AMR) technique [34] is a
powerful tool to save computational cost and reduce the error
in the estimated behavior by increasing and decreasing the num-
ber or order of the finite elements needed in the regions of
interest. We determine such areas of interest using an error esti-
mator, which indicates us either coarsening the unnecessary
finite elements or refining them in the areas of interest. We
can use different error estimators for the analysis and the design
discretization [35] in topology optimization because the former
aims to increase the accuracy of the magnitude to estimate,
whereas the latter deals with the performance of the optimiza-
tion. The error estimators for the analysis in topology optimiza-
tion can be motivated to improve the estimation of some
magnitude used in the problem formulation, such as the accu-
rate calculation of stresses in stress-constrained topology opti-
mization using AMR [36,37]. However, the improvement of the
estimation of the displacement field used in minimum compli-
ance and mechanism design problems do not modify the final
design meaningfully. Indeed, the use of low accurate approxima-
tions [18] of the analysis solution is one technique often used to
improve the computational efficiency of density-based topology
optimization. We only require error estimators for the optimiza-
tion to obtain an equivalent design to the one generated on a
uniformly fine mesh but at a much cheaper computational cost
[38]. We can achieve significant computational improvements
when the topology optimization requires relatively small volume
fractions since the design domain is highly void [39] after a few
iterations of the optimization process. The computation of
regions with weak material contributes significantly to the
2

overall computational cost but little to the accuracy of the opti-
mized design.

The early work of Kikuchi et al. [40] introduced adaptive grid
methods combined with automatic re-meshing applied to shape
optimization design problems. It aims to reduce the error associ-
ated with the finite element discretization avoiding distortion near
the design boundaries. Costa and Alves [41] combine the topology
optimization and the h-adaptive finite element methods to bound
the error of analysis, improve the definition of the material bound-
ary, and improve the performance by reducing the number of
design variables. It adopts a recursive strategy assuming the con-
verged solution on a coarse mesh to refine it and starting a new
optimization on the fine mesh. They do not revisit coarse meshes
after generating the new fine mesh. Stainko [42] only refines the
material on the boundary indicated by the regularized intermedi-
ate density control method [43]. However, the optimization in
the coarse mesh and then refining to optimize again in the fine
mesh generates a smoother solution of the topology optimization
in the coarse mesh instead of the counterpart solution in the fine
mesh. In other words, the topology optimization in the fine mesh
can be quite different from the solution refining the design
obtained in the coarse meshes. Thus, these strategies may lead to
suboptimal designs. For these reasons, De Sturler et al. [39] intro-
duce the coarsening in the adaptive method to generate a similar
result to the one generated on a uniformly fine mesh. We can opti-
mize the performance of the dynamic refinement by only perform-
ing the coarsening inside the void region and at the last adaptive
step [44].

Recent topology optimization works use dynamic AMR with
parallel computing to address high-resolution minimum compli-
ance problems. Liu et al. [45] propose a shared-memory adaptive
topology optimization framework using the SIMP method restrict-
ing the simulation of elastic deformation to a narrow band sur-
rounding the high-density region. They use a matrix-free
implementation of the conjugate gradient solver preconditioned
with a geometric multigrid (GMG) method for uniform grids,
which permits them to obviate the computational effort on large
void regions on the fly. The use of uniform grids is attractive in
topology optimization applications due to its multiple advantages
in computation [27,32]. These advantages include cache-coherent
memory access, regular subdivisions for the parallelization of
simple data layout, and the existence of efficient numerical PDE
solvers using computational patterns, such as stencil-based
computation. The use of uniform grids can require the accurate
representation of the geometry from the CAD model, which can
be estimated on the corresponding bounding box using AMR tech-
niques [46,47]. However, a Cartesian grid enclosing the CAD model
usually requires many more finite elements than tessellating the
CAD model directly. Li et al. [48] propose a distributed-memory
adaptive topology optimization framework using the level-set
method for evolving a high-resolution unstructured mesh. It uses
algebraic multigrid (AMG) methods for preconditioning the Krylov
subspace iteration solver for evaluating the objective function and
the reaction–diffusion equation used for the level-set update. The
proposal achieves clear and high-resolution solid-void material
boundary reducing the computational cost by coarsening the mesh
distributed in the void domain.

This work aims to reduce the computational cost of density-
based topology optimization by combining dynamic AMR and dis-
tributed computing. The objective is to obtain an equivalent design
to the one generated on a uniformly fine mesh using distributed
memory computing but at a much cheaper computational cost.
We focus on reducing the computational cost of the bottleneck of
the topology optimization process, the FEA for evaluating the
objective function [16,33], providing an equivalent design to using
the fine mesh. We use a fine mesh for the optimization and a
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dynamic coarser mesh for the analysis using local coarsening and
refinement criteria based on the thresholding of indicators based
on design variables, such as the gradient of compliance or the
own design variables. We perform the regularization, computation
of sensitivities, and optimization using the fine mesh, whereas we
use the dynamic coarse mesh for the analysis. The AMR strategy
requires adaptive coarsening and refinement up to the fine mesh
at all topology optimization iterations. This adaptive approach
ensures obtaining a similar result than optimizing using the fine
mesh at the cost of increasing the computational cost. Thus, we
have to find a trade-off between the cost of solving and the compu-
tational requirements to reduce the system of equations to solve.
We also avoid using computational patterns, which reduce the tes-
sellation size to the geometry of the model to optimize.

There exists a consensus in the scientific community that Kry-
lov subspace iteration solvers preconditioned with multigrid
methods are the most efficient techniques to solve large systems
of equations in topology optimization [26,45,48]. We adopt a dis-
tributed conjugate gradient solver preconditioned by an AMG for
solving using the dynamic AMR technique proposed by Červený
et al. [49]. We evaluate the performance of the distributed conju-
gate gradient solver preconditioned using different multigrid
methods: AMG and GMG. We perform this comparison using
diverse computational resources and regularization sizes. We also
evaluate the performance and scalability of the proposal in two-
and three-dimensional topology optimization problems using dif-
ferent computational resources. The numerical results show the
benefits in performance using dynamic AMR for addressing big
topology optimization problems using reduced computational
resources.

We organize the remainder of the paper as follows. Section 2
reviews the basis and theoretical background of density-based
topology optimization. We devote Section 3 to the introduction
of adaptive mesh refinement and coarsening methods. Section 4
presents the distributed framework and the required communica-
tions system for calculating the computational resources together.
Section 5 shows the numerical experiments evaluating the perfor-
mance, feasibility, and scalability of the techniques adopted for
taking advantage of distributed multi-core computing in density-
based topology optimization. Finally, Section 6 presents the con-
clusion of the proposal.

2. Density-based topology optimization

Let X � Rd be a bounded Lipschitz domain whose boundary is
decomposed into three disjoint parts @X ¼ Cu [ Ct [ C0, where Cu

is the part of the boundary with prescribed displacements, Ct is
the part of the boundary with prescribed traction forces, and C0

is the part of the boundary with traction-free boundary conditions.
Consider the linearized elasticity system

�rr u xð Þð Þ ¼ p xð Þ in X

u xð Þ ¼ �u in Cu

r u xð Þð Þ � n ¼ �t xð Þ in Ct

r u xð Þð Þ � n ¼ 0 in C0

8>>><
>>>: ; ð1Þ

where u is the displacement field, r is the Cauchy stress tensor, p
and �t are the body and surface forces, �u is the prescribed displace-
ment field, and n is the unit outward normal vector to @X. The stress
tensor r and the symmetric gradient of the displacement field e are
related by the constitutive equation

Cijkl xð Þeij u xð Þð Þ ¼ rkl u xð Þð Þ; ð2Þ
where Cijkl represents the fourth order constitutive tensor. Consid-
ering the mechanical design as a body occupying a domain Xm
3

which is part of the reference domain X, we split the design into
two subdomains with the following characteristic function

H xð Þ ¼ 1 x 2 Xm

0 x 2 X nXm

�
: ð3Þ

We can formulate the topology optimization problem as the mini-
mization of the structural compliance over admissible design and
displacement fields satisfying equilibrium equation in its weak
form as follows

min
u2U;H

J Hð Þ ¼ R
X p xð Þu xð Þ dXþ R

Ct
�t xð Þu xð Þ dC

s: t: : a u xð Þ;v xð Þð Þ ¼ l v xð Þð Þ 8 v 2 V
ð4Þ

: Cijkl xð Þ ¼ H xð Þ C0
ijkl

: Vol Xm� � ¼ R
X H xð ÞdX 6 V�;

where V denotes the space of kinematically admissible displace-
ment fields, C0

ijkl is the stiffness tensor for an elastic material, V� is
the volume target considering the pointwise volume fraction H xð Þ
for a black-and-white design, and a �; �ð Þ and l �ð Þ are the bilinear
and linear forms, respectively, as follows

a u xð Þ; v xð Þð Þ ¼ R
Xr u xð Þð Þe v xð Þð ÞdX

¼ R
XCijkl xð Þeij u xð Þð Þekl v xð Þð ÞdX ð5Þ

l v xð Þð Þ ¼
Z
X
p xð Þv xð Þ dXþ

Z
Ct

�t xð Þv xð Þ dC:

The SIMP method relaxes this integer-based problem introducing
an interpolation scheme that penalizes a continuous density vari-
able q, 0 6q 61, characterizing composite materials [50] and allow-
ing us to use gradient-based approaches in the optimization. The
following power-law interpolation function permits us to rewrite
the constitutive tensor equation as

Cijkl q xð Þð Þ ¼ Cmin
ijkl þ q xð Þp C0

ijkl � Cmin
ijkl

� �
; ð6Þ

where p > 1 is the penalization power, and C0
ijkl and Cmin

ijkl are the
fouth order constitutive tensors of the stiff and soft material respec-
tively. This penalization function relates the variable q xð Þ and the
material tensor Cijkl in the equilibrium analysis, satisfying

Cijkl 0ð Þ ¼ Cmin
ijkl and Cijkl 1ð Þ ¼ C0

ijkl. We can select p sufficiently big to
penalize intermediate densities. According to Bendsøe and Sigmund
[50], we usually require p P3 to ensure that the Hashin–Shtrikman
bounds are not violated. The introduction of the weak phase Cmin

ijkl

mimicking void material allows us to avoid the singularity of the
rigidity matrix during the optimization [14]. The problem can be
then stated as

min
u2U;q xð Þ

J u q xð Þð Þð Þ ¼ R
X p xð Þu xð Þ dXþ R

CN
�t xð Þu xð Þ dC

s: t: : a u xð Þ;v xð Þð Þ ¼ l v xð Þð Þ 8 v 2 V
ð7Þ

: Cijkl q xð Þð Þ ¼ Cmin
ijkl þ q xð Þp C0

ijkl � Cmin
ijkl

� �
:

R
X q xð ÞdX 6 V�; q xð Þ 2 0;1½ �;

where q xð Þ is the design variable ranging from solid (q ¼ 1) to
void (q ¼ 0). This relative density field q xð Þ is constant within
each finite element, being the design variables the relative den-
sities of the finite elements. We denote the design domain by X
and constrain the volume of material V qð Þ to be smaller than a
prescribed target V�. However, density-based topology optimiza-
tion is prone to numerical instabilities due to checker-board pat-
terns appearing as penalizing intermediate material densities,
mesh-dependency as refining the tessellation of the continuum,
and the presence of local minima in the design space [51]. We
can introduce a density measure ~q xð Þ ¼ q xð Þ that tends to regu-
larize the problem addressing these numerical instabilities.
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Besides, we use projection techniques �~q xð Þ ¼ ~q xð Þ to project the
filtered designs into solid/void space, which produce designs
with a clear physical interpretation [52]. The problem can be
then discretized using the Galerkin finite element method as
follows

min
q

f �~q
� �

¼ FTU ¼ UTKU ¼
X
e

uT
ekeue

s: t: : KU ¼ F
ð8Þ

: E �~qe
� � ¼ Emin þ �~qp

e E0 � Eminð Þ

:

X
e

�~qeve

VT
� V� 6 0; q xð Þ 2 0;1½ �;

where f is the objective function, K is the global stiffness matrix,
U and F are the displacement and force vectors respectively,
E �~qe
� �

is the artificial Young’s modulus of an element, E0 and
Emin > 0 are the Young’s modulus of solid and void material
respectively, and VT is the total volume without material penal-
ization. Lower-case variables represent the element-wise quanti-

ties; ve is the volume of element e and ke ¼ E �~qe
� �

k0
e is the

element stiffness matrix, being k0
e the element stiffness matrix

with E0 Young’s modulus. We use the density measure intro-
duced in [53], the so-called density filter, to regularize the den-
sity field q as follows

~qe ¼
X

i2Ne
w xið Þv iqiX

i2Ne
w xið Þv i

ð9Þ

where ~q is the filtered elemental density field, Ne is the neighbor-
hood set of elements lying within the radius R, and w �ð Þ is the
weighting function w xið Þ ¼ R� jxi � xej. This filtering technique
allows us to cope with numerical problems in topology optimiza-
tion, in particular, checkerboard patterns and mesh-dependent
designs. The existence of the solution using such a filter was math-
ematically proven by Bourdin [53].

We use the parametrized projection function suggested by Xu
et al. [52], which projects the filtered density values ~q above a
threshold g to solid and the values below to void using the follow-
ing smooth function

�~qe ¼
g e�b 1�~qe

gð Þ � 1� ~qe
g

� �
e�b

h i
0 6 ~qe 6 g

1� gð Þ 1� e�b
~qe�gð Þ
1�g þ ~qe�g

1�g e�b
h i

þ g g 6 ~qe 6 1

8><
>: ;

ð10Þ
where the projection parameter b allows us to control the smooth
function. By using the threshold value g ¼ 0, we obtain a similar
projected field than using the Heaviside step filter introduced by
Guest et al. [54], which ensures a minimum length scale on the solid
phase. The threshold value g ¼ 1 performs similar filtering to the
modified Heaviside filter introduced by Sigmund [55], giving rise
to a minimum length scale on the void phase. The expression (10)
can be written as

�~qe ¼ tanh bgð Þ þ tanh b ~qe � gð Þð Þ
tanh bgð Þ þ tanh b 1� gð Þð Þ ; ð11Þ

which provides an efficient alternative to calculate the projection
avoiding the contitional statements [56].

We can derive the sensitivity of the objective function (8) to the
design variable q xð Þ using the chain rule as

@f �~q
� �
@qi

¼ @f �~q
� �

@�~qe

@�~qe

@~qe

@~qe

@qi
; ð12Þ

obtaining the different terms are as follows
4

@f �~q
� �

@�~qe
¼� u�T

@K
@q

u ¼ �uTp�~qp�1
e E0 � Eminð Þk0

eu; ð13Þ

@�~qe

@~qe
¼ b sech b ~qe � gð Þð Þð Þ2
tanh bgð Þ þ tanh b 1� gð Þð Þ ð14Þ

@~qe

@qi
¼ w xið Þv iX

i2Ne

w xið Þv i

ð15Þ

where u� is given by the solution of the adjoint problem Ku� = @f
@u = f,

whose solution is u� ¼ u because the minimization of the structural
compliance is self-adjoint.

We update the design variables using the Method of Moving
Asymptotes (MMA) proposed by Svanberg [57] for its excellent
parallel scalability [58]. The MMA method is suitable for address-
ing inequality-constrained optimization problems, such as the for-
mulation of (8), by generating and solving a series of approximate
convex subproblems instead of the original non-linear problem.
The algorithm stops when we reach the maximum number of iter-
ations or when the change variable jjqekþ1

� qek
jj and the change in

the objective function jjf kþ1 � f kjj fall below a prescribed value.

3. Adaptive mesh refinement and coarsening

Let G be an element containing vertices, edges, and faces in
three-dimensional cases. We define a mesh Gif gNe

i¼1 as the union
of the Ne elements such that X ¼ [iGi is a connected and bounded
region. Let denote boundary elements as @G and interior elements
as Gh i. Assuming that interior elements do not intersect, i.e. Gih i \
Gj
� �

= £ 8 i– j, we state that a mesh is conforming if the set @Gi \
@Gj 8 i– j is a shared vertex, shared edge, shared face, or an empty
set. We define a hanging node as a vertex lying in the interior of an
edge, or a face in three-dimensional cases. We call non-conforming
meshes the ones containing at least one hanging node. The refine-
ment of one parent element Gi consists of replacing it with at least
two child elements Gik such that Gi ¼ [kGik. For example, we divide
the edges of a parent 2D rectangle into two edges, creating a new
vertex in the center of the parent rectangle and one vertex in the
center of each parent edge. We use these vertices to create the four
rectangles composing the refined child elements. We follow a sim-
ilar approach for 3D bricks, creating a new vertex in the center of
the 3D brick and dividing each face into four faces. We use them
to create the eight child brick elements from the parent brick ele-
ment. We remove parent elements after refining them, storing
the links to the child elements in a refinement tree. This information
facilitates the coarsening by reintroducing the parent element and
removing the child elements. We say that a non-conforming mesh
is consistent if lower-dimensional mesh entities (vertices, edges,
and faces) are either identical or a proper subset of the other. We
refer to the smaller entity as a slave and the larger ones containing
other entities as a master, whereas lower-dimensional mesh enti-
ties that are neither masters nor slaves are called conforming
entities.

Most AMR methods constrain the hanging nodes using alge-
braic operators expressing the constrained degrees of freedom
(DOFs) as a linear combination of the unconstrained DOFs. We
use the approach proposed by Çervenyét al. [49] for non-
conforming AMR of unstructured meshes. This method cast the
elimination of constrained DOFs as a form of variational restriction
decoupling the AMR method and the governing equation. We can
discretize the weak variational problem of (7) constructing an
approximate finite-dimensional subspace Vh � V on the Gif gNe

i¼1
mesh assembling the stiffness matrix K and vector of load forces
F such that
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VT
hKUh ¼ VT

hF Vh 2 Rd; ð16Þ
where d is the dimension of the problem. This is equivalent to the
linear system of Eqs. (8), whose solution provides an approximate
solution of vector Uh. In non-conforming meshes, we have a larger

partially conforming space bV h � Vh with bV h 2 R
bd and bd > d since

slave entities containing hanging nodes have DOFs that are inde-
pendent of master DOFs. We can restore the conformity in the inter-
faces containing hanging nodes constraining slave entities (slave
DOFs) by interpolating the finite element functions of their masters.

We obtain the solution vector cUh in the partially conforming spacebV h as

bUh ¼
Uh

Wh

	 

Uh 2 Rd; Wh 2 R

bd�d; ð17Þ

where Wh represents all slave DOFs which can be evaluated by the
linear interpolation Wh = W Uh using the interpolation operator W.
We can write (17) as

cUh ¼ PcUh; with Pc ¼
I
W

	 

; ð18Þ

where I is the identity matrix and Pc is the conforming prolongation

matrix. We can assemble the stiffness matrix bK and load vector bF in

the space bV h obviating the hanging nodes in the mesh. The corre-

sponding linear system bKcUh ¼ bF results in a non-conforming solu-
tion where the slave DOFs are not constrained. However, it taking
the expression (18) the variational formulation on Vh becomes

VT
hP

T
c
bKPcUh ¼ VT

hP
T
c
bF Vh 2 Rd: ð19Þ

Thus, we can solve the smaller problem PT
c
bKPcUh ¼ PT

c
bF where the

slave DOFs are eliminated and then prolonging Uh to obtain the

conforming solution cUh 2 bVh. We remark that factoring Pc out of
the AMR governing equation facilitates the incorporation of AMR
in different problems. The challenge is then the efficient construc-
tion of this Pc operator, which consists of constructing the identity
I and the slave interpolation W submatrices of Pc. We refer to the
work of Červený et al. [49] and the implementation of the AMR
method using the mfem [59] and hypre [60] libraries for the details
of the serial and parallel construction of the Pc operator.

The AMR technique for coarsening and h-refinement requires
an error estimator to determine the areas of interest. Error estima-
tors based on design variables usually aim to locate the material
boundary of the optimum topology, such as refinement indicators
based on the continuity of material to find elements dominated by
solid or void material regions [61]. These refinement indicators
identify the design variables all along the apparent edge of the
structure where we require a higher accuracy to calculate the sen-
sitivity of the objective function, which guides the topology opti-
mization during the optimization process. Besides, the
computation of regions with weak material contributes signifi-
cantly to the overall computational cost but little to the accuracy
of the optimized design. Thus, error estimators identifying sets of
design variables with void material for coarsening can increase
the performance meaningfully [35]. We use and evaluate the fol-
lowing error estimators

ev ¼
R
Xrt

�~q xð ÞdXrtR
Xrt

dXrt
; ð20Þ

eg ¼
@f �~q xð Þ� �

@qi
; ð21Þ

where ev is the error estimator based on the design variable, eg is
the error estimator based on the sensitivity of the objective func-
5

tion, and Xrt � X is the part of the domain in the different levels
of the refinement tree: the parent element for refinement and the
set of child elements for coarsening to the parent element. We
can choose the threshold ev 6 Emin þ e, being e a small value to
detect the void elements for coarsening. However, there exists a
relationship between the norm of maximum relative density gradi-
ent and element size [62]. Thus, the thresholding using the
gradient-based criteria requires the heuristic tunning to provide
similar results to the one obtained using a fine mesh.
4. Parallel strategy

The partition of complex models into smaller and more man-
ageable pieces is a common approach to use distributed computa-
tional resources. This strategy allows us to divide the
computational burden and the memory requirements across the
computational resources of the distributed computational system.
The underline idea consists of partitioning the domain into a set of
subdomains and then solving these subdomains in parallel. This
strategy increases the overall performance by distributing comput-
ing and memory requirements. We call the techniques using this
strategy Domain Decomposition Methods (DDMs). The perfor-
mance of these methods depends on the workload for solving the
subdomains and the volume of communications. Efficient parti-
tioning techniques allow us to optimize the former factor, whereas
the variants of DDMs aim to optimize the latter. We adopt a simple
Global Subdomain Implementation (GSI) [63] as solving strategy.

Fig. 1 shows the flowchart of the distributed memory imple-
mentation of density-based topology optimization using h-
refinement and coarsening. We divide the problem into several
subdomains to calculate the recursive stages of the topology opti-
mization method. After the partitioning, we initialize the commu-
nications needed to perform the distributed operations: the AMR
operations, the filtering of design variables, and the solving of
the system of equations using FEA. It is well-known that FEA is
the principal bottleneck of the topology optimization pipeline,
and thus we use the coarsening to reduce the computational cost
of this stage. This operation requires the projection of the design
variables to penalize the Young modulus of finite elements. We
assemble and solve the distributed system of equations using the
coarse mesh. Since the analysis for evaluating the objective func-
tion is the bottleneck of the processing, the assembly and resolu-
tion in the coarse mesh can increase the performance of the
whole process meaningfully. We achieve this improvement in the
case the design domain is highly void, which usually occurs after
some iterations of the optimization. We then refine the coarse
mesh by projecting the resulting displacement field, performing
the other stages of topology optimization using the fine mesh.
Since we calculate the sensitivities and update the design variables
in the fine mesh, the evolution of the optimization is similar to
obviating the AMR technique allowing to arise members even in
coarsened areas of the coarse mesh, which are not coarsen again
if the error estimator is not satisfied after the sensitivity calcula-
tion and density update. Next, we present the details of the parallel
implementation of all the topology optimization stages.
4.1. Domain partitioning

The formulation of density-based topology optimization allows
us to use the same partitioning during the whole optimization
process. This fact is a crucial point to achieving an efficient
implementation. We tessellate the initial domain into several
non-overlapping subdomains in the initialization using such
subdomains in the stages of the optimization loop shown in
Fig. 1. The partitioning algorithm takes the resulting mesh of the



Fig. 1. Flowchart of the distributed density-based topology optimization using h-refinement and coarsening.
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geometric discretization to divide it following optimization crite-
ria. In particular, the minimization of the number of interface ele-
ments reduces the data exchange between processes making the
computation associated with each part.

We generate a dual graph from the mesh of the finite element
model to perform the partitioning. The vertices of such a graph
are the mesh elements, and the arcs are the connections between
them. We divide the graph nodes using a multilevel k-way method
[64] to define the subdomains considering optimization criteria.
These optimization criteria include the minimization of the result-
ing subdomain connectivity graph and the contiguous partition
enforcement. The efficiency of the partition approach is of para-
mount importance since the partition method is memory-
intensive, which is particularly true for large-scale problems and
for partitioning with a high number of subdomains. We use ParME-
TIS [65] library to perform this parallel partitioning using the MPI
standard.

4.2. Distributed solving

Let consider the conforming linear system of equations to solve
the problem stated in (19) as

AUh ¼ B; ð22Þ
where A ¼ PT

c
bKPc 2 Rnu�nu is the coeffient matrix, B ¼ PT

c
bF 2 Rnu�1 is

the right-hand side vector, Uh 2 Rnu�1 is the solution vector, and nu

is the number of unknowns. We require a distributed representa-
tion of the coefficient matrix and vectors to evaluate the objective
function of expression (8) using multi-core architectures. Let us
assume that the coefficient matrix A using compressed sparse row
(CSR) format is distributed across p ¼ 1; . . . ;np

� �
processes, with

np the number of computing processes, by contiguous blocks of
rows as follows

A ¼
A0

..

.

Ap�1

0
BB@

1
CCA; ð23Þ
6

where the computation of each block submatrix Ap�1 2 Rnp�1�nu is
performed by one single processor p with np�1 the number of rows

of the block submatrix Ap�1 and nu the number of columns of A. The
block submatrices use the global row indices n0; . . . ;np�1� �

to facil-
itate the operations between subdomains. We store these submatri-

ces into local Ap�1
loc and remote Ap�1

rem parts using the hypre library
[60]. The former is a square matrix with the ‘‘local” np�1 unknowns,
whereas the latter is a matrix containing coefficients with global
column indices stored in other processors. This data structure
allows us to differentiate between ‘‘local” and ‘‘distributed” compu-
tation. Local computation is performed with the data stored in the
own process p, whereas distributed computation requires some
communication mechanism. We use a similar approach for the dis-

tributed dense vector B 2 Rnp�1�1 using the global row indices
n0; . . . ;np�1� �

.
The communications make use of the standardized and portable

MPI mechanism. In the initialization, the processes p calculate the
global columns required from both the own and other processes.
Data exchange consists of receiving ghost values from the pro-
cesses sharing unknowns (global column indices) and then sending
the data to the processes that require them to form the gathered
vectors. We perform data exchange directly between computing
processes since each processor p knows its receive and send pro-
cessors. This data exchange procedure reduces the computational
complexity and the storage requirements because the number of
neighbors and the amount of data are independent of the number
of p processors.

We use a distributed Krylov subspace method preconditioned
with a multigrid method for solving the linear system of equations
of (22); in particular, a distributed conjugate gradient iterative sol-
ver. Structural mechanics problems commonly use multigrid
methods as a preconditioner of Krylov subspace methods for solv-
ing. The underline idea is that the interpolation operator of the
multigrid approach will hardly be optimal, which makes it less effi-
cient for some specific error components. The convergence is slow
when this occurs despite almost all of the error components being
reduced quickly. A Krylov subspace method for eliminating these



D. Herrero-Pérez, S.G. Picó-Vicente and H. Martínez-Barberá Computers and Structures 265 (2022) 106770
error components is usually a more efficient solution than improv-
ing the construction of the interpolation operator.

Multigrid methods use a two-grid scheme to address the prob-
lem. The central idea of these methods is that the ‘‘smooth error” e
that is not eliminated by relaxation should be removed by coarse-
grid correction. We remove this ‘‘smooth error” by solving the
residual r as Ae ¼ r on a coarser grid and then interpolating the
error back to the fine grid correcting the fine-grid approximation
by Uh  Uh þ e. Let l be the grid level and nl the number of
unknowns in that l level. Considering the initialization A0 ¼ A
and n0 ¼ n, we define the coarse grid coefficient matrices Alþ1
recursively as follows

Alþ1 ¼ RlAlPl; ð24Þ
where Pl 2 Rnl�nlþ1 is the interpolation or prolongation operator,
Rl 2 Rnlþ1�nl (normally obtained as PT

l ) is the restriction operator,
and Al 2 Rnl�nl and Alþ1 2 Rnlþ1�nlþ1 are the fine and coarse grid coef-
ficient matrices, respectively. We calculate recursively such transfer
operators until a grid level L in which the number of unknowns nL is
sufficiently low to solve it in a reasonable time.

There are two basic multigrid approaches [66]: GMG and AMG.
GMG uses the geometry of the problem to define the grid coeffi-
cient matrices and the transfer operators. We refer the readers to
[67] for the details of a parallel implementation of GMG methods.
On the other hand, AMG methods only use the information avail-
able in the linear system of equations, allowing their use as a
‘‘black-box” function in finite element codes. Multigrid approaches
have two stages: setup and solving. The former aims to find the
proper transfer operators, whereas we compute the latter in all
the iterations of the recursive solver. The construction of the trans-
fer operators is hard to parallelize, whereas the solving consists of
matrix–vector products, which are easily computed in parallel. In
this work, we use an AMG as a preconditioner of the distributed
conjugate gradient solver to evaluate the objective function of
topology optimization. There exist different choices for coarsening,
interpolation, and smoothing in the implementation. We use the
BoomerAMG [68,69] because it provides parallel coarsening and
interpolation functionalities for the classical AMG method [70].

Algorithm 1.

Algorithm 1 describes the AMG setup for the classical AMG
method. The setup stage requires the coefficient matrix
A 2 Rnu�nu , a strength threshold h for the coarsening, and a trunca-
tion factor s for constructing the interpolation operator. The AMG
setup generates the coarsening grid Xlþ1 by separating the coeffi-
cients of the system of equations into either C-coefficients, grouped
into Cl and taken to the next level, and F-coefficients, grouped into
7

Fl and interpolated by the C-coefficients. The AMG setup intro-
duces a strong dependence criterion calibrated by the strength
threshold h [69]. We use the Hybrid Modified Independent Set
(HMIS) algorithm for parallel coarsening, which is obtained by
combining the Parallel Modified Independent Set (PMIS) algorithm
[71] with a one-pass Ruge-Stüben scheme. After partitioning the
coefficient matrix Al at the corresponding level l into the disjoint
sets Cl and Fl, we construct the interpolation or prolongation Pl

operator determining the influence of F-coefficients to the C-
coefficients by the interpolation of weights. We remove the coeffi-
cients of the interpolation operator smaller than a truncation factor
s to avoid an excessive number of non-zero coefficients. We then
construct the restriction operator from the interpolation operator.
We also generate a smoother operator to reduce the oscillatory
error components. In particular, we use the parallel implementa-
tion of sparse approximate inverse preconditioner ParaSails [72],
which uses a priori sparsity patterns and least-squares minimiza-
tion. Finally, we obtain the coefficient matrix at the next level
Alþ1 performing the distributed sparse Galerkin projection. By
using these algorithms, we can calculate the AMG setup stage in
parallel.
Algorithm 2.
Algorithm 2 shows the pseudo-code of the V-cycle of classical
AMG for preconditioning the distributed conjugate gradient itera-
tive solver. This algorithm aims to approximate the solution of (22)
given the residual of the previous estimation of the iterative solver.
The procedure consists of applying l1 smoothing operations to the
approximate solution sl at the level l and the computation of the
residual rl for the relaxed approximate solution sl. We then restrict
the residual to the coarse grid and solve the linear system if we
reach the last level L. We prolongate the solution sl at the coarsest
grid to the finer one applying l2 smoothing operations to the
approximate solution.

Algorithm 3 details the pseudo-code of the distributed conju-
gate gradient algorithm using the V-cycle of classical AMG as a pre-
conditioner. This iterative solver requires the maximum number of
iterations maxiter, the tolerance < tol; tolabs >, the coefficient
matrix A, the right-hand side B, and the initial guess U0

h for initial-
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izing the iterative procedure. The recursive solver provides an
approximate solution Uh of (22) with a residual after it iterations.

Algorithm 3.
Fig. 2. Density filtering with communication between subdomains.
The distributed conjugate gradient algorithm using the V-cycle
of classical AMG as a preconditioner allows us to obtain the solu-
tion of (19) using parallel computing. We then have to apply (18)
to obtain the solution of the FEA using non-conforming meshes
in parallel.
4.3. Distributed filtering

Density filtering replaces the dependence of the material prop-
erties on its pointwise density regularizing the density field using
the mean of a convolution operator. We require the design vari-
ables of the elements surrounding each cell within the radius R
defined in (9) to calculate such a convolution operation or conic fil-
ter. By using AMR in the density field, we have to consider the val-
ues of the design variables in the different layers of the refinement
tree of neighbor elements [62]. However, the search of the neigh-
bor elements in different layers has a high computational cost,
which is significantly incremented in distributed memory parallel
implementations. Since we perform the filtering in the fine mesh,
the search of the neighbor elements in the different layers is not
needed. Nevertheless, the parallel implementation of the filtering
in distributed memory systems using non-overlapped DDM meth-
ods requires communications for sharing design variables between
subdomains.

Fig. 2 shows the problem for elements close to the border of the
subdomain. We can observe that the communications required by
each design variable depend on the domain partitioning, and we
only need to share information between close subdomains. The full
circles in the center of finite elements represent the design vari-
ables to regularize. In the detail of two design variables, we depict
the local and remote design variables using gray and empty circles,
respectively, needed to perform the convolution operation. We also
8

show the communications required between subdomains to com-
pute (9). Since the performance of this operation is of paramount
importance to achieve an efficient implementation of density-
based topology optimization, we search the information about
the neighbor elements and the communications needed by each
design variable as a preprocessing step.

The preprocessing creates hash tables storing for each design
variable the following information to calculate the convolution
operation: the element indexes of the local design variables within
the radius R, the element and subdomain indexes of remote design
variables within the radius R, and the Euclidean distance from the
design variable to local and remote design variables within the
radius R. This information allows us to use point-to-point commu-
nications between the subdomains sharing data, minimizing the
sharing information in problems with a high amount of subdo-
mains, which facilitates scalability.

Thus, the preprocessing increases the computational perfor-
mance at the cost of a higher memory requirement to store the
previously mentioned hash tables. We have to remark that the con-
struction of the hash tables has high computational requirements
when we use large R values. Nevertheless, we largely compensate
the preprocessing stage during the topology optimization itera-
tions for relatively small values of the radius R. Alternatively, we
can regularize the density field implicitly as the solution of a Helm-
holtz type partial differential equation (PDE) with homogeneous
Neumann boundary conditions [73]. We can solve this PDE in par-
allel using the techniques presented in the previous section using a
prescribed tolerance for the iterative solver. In our experience, a
PDE for filtering the density field is suitable for large values of
the radius R and using simplices due to the higher information to
share for the regularization. We also have to remark that using a
large radius R for the regularization can modify the conditioning
of the linear system of equations, and thus the results presented
in this work can be different.

4.4. Distributed optimization and sensitivity calculation

Once we divide the domain into several non-overlapped subdo-
mains, the parallel computation of the sensitivities (12) is straight-
forward because the different terms using the chain rule only
require the information of the design variable (14), the result from
the FEA (13), and the result from the filtering (15). We follow the
parallel implementation of MMA proposed by Aage and Lazarov
[58], implementing a continuation strategy for the b parameter
of the projection (11) following a heuristic strategy.

5. Numerical Experiments

We evaluate the benefits and limitations of the proposed paral-
lel implementation of density-based topology optimization using
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AMR schemes to reduce the computational bottleneck of the opti-
mization, the FEA for evaluating the objective function. We test the
performance of preconditioning using AMG and GMG multigrid
methods during the optimization using different radii for regular-
izing. We also check the improvement in performance using AMR
strategies and the strong scaling in two- and three-dimensional
topology optimization problems. We present the cumulative
wall-clock time for the whole topology optimization process to
show the computing benefits while providing similar results than
obviating the use of AMR techniques.

We run the numerical experiments using two computation sys-
tems: one workstation and two workstations connected with a 10
Gigabit Ethernet network working as a cluster. The former allows
us to evaluate the performance using a workstation, whereas the
latter shows the scalability increasing the distributed computa-
tional resources. We equip the former workstation using an AMD
RyzenTM 9 3950X CPU with 16 cores (32 simultaneous multi-
threading) at 3.5 GHz (turbo core speed of 4.7 GHz) and 96 GB of
RAM, whereas we use two Intel Xeon E5-2687 W v4 CPUs with
12 cores (24 hyper-threading) at 3.0 GHz (turbo boost speed of
3.5 GHz) per CPU connected with dual LGA2011-v3 and 256 GB
of RAM per computing node in the cluster. Thus, the computing
nodes can run 24 processes in parallel.

The battery of experiments consists of four topology optimiza-
tion problems using structured meshes with finite elements using
different aspect ratios to show that the approach is not limited to
any constraint, such as computational patterns. In particular, the
experiments consist of the topology optimization of a
Messerschmitt-Bölkow-Blohm (MBB) aircraft floor beam, a can-
tilever beam, a curved beam, and a dome. The first experiment is
a two-dimensional plane stress problem, whereas the other exper-
iments are three-dimensional models. The MBB and cantilever
beam experiments tesselate the domain with elements using a
similar aspect ratio, whereas the curve beam and dome experi-
ments discretize the domain adapting to its geometry.

We parameterize the geometry and meshes to facilitate repro-
ducible results. Table 1 specifies the geometric and topology opti-
mization parameters of the experiments. All the experiments use a
tolerance tol ¼ 10�6 for the distributed conjugate gradient method
presented in Algorithm (3 and a penalization power p ¼ 3 for the
power-law interpolation function of (8). We set Young’s modulus
of solid E0 ¼ 1 and void Emin ¼ 10�9 material in the power-law
interpolation function of (8). The numerical experiments using
the AMG preconditioner use a strength threshold h ¼ 0:5 for the
coarsening, a truncation factor s ¼ 0:0 (no truncation) for con-
structing the interpolation operator, and an HMIS algorithm for
parallel coarsening. The numerical experiments using GMG pre-
conditioning use a damping factor ws for the Jacobi smoothing that
we calibrate to ensure convergence in the different experiments
[32]. Both multigrid approaches use the same number of pre and
Table 1
The geometric and topology design parameters of experiments.

Geometry (meters)

MBB be
L (m) H (m)
6.0 1.0

Cantilever
W (m) L (m) H (m)
1.0 2.0 1.0

Curved b
W (m) R (m) H (m)
1.0 4.0 1.0

Dome
Rext (m) Rint (m)

1.0 0.96
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post-smoothing steps; in particular, l1 ¼ l2 ¼ 4. We follow a con-
tinuation strategy for the b parameter of the projection (11) fol-
lowing a heuristic strategy for each experiment. We also reuse
the displacement solution of the previous iteration of topology
optimization because it improves the convergence of the solving
of the system of equations in topology optimization [33].

We solve the experiments using multi-core computing with dis-
tributed memory using the standardized and portable MPI mecha-
nisms. We evaluate the performance of the preconditioner of the
distributed iterative solver using AMG and GMG methods for
two- and three-dimensional problems, showing the advantages
of each one in different types of experiments. We calculate the reg-
ularization, sensitivities, and optimization using the fine mesh,
whereas we use the dynamic coarse mesh for the analysis. This
strategy requires adaptive coarsening and refinement up to the
fine mesh at all topology optimization iterations. We evaluate
the computational cost of the dynamic AMR strategy, checking
the increment in performance of the whole process with the refer-
ence implementation without using AMR. We present below the
numerical results of the four density-based topology optimization
experiments evaluating the computational aspects of the parallel
AMR strategy using multi-core computation.
5.1. MBB beam experiment

The first experiment consists of the topology optimization of a
two-dimensional MBB beamwith fixed displacements on both bot-
tom parts of endpoints and a vertical load at the top center of the
beam. Fig. 3(a) shows the geometry and boundary conditions of the
finite element model, indicating the geometric parameters speci-
fied in Table 1. This table also includes the topology optimization
design parameters. In particular, the volume fraction v and the ele-
ment size es1 used for regularizing the design field. Fig. 3(b) shows
the symmetry simplification used for the topology optimization,
including the boundary conditions. Fig. 3(c) depicts a coarse mesh
partitioned into eight subdomains using the ParMetis library. We
can observe that the partitioning is performed into balanced sub-
domains enforcing the contiguous partitions. It also shows the
parameterization of the tessellation with the div variable. We use
the number of refinement levels lref to obtain the dynamic coarsen-
ing mesh for the FEA.

Fig. 4 depicts the final design of the MBB experiment with
div ¼ 512 elements using different radii R for the regularization.
In particular, we show the final design using two, four, six, and
eight times the element size es1 specified in Table 1. This tessella-
tion generates a model with 786432 elements and 1576962
unknowns. We can observe that by reducing the size used for the
regularization, we can capture more details in the final design.
We initialize the projection parameters g ¼ 0:5 and b ¼ 1:0 of
(11) following a heuristic strategy duplicating the value of b every
Topology parameters

am
v (%) es1 (m)
15 0.0019531

beam
v (%) es1 (m) es2 (m)
5 0.015625 0.0078125

eam
v (%) es1 (m) es2 (m)
3 0.015708 0.007854

v (%) es1 (m) es2 (m)
4 0.005 0.0025



Fig. 3. The MBB experiment: (a) geometric configuration, (b) symmetry simplifi-
cation, and (c) mesh parameterization and partitioning into eight subdomains. Fig. 4. The MBB experiment with 1536 � 512 elements of edge size es1 regularizing

with (a) R = 2es1, (b) R = 4es1, (c) R = 6es1, and (d) R = 8es1.

Fig. 5. The MBB experiment with 1536 � 512 elements of edge size es1: cumulative
wall-clock time for solving with 16 cores on one host including setup and solving
stages of AMG and GMG multigrid methods using different regularization sizes of R
for (9).
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15 iterations from iteration 60 until the b ¼ 64 value. We evaluate
the computational performance preconditioning the distributed
conjugate gradient using AMG and GMG multigrid methods with
the different regularization sizes of R for (9). We tune the damping
factor ws ¼ 0:75 for the Jacobi smoothing to ensure convergence
using GMG preconditioning. We do not use AMR in these experi-
ments, and they are the reference methods to evaluate the perfor-
mance increment using the proposal. The GMG method uses six
levels in the V-Cycle of Algorithm 2 from a grid of 1536 � 512 ele-
ments to a mesh of 24 � 8, whereas the AMG method uses twelve
levels from a sparse coefficient matrix of 1576962� 1576962 coef-
ficient elements to a coefficient matrix of 8 � 8 unknowns. Fig. 5
shows the total wall-clock time for solving the MBB experiment
using AMG and GMG preconditioning with distributed memory
computing using 16 computing processes. This wall-clock time
includes the setup of the multigrid preconditioners and solving
stages. We can observe that the convergence of the iterative solver
depends on the regularization size using GMG preconditioning,
whereas it is similar using the AMG preconditioning approach.
The GMG preconditioning provides better results increasing the
regularization size R, and it is less efficient than the precondition-
ing using AMG for this two-dimensional experiment.

By choosing the regularization size R = 2es1 because it provides
more details about the optimum distribution of material, we eval-
uate the use of the proposal using AMR to improve the efficiency of
analysis. We use six refinement levels lref ¼ 6 from the grid of 1536
� 512 elements for dynamic coarsening constructing the refine-
ment tree. Fig. 6(e) shows the details of the coarsening correspond-
ing to the design shown in Fig. 4(a). We can observe the six levels
of child elements with the corresponding hanging nodes in the
details of the two blue dashed bounding boxes. We evaluate the
proposal using two error estimators: the error estimator ev of
10
(20) based on the value of the design variable and eg of (21) based
on the value of the gradient of compliance. We use the thresholds
ev 6 2Emin and eg 6 10�10 as criteria for dynamic coarsening the
mesh. The coarsening using the thresholding approach based on
the value of the design variables is called void-based strategy since
it aims to locate areas with weak material, whereas the coarsening
using the heuristic thresholding using the gradient of the objective
function is called gradient-based approach.



Fig. 6. The MBB experiment with 1536 � 512 elements using h-refinement and coarsening with gradient- and void-based strategies: (a) the compliance evolution, (b) the
number of finite elements used for solving and the metric for estimating the computational cost, (c) the wall-clock time per iteration including solving stages and dynamic
refinement using 16 cores on one host, (d) the total wall-clock time for the optimization using 16 cores on one host, and (e) the refinement detail of the design variables.
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We show the evolution of compliance during the optimization
using different approaches in Fig. 6(a). We can observe that the
objective function evolution using GMG and AMG preconditioning
combined with dynamic AMR with different error estimators is
similar. Fig. 6(b) depicts the number of finite elements used during
the optimization process (black color) and a metric (in colors) of
11
the computational cost: the product of the number of finite ele-
ments and the number of iterations needed by the iterative solver
to reach the prescribed tolerance. The initial iteration of topology
optimization with AMR approaches uses the same amount of finite
elements as the optimization without AMR. The number of finite
elements using AMR techniques quickly decreases until the



Fig. 7. Percentage of wall-clock time for the different stages of MBB topology
optimization with 1536 � 512 elements using 16 cores on one host.
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optimization capture the shape of the design, and then it maintains
a stable number of finite elements to extract the details. We obtain
a significant improvement in the metric of the computational cost
by reducing the number of finite elements. Nevertheless, it is sim-
ilar again in the last iterations of the topology optimization. In our
experience, we cannot reduce the threshold value eg of the
gradient-based approach because it suffers from numerical insta-
bilities due to the continuation strategy for the b parameter of
the projection contribution of (14) to the gradient of the objective
function using the chain rule following the heuristic strategy.

We evaluate the wall-clock time per iteration for solving the
MBB experiment using AMR and the size R = 2es1 for regularizing.
Fig. 6(c) shows the wall-clock time per iteration, including the
setup and solving stages and the dynamic coarsening and refine-
ment up to six refinement levels lref ¼ 6 for FEA using 16 cores

on the workstation with an AMD RyzenTM 9 3950X CPU. We can
observe that the wall-clock time per iteration without using AMR
reduces as the optimization progresses due to the reuse of the dis-
placement solution of the previous iteration of topology optimiza-
tion [33]. The wall-clock time for solving using AMR strategies
reduces significantly after some iterations of the topology opti-
mization. However, the distributed coarsening and refinement
operations have a non-negligible computational cost, which is par-
ticularly true using a relevant number of refinement levels lref ¼ 6
and when the design is close to the solution because the problem is
better conditioned. Thus, we have to find a trade-off between the
cost of solving and the computational requirements to reduce the
system of equations to solve.

Fig. 6(d) shows the cumulative wall-clock time for all the pro-
cessing of MBB experiment with regularization size R = 2es1 and
using 16 computing cores in one workstation, including the dis-
tributed FEA, coarsening and refinement using six refinement
levels lref ¼ 6, regularization, sensitivity calculation, and optimiza-
tion. We can observe that the increment in computational cost is
negligible to the wall-clock time for solving shown in Fig. 5. Thus,
the FEA dominates the computational cost of the whole process
using a distributed multi-core implementation. We also can
observe that the cumulative wall-clock time is similar using AMR
and without using it in the initial iterations of the topology opti-
mization, whereas we reduce this computing time significantly
as the topology optimization progresses. We can obtain a higher
speedup of the whole process by increasing the iterations per-
formed in the topology optimization. The distributed implementa-
tion using AMR void-based strategy provides better results than
the one using the gradient-based approach. We attribute this fact
to the numerical problems related to the continuation strategy of
b for the projection, mainly due to we cannot adjust the threshold
of the error estimator eg based on the gradient of compliance for
instabilities in the calculation of the contribution to the sensitivity
of the objective function of (14) when doubling the b parameter.

Fig. 7 shows the wall-clock time percentage for the different
stages of MBB topology optimization with 1536 � 512 elements
using 16 cores on one host. We depict these percentages using con-
centric doughnut charts, showing from the outer ring to the inner
one the results using AMG preconditioning, GMG preconditioning,
AMR with the void-based strategy using AMG preconditioning, and
AMR with the gradient-based approach using AMG precondition-
ing. We can observe a significant reduction of the percentage of
the wall-clock time for the assembly stage using AMR techniques
because we assemble the system of equations on the coarse mesh.
We can notice an increment in the percentage of the wall-clock
time for calculating the sensitivities and for the design variable
update using MMA because we perform these tasks on the fine
mesh. Finally, we can observe that the percentage of wall-clock
time for coarsening and refinement using AMR techniques is rele-
12
vant for two-dimensional problems. Coarsening and refinement
stages take more than 60% of the wall-clock time. The solving stage
takes the 40% of the wall-clock time approximately. For this reason,
it is of paramount importance to find a trade-off between the cost
of solving and the computational requirements to reduce the sys-
tem of equations to solve. We can do this by tunning the maximum
number of levels for the coarsening and refinement of the mesh
using AMR techniques.

We evaluate the strong scaling for the MBB experiment using
different computational resources. Fig. 8 shows the cumulative
wall-clock time for the topology optimization with regularization
size R = 2es1 using different amounts of computational resources:
one, four, eight, and sixteen computing cores on one workstation.
Fig. 8(a) shows the strong scaling without using AMR. We can
observe that the wall-clock time decreases as increasing the com-
putational resources preconditioning with GMG and AMG. We
obtain a speedup of more than 5x using sixteen computing cores
with the reference approach using one computing core. The
speedup is similar using GMG and AMG preconditioning. Fig. 8(b)
shows the cumulative wall-clock time using AMR with the
resources previously mentioned. We can observe that the wall-
clock time also decreases as increasing the computational
resources, obtaining an additional speedup of more than 2x for this
experiment. We have to remark that these speedups are for topol-
ogy optimization, obtaining higher accelerations for the last topol-
ogy optimization iterations.

5.2. Cantilever beam experiment

The cantilever experiment consists of the topology optimization
of a three-dimensional beam with fixed displacements on one side
and loads uniformly distributed along the lower edge of the other
side. Fig. 9(a) shows the geometry and boundary conditions of the
finite element model, indicating the geometric parameters speci-
fied in Table 1. This table also includes the topology optimization
design parameters: the volume fraction v and the element size
es1 and es2 used for regularizing the design field of the experiments
using one workstation and two computing nodes. Fig. 4(b) depicts
a coarse mesh partitioned into eight subdomains using the ParMe-
tis library for enforcing contiguous partitioning with balanced sub-
domains. It also shows the parameterization of the tessellation
with the div variable, that we coarse dynamically up to the refine-
ment level lref for increasing the performance of the analysis.

Fig. 10 shows the results of the cantilever experiment with
div ¼ 64 using a radius of R = 2es1, with es1 specified in Table 1,
to regularize the density field. This tessellation generates a model



Fig. 8. Strong scaling for the MBB experiment with 1536 � 512 elements of edge
size es1 regularizing with R = 2es1: total wall-clock time (a) using AMG and GMG
multigrid solvers, and (b) using AMG multigrid solver with h-refinement and
coarsening based on gradient and void strategies.

Fig. 9. The cantilever experiment: (a) geometric configuration and boundary
conditions, and (b) mesh parameterization and partitioning into eight subdomains.
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with 524288 finite elements and 1635075 unknowns. We use one
workstation for all the calculations. We initialize the projection
parameters g ¼ 0:3 and b ¼ 1:0 of (11) following a heuristic strat-
egy duplicating the value of b every 15 iterations from the iteration
60 until the b ¼ 64 value. We tune the damping factor ws ¼ 0:45
for the Jacobi smoothing to ensure convergence using GMG pre-
conditioning. The GMG method uses four levels in the V-Cycle of
Algorithm 2 from a grid of 64 � 64 � 128 elements to a mesh of
4 � 4 � 8, whereas the AMG method uses nine levels to prolongate
and restrict from a sparse coefficient matrix of 1635075� 1635075
coefficient elements to a coefficient matrix of 9 � 9 unknowns. We
run the experiments using one workstation with an AMD RyzenTM

9 3950X CPU. We use four refinement levels lref ¼ 4 from the grid
of 64 � 64 � 128 elements for dynamic coarsening constructing
the refinement tree. Fig. 10(e) shows the details of the coarsening
corresponding to the final design of the cantilever experiment,
where we can observe the four levels of child elements with the
corresponding hanging nodes. We use the thresholds ev 6 2Emin

and eg 6 10�7 as criteria for dynamic coarsening the mesh using
void-based and gradient-based approaches.
13
Fig. 10(a) depicts the evolution of compliance during the topol-
ogy optimization using different approaches with and without
AMR. We can observe that the objective function evolution using
GMG and AMG preconditioning and AMG preconditioning com-
bined with dynamic AMR using many error estimators is similar.
Fig. 10(b) depicts the number of finite elements used during the
topology optimization process (black color) and a metric (in colors)
of the computational cost: the product of the number of finite ele-
ments and the number of iterations needed by the iterative solver
to reach the prescribed tolerance. The initial iterations of topology
optimization with AMR approaches use the same amount of finite
elements as the optimization without AMR. We can observe a sig-
nificant reduction of the number of finite elements, almost ten
times less, using a smaller number of refinement levels lref ¼ 4 than
the two-dimensional MBB experiment. The number of finite ele-
ments using AMR techniques quickly decreases until the optimiza-
tion capture the shape of the design, and then it maintains a stable
number of finite elements to extract the details. We obtain a signif-
icant improvement in the metric of the computational cost by
reducing the number of finite elements. In this three-
dimensional case, we can observe this improvement during the
whole topology optimization. In contrast to the two-dimensional
MBB experiment, we do not notice numerical instabilities due to
the continuation strategy for the b parameter of the projection con-
tribution of (14) to the gradient of the objective function using the
chain rule following the heuristic strategy. Nevertheless, we use a



Fig. 10. The cantilever experiment with 64 � 64 � 128 elements of edge size es1 regularizing with R = 2es1 and using h-refinement and coarsening with gradient- and void-
based strategies: (a) compliance evolution, (b) the number of finite elements used for solving and the metric for estimating the computational cost, (c) the wall-clock time per
iteration including solving stages and dynamic refinement using 16 cores on one host, (d) the total wall-clock time for the optimization using 16 cores on one host, and (e) the
refinement detail of design variables and the final design showing the displacement field.
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conservative threshold value for the error estimator eg based on
the gradient of the objective function.

Fig. 10(c) shows the wall-clock time per iteration for solving the
cantilever experiment with and without AMR using the size
14
R = 2es1 to regularize the density field. The timing includes the
setup and solving stages and the dynamic coarsening and refine-
ment up to four refinement levels lref ¼ 4 for FEA using 16 cores

on the workstation with an AMD RyzenTM 9 3950X CPU. We



Fig. 12. Strong scaling for the cantilever experiment with 64 � 64 � 128 elements
of edge size es1 regularizing with R = 2es1: total wall-clock time (a) using AMG and
GMG multigrid solvers, and (b) using AMG multigrid solver with h-refinement and
coarsening using gradient- and void-based strategies.
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observe that the wall-clock time per iteration without using AMR
reduces in the last iterations of the optimization progress by reus-
ing the displacement solution of the previous iteration of topology
optimization. We also observe a significant reduction of the wall-
clock time for solving using AMR strategies. The wall-clock time
for computing the distributed coarsening and refinement opera-
tions increases as the number of finite elements for analysis
reduces. However, the computational cost of AMR is more than
compensated with the wall-clock time saved in the solving.

Fig. 10(d) shows the cumulative wall-clock time for all the pro-
cessing of the cantilever experiment with regularization size
R = 2es1 and using 16 computing cores in one workstation including
the distributed analysis, coarsening, and refinement using four
refinement levels lref ¼ 4, regularization, sensitivity calculation,
and design variable update. We can observe that the solver using
GMG preconditioning is slightly faster than the resolution using
the AMG preconditioner. However, we obtain a more than relevant
speedup using AMR approaches. In particular, we achieve an accel-
eration of more than 3x for the topology optimization using 175
iterations using as reference the topology optimization using
GMG preconditioning. Nevertheless, we obtain higher speedups
when we coarse the mesh for only capturing the details of the
shape of the final design.

Fig. 11 shows the wall-clock time percentage for the different
stages of the three-dimensional topology optimization with 64 �
64 � 128 elements using 16 cores on one host. We depict the infor-
mation using the same format as Fig. 7. We can observe a relevant
reduction of the percentage of the wall-clock time for the assembly
stage using AMR techniques because we assemble the system of
equations on the coarse mesh. We notice that the increment in
the percentage of the wall-clock time for calculating the sensitivi-
ties and for the design variable update using MMA is significantly
higher than the two-dimensional experiment shown in Fig. 7. We
attribute this to a higher acceleration of the three-dimensional
topology optimization problems. We also can observe that the per-
centage of wall-clock time for coarsening and refinement using
AMR techniques in this three-dimensional problem is lower than
the two-dimensional topology optimization presented above. We
attribute this to the lower number of levels for coarsening and
refinement than the two-dimensional topology optimization
problems.

We evaluate the strong scaling for the cantilever experiment
using different computational resources. Fig. 12 shows the cumula-
tive wall-clock time for the topology optimization of the cantilever
model of 64 � 64 � 128 elements with regularization size R = 2es1
using a different number of computing cores: one, four, eight, and
sixteen computing cores on one workstation. Fig. 12(a) shows the
Fig. 11. Percentage of wall-clock time for the different stages of the cantilever
topology optimization with 64 � 64 � 128 elements using 16 cores on one host.

Fig. 13. Performance evaluation of cantilever experiment with 64 � 64 � 128
elements of edge size es1 regularizing with R = 2es1 using different volume fractions
for topology optimization.
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strong scaling using GMG and AMG preconditioning without using
AMR. We can observe that the wall-clock time decreases as
increasing the computational resources preconditioning with
GMG and AMG. We also note that the iterative solver precondi-
tioned with GMG is considerably faster than the iterative solver
with the AMG preconditioner using only one computing core.
However, the wall-clock time is closing using both preconditioners
as we increase the number of computing nodes in the workstation
with an AMD RyzenTM 9 3950X CPU. We rely on this evidence to
conclude that the strong scalability on one computing node is bet-
ter using the AMG preconditioner, which we combine with an AMR
technique to improve the performance. Fig. 12(b) shows the cumu-
lative wall-clock time using AMR with the resources previously
Fig. 14. The cantilever experiment with 160 � 160 � 320 elements of edge size es2 regula
based strategies: (a) the number of finite elements used for solving, (b) wall-clock time p
computing nodes, (c) total wall-clock time for the optimization using 48 cores on two
showing the displacement field.
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mentioned. We can observe that the wall-clock time of the imple-
mentations using AMR also decreases as increasing the computa-
tional resources, obtaining an additional speedup of more than
4x for the case using 16 cores with the reference of the implemen-
tation using GMG preconditioner without AMR.

We also test the computational performance of the proposal
using different volume fractions for the topology optimization of
the cantilever experiment. Fig. 13 depicts the cumulative wall-
clock time for the topology optimization of the cantilever model
of 64 � 64 � 128 elements with regularization size R = 2es1 using
different volume fractions and maintaining the configuration
detailed above. We include the same reference method used above,
the topology optimization using GMG preconditioning, and for the
rizing with R = 2es2 and using h-refinement and coarsening with gradient- and void-
er iteration including solving stages and dynamic refinement using 48 cores on two
computing nodes, (d) refinement detail of design variables, and (e)-(f) final design



Fig. 15. The arc experiment: (a) geometric configuration, (b) symmetry simplifi-
cation, and (c) mesh parameterization and partitioning into eight subdomains.
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sake of clarity, the proposal using AMR with the error estimator
based on the thresholding of density variables. We aim to present
the limitations of the proposal. The computational advantages of
17
using AMR reduce as the volume fraction percentage increases.
We can observe that the computational improvement reduces in
comparison to the reference method, which increases the compu-
tational performance by increasing the volume fraction. We attri-
bute this behavior to the increased contrast in material
properties using low volume fractions, which usually affect the
GMG preconditioner due to coarsening across discontinuities,
affecting the coarse grid correction.

We evaluate the scalability of the proposal using two comput-
ing nodes connected with a 10 Gigabit Ethernet network. We equip
the computing nodes with two Intel Xeon E5-2687W v4 CPUs with
12 cores allowing the running of 24 computing processes in paral-
lel. Thus, we evaluate the proposal using 48 computing cores in the
two computing nodes. Fig. 14 shows the results of the cantilever
experiment with div ¼ 160 elements using a radius of R = 2es2,
with es2 specified in Table 1, to regularize the density field. This
tessellation generates a grid mesh of 160 � 160 � 320 elements
with 8192000 finite elements and 24961923 unknowns. We use
the continuation strategy of the previous cantilever experiment
and tune the damping factor ws ¼ 0:55 for the Jacobi smoothing
to ensure convergence using GMG preconditioning. The GMG
method uses four levels in the V-Cycle of Algorithm 2 from a grid
with 160 � 160 � 320 finite elements to a mesh of 10 � 10 �
20, whereas the AMG method uses eleven levels to prolongate
and restrict from a sparse coefficient matrix of 24961923 �
24961923 coefficient elements to a coefficient matrix of 4 � 4
unknowns. We use four refinement levels lref ¼ 4 from the mesh
of 160 � 160 � 320 elements for dynamic coarsening constructing
the refinement tree. Fig. 14(d) shows the details of the coarsening
corresponding to the final design of the cantilever experiment,
where we can observe the four levels of child elements with the
corresponding hanging nodes. Fig. 14e) andFig. 14(f) show the
details of the final design and the displacement field. We can
observe that we capture many more shape details of the optimum
shape compared to the optimal design shown in Fig. 10(e).

We use the same AMR thresholds ev 6 2Emin and eg 6 10�7 as
the previous cantilever experiment for dynamic coarsening the
mesh. Fig. 14(a) depicts the evolution of compliance during the
topology optimization using different approaches with and with-
out AMR. We can observe that the objective function evolution
using GMG and AMG preconditioning and AMG preconditioning
combined with dynamic AMR with different error estimators is
similar. Fig. 14(b) shows the wall-clock time per iteration using
48 computing processes with and without AMR regularizing with
the size R = 2es2. We can observe that the gradient-based approach
used for AMR coarse and refine the mesh from the beginning of the
experiment due to the wrong configuration of the thresholding.
We also note that the computational time for the distributed coars-
ening and refinement operations meaningfully increases when we
require network communications.

Fig. 14(c) shows the cumulative wall-clock time for all the pro-
cessing of the cantilever experiment using 48 computing cores
with two workstations and network communications. We observe
that the elapsed time for the approaches without using AMR
becomes similar, whereas it is the same for the implementations
with AMR. We also note a relevant elapsed time in the first itera-
tion of the topology optimization due to the initialization of struc-
tures needed to distribute the computation between the
subdomains. This wall-clock time for the first topology optimiza-
tion iteration is lower for the approaches without AMR because
they only have to create the hash tables used to calculate the dis-
tributed regularization. However, the proposed method with AMR
also has to compute the distributed conforming prolongation
matrix Pc specified in Section 3. We can observe that the elapsed
time to initialize the data using network communication is negligi-
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ble in the cantilever experiment only using one computing node, as
shown in Fig. 10(d). Thus, the wall-clock time for initializing com-
munications can be reduced significantly using a network with
higher bandwidth.

5.3. Curved beam experiment

The curved beam experiment consists of the topology optimiza-
tion of a three-dimensional arc beam with fixed displacements on
both sides and loads uniformly distributed in the center along the
Fig. 16. The arc experiment with 64 � 64 � 400 elements of minimum edge size emin reg
and void-based strategies: (a) the number of finite elements used for solving and the met
solving stages and dynamic refinement using 16 cores on one host, (c) total wall-clock ti
time for the different stages of the topology optimization, (e) the refinement detail of d
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top edge. This experiment aims to show that the proposal is not
subjected to any geometry constraint. Fig. 15(a) shows the geom-
etry and boundary conditions of the finite element model. Table 1
indicates the geometric parameters and topology optimization
design parameters, including the volume fraction v and the ele-
ment sizes es1 and es2 used for regularizing the design field of the
experiments using one workstation and two computing nodes.
Fig. 15(b) shows the symmetry simplification used for the topology
optimization, including the boundary conditions. Fig. 15(c) depicts
a coarse mesh partitioned into eight subdomains using the
ularizing with R = 2emin= 2es1 and using h-refinement and coarsening with gradient-
ric for estimating the computational cost, (b) wall-clock time per iteration including
me for the optimization using 16 cores on one host, (d) the percentage of wall-clock
esign variables, and (f) the final design showing the displacement field.
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ParMetis library. We can observe that the partitioning is performed
into balanced subdomains enforcing the contiguous partitions. It
also shows the parameterization of the tessellation with the div
and diva variables. We use the number of refinement levels lref to
obtain the dynamic coarsening mesh for the FEA.

Fig. 16 shows the results of the curved beam experiment with
div ¼ 64 and diva ¼ 400 using a radius of R = 2es1, with es1 specified
in Table 1, to regularize. This tessellation generates a model with
1638400 finite elements and 5082675 unknowns. We use one
workstation with 16 computing cores for all the calculations. We
initialize the projection parameters g ¼ 0:5 and b ¼ 2:0 of (11) fol-
lowing a heuristic strategy duplicating the value of b every 15 iter-
ations from the iteration 70 until the b ¼ 64 value. We tune the
damping factor ws ¼ 0:45 for the Jacobi smoothing to ensure con-
vergence using GMG preconditioning. The GMG method uses four
levels in the V-Cycle of Algorithm 2 from a grid of 64 � 64 � 400
elements to a mesh of 4 � 4 � 25 elements, whereas the AMG
method uses ten levels to prolongate and restrict from a sparse
coefficient matrix of 5082675 � 5082675 coefficient elements to
a coefficient matrix of 9 � 9 unknowns. We use four refinement
levels lref ¼ 4 from the grid of 64 � 64 � 400 elements for dynamic
coarsening constructing the refinement tree. We configure the
thresholds ev 6 2Emin and eg 6 10�7 as criteria for dynamic coars-
ening the mesh using void-based and gradient-based approaches.
Fig. 16(e) shows the details of the coarsening corresponding to
the final design of the curved beam experiment, where we can
observe the four levels of child elements with the corresponding
hanging nodes. Fig. 16(f) shows the details of the final design
showing the displacement field.
Fig. 17. Arc experiment with 128 � 128 � 800 elements of minimum edge size emin reg
strategy: (a) the number of finite elements used for solving and the cumulative wall-cl
including solving stages and dynamic refinement using 48 cores on two computing no
showing the displacement field.
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Fig. 16(a) shows the number of finite elements used during the
topology optimization process (black color) and a metric (in colors)
of the computational cost: the product of the number of finite ele-
ments and the number of iterations needed by the iterative solver
to reach the prescribed tolerance. As in previous experiments, the
initial iteration of topology optimization with AMR approaches
uses the same amount of finite elements as the optimization with-
out AMR, but we observe a significant reduction of the number of
finite elements of almost nine times lower as topology optimiza-
tion progress. We obtain a significant improvement in the metric
of the computational cost by reducing the number of finite ele-
ments, which is kept during the whole topology optimization.
Fig. 16(b) shows the wall-clock time per iteration for solving the
curved beam experiment using 16 computing cores on one work-
station with and without AMR using the size R = 2es1 to regularize.
We can observe a significant reduction of the computing wall-clock
time using AMR strategies. We also note that by using the AMR
strategies, the wall-clock time for solving is more regular. We attri-
bute this to the improvement in the conditioning of the system of
equations by coarsening regions that are not of interest.

Fig. 16(c) evaluates the cumulative wall-clock time for all the
processing of topology optimization with and without using
AMR. We observe that the solver using GMG preconditioning is
about two times faster than the resolution with the AMG precon-
ditioner. However, we obtain a speedup of more than 4.5x and
almost 3x using AMR approaches using as reference the implemen-
tation without AMR using AMG and GMG, respectively. Fig. 16(d)
shows the percentage of wall-clock time for the different stages
of the curved beam topology optimization with 64 � 64 � 400
ularizing with R = 2emin= 2es2 and using h-refinement and coarsening based on void
ock time using 48 cores on two computing nodes, (b) wall-clock time per iteration
des, (c) refinement detail of design variables for solving, and (d) the final design



Fig. 18. The dome experiment: (a) geometric configuration, (b) symmetry simpli-
fication, and (c) mesh parameterization and partitioning into eight subdomains.
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elements using 16 cores on one host. We depict the information
using the same format as Fig. 7. We can observe a higher reduction
of the wall-clock time percentage for the assembly stage using
AMR techniques than the cantilever beam experiment presented
above. We also notice that the increment in the wall-clock time
percentage for calculating the sensitivities and the design variable
update using MMA is significantly higher than the three-
dimensional experiment shown in Fig. 11. We attribute these facts
to the larger size of the curved beam topology optimization.

We evaluate the scalability of the proposal with the AMR strat-
egy using the error estimator based on void regions because we can
configure it easily using Young’s modulus Emin for weak material.
We use two computing nodes with two Intel Xeon E5-2687 W v4
CPUs connected with a 10 Gigabit Ethernet network. The two com-
puting nodes allow us to run 48 computing processes in parallel.
Fig. 17 shows the results of the curved beam experiment with
div ¼ 128 and diva ¼ 800 using a radius of R = 2es2, with es2 spec-
ified in Table 1, to regularize. The discretization gives rise to a
model with 13107200 finite elements and 39988323 unknowns.
We initialize the projection parameters g ¼ 0:5 and b ¼ 2:0 of
(11) following a heuristic strategy duplicating the value of b every
15 iterations from iteration 200 until the b ¼ 64 value. We use five
refinement levels lref ¼ 5 for dynamic coarsening constructing the
refinement tree. We configure the threshold ev 6 2Emin as the crite-
rion for dynamic coarsening the mesh using void-based
approaches. Fig. 17(c) shows the details of the coarsening corre-
sponding to the final design of the curved beam experiment, where
we can observe the five levels of child elements with the corre-
sponding hanging nodes. Fig. 17(d) shows the details of the final
design showing the displacement field. We can observe that we
can capture more shape details than using the tessellation of the
topology shown in Fig. 16(e).

Fig. 17(a) depicts the number of finite elements used during the
topology optimization process and the cumulative wall-clock time
for the topology optimization using AMG preconditioning with
AMR using the void-based strategy. We observe a relevant reduc-
tion of the number of finite elements. This reduction is of almost
fourteen times less using five refinement levels lref ¼ 5. The topol-
ogy optimization takes about 70 h using the proposal. Fig. 17(b)
shows the wall-clock time for solving and the total wall-clock time
per iteration of topology optimization using 48 computing cores on
two computing nodes using the size R = 2es2 to regularize. We can
observe that solving is not the process consuming more computing
time. The computing processes with intensive use of communica-
tion take a relevant part of the computing time. These processes
are distributed regularization and adaptive coarsening and refine-
ment. The improvement in the conditioning of the system of equa-
tions by coarsening regions that are not of interest largely
compensates for the computing time consumed by communica-
tions. Nevertheless,we can reducemeaningfully thewall-clock time
used by communications using a network with higher bandwidth.

5.4. Dome experiment

The dome experiment consists of the topology optimization of a
three-dimensional dome of a half-sphere geometry with thin
thickness. The boundary conditions consist of a vertical load
applied to the top center and fixed displacements in the support.
We aim to show that the proposal is not subjected to any geometry
constraint evaluating its use in thin structures. We only perform
the topology optimization of this experiment using the proposal
with AMG preconditioning using the AMR strategy for coarsening
and refinement with the error estimator based on the design vari-
able to detect the regions of interest with void material. Fig. 18(a)
20
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shows the geometry and boundary conditions of the finite element
model. Table 1 shows the geometric and topology optimization
parameters, including the volume fraction v and the element sizes
es1 and es2 used to regularize using one workstation and two
computing nodes. Fig. 18(b) shows the symmetry simplification
used for the topology optimization, including the boundary condi-
tions. We analyze one-quarter of the half-sphere geometry. Fig. 18
(c) depicts a coarse mesh partitioned into eight balanced subdo-
mains enforcing the contiguous partitions. It also shows the
parameterization of the tessellation with the nthin and diva vari-
ables. We perform the tessellation dividing the quarter of half-
sphere geometry into three equal parts to generate hexahedral ele-
ments of a similar size. We can observe that we discretize elements
from the central point of the one-quarter of the half-sphere geom-
etry. We use the number of refinement levels lref to obtain the
dynamic coarsening mesh for the FEA.

Fig. 19 shows the results of the dome experiment with
nthin ¼ 8 and diva ¼ 288 using a radius of R = 2es1, with es1 spec-
ified in Table 1, to regularize. The tessellation using three equal
parts generates a mesh of 3 � 144 � 144 � 8 elements with
497664 finite elements and 1691307 unknowns. We use one
workstation with 16 computing cores for all the calculations.
We initialize the projection parameters g ¼ 0:3 and b ¼ 1:0 of
(11) following a heuristic strategy duplicating the value of b
every 15 iterations from iteration 200 until the b ¼ 64 value.
We use three refinement levels lref ¼ 3 from the grid of 3 �
144 � 144 � 8 elements for dynamic coarsening constructing
the refinement tree. We configure the threshold ev 6 2Emin as cri-
teria for dynamic coarsening the mesh using void-based and
Fig. 19. The dome experiment with 3 � 144 � 144 � 8 elements of minimum edge size e
void strategy: (a) the number of finite elements used for solving and the cumulative wa
solving stages and dynamic refinement using 16 cores on one host, (c) refinement detai
field.

21
gradient-based approaches. Fig. 19(c) shows the coarsening
details corresponding to the final design of the dome experi-
ment. We can observe the three levels of child elements with
the corresponding hanging nodes. Fig. 19(d) shows the details
of the final design showing the displacement field. We obtain
a truss-like structure with optimal shape links between the
structural elements.

Fig. 19(a) shows the number of finite elements used during the
topology optimization process. We observe a reduction of five
times the number of finite elements during the topology optimiza-
tion progress. This reduction is lower than the previous experi-
ments because we are only using three refinement levels lref ¼ 3.
It also shows the cumulative wall-clock time for all the processing
of topology optimization using AMG preconditioning with AMR
based on void strategy. We perform 327 iterations of topology
optimization in 1 h 23’ using one workstation with 16 computing
cores. Fig. 19(b) shows the wall-clock time per iteration for solving
using the size R = 2es1 to regularize. We can observe that solving
dominates the computing time.

Finally, we evaluate the scalability of the proposal with the AMR
strategy using the error estimator based on void regions with two
computing nodes connected with a 10 Gigabit Ethernet network
running 48 computing processes in parallel. Fig. 20 shows the
results of the dome experiment with nthin ¼ 16 and diva ¼ 576
using a radius of R = 2es2, with es2 specified in Table 1, to regularize.
The tessellation generates a model with 3981312 finite elements
and 12734547 unknowns. We initialize the projection parameters
g ¼ 0:3 and b ¼ 1:0 of (11) following a heuristic strategy duplicat-
ing the value of b every 15 iterations from iteration 200 until the
min regularizing with R = 2emin=2es1 and using h-refinement and coarsening based on
ll-clock time using 16 cores on one host, (b) wall-clock time per iteration including
l of design variables for solving, and (d) the final design showing the displacement



Fig. 20. The dome experiment with 3 � 288 � 288 � 16 elements of minimum edge size emin regularizing with R = 2emin=2es2 and using h-refinement and coarsening based on
void strategy: (a) the number of finite elements used for solving and the cumulative wall-clock time using 48 cores on two computing nodes, (b) wall-clock time per iteration
including solving stages and dynamic refinement using 48 cores on two computing nodes, (c) refinement detail of design variables for solving, and (d) final design showing
the displacement field.
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b ¼ 64 value. We use four refinement levels lref ¼ 4 for dynamic
coarsening constructing the refinement tree. We configure the
threshold ev 6 2Emin as the criterion for dynamic coarsening the
mesh using void-based approaches.

Fig. 20(c) shows the details of the coarsening in the optimized
design, where we can observe the four levels of child elements
with the corresponding hanging nodes. Fig. 20(d) shows the details
of the optimized design showing the displacement field. We can
observe that the optimal design obtained is more similar to a
shell-like structure with variable thickness [74], whereas the
design obtained with a coarse finite element mesh has an appear-
ance of many truss-like designs, as shown in Fig. 19(d). We attri-
bute this effect to the artificial length-scale limitation caused by
the use of a coarse mesh.

Fig. 20(a) shows the number of finite elements used during the
topology optimization process. The reduction of finite elements
during the topology optimization progress is about seven times
the initial mesh by dynamic coarsening using four refinement
levels lref ¼ 4. We also show the cumulative wall-clock time for
all the processing of topology optimization using AMG precondi-
tioning with AMR based on void strategy. We perform 350 itera-
tions of topology optimization in 6 h using 48 computing cores
using two workstations connected with a 10 Gigabit Ethernet net-
work. Fig. 20(b) shows the wall-clock time per iteration for solving
using the size R = 2es2 to regularize. We can observe a relevant dif-
ference in the ratio of computing time for solving to total comput-
ing time per topology optimization iteration. We attribute this
difference to the computing time of processes requiring intensive
use of communications. These processes are distributed regulariza-
22
tion and adaptive coarsening and refinement. As previously men-
tioned, we can increase the data-sharing performance by using a
network with higher bandwidth.
6. Conclusion and future works

We present an efficient implementation of density-based topol-
ogy optimization combining dynamic AMR and parallel computing
for distributed memory systems. We focus on the acceleration of
the bottleneck of the topology optimization process, the analysis
using FEA, using dynamic coarsening to provide an equivalent
design to obviating the AMRmethod. The proposal consists of opti-
mizing with a fine mesh and analyzing using a dynamic coarser
mesh. We calculate the sensitivities and update the variables in
the fine mesh, and thus the coarsened areas do not affect the evo-
lution of the optimization. We use an error estimator based on the
design variables, identifying the regions of interest by thresholding
using the parameters of the power-low interpolation function for
material penalization of the SIMP method. The underline idea is
that the computation of areas with void material contributes sig-
nificantly to the overall computing time but little to the accuracy
of the optimized design.

We evaluate the performance and scalability of the proposal
using different computational resources. In particular, a different
number of computing cores and distributed computing hosts. We
check the use of multigrid methods for preconditioning the Krylov
subspace iteration solver used in this work: a distributed conjugate
gradient method. We perform these experiments for two- and
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three-dimensional topology optimization problems. We also test
using different error estimators for the AMR approach being the
criterion based on design variables the most robust for reducing
the computational cost. We have to remark that we perform all
the experiments using a reduced distance to regularize. For higher
regularization distances, it is more suitable to use a PDE for filter-
ing the design field. We also have to remark that we obtain the
computing time presented in this work using computing resources
that are not of the latest generation, and thus faster results could
be obtained using other computational resources.

We obtain a significant increment of computing performance
for the overall computing time using AMR techniques. However,
the computing processes with intensive use of communication
can take a relevant part of the computing time when we use dis-
tributed computing with many computing hosts. In these cases,
we require a network with higher bandwidth than the network
used in the experiments. We also note that the distributed coars-
ening and refinement method can have a relevant computational
cost using a large number of refinement levels, and thus we have
to find a trade-off between the cost of solving and the computa-
tional requirements to reduce the system of equations to solve.
Nevertheless, the improvement in the conditioning of the system
of equations by coarsening void material usually makes up for
the computing time consumed by AMR and intensive use of
communications.

We have to mention the introduction of solution-based error
estimators for stress-constrained topology optimization using
AMR as future work. The use of the MMA method allows us to
manage stress constraints in the topology optimization formula-
tion, which is relevant for structural applications. The GMG pre-
conditioner shows better properties than the AMG
preconditioner for the three-dimensional problems presented in
this work. For this reason, we also have to mention the develop-
ment of a GMG preconditioner for the Krylov subspace iteration
solver using AMR as future work using the presented error estima-
tion strategies. Finally, we propose the extension of the distributed
coarsening and refinement approach to the use of simplicial
meshes as future work.
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