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Abstract

In recent years, blockchain has become a disruptive technology to protect the integrity

of information, especially in open and collaborative information systems. Its main ad-

vantage is the possibility of reaching a consensus on the new data blocks to be added to

the chain, even with anonymous actors. The applications that use blockchain are cryp-

tocurrencies, decentralized finance applications, video games, and many others. Most

of these applications trust that the blockchain will prevent issues like fraud, thanks to

the built-in cryptographic mechanisms provided by the data structure and the consen-

sus protocol. However, blockchains suffer from what is called a 51% attack or majority

attack, which is considered a high risk for the integrity of these blockchains, where

if a miner, or a group of them, has more than half the computing capability of the

network, it can rewrite the blockchain. Even though this attack is possible in theory,

it is regarded as hard-achievable in practice due to the assumption that, with enough

active members, it is very complicated to have that much computing power; however,

this assumption has not been studied with enough detail.

Consensus protocols are a fundamental part of any blockchain; although several proto-

cols have been in operation for several years, they still have drawbacks. For instance,

some may be susceptible to a 51% attack, also known as a majority attack, which may

suppose a high risk to the trustworthiness of the blockchains. Although this attack is

theoretically possible, executing it in practice is often regarded as arduous because of

the premise that, with sufficiently active members, it is not ’straightforward’ to have

much computing power. Since it represents a possible vulnerability, the community

has made efforts to solve this and other blockchain problems, which has resulted in the

birth of alternative consensus protocols, e.g., the proof of accuracy protocol.

Cryptojacking or illegal mining is a form of malware that hides in the victim’s com-

puter and takes the computational resources to extract cryptocurrencies in favor of the

attacker. It generates significant computational consumption, reducing the computa-

tional efficiency of the victim’s computer. This attack has increased due to the rise of

cryptocurrencies and their profitability and their difficult detection by the user. The

identification and blocking of this type of malware have become an aspect of research

related to cryptocurrencies and blockchain technology; in the literature, some machine

learning and deep learning techniques are presented, but they are still susceptible to

improvement.

This work presents four main contributions: - A new characterization of the consen-
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sus algorithms. - A detailed characterization of the miners in the bitcoin and crypto

ethereum blockchains. - A detailed proposal of a proof-of-accuracy protocol. - A ex-

ploration of multiple Machine Learning classification models for detecting cryptojack-

ing on websites. These contributions have already been included in scientific arti-

cles published n high-impact journals. The related articles can be found at [Aponte-

Novoa et al., 2022b,Aponte-Novoa and Villanueva-Polanco, 2022b,Aponte-Novoa et al.,

2021,Aponte Novoa et al., 2021,Aponte et al., 2021a]

Keywords
51% attack, alternative consensus protocols, bitcoin, blockchain, cryptojacking, con-

sensus protocol, double-speding, ethereum, hash rate, illegal mining, malware; machine

learning, proof of accuracy
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1 Introduction

Blockchain technology promises to become an excellent opportunity to provide differ-

ent solutions for society’s problems, “. . . Like the Internet reinvented communication,

blockchain may similarly disrupt transactions, contracts, and trust – the underpinnings

of business, government, and society” [Piscini et al., 2016]. It is defined as “a perpetu-

ally updated record of transactions independently saved by users across the internet”;

in other words, it is an immutable distributed ledger [Wessel and Olson, 2016]. The

basic operation of a blockchain consists of the secure administration of a shared ledger,

where transactions are verified and stored in a network of anonymous nodes that does

not have a central authority. A blockchain can be public or private, where permissions

to read or write can be configured. Some mathematical tools, like cryptographic hash

functions, and computational ones, like a p2p network and consensus algorithms, al-

low the blockchain to work not only to execute transactions but also to protect the

integrity and anonymity of the users. However, blockchain, despite its strong data

structure and other benefits, has some shortcomings, like the computational cost to

run the blockchain’s consensus algorithms, which usually requires the solution of com-

plex mathematical problems in parallel by a large number of users, all competing to

finish first in a global race [Piscini et al., 2016].

Although the effort required to solve the problems is high, there are users with enough

computing power who could not only solve them quickly and in a distributed manner,

but also try to take over the network by generating a new version of the blockchain,

violating one of the core design principles of this structure.

The 51% attack (also called Majority attack) is categorized into hash-based vulnerabil-

ities (”hash-based attack”). It entails one or more miners taking control of at least 51%

of the mined hash or computation in the blockchain network [Dean, 2015]. It can be

more formally defined as a hash-based attack that occurs in a blockchain when one or

more miners take control of at least 51% of all the mining of hash or the computation

in the blockchain network. With this computational power, a miner may alter transac-

tions in a blockchain network and hence hinder the process of storing a new block [N

and M, 2019].

By executing a 51% attack, a miner can arbitrarily manipulate and modify the informa-
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tion on the blockchain. Specifically, an attacker can exploit this vulnerability to carry

out the following attacks: a) reverse transactions and initiate a double-spending attack;

that is, spending the same coins multiple times; b) exclude and modify the order of

transactions; c) hamper the normal mining operations of other miners; and d) prevent

the confirmation operation of normal transactions [Dean, 2015].

If a few miners gather the mining power in a blockchain that uses the Proof-of-Work

(PoW) consensus mechanism, then fear of an inadvertent situation may occur, such as

one group controlling more than 50% of the computing power hash [Li et al., 2020].

In January 2014, the mining group ghash.io reached 42% of the total hash power in

bitcoin, which caused several miners to voluntarily leave the group, while ghash.io, in

a press release, assured the bitcoin community that would avoid reaching the 51% hash

power threshold [Hajdarbegovic, 2014]. In this case, there was a self-control mechanism

based on honor; however, this kind of issue cannot be left to chance if the blockchain

would like to become a more widely accepted infrastructure for transactions.

Since blockchain is an emerging technology, its applicability to new domains and chal-

lenges is constantly growing. [Le and Hsu, 2021] presented a taxonomy of blockchain-

based applications and an analysis of blockchain challenges regarding security and per-

formance. Covered 96 papers categorized into 7 application domains: finance (e.g., [Wang and Kogan, 2018]),

achievement records (e.g., [Le et al., 2022]), energy (e.g., [Gao et al., 2018]), health-

care (e.g., [Javed et al., 2021]), manufacturing (e.g., [Kurpjuweit et al., 2021]), supply

chain (e.g., [Kurpjuweit et al., 2021]), shipping and delivery (e.g., [Wu et al., 2017]),

and sustainability (e.g., [Saberi et al., 2019]). Regarding security challenges, they high-

lighted majority attacks [Aponte-Novoa et al., 2021], DDoS attacks, selfish mining,

and others [Le and Hsu, 2021]. Concerning performance challenges, they focused on

throughput and latency in some blockchains, as well as resource and energy manage-

ment issues [Le and Hsu, 2021].

Another problem related to the applications of blockchain consists of the unauthorized

mining activity on the victim’s computer, using the computational power of the victim’s

computer to extract cryptocurrencies, which generates large computational consump-

tion, reducing the computational efficiency of the victim’s computer. This is an illegal

practice called Cryptojacking. Detection techniques for this problem, such as browser

extensions and antiviruses, provide a partial solution to the cryptojacking problem since

attackers can avoid them by employing obfuscation techniques or renewing domains or

malicious scripts frequently. [Tekiner et al., 2021]. Cryptojacking boomed with the birth

of service providers that offered ready-to-use implementations of mining scripts in web

browsers. This way, attackers can reach many more victims through websites. These

service providers are coinhive [Coi, ] and cryptoloot [Cry, c]. Moreover, this attack may

be used by a powerful attacker to increment their computational power, posing a risk to
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any blockchain based on mining [Carlin et al., 2020,Aponte et al., 2021a,Tayyab et al.,

2022,Wu et al., 2022, Bijmans et al., 2019, Aponte-Novoa et al., 2021, Aponte-Novoa

and Villanueva-Polanco, 2022b].

Cryptojacking on websites uses JavaScript code to mine cryptocurrencies. This tech-

nique does not require installing JavaScript code to perform the mining process. All it

takes is for the user to load an infected website in their browser for the illegal mining

code to execute in the browser of the victim’s computer [Cry, a]. According to [Cry,

b], many websites have been infected by cryptojacking, such as personal blogs up to

Alexa-ranking websites. Also, it noted that as of January 2022, there were around 3000

sites websites that offered online cryptojacking scripts.

1.1 Goal of this thesis

This thesis work seeks to propose a majority attack detection and mitigation strategy in

a blockchain distributed system. For this, the general objective is to Design and imple-

ment majority attack detection and mitigation strategies (51% attack) in a blockchain

distributed system, based on the characterization of the behavior of miners which is

supported by the following three specific objectives:

1. Characterize the historical behavior of miners and their computational power in

the most popular blockchain systems bitcoin and crypto ethereum.

2. Design and implement a consensus protocol to control the computing power of

miners and mitigate majority attacks on distributed blockchain systems

3. Build a strategy to detect and mitigate malicious software of the “Cryptojacking”

type in end user devices

1.2 Contributions

This dissertation presents four main contributions:

1. A new characterization of consensus algorithms, that can be used to find families

of mechanisms using cluster-based classification. Using the Ward Method and

Spearman’s Rank Correlation analysis, new clusters of consensus mechanisms

were identified. The results describe the behavioral patterns not seen before in

the literature.

2. A detailed characterization of the miners in the bitcoin and crypto ethereum

blockchains, with the aim of proving the computing distribution assumption and
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the creation of profiles that may allow the detection of anomalous behaviors and

prevent 51% attacks. The results of our analysis show that, in the last years, there

has been an increasing concentration of hash rate power (computing power) in a

very small set of miners, which generates a real risk for current blockchains. Also,

there is a pattern in mining among the main miners, which makes it possible to

identify out-of-normal behavior.

3. A detailed proposal of a proof-of-accuracy protocol. It presents the proposed pro-

tocol progressively, starting with an initial blueprint, which is improved further

concerning security. The last protocol version removes the need for a coordinator

and combines the proof-of-work feature with access to random locations to im-

prove the protocol’s resistance to majority attacks. It aims to democratize the

miners’ participation within a blockchain, control the miners’ computing power,

and mitigate the majority attacks.

4. An exploration of multiple Machine Learning classification models for detect-

ing cryptojacking on websites, such as Logistic Regression, Decision Tree, Ran-

dom Forest, Gradient Boosting Classifier, k-Nearest Neighbor, and XGBoost.The

results suggest that simple models such as Logistic Regression, Decision Tree,

Random Forest, Gradient Boosting, and k-Nearest Neighbor models, can achieve

success rate similar to or greater than that of advanced algorithms such as XG-

Boost and even those of other works based on Deep Learning.

This manuscript is based on the following articles:

1. Aponte-Novoa, F.A.; Povedano Álvarez, D.; Villanueva-Polanco, R.; Sandoval

Orozco, A.L.; Garćıa Villalba, L.J. On Detecting Cryptojacking on Websites:

Revisiting the Use of Classifiers. Sensors 2022, 22, 9219. https://doi.org/10.

3390/s22239219 [Aponte-Novoa et al., 2022b]

2. Aponte-Novoa, F.A.; Villanueva-Polanco, R. On Proof-of-Accuracy Consensus

Protocols. Mathematics 2022, 10, 2504. https://doi.org/10.3390/math10142504. [Aponte-

Novoa and Villanueva-Polanco, 2022b]

3. F. A. Aponte-Novoa, A. L. S. Orozco, R. Villanueva-Polanco and P. Wightman,

”The 51% Attack on Blockchains: A Mining Behavior Study,” in IEEE Access,

vol. 9, pp. 140549-140564, 2021, doi:10.1109/ACCESS.2021.3119291. [Aponte-

Novoa et al., 2021]

4. Aponte-Novoa, F. A., Jabba-Molinares, D., and Wightman-Rojas, P. M. (2021).

Uso y Aplicaciones de la Integración Entre Computación Cuantica y Blockchain:

https://doi.org/10.3390/s22239219
https://doi.org/10.3390/s22239219
https://doi.org/10.3390/math10142504
doi: 10.1109/ACCESS.2021.3119291
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Revisión Sistemática Exploratoria. Mundo FESC, 11(21) [Aponte Novoa et al.,

2021]

5. F.Aponte, L.Gutierrez, M.Pineda, I.Meriño, A.Salazar and P.Wightman, ”Cluster-

Based Classification of Blockchain Consensus Algorithms,” in IEEE Latin Amer-

ica Transactions, vol.19, no.4, pp.688-696, April 2021, doi:10.1109/TLA.2021.

9448552. [Aponte et al., 2021a]

Paper [Aponte et al., 2021a] is the base for chapter 3, paper [Aponte-Novoa et al.,

2021] is the base for chapter 4, paper [Aponte-Novoa and Villanueva-Polanco, 2022b]

is the base for chapter 5, and paper [Aponte-Novoa et al., 2022b] is the base for chapter

6. Some parts of the paper [Aponte Novoa et al., 2021] are used in chapter 1 and

chapter 2 of this manuscript.

1.3 Overview

This document is organized as follows:

Chapter 2 describes different consensus algorithms from the original Proof-of-Work

(PoW) to some of the alternative protocols. Also, different techniques for the 51% of

attack prevention are presented.

Chapter 3 presents a new characterization of the consensus algorithms that can be used

to find families of mechanisms using cluster-based classification.

Chapter 4 presents a detailed characterization of the miners of the bitcoin and crypto

ethereum blockchains, to test the assumption of computer distribution and create pro-

files to detect anomalous behavior and prevent 51% attacks.

Chapter 5 presents a detailed proposal for the formalization of what is called a Proof-

of-Accuracy protocol. The main contribution of that chapter is to introduce a Proof-

of-Accuracy protocol.

Chapter 6 presents an exploration of machine learning models (comparatively simpler

than deep learning models) for cryptojacking classification to identify which of these

machine learning models may render desirable results.

doi:10.1109/TLA.2021.9448552
doi:10.1109/TLA.2021.9448552
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2.1 Consensus algorithms

This section presents the consensus algorithms Proof-of-Work, Proof-of-Stake, Hybrid

form of these algorithms, and other proof-based consensus algorithms.

2.1.1 Original Proof of Work

In a blockchain, when a new block is added, an agreement between the nodes is required.

The most popular agreement process is called Proof-of-Work (PoW). It consists in each

node trying to solve a puzzle, whose difficulty can be adjusted, so that the node solving

it first will get the right to add a new block to the current chain. The effort made by

the node for the solution of the puzzle is called PoW and is payed to the winning node

using the internal currency. These nodes are called mining nodes or miners, and the

action of trying to solve the puzzle is called mining [Nguyen and Kim, 2018a].

The most common version of PoW is to calculate a SHA-256 hash value with certain

characteristics; for example, the hash value must start with a given number of zeros.

This is not an easy task and implies the exploration of multiple combinations of values

in order to find a viable solution. The average work required is exponential in relation

to the number of required zero bits and can be verified by executing a simple hash

operation [Nakamoto, 2008].

In PoW implemented by bitcoin, the difficulty of the puzzle is adjusted every time that

2016 blocks are added, so that the average speed to add one new block in the chain is

one (1) block every ten minutes [Nguyen and Kim, 2018a]. When a new block is created,

the header information is combined and sent as an input parameter to the SHA-256

hash function [Bitcoinwiki, 2016]. If the output of this function is below a threshold

T (which depends on the difficulty), then the value sought is accepted. Otherwise,

the node must continue calculating the secret value until the output of the SHA-256

function is accepted. The difficulty of the puzzle increases as the value T becomes

smaller [Nguyen and Kim, 2018a].
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2.1.2 PoS-based

The Proof-of-Work algorithm is not fair for all miners, because not all have the same

hardware configuration. Some have modern equipment, while others have very basic

equipment to process data and information, therefore the former will have an advantage,

given that solving the puzzle is computationally intensive. The algorithms based on

Proof-of-Stake (PoS) seek to deal with this inequality. The basic principle of the PoS

algorithms is to use the idea of a bet or participation magnitude, to define which node

will have the opportunity to mine the next block in the chain. Using participation as

evidence has an advantage: any node that has had a lot of previous participation is

more reliable, and thus it is expected that this node will not perform any fraudulent

activity to attack the chain that contains a large part of its profits. Also, the use of

PoS implies that there has to be at least 51% of all bets in the network, to perform

a double-cost attack, which is very difficult. There are currently two popular types of

consensus that use PoS: those that use pure participation to obtain consensus and the

hybrids that combine PoS and PoW [Nguyen and Kim, 2018a].

2.1.3 Hybrid form of PoW and PoS

[Sunny and Scott, 2012] proposed a new concept called the coin age of each miner,

which is calculated by his bet multiplied by the time the miner owns it. For a node to

get the right to add a new block to the chain, it creates a special block called coin stake,

which contains many transactions, but also includes a special one from that miner to

itself. The amount of money spent on the transaction gives the miner more possibilities

to mine a new block, then solve the puzzle, as in PoW. The more money is spent on the

transaction, the easier it is to solve the puzzle. When the puzzle is solved, the mining

node gets 1% of the amount of the coins that they have spent in the transaction, but

the accumulated coin age by these coins is reset to zero (0) [Nguyen and Kim, 2018a].

Unlike the previous proposal, [Vasin, 2014] does not use the coin age in his blockchain,

because it is assumed that, by making use of the coin age, the attacker can be given the

possibility to accumulate enough value to deceive the network. Another problem is the

possible existence of some miners who keep their bet until they have a large number

of coins, while they remain outside the verification system; therefore, the proposal

by [Vasin, 2014], is to use pure participation in exchange for the age of the currency to

offer miners the possibility of mining a new block. This may encourage more nodes to

be online to obtain profits. When the existence of off-line miners is untied, [Ren, 2014]

proposes to use an exponential decay function with the coin age, in which, when the

miner waits for the increase in the coin age, less is the speed of increase. [Duong et al.,

2017] propose a method that combines PoW and PoS, which will be explained in the
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next section as a way to also mitigate the 51% attacks.

2.1.4 Other kinds of proof-based consensus algorithm

One of the main problems of PoW is the excessive energy demands required to find

the nonce, besides the fact that this calculation is disposable and does not provide any

long-term benefit to the users. This was presented by [Blocki and Zhou, 2016] and

by [Sunny, 2013]. To address this issue, [Blocki and Zhou, 2016] proposed the use of

some types of puzzles for education and social activities, which were easy to solve for

computers but difficult for people to solve; thus, the effort to solve the puzzle to mine

a new block corresponds to people and not in using hardware. This is fairer for all

because not all miners can invest in modern hardware [Nguyen and Kim, 2018a].

Different authors have proposed other evidence-based consensus algorithms that do not

use the idea of PoW and PoS. Examples of these are: Proof-of-Burn in [P4Titan, 2014],

Proof-of-Space in [Park et al., 2018], Proof-of-QoS (PoQ) in [Yu et al., 2019] and A

Fair Selection Protocol [Liu et al., 2020]. In Proof-of-Burn, the miners send their coins

to a direction to be burned, in this way these coins can not be used by others, so the

miner, who burns most coins, earns the right to mine a new block. On the other hand,

the miners of Proof-of-Space must invest in hard disks for their computers, which in

comparison with the hardware required in PoW is much cheaper. The Proof-of-Space

algorithm generates large data sets called plots on the hard disk, so the more data a

node has, the more likely it will be able mine a new block. In PoQ the network is divided

into small regions; each of these chooses a node based on its QoS. Then, a deterministic

Byzantine Fault Tolerance (BFT) consensus is run between all the chosen nodes. The

goal of PoQ is to achieve very high transaction throughput as a permissionless protocol

and to provide a fairer environment for participants. The Fair Selection Protocol is

composed of two main phases: the mining process and the confirmation of the new

nodes list. More consensus techniques can be found in [Aponte et al., 2021a], where a

new classification method was proposed.

2.1.5 Alternative Protocols

Alternative consensus protocols have originated as responses to different efforts to im-

prove the traditional consensus protocols. The works carried out on these alternative

protocols are little known. This is evidenced by the number of recent scientific publica-

tions. In [Oyinloye et al., 2021], they made a general description of alternative consensus

protocols proposed between 2019 and 2021. They classified the alternative consensus

protocols according to how the winner node was selected as follows: Consensus Proto-
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col based on Effort or work (CPE), Consensus Protocol based on Wealth or resources

(CPW), Consensus Protocol based on Past Behavior or reputation (CPPB), and Con-

sensus Protocol based on Representation (CPR). Furthermore, the authors of [Saad

et al., 2021] presented a modular version of PoS-based blockchain systems called e-PoS,

which resisted the centralization of network resources by expanding mining opportuni-

ties to a more extensive set of participants. In addition to the few publications on the

subject, the interest in studying these protocols lies in their design features, which can

guide future research.

2.2 Techniques for 51% attack prevention

This section presents some works focused on mitigating the 51% attack on Blockchain

networks.

The double-spending attack considers a high risk for the security of a blockchain, when

the miners own more than 51% of the mining power, generating an alert. To mitigate

this problem, [Duong et al., 2017] proposed a method combining PoW and PoS (2-

hop Blockchain). The objective of this method is to make sure that, even if a miner

owns more than 51% of the mining power, he or she will not have many possibilities to

carry out a fraudulent action. To achieve this, the authors propose using a PoW first

to choose a winning node, which is the first to solve the puzzle. Next, this node, in

addition to adding a block called PoW Block to the chain, provides a basis for choosing

another miner who has a bet. If the return value of the hash function that has input

parameters of the newly added PoW Block and the private key of the owner of the bet

is below a threshold, the chosen miner will have the possibility to add the PoS Block

to the chain.

[Scicchitano et al., 2020] proposes an encoder-decoder deep learning model to detect

anomalies in the use of blockchain systems. The contributions of this work are the fol-

lowing: a) the identification of a relevant set of characteristics calculated in blockchain

registers that describe the state of the network in certain time steps; and b) The use of

a sequence-by-sequence neural network model to recognize anomalous changes in the

blockchain network.

Due to the uniqueness of the attacks and how this makes them hard to identify and

detect, [Scicchitano et al., 2020] adopt an unsupervised approach to address this prob-

lem. Also, they propose as future work to study the use of hybrid architectures based

on the combination of Recurrent Neural Networks (RNN) with convolutional neural
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networks [O’Shea and Nash, 2015] to perform the feature-selection process and assess

eventual improvements. In addition, they consider defining models capable of predicting

attacks before they occur, improving network security.

[Yang et al., 2019] proposes a method to mitigate 51% attack on Proof-of-Work

blockchains based on weighted history information. In this approach, the authors use

the frequency rate of miners in historical blocks and calculate the total weighted his-

torical difficulty to establish if a branch change is required. The proposed protocol

is called ”Proof of Work based on historical weighted difficulty” (HWD-PoW), and its

analysis indicates that the cost of the attack increases by two orders of magnitude when

the new technique is implemented.

[Dey, 2018] proposes a methodology in which intelligent software agents can be used

to monitor stakeholder activity in blockchain networks to detect anomalies, such as

collusion, by making use of a supervised machine learning algorithm and algorithmic

game theory, to mitigate the majority or the 51% attack.

Horizon proposes a delayed block sending penalty system [Garoffolo et al., 2018]. This

proposal suggests modifying the Satoshi consensus protocol (PoW) to secure a network

against 51% attack. The sanction applied is determined based on the time the attacking

node is hidden from the network. This technique notifies the entire network about the

fork, and during that period, participants, miners, and exchanges cannot transact until

the delay period is removed. The penalty system is a research prototype technique that

has not yet been implemented in a real network, and it also includes several limitations.

According to [Rosenfeld, 2014], when an attacker owns 51% of the network’s hash, he

will always succeed regardless of the imposed delay. Consequently, the possibility of

carrying out the 51% attack when this security mechanism is in place is very large.

Also, the delay process slows down the general transactions of the network and strongly

impacts the usual transactions because the delay blocks will not be confirmed until the

penalty is lifted. This fact makes this technique not very appropriate to be implemented

in a real network, and it is not completely effective against a 51% attack.

[ChainZilla, 2019] proposes a Kodomo security solution called ”delayed proof of work”

(dPoW). This solution is implemented for cryptocurrencies based on UTXO. This secu-

rity technique is already implemented in some blockchains to safeguard against double-

spend attacks. The main attribute of dPow is that it does not recognize the rule of

the longest chain; consequently, attacks that are intended to be carried out in private

cannot gain an advantage to double spend. For its operation, dPow chooses 64 spe-

cial nodes each year to acquire information from Komodo and store it on the bitcoin

blockchain. The strengthened security orientation of this proposal intends for the at-

tacker to rewrite the Komodo chain and bitcoin checkpoints. Likewise, the attacker
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must also be able to influence the majority of the notary network. This makes the

technique robust. However, the limited number of special nodes makes the security

technique centralized, which leads to the known problem of a ”single point of failure”,

where attackers know exactly what to attack. Another limitation that dPoW presents

is that it is only implementable in cryptocurrencies based on UTXO and it is not prof-

itable since it requires an implementation fee. In addition, the participating nodes of

the network must wait an explicit amount of time for the notarization process to be

completed, which can discourage certain participants who intend to make a faster trans-

action. The notarization process is carried out every 10 minutes, which gives attackers

a window of time to carry out the 51% attack in cryptocurrencies given that the block

confirmation time only needs a few seconds [Komodo, 2018].

PirlGuard is a security protocol developed to mitigate the 51% attack, this approach

modifies the consensus algorithm to protect itself from a 51% attack [Minchev, 2018].

This protocol is based on the attributes of the Horizen penalty protocol (system delay

block send penalty), but it is built primarily for Ethash. When the network detects

longer blocks extracted privately, PirlGuard abandons the node instantly by penalizing

the extraction of x number of blocks, based on the total number of blocks extracted

secretly. The PirlGuard approach employs notarial contracts that are controlled by

master nodes; these master nodes are in charge of notarizing the blockchain and pe-

nalizing malicious nodes by regaining legitimate consensus on the Pirl blockchain. As

in the Komodo solution, PirlGuard also employs master nodes, a feature that makes

the security technique centralized, leading to the known problem of a ”single point of

failure”. Another limitation of this solution derives from the fact that the penalty is

not a final solution to protect against the 51% attack, as there is a probability that

attackers with a hash rate of 51% will be able to overcome that penalty.

ChainLocks [Block, 2018] is another security technique developed to protect DASH,

based on the implementation of “long-living master node quorums” (LLMQs) to mit-

igate the 51% attack. This technique includes a network-wide voting process that

comprises a “first-look” policy. For each of the blocks, an LLMQ of a large number of

master nodes is approved. All participating nodes in the network are required to sign

the designated block to extend the active chain. While at least 60% of the network

participants verify a block, they generate a P2P message (CLSIG) to notify all other

nodes about the event. This CLSIG message cannot be generated unless enough mem-

bers of the network comply, so it implies a valid signature of authenticity and verifiable

by the nodes within the network. Because only one confirmation is required for the

publication of a block, attackers with at least 51% hashing power have a chance to

double-spend, making the Dash blockchain vulnerable. In addition, the main disadvan-

tage of ChainLocks is that it is designed only for the Dash cryptocurrency, which has
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a low network hash. This feature, in addition to the master node approach, makes it a

weak security approach allowing the possibility of a 51% attack simply by renting the

required hashing power [Ng, 2018].

Merged Mining is not a security technique, but a method that allows merging several

cryptocurrencies with mining at the same time. Low hashing power cryptocurrencies

that share the same consensus can benefit from merged mining to improve their se-

curity [Cryptocompare.com, 2015]. The merged mining process makes it possible to

increase the hashing power by starting in the other coin that comprises a higher hash-

ing power. Although cryptocurrencies take advantage of merged mining, transactions

on both networks can run in sequence. Blockchains are classified as main and auxil-

iary. In addition to improving security, another benefit is the ability for miners to mine

more than one block simultaneously. Although merged mining increases security on

blockchains, the process is not straightforward and is very often neglected by miners.

The main limitation of this method is that the cryptocurrencies that take advantage of

this approach must be in the same consensus protocol and mining algorithms [BiXBiT,

2018]. Another limitation is that, if two low-hashed cryptocurrencies are combined, it

is possible to exploit them as long as the attacker achieves the required hashing power.

Consequently, merged mining is only a process to increase the cost of the attack by

merging hashing power, and does not provide an effective solution to the 51% attack.

Sayeed & Marco-Gisbert present a novel technique called ”Proof-of-Adjourn” (PoAj),

whose objective is to mitigate the main blockchain attacks and the problem of delay

in the processing of transactions with large transactions in cryptocurrencies passed in

UTXO. This proposal does not recognize the longest chain to verify the authenticity

of the chain; instead, a deferral period is imposed to regulate the verification of the

block, although miners with high hashing power could have an advantage in the mining

process, the transmission of more than one block will disqualify the block from being

included in the chain by abstaining from mining activities for some time. The security

of this proposal lies in eliminating the possibility of block reversion. PoAj confirms

transactions with just one confirmation eliminating the waiting time of six confirmations

brought by PoW. This leads to a much faster transaction confirmation rate compared to

many existing consensus protocols. Similarly, PoAj introduces a unique approach that

is activated when there is more than one block transmitted within a predefined period

of time. This approach is unique and, so far, it is the first approach to fully solve the

problem. This proposal is not found in any cryptocurrency; the authors implemented a

proof of concept of the PoAj consensus protocol in the Python programming language.

The table 2-1 presents the advantages, risks, vulnerabilities, implementation cost, and

the working of the techniques for 51% attack prevention presented in the analyzed

works.
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28 2 Generalities of Blockchain

All these techniques assume a wide decentralization of the nodes, but the reality of this

assumption has not been evaluated in the literature and will be addressed in this work.



3 Cluster-Based Classification of

Blockchain Consensus Algorithms

In recent years, blockchain has become a disruptive technology to protect the integrity

of information, especially in open and collaborative information systems. Its main ad-

vantage is the possibility of reaching a consensus on the new data blocks to be added

to the chain, even with anonymous actors. The most common consensus mechanism is

Proof of Work, but it has been proven very inefficient in terms of energy spent by the

blockchain members. In the literature, there are many other techniques that pretend

to become the new popular mechanism. However, the number of these techniques is

growing too fast to differentiate among all the options. This chapter proposes a new

characterization of consensus algorithms that can be used to find families of mecha-

nisms using cluster-based classification. Using the Ward Method and Spearman’s Rank

Correlation analysis, new clusters of consensus mechanisms were identified. The results

describe the behavioral patterns not seen before in the literature. In addition, some

open problems of current consensus algorithms are discussed.

The study of blockchain consensus algorithms is a growing field in which research can

be carried out in their operation, organization, problems, and other aspects. There-

fore, in this chapter, a theoretical categorization based on the working mechanisms is

carried out. After that, a detailed explanation of how the information was labeled and

organized is presented. Finally, statistical analyses such as correlations, ordering, and

clustering analysis were performed to understand not only how the attributes describe

each consensus algorithm, but also propose a new categorization based on the results

obtained.

3.1 Related work

[Du et al., 2017] present the basic principles and characteristics of consensus algorithms:

Proof of Work, Proof of Stake, Delegated Proof of Stake, Practical Byzantine Fault Tol-

erance and Raft. The features they compare are: byzantine fault tolerance, crash fault

tolerance, verification speed, throughput, and scalability. Additionally, they describe the
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limitations of these algorithms. The authors suggest which algorithm should be used

according to the type of blockchain, in the case of public blockchains: PoW, PoS, and

DPoS. In private blockchains: PBFT and RAFT and in authorized blockchains: PBFT.

The authors do not present a classification proposal, they rely on the existing literature

about the types of blockchain.

On the other hand, [Bach et al., 2018] describe the alternatives to solve the consensus

problem in distributed systems. They address the problem of Byzantine generals, BFT,

and dBFT. The authors present the ten most profitable cryptocurrencies until the year

2018. They also make a description of the algorithms PoW, Ripple, PoS, Stellar, dPOS,

and Proof of Importance. The comparison criteria they use are: energy saving, tolerated

power of adversary, and scalability. They claim that PoW and PoS algorithms are the

most widely used, however, they mention that hybrids of PoW and PoS can be used.

Additionally, they introduce two new algorithms that were not in the public domain in

2018: Proof of Luck (PoL) and Proof of eXercice (PoX). This work is oriented towards

the evaluation of the most popular algorithms according to the criteria energy saving,

tolerated power of adversary and scalability. The authors do not present a categorization

of the algorithms.

[Nguyen and Kim, 2018b] describe the concept, architecture and characteristics of

blockchain. They also classify consensus algorithms into two groups: proof-based and

voting-based, the latter subdivided into Byzantine fault tolerance-based consensus and

Crash fault tolerance-based consensus. The algorithms of the first group that they

present are: original and variants of Proof of Work, Proof of Stake, hybrid of PoW

and PoS, Proof of burn, Proof of Space, Proof of Elapsed Time, Proof of Luck and

Multichain. Nguyen and Kim compare PoW, PoS, and hybrid PoS and PoW based on

the criteria: energy efficiency, modern hardware, forking, double spending attack, block

creating speed, and pool mining. The algorithms of the second group that they describe

are: Hyperledger with practical Byzantine fault tolerance, Ripple, Stellar and Chain.

In the same way as [Nguyen and Kim, 2018b], [Zheng et al., 2017] describe the concept,

architecture and characteristics of blockchain. They present three types of blockchain:

public, consortium and private. The comparison criteria used for the blockchain types

are: Consensus determination, Read permission, Immutability, Efficiency, Centralized

and Consensus process. In this study they address the consensus algorithms: Proof

of Work, Proof of stake, Practical byzantine fault tolerance, Delegated proof of stake,

Ripple and Tendermint. They compare consensus algorithms based on the following

criteria: Node identity management, Energy saving, and Tolerated power of adversary.

They also list the challenges facing this technology. The objective of the work is not to

present a categorization of the consensus algorithms but to compare them according to

three criteria.
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[Sankar et al., 2017] presents the three types of blockchain: public, consortium and pri-

vate. The aim of the authors is to present the Stellar consensus protocol and compare

it with the Corda and Hyperledger Fabric platforms. The comparison criteria they men-

tion are view transactions and latency. SCP uses the concept of quorum segments which

grants users more freedom to decide which participants are trusted. Corda maintains

records of various business and financial contracts. The Hyperledger project allows

various blockchain technologies to interconnect and ensures a secure plug and play en-

vironment for them. The hyperledger does not provide users with as much freedom as

the SCP. The focus of [Sankar et al., 2017] is to present how the Stellar consensus pro-

tocol works and how it interacts with Hyperledger Fabric. It is not intended to classify

consensus algorithms.

For their part, [Chaudhry and Yousaf, 2019] present a generic architecture and the

categorization of consensus mechanisms in distributed systems. Based on criteria such

as: scalability, communication model, category and failure models. Additionally, they

express that the specific categorization of blockchain is divided into two groups: proof-

based consensus and vote-based consensus. The paper describes a proposal to eval-

uate consensus algorithms taking into account the parameters of: blockchain type,

transaction rate, scalability, adversary tolerance model, experimental setup, latency,

throughput, bandwidth, communication model, communication complexity, attacks, en-

ergy consumption, mining, consensus category and consensus finality. Based on the

above criteria, they evaluate the algorithms: ELASTICO, Leader-free Byzantine Con-

sensus, Implicit Consensus, Proof of trust (PoT), DBFT Consensus Algorithm, PoPF,

Ripple, Proof of Vote (PoV), and Proof of Work (PoW).

[Hao et al., 2018] propose a method to evaluate PBFT and PoW algorithms on

Ethereum and Hyperledger Fabric platforms. The testing architecture is made up of

three modules integrated into Yahoo Cloud System Benchmark (YCSB). The two per-

formance evaluation metrics used are: Latency and Throughput. Hao et al. conclude

that PBFT adapted for Hyperledger performs better than PoW for Ethereum in terms of

average throughput and delay. The focus of this work is the evaluation of two consensus

algorithms in private platforms, not the categorization of the algorithms.

The objective of [Arjun and Suprabha, 2020] is to present the results of a systematic

literature review focused on three fronts: the first, identification of solutions for the

banking industry. As theoretical models or empirical frameworks with potential for

strategic change, operational advantages or functions of the stock market. The second

approach was to find documents that highlighted the practical scope or challenges in

platforms, legal, technical and organizational dimensions and the third front, to select

documents oriented to specific applications that used experimental conceptual environ-

ments. The repositories they reviewed were: Scopus, Web of Science, ACM, IEEE,
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Figure 3-1: Organization of consensus algorithms based on [Nguyen and Kim, 2018b]

AIS. Among the most relevant findings are studies on: banking, information systems,

innovation, law, finance, sustainability, entrepreneurship and digital infrastructure.

Taking into account the consulted literature, Fig. 3-1 proposes a basic organization of

the consensus algorithms according to their working mechanism. The said organization

responds to the categorizations, considering the bibliography. However, it does not

consider the variations some derivatives have from the base algorithms from which they

descended.



3.2 Theoretical Categorization Based On Work Mechanisms 33

Table 3-1: Features and values used to cluster.
Feature Description Value

Energy efficiency Efficient energy used to perform the tasks of the protocol Yes = 0 No = 1

Modern hardware Modern hardware requirements

No need = 0, Low need

= 1, Need = 2, High =

3

Forking Possibility to perform a forking of the main chain

Never = 0, Very dif-

ficult = 1, Difficult =

2, Probably = 3, Very

Probably = 4, Never =

0

Double-spending at-

tack
Possibility of a double-spending attack

Difficult = 1, More or

less = 2, Easy = 3

Block creation speed Speed to create a block
Very fast = 0, Fast = 1,

Low = 2, Very low = 3

Mining Pool Amenable to mining pool creation

Never = 0, Very diffi-

cult = 1, Can be pre-

vented = 2, Difficult to

prevent = 3, It occurs

= 4

Number of participants Number of participants in the protocol
Mostly unlimited = 0,

Limited = 1

Decentralization Decentralization of participants
Mostly high = 0, Low

= 1

Trust Trust of the network
More trustful = 0, Less

trustful = 1

Node Identities Node identity management No = 0, Yes = 1

Security threat Security threat to network
More serious = 0, Less

serious = 1

Award-giving Award-giving to miner nodes Yes = 0, Mostly no = 1

3.2 Theoretical Categorization Based On Work

Mechanisms

3.2.1 Organization of information

The characteristics of the consensus algorithms evaluated are qualitative variables pro-

posed and described by several authors in previous studies [Du et al., 2017,Bach et al.,

2018,Nguyen and Kim, 2018b,Zheng et al., 2017, Sankar et al., 2017]. Taking this in-

formation as a reference, an assessment was defined in numerical categories to apply

statistical functions on them. We first labeled each of the characteristics of the consen-

sus algorithms, giving a lower value than the desired condition based on the efficiency of

each attribute; and increasing said value when the less favorable condition is obtained

(Table 3-1).
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3.2.2 Correlation analysis between the characteristics evaluated

Statistical analyzes were generated using the Past program [Hammer Øyvind, Harper

David A.T, 2001]. First, a Spearman rank correlation analysis was performed, which

is a non-parametric method that quantifies the relationship between two descriptors;

defining a perfect correlation of these when the ranks of all the objects are the same in

both elements [Legendre, 2012,Franco et al., 2014]. Additionally, the Bonferroni [Cox

and Donnelly, 2011] correction was applied to avoid type I error (finding significant

differences when they do not exist). The results are shown in Fig. 3-2, where all

the blue ellipses signify a significant and positive correlation between the variables

(p <0.05), while the red ones indicate significant negative correlations between the

variables.

Most of the variables show significant correlations. Specifically, the parameters number

of nodes executing, decentralization, trust, nodes identities are managed, security threat,

and award, show a significant correlation between them (green box in 3-2), correspond-

ing to features that have ideal efficiency conditions (zero values), from proof-of-work

algorithms.

For their part, the parameters energy efficiency, modern hardware, forking, double

spending attack, pool mining, agreement making basement, and nodes can join freely,

also show a significant correlation between them (yellow box in Fig. 3-2), correspond-

ing to the characteristics that have the ideal efficiency conditions (zero values), of the

vote-based algorithms.

Two parameters with few correlations are also evident. The first is block creating

speed, which only shows a significant correlation with the energy efficiency and forking

parameters, since although the block creation speed does not have ideal values in almost

no algorithms (except proof of luck), show similar trends such that when a value is

greater in one of them, it is also greater in the other. Modern hardware, despite also

presenting its ideal conditions (zero-based values) in vote-based algorithms; It presents

a variability of its efficiency in the algorithms based on tests. In some of them (Pure

PoS (Nextcoin), State of the block-based PoS, PoS by coin flipping from many nodes,

Delegated PoS, Puzzles designed for human PoW, Proof of burn), it even has the values

ideals. For this reason, it presents few significant correlations with the other parameters.

To summarize, the ideal-valued features of evidence-based algorithms are directly re-

lated to each other, but are inversely correlated with the higher-efficiency variables

of voting-based algorithms. Furthermore, it can be seen that the block creating speed

feature is a variable that is only significantly correlated with the energy efficiency and

forking features. Likewise, modern hardware only correlates with energy efficiency,

forking, and double spending attack ; while pool mining does not correlate with energy



3.2 Theoretical Categorization Based On Work Mechanisms 35

Figure 3-2: Results of Spearman’s rank correlation analysis, blue ellipses indicating

positive significant correlations, and red ellipses indicating negative signif-

icant correlations (p<0.05). Blank spaces indicate no significant correla-

tions (p>0.05).

efficiency, modern hardware, forking, and block creating speed (Fig. 3-2).

3.2.3 Variability of the characteristics of the working mechanisms

of consensus algorithms in blockchain

Subsequently, a Principal Component Analysis (PCA) was carried out, which is a mul-

tivariate ordering technique that seeks to reduce the dimensionality of the data, based

on the correlations, to find the factors that can explain the set of information. The

ordering is defined through factors which are called “principal components”. These

components define the axes of the original rotation of the coordinate system, and cor-
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Figure 3-3: Analysis of principal components of the analyzed consensus algorithms.

respond to the successive directions of the maximum variances of the dispersion of the

points; placing them in a new coordinate system [Legendre, 2012,Catena et al., 2003].

This analysis is visualized in two-dimensional graphs for ease of interpretation, where

the first component will always explain the greatest variability of the data, and the

explained variance will decrease as the component increases (Legendre and Legendre,

1998) [Carmen and Rafael, 2013]. The PCA allowed to identify the variability between

the attributes that describe the working mechanisms of the consensus algorithms in the

blockchain. The first two components (Fig. 3-3) describe 87.5% of the variance among

all the variables (PC1 = 71.78%, PC2 = 15.73%). The first component shows that the

greater variability between the variables contained in each algorithm separates most of

the PoW-based algorithms (purple dots) that are at the positive end of the first axis,

from the voting-based algorithms (red dots), which are at the negative end of the axis.

Hybrid algorithms (green dots) are closer to pure Pow algorithms (purple dots) and

other proof-based algorithms (dark blue dots) (Fig. 3-3).

The GHOST strategy algorithm (purple dot) is the only PoW algorithm separate from

the others in the same category, located closer to another type of algorithm based on

type tests (dark blue dots). On the other hand, PoS algorithms (light blue dots) are
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Figure 3-4: Attributes loads for the first (PC1, left) and second (PC2, right) compo-

nents of the PCA

placed on the negative side of the first axis, they are placed closest to voting-based

algorithms (red dots) among all proof-based algorithms (Fig. 3-3).

The first principal component neatly separates job-based consensus algorithms (on the

right) from voting-based algorithms (on the left). This separation is clearly demarcated

by the marked difference in the attributes number of nodes executing, decentralization,

trust, nodes identities are managed, security threat, and award ; of which algorithms

based on evidence have the highest efficiency with respect to those based on voting.

Additionally, the difference between the algorithms of the positive (PoW based) and

negative (voting based algorithms) extremes of the first axis (Fig. 3-4), shows that

the differences are mainly due to the characteristics of modern hardware, forking, and

double spending attack, in which the byzantine fault tolerance based and crash fault

tolerance based algorithms (based on voting) have the highest efficiency values , while

PoW based have the worst (supplemental material).

The second principal component, which explains 16% of the variance, makes it possible

to separate the algorithms PoS based and Hybrid forms PoW & PoS (negative extreme),

from the rest of the algorithms analyzed, depending on whether they have the worst
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values of efficiency with respect to the Pool Mining parameter (Fig. 3-4).

3.3 Proposed Categorization

Based on the information reviewed in previous analyses, a grouping analysis (also called

cluster analysis) was developed, which seeks to classify similar individuals or variables

among themselves, without an a priori classification criterion. The method consists of

a multidimensional analysis that divides a set of objects or descriptors, under study.

The aforementioned division is made into subsets in which the elements are grouped

based on association matrices that depend on their characteristics. The method is used

as a measure of object association [Legendre, 2012,Catena et al., 2003].

Within the grouping methods, working with the minimum variance method, also known

as Ward’s method; which seeks to obtain the least intracluster variability, in order to

make each group as homogeneous as possible. This homogeneity is measured by the

sum of the squares of the differences between the subjects within the cluster [Legendre,

2012,Catena et al., 2003,Sarabia Alegŕıa et al., 2018]. With this method, the proposed

categorization ordering of the consensus algorithms based on the working mechanisms

analyzed in this document was obtained. The results of the categorization are shown

in Fig. 3-5, where it can be seen that most of the groups are similar to those currently

proposed in the literature (Fig. 3-1), but with some important differences.

According to the proposed categorization, PoW algorithms are correctly grouped into a

single category, with the exception of the GHOST strategy algorithm, which differs from

them by being much more efficient due to the bifurcation feature. The proposed cate-

gorization also maintains the grouping of the hybrid forms of PoW and PoS; allowing to

identify that taking into account the characteristics analyzed, the hybrid algorithms are

closer in their attributes to the pure PoW algorithms than to the pure PoS. The reason

for this is that Proof-of-Stake (PoS)-based algorithms show a greater efficiency in their

attributes: energy efficiency, modern hardware, forking, Double spending attack, and

block creating speed, than the other two categories. (PoW and hybrids).

Likewise, the proposed classification preserves the current classification of the PoS

algorithms (Pure PoS (Nextcoin), State of the block-based PoS, PoS by coin flipping

from many nodes and Delegated PoS).

One of the main contributions of the proposed classification is based on the separation

of the algorithms Hyperledger with practical Byzantine fault tolerance and Symbiont, R3

Corda with BFT-SMaRt, based on the less efficient block creation speed, with respect

to the other grouping of algorithms made up of: Iroha with Sumeragi, Ripple, Stellar,
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Figure 3-5: Cluster analysis of the blockchain consensus algorithms based on the work

mechanisms attributes

Quorum with Raft, and Chain.

Another contribution considers the recategorization of the algorithms previously classi-

fied in the category of ”other evidence-based algorithms”. The first grouping considers

the similarity between the Puzzles designed for human PoW, Proof-of-Burn and Proof-

of-Space algorithms, based on modern hardware which is much more efficient than the

other algorithms. This efficiency attribute also places them closer to PoS algorithms.

The other categorization proposes that the Proof-of-Elapsed-Time, Proof-of-Luck and

Multichain algorithms, together with the GHOST strategy algorithm, form an indepen-

dent grouping. This grouping is the one that should be taken with the greatest caution
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within the proposed classification, since it is the one that considers the greatest distance

in the analysis, and its data show high variability.

The work presented by Nguyen and Kim [Nguyen and Kim, 2018b] has a high degree

of similarity with this work, because they divide consensus algorithms into proof-based

and vote-based algorithms. There is also agreement on the comparison characteristics

of the consensus algorithms. However, Nguyen and Kim do not present categorization

in the way it is done in this paper. For their part, Chaudhry and Yousaf in their

work [Chaudhry and Yousaf, 2019] propose a categorization of consensus algorithms

in distributed systems and provide a list of relevant parameters to evaluate consensus

algorithms, useful for the design and evaluation of algorithms.

3.4 Conclusions

This chapter analyzes the attributes of the working mechanism of the blockchain con-

sensus algorithms in an attempt not only to understand, but also to identify the patterns

that group them together or separate them from the others. Therefore, based on the

published data, a new categorization of consensus algorithms based on their working

mechanism attributes is proposed. The results presented a well-defined separation of

real groups (PoW, PoS, hybrid and voting-based forms); however, it does reveal some

patterns that were not apparent before. One notable finding is that even hard hybrid

forms use attributes from the PoW and PoS algorithms. The cluster analysis Fig. 3-5,

as well as the PCA analysis Fig. 3-3, show a similarity between the hybrid algorithms

and PoW based on the attributes energy efficiency, modern hardware, forking, double

spending attack .

Another important finding is the proposal to reclassify other types of evidence-based

algorithms, separating them into two different groups. One closer to PoS algorithms,

including Proof-of-Space, challenges designed for humans PoW, and Proof-of-Burn al-

gorithms; while the other includes Proof-of-Elapsed-Time, multichain, Proof-of-Luck,

and GHOST strategy; excluding the latter of the pure PoW algorithms. It is necessary

to mention that this categorization could be optimized by including more information

about other attributes of the work mechanisms or other types of attributes.
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mining behavior study

Blockchain applications include cryptocurrencies, decentralized finance applications,

video games, and many others. Most of these applications rely on the blockchain to

prevent problems like fraud, thanks to the built-in cryptographic mechanisms provided

by the data structure and consensus protocol. However, blockchains suffer from what is

called a 51% attack or majority attack, which is considered a high risk to the integrity

of these blockchains, where if a miner, or a group of them, has more than half of the

computing power of the network, you can rewrite the blockchain. Although this attack

is possible in theory, it is considered difficult to achieve in practice due to the assumption

that, with enough active members, it is challenging to have so much computing power;

however, this assumption has not been studied in sufficient detail.

This chapter presents a detailed characterization of the miners of the bitcoin and Crypto

Ethereum blockchains, to test the assumption of computer distribution and create pro-

files that detect anomalous behavior and prevent 51% attacks. The analysis results

show that, in recent years, there has been an increasing concentration of hash rate

power in a minimal set of miners, creating a real risk for current blockchains. Also,

there is a mining pattern among the leading miners, which allows identifying unusual

behavior. This chapter presents a characterization of the principal miners in bitcoin

and Ethereum. In particular, it focuses on miners with a hash rate of more than 1% per

defined period to create profiles that may allow the detection of anomalous behaviors.

In addition, a validation of the theoretical work of [Rosenfeld, 2014] is performed, based

on the actual transactions dataset of these blockchains.

This chapter is organized as follows: Section 4.1 describes the methodology used in this

study. Concretely, it describes the data selection, preprocessing and mining character-

ization phases. The Section 4.2 presents the results obtained organized into multiple

segments, namely the number of miners, hash rate/share of the miner, percentage of

mined consecutively, the profile of miners, and analysis of double-spending. Finally,

the conclusions are presented in Section 4.3
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4.1 Methodology

In this section, each of the phases of the methodology is detailed, first, explain how the

data were obtained and selected, then explain the process of pre-processing the data

sets, and finally, the process of characterization of the miners.

4.1.1 Data selection

In this study, the complete historical data generated by the nodes of the bitcoin and

Ethereum networks were acquired and processed.

On the one hand, the bitcoin dataset is hosted at [Ventrone, 2021a]. This data have been

progressively collected through Web Scraping from the website [Blockchain.com, 2021]

using a script written in Python, which is available hosted at [Ventrone, 2021b]. The

corresponding file has a size of 243 MB, and it contains the data of each bitcoin block

ranging from the Genesis block to the block number 682 676 mined on May 9, 2021.

The data stored in the file is organized into the following fields: Hash, Confirmations,

Timestamp, Height, Number of Transactions, Difficulty, Merkle root, Version,

Bits, Weight, Size, Nonce, Transaction Volume, Block Reward, Fee Reward, Miner

Name, Date, URL Miner, Year, Month and Day.

On the other hand, the crypto ethereum dataset is hosted on the Google cloud platform.

It was queried and downloaded by using the Google BigQuery tool from the blocks

table of the crypto ethereum dataset

(bigquery-public-data:crypto ethereum.blocks) [Google Cloud Platform, 2021].

All data in this dataset was extracted, transformed and loaded through a set of Python

scripts available on [Blockchain ETL, 2021]. The dataset hosted on Google Cloud

contains data on each crypto ethereum block ranging from the Genesis block to cur-

rent date. This because it gets updated daily, and its size is than 13 Gb. It is or-

ganized into the following fields (columns): Timestamp, number, hash, parent hash,

nonce, sha3 uncles, size , transactions root, state root, receipts root, miner,

logs bloom, total difficulty, difficulty, extra data, gas limit, gas used, transaction count

and

base fee per gas.

For the analysis, a subset of data was taken from the main dataset, which corresponds

to the records from the Genesis block until April 27, 2021, when the block with identifier

12 322 990 was mined. This subset only contains the fields timestamp, number, miner,

difficulty and gas used fields. This subset of data was extracted using the following

BigQuery command
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SELECT

timestamp,number,miner,difficulty,gas_used

FROM

bigquery-public-data.crypto_ethereum.block

of which result was saved into a file with a size of 1.2 Gb. Both bitcoin and crypto

Ethereum data sets are saved in a flat comma-separated CSV file for later loading and

pre-processing with a Python script.

4.1.2 Preprocessing

The next stage after selecting data was preprocessing each dataset. This task was

carried out with Google Colaboratory, a cloud service offered by Google that provides

a virtual machine environment to run Jupyter-based Notebooks. The notebook with

the code makes can be found at [Aponte-Novoa and Villanueva-Polanco, 2021]. On

one hand, on the preprocessing of the bitcoin data, the columns other than Height and

Miner Name were removed. Additionally, the columns Date, Year, and Year Month

were created from the Timestamp field. On the other hand, for the preprocessing of

the crypto Ethereum data, the column miner was renamed as Miner Name and the

column number by Height. As similar as in the bitcoin file, the columns Date, Year

and Year Month were created from the field Timestamp, and the remaining columns

were removed.

4.1.3 Mining characterization

This section provides an analysis of mining behavior on two popular blockchains: bitcoin

and crypto ethereum. This analysis is based on real collected data that has been

examined methodically and in detail using data sciences techniques.

4.2 Results

In the information analysis process, different algorithms were designed and coded in

the Python programming language in order to identify aspects such as the number

of miners and number of blocks in different periods of time, the hash rate of miners,

and the percentage of blocks mined consecutively. In addition, own algorithms and

clustering algorithms were used to create profiles of the miners. On the other hand,

the model presented by [Rosenfeld, 2014] was also coded in the Python programming

language. All of the above was done for the bitcoin and crypto Ethereum dataset.
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Figure 4-1: Number of bitcoin blocks mined by year

4.2.1 Number of miners

Bitcoin

A first analysis of the bitcoin data indicates that 682 676 blocks were mined by 73

different miners in the analyzed period. In particular, Fig. 4-1 shows the number

of mined blocks per year, and Fig. 4-2 shows the number of miners per year in the

analyzed period. In this first analysis, it can be seen how the Unknown miners, those

with Miner Name ’Unknown’, are treated as a single miner, which differs from reality. So

the miners were individualized by creating a new field in the data set by concatenating

the fields ’Miner Name’ and ’URL Miner’, this dataset is published in Mendeley Data,

[Aponte et al., 2021b]. As a result of this individualization process on the miners, 198

892 different miners were identified in the entire analyzed period in contrast to the

73 miners found first. Fig.4-3 shows the number of known miners and the number of

unknown miners for each of the years in the analyzed period.
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Figure 4-2: Number of unidentified unknown bitcoin miners by year

Figure 4-3: Number of bitcoin miners by year, after individualizing the unknown min-

ers
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Figure 4-4: Number of crypto ethereum blocks mined by year

Crypto Ethereum

A similar analysis was carried out on the crypto ethereum dataset. In particular, this

analysis shows that 12 322 991 blocks were mined by 5430 different miners in the

analyzed period. Fig. 4-4 shows the number of mined blocks, and Fig. 4-5 shows the

number of miners per year in the same time interval.

4.2.2 Hash Rate / share of miners

Bitcoin

For the 682 676 bitcoin blocks mined in the analyzed period, the hash rate distribution

is made for that same period. Fig. 4-6 shows this distribution in which the unknown

miners are taken as one. Because the number of miners presented is very large, only

the miners that have a hash rate greater than or equal to 0.1% in the entire period

are shown, resulting in 29 miners that represent 99.49% of the total hash rate in the

observed period.



4.2 Results 47

Figure 4-5: Number of crypto ethereum miners by year

Figure 4-6: Bitcoin hash rate distribution throughout the period, miners with hash

rate of at least 0.1%
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Table 4-1: Hash rate distribution of bitcoin nodes throughout the observed period
Participation hash rate

throughout the time period

Number of miners

in the period

Percentage of hash

rate represented

less than 0.1% 198 824 35.88%

at least 0.1% 68 64.13%

at least 0.3% 33 57.33%

at least 0.5% 22 53.37%

at least 0.7% 18 51.01%

at least 1% 11 45.22%

In the process of individualization of the unknown bitcoin miners, it goes from having

73 miners to 198 892 in the entire time. To analyze the hash rate distribution with all

the miners already individualized in the period, this distribution is verified with the

miners that present a minimum hash rate of 0.1%, 0.3%, 0.5%, 0.7% and 1% throughout

the period. This hash rate represents the percentage of mined blocks by that particular

miner in relation to all mined blocks in the entire time. Table 4-1 presents these results.

Based on the data in the table 4-1 and Fig. 4-7, it can be seen that only 11 miners

that represent 0.0053064% of their total number of nodes have a hash rate of at least

1% and together represent 45.22% of the hash rate in throughout the period. It is also

identified that, of 198 824 miners that represent 99.965% of the total miners, present

less than 0.1% of total hash rate in the entire period; in other words, only 68 miners,

that represent 0.0341% of the total of miners have at least 0.1% hash rate in the entire

period, and together represent 64.13% of the hash rate in the entire period analyzed.

Fig. 4-7 presents the hash rate distribution for the entire period with the miners that

have at least 1% total hash rate in the analyzed period.

Fig. 4-7 shows that of the 11 miners that have at least 1% of the total hash rate, two of

those are unknown and the remaining nine individually represent mining pools. Taking

as a starting point these 11 miners who individually possess at least 1% of the total

hash rate, the hash rate distribution of the entire period is plotted year by year in Fig.

4-8.
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Figure 4-7: Bitcoin hash rate distribution throughout the period with hash rate of at

least 1% after individualizing the unknown miners

Figure 4-8: Bitcoin hash rate distribution over time with hash rate of at least 1%,

after individualizing the unknown miners
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Figure 4-9: Bitcoin hash rate distribution with hash rate of at least 1% after individ-

ualizing the unknown miners from January 1, 2017 until May 8, 2021

In Fig. 4-8 it can be seen that all the miners that have a hash rate of at least 1% in the

entire period are present in the bitcoin network since the year 2012, only one of them

has remained active since 2012 to the present (May 2021), and 7 of the 11 miners in

question are active in May 2021.

To verify the current status of the bitcoin network in terms of the hash rate distribu-

tion, and taking into account the number of active miners since 2017, the hash rate

distribution of the entire bitcoin network is generated from January 1, 2017, until May

8, 2021 (Fig. 4-9).

Fig. 4-9 indicates that for the last four years (2017-2020) in the bitcoin network only

16 miners that have a total hash rate of at least 1% for that period, represent 82.47%

of the hash rate of the entire network. From these 16 miners, 10 have been identified

and the remaining 6 correspond to unidentified miners. The Fig. 4-9 indicates that

only 7 of the 11 miners exceed a hash rate of 5%, accumulating together 68.77% of the

total hash rate.

Fig. 4-10 shows the hash rate distribution for these 7 miners in the period from January

1, 2017, to May 8, 2021, seen by years. In this figure, it can be seen that, of the 7 miners

in question, 6 has been present on the network since 2017, and one of them since 2018.
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Figure 4-10: Bitcoin hash rate distribution over time with hash rate of at least 5%

after individualizing the unknown miners from January 1, 2017 until May

8, 2021

The hash rate distribution is generated throughout the period for the 7 miners that have

presented the most hash rate in the last four years, and it is shown in Fig.4-11. The

results show that, of the 7 miners, “SlushPool” is the only one that has been present

on the network since 2012, ’F2Pool’ since 2013, ’AntPool since 2014’ and miners the

’BTC.com’, ’BTC.TOP’, ’ViaBTC’ since 2016 and for their part ’Poolin’ since 2018.

Figure 4-11: Bitcoin hash rate distribution of the top 7 miners over time after indi-

vidualizing the unknown miners from January 1, 2009 until May 8, 2021
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Crypto Ethereum

For the 12 322 990 crypto ethereum blocks mined in the analyzed period, the share

distribution is made for that same period. This share distribution represents the per-

centage of mined blocks by that particular miner in relation to all mined blocks in the

analyzed period. Fig. 4-12 shows this distribution. Because the number of miners

presented is very large, only the miners that have a share greater than or equal to 1%

in the entire period, resulting in 13 miners that represent 78.18% of the total share in

the observed period, are analyzed.

Figure 4-12: Crypto Ethereum share distribution throughout the period with share of

at least 1%

To further analyze the share distribution of all the miners of the crypto ethereum

network in the study period, this distribution is verified with the miners that present a

minimum share of 0.1%, 0.3%, 0.5%, 0.7%, and 1% over the entire period, Table. 4-2

shows these results.

Based on the results in Table 4-2, it can be said that only 13 miners that represent

0.23% of their total number of nodes and have a total share of at least 1% (Fig. 4-12)

represent 78.18% of the share in the entire period. It is also identified that 5366 miners,

which represent 98.82% of the total miners, present less than 0.1% of the total share in



4.2 Results 53

Table 4-2: Share distributions of some crypto ethereum nodes throughout the period
Participation share through-

out the time period

Number of miners

in the period

Percentage of

share represented

less than 0.1% 5366 6.1%

at least 0.1% 64 93.90%

at least 0.3% 37 89.25%

at least 0.5% 19 82.21%

at least 0.7% 15 79.99%

at least 1% 13 78.18%

the entire period; in other words, only 64 miners, that represent the 1.17% of all miners

that have at least 0.1% share in the entire period, represent 93.90% of the share in the

entire period analyzed.

To identify which miners are currently more important, the share of the miners that

represent at least 1% share is generated in the period between January 1, 2019, and

April 27, 2001, as shown in Fig. 4-13. The figure indicates that only 11 miners comply

with having at least 1% share in the analyzed period and together present an 82.25%

total share. Of these 11 miners, it is identified that 2 of these are not present in 2020

or 2021. Of the nine miners that have participated in 2021, 8 have been present since

2019, and one of them since 2020. For the 8 miners that are present in the years 2019,

2020, and 2021, their share is analyzed in the period between January 1, 2019, and

April 27, 2001, Fig. 4-14. Each of these miners presents individually by at least 1%

share and together they add up to 77.59% share.
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Figure 4-13: Crypto Ethereum share distribution with share of at least 1% from Jan-

uary 1, 2019 until April 27, 2021

Figure 4-14: Crypto Ethereum share distribution from January 1, 2019, to April 27,

2021
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4.2.3 Percentage of blocks mined consecutively

For each of the data sets, an algorithm was applied to identify the percentage of blocks

mined consecutively in the entire period of observed time, and for each of the years in

the period analyzed.

Bitcoin

In the bitcoin data set, if the probability of mining at least one block in a consecutive

manner is 100%, the longest mining chain was 11 blocks, and it had a calculated

probability of 0.0001%, in the observed time. Fig. 4-15 shows the percentage of blocks

mined consecutively in the whole period with chains of 2 blocks up to 11 consecutive

blocks. Fig. 4-15 shows how the probability of mining consecutive blocks decreases as

the number of blocks is greater; this trend is presented for each of the years. In this

analysis, it can be seen that, for the first four years analyzed (2009-2012), the longest

chain occurs in 2012 with 5 blocks and a mining probability of 0.0073%. From the year

2013 to the year 2021, mining chains greater than 5 blocks have been presented, with the

year 2013 presenting chains of 11 blocks and the year 2014 of 10 blocks with probabilities

of 0.0016% and 0.0017%, respectively. The year 2016 presents mining chains of up to

8 consecutive blocks with a probability of 0.0018%, In the years 2015, 2018, and 2019,

there were mining chains of up to 7 blocks, and up to 6 blocks in the years 2017, 2020

and 2021, with average probabilities of 0.0030% and 0.0066% respectively.

Figure 4-15: Percentage of Bitcoin blocks mined consecutively
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Cryto Ethereum

For the crypto ethereum data, it is identified that the longest chain of mined blocks

corresponds to 17 blocks, which occurs with a probability of 0.000008% throughout the

period, and 0.000128% in 2015 that was when this event happened. Fig.4-16 shows

the percentage of blocks mined consecutively in the whole period, with chains from 2

blocks to 17 consecutive blocks. It can be seen that the probability of mining consecutive

blocks decreases as the number of blocks is greater, behavior that is presented for the

entire period analyzed as well as in each of the years of that period. It is identified in

this analysis that, every years during the observed period, there are mining chains of

10 blocks with an average probability of 0.00126%. Likewise, for the years 2019 and

2020, there are mining chains of 11 blocks with a probability of 0.000044%, and for the

year 2016 and 2018 chains of 12 and 14 blocks respectively which present 0.00018745%

and 0.00004638% probability of mining.

Figure 4-16: Percentage of crypto ethereum blocks mined consecutively

4.2.4 Profile of miners

Bitcoin

To create profiles of the current most representative miners of the bitcoin network, the

10 miners that make a presence on the bitcoin network in 2021 and have at least a 1%

hash rate in the period from 1%, are considered from January 1, 2019, to May 8, 2021.
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They have a combined hash rate of 76.27% for that period and 73.2% for the period

of January 1, 2017, to May 8, 2021, and of 36.13% in 2009-2021. In Fig. 4-17 the

percentage of active days for each of the 10 miners in the 2019-2021 period is shown

together with the hash rate of each of the miners throughout the period, years 2017 to

2021 and years 2019 to 2021. It is identified that the hash rate of each of the miners

is higher in recent periods compared to the entire period of the presence of the bitcoin

network (2009-2021). Likewise, it can be seen that 7 of the 10 miners have an active

presence ratio of more than 87% in the analyzed period. Only one of those miners has

less than 50% presence in the analyzed period with 35.3%
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Figure 4-17: Best bitcoin miners in the period January 1, 2019 to May 8, 2021
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Table 4-3: Groups formed for the best bitcoin miners with the K-Means, DBScan, and

Birch algorithms to generate 3 groups
Group 0 Group 1 Group 2

Miner % presence Miner % presence Miner % presence

AntPool 60.65
BTC.TOP 83.35

BTP.com NA

SlushPool 75.09

F2Pool 66.94
ViaBTC 58.21

Unk 147 86.26

Poolin 78.11
Unk 3DP 76.25

Unk bc1 48.20

Table 4-4: Groups formed for the best bitcoin miners with the K-Means, DBScan, and

Birch algorithms to generate 4 groups
Kmeans DbScan Birch

Group 0

Miner % presence Miner % presence Miner % presence

AntPool 60.65

AntPool NA

AntPool 60.65

F2Pool 66.94 F2Pool 66.94

Poolin 78.11 Poolin 78.11

Group 1

Miner % presence Miner % presence Miner % presence

Unk 147 76.37

BTC.TOP 83.35 BTC.TOP 74.97

Unk 3DP 88.71

SlushPool 75.09 SlushPool 76.72

Unk bc1 58.09

ViaBTC 58.21 ViaBTC 57.74

Unk 147 86.26 Unk 147 65.42

Unk 3DP 76.25 Unk 3DP 50.99

Unk bc1 48.20

Group 2

Miner % presence Miner % presence Miner % presence

BTP.com NA BTP.com NA BTP.com NA

Group 3

Miner % presence Miner % presence Miner % presence

BTC.TOP 75.90
F2Pool NA Unk bc1 NA

SlushPool 80.21

The day-to-day hash rate of each of the miners is taken from January 1, 2019, to

March 8, 2021 [Aponte et al., 2021c], and it is represented in a vector of 859 positions

corresponding to the each days in that period. The value of each position of the

vector corresponds to the hash rate of the particular miner on each day. The clustering

algorithms K-Means, DBScan, and Birch are applied to the set of hash rate vectors of

the miners in order to identify a patterns among them. After applying these algorithms,

3 and 4 groups are generated. For the case of 3 groups, the parameters for the algorithms

are K-Means (k = 3), DBScan (eps = 1.65 ; min sample = 1.0; metric = ”euclidean”)

and Birch (branching factor = 23, threshold = 1.05). In this case, the results of the

application of the different algorithms generated the same 3 groups, as shown in Table

4-3.

To create 4 groups with the clustering algorithms, the parameters for the algorithms are
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K-Means (k = 4), DBScan (eps = 1.6; min sample = 1.0; metric = ”euclidean”), and

Birch (branching factor = 23, threshold = 1.25). In this case, the algorithms created

different groups, as it can be seen in Table 4-4. The names of the unknown miners in

tables 4-3 and 4-4 were truncated for better visualization. For each of the different

groups formed by the clustering algorithms, it was verified that their elements (miners)

are in the range of a mean +/− 1 standard deviation, this value is displayed in the %

presence column in the 4-3 and 4-4.

Cryto Ethereum

To create profiles of the most representative miners currently in the crypto ethereum

network, the 8 miners that have an active presence in the years 2019 - 2021 and that

individually have at least 1% share in the period, are taken from January 1, 2019, to

April 27, 2021. They have a combined share of 77.59% for that period and 69.63% for

the period of January 1, 2017, to April 27, 2021, and 57.45% between 2015-2021. Fig.

4-18 shows the percentage of days present for each of the 8 miners, in the 2019-2021

period, together with the share of each of the miners throughout the period, years 2017

to 2021 and years 2019 to 2021. It is identified that the share of each one of the miners

is higher in recent periods compared to the entire period of the presence of the crypto

ethereum network (2015-2021). Likewise, it can be seen that 7 of the 8 miners have

an active presence of the 100% during the analyzed period and the remaining 99.4%

presence in the analyzed period.
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Figure 4-18: Best cryto ethereum miners in the period January 1, 2019 to April 27,

2021

The day-to-day share of each of the miners is taken in the period from January 1, 2019,

to April 27, 2021 [Aponte et al., 2021c], and it is represented by a vector of 859 positions
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corresponding to the days in that period. The clustering algorithms K-Means, DBScan,

and Birch are applied to the set of hash rate vectors of the miners. After applying these

algorithms, 3 and 4 groups were generated. The parameters used for the algorithms

are K-Means (k = 3), DBScan (eps = 1.9; min sample = 1; metric = ”euclidean”) and

Birch (branching factor = 2, threshold = 1.05) and * (branching factor = 2, threshold

= 1.15). The final grouping is shown in Table 4-5. For the case of 3 groups, Birch

generated two different results options.

Table 4-5: Groups formed for the best crypto ethereum miners with the k means,

dbscan, and birch algorithms together with the percent of the presence of

their elements in the range ”mean + / - one standard deviation” for 3

groups
Kmeans / Birch DbScan Birch

Group 0

Miner % presence Miner % presence Miner % presence

0x0466 18.04

0x5a0b NA

0xd224 58.72
0xd224 94.92

0x99c8 55.66
0x99c8 77.24

0x005e 85.61
0x005e 92.09

Group 1

Miner % presence Miner % presence Miner % presence

0x5a0b 100
0xea67 NA

0x5a0b 100

0xea67 100 0xea67 100

Group 2

Miner % presence Miner % presence Miner % presence

0x829b 100

0x829b 2.83

0x829b 73.34

0x52bc 100

0x52bc 65.56

0x52bc 77
0x0466 88.67

0x0466 50
0xd224 99.64

0x99c8 85.84

0x005e 61.32

For the generation of 4 groups with the clustering algorithms, the parameters for the

algorithms are K-Means (k = 4), DBScan (eps = 1; min sample = 1), and Birch (branch-

ing factor = 2, threshold = 1). In this case, the results of the 3 different algorithms

presented the same results, which are presented in Table 4-6. The names of the miners

in tables 4-5 and 4-6 were truncated for better visualization. For each of the different

groups formed with the clustering algorithms, it was verified that their elements (min-

ers) are in the range of mean +/− 1 standard deviation, this value is displayed in the

% presence column in the 4-5 and 4-6.

4.2.5 Analysis of double-spending

The research by [Rosenfeld, 2014] presents an analytical solution to model the proba-

bility of a double-spending attack via a stochastic process. A double-spending attack
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Table 4-6: Groups formed for the best crypto ethereum miners with the kmeans, db-

scan, and birch algorithms together with the percent of the presence of their

elements in the range ”mean +/- one standard deviation” for four groups
kmeans / birch

Group 0 Group 1 Group 2 Group 3

Miner % presence Miner % presence Miner % presence Miner % presence

0x5a0b NA 0xea67 NA
0x829b 100

0x0466 18.04

0xd224 94.92

0x52bc 100
0x99c8 77.24

0x005e 92.09

happens when an attacker persuades a seller that a transaction has been confirmed and

subsequently convinces the entire network to accept other transactions that make the

first transaction invalid. If such an attack occurs, then the merchant is left without the

product and the payment, and thus the attacker keeps the product and the value of the

payment.

Recall that a transaction included in a block within the valid chain has n confirmations

if there are n blocks that follow the block containing the transaction. The model

proposed in [Rosenfeld, 2014] assumes that there is a block Bk within a branch known

to the honest miners (normally the longest branch) and that such block Bk contains

the transaction Tk that credits the payment to the seller and has n confirmations. To

perform the attack, the attacker has to construct a branch with additional m blocks

starting from the block to which the block Bk points. Both the honest miners and

the attacker are in the task of extending their respective branches. This model for the

double-spending attack is inspired by a catching up game, in which the attacker’s goal

is to make its branch longer than the valid chain.

This model also supposes that the hash rate of the honest network and the attacker is

constant. Specifically, if the complete hash rate is H, then p · H is the portion that

corresponds to the honest miners, and q ·H is the remaining portion that corresponds to

the attacker, where p+q = 1. Also, it supposes that the mining difficulty is unchanging

for the hash rate H, and that the average time to mine a block is T0.

Let z = n − m. Whenever a block is found, the value of z changes; if that block

was found by the honest network z increases by 1, and if that block was found by the

attacker z decreases by 1. If z ever reaches −1, the attacker’s chain becomes longer and

his attack succeeds.

Let az be the probability that the attacker will be able to catch up when he is currently

z blocks behind. Following the analysis in [Rosenfeld, 2014], az = min(q/p, 1)max(z+1,0).

Additionally, m is regarded as a negative binomial variable; it represents the number of
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successes (blocks mined by the attacker) before n failures (blocks mined by the honest

network), where q is the success probability. Therefore, the probability for a particular

value of m is given by:

P (m) =

(
m+ n− 1

m

)
pnqm (4-1)

Note that once n blocks are found by the honest network, in a period of time during

which m+1 blocks are found by the attacker (one block is assumed to be pre-mined by

the attacker before commencing the attack), the race starts with z = n−m−1. It follows
that the probability for the double-spend to succeed is r :=

∑∞
m=0 P (m)an−m−1.Following

the analysis in [Rosenfeld, 2014], it follows that

r =

{
1−

∑n
m=0

(
m+n−1

m

)
(pnqm − pmqn) ifq < p

1 ifq ⩾ p
(4-2)

Following these results, an analysis of the success probability of a double-spending

attack for the historical data of bitcoin and Ethereum is presented in this chapter. For

both bitcoin and Ethereum, the mining data for the year 2020 is taken from the best

miners presented in Fig. 4-17 and Fig. 4-18. For each of the analyzed blockchain

networks, 3 miners with different hash rate/share values are selected. The results are

shown in Table 4-7.

Table 4-7: Three selected miners of both Bitcoin and Ethereum for the year 2020 with

different hash rate/share values
Bitcoin

Miner Max hash

rate

Min hash rate Avg hash rate

F2Pool 27.67 19.53 22.24

ViaBTC 11.71 6.81 8.63

BTC.TOP 4.43 2.18 3.22

Ethereum

Miner Max share Min share Avg share

0x5a0b 41.57 30.20 36.68

0x52bc 10.09 6.6 8.12

0x005e 1.85 0.84 1.38

For these miners, the success probability of a double-spending attack, r, is calculated

for each month of the year 2020. For a miner, r is computed for each q ∈ {q1, q2, . . . , q12}
and n ∈ {1, 2, . . . , 10}, where qi denotes the hash/share ratio per month for the miner

and n the number of confirmations. Particularly, qi is calculated by computing the



4.2 Results 65

number of blocks mined by the miner in the month i, divided by the total number

of blocks mined in the month i. Fig. 4-19 and Fig. 4-20 show the result of this

calculation for the bitcoin and crypto ethereum networks, respectively.

In the case of the bitcoin network, it can be seen that, as the hash rate for a miner

grows higher and n assumes the lowest values, the success probability of carrying out

a double-spending attack also grows higher, as expected. In particular, the highest

success probability for carrying out a double-spending attack was registered for the

miner F2Pool, since it has the highest hash rate and n = 1, as shown by Fig. 4-19 (a).

This probability was 0.55 in November 2020.
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(a) F2 Pool

(b) ViaBTC

(c) BTC.TOP

Figure 4-19: Probability of Success of a Double Spending Attack on bitcoin Miners
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For the other cases, for all miners, it is observed that the probability of performing a

double-spending attack is less than 0.4. In fact, most of the computed probabilities are

less than 0.2. In Fig. 4-19 (c) it is observed that, in the specific case of the BTC.TOP

Miner, which presents a lower hash rate, the probabilities to carry out the attack are

very low, being 0.0886 for one confirmation, 0.0114 for two confirmations, and less than

0.0017 for n ≥ 3.

For the crypto ethereum network, the general trend for the success probability of car-

rying out the attack is similar to that of the bitcoin network. In particular, the success

probability is directly proportional to the share of the miner and inversely propor-

tional to the number of confirmations. It should be noted that for the miner 0x5a0b

Fig. 4-20 (a), which has the greatest hash power, the probabilities of performing the

double-spending attack are above 0.65, sometimes reaching values above 0.7 when one

commit is made.

For the miner 0x52bc Fig. 4-20 (b), it was fount that it had success probabilities of

performing the attack greater than 0.01 for n ≤ 2. However, for the other cases, these

probabilities are less than 0.01, reaching down to the order of 0.1 × 10−7. In the case

of the miner with the lowest share power, such as 0x005e Fig. 4-20 (c), the success

probability of a double-spending attack is greater than 0.01 only for n = 1. For n ≥ 2,

on the other hand, the probabilities are less than 0.002, reaching down to the order of

6.2× 10−16.
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(a) 0x5a0b

(b) 0x52bc

(c) 0x005e

Figure 4-20: Probability of Success of a Double Spending Attack on Crypto Ethereum

Miners
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4.3 Conclusions

The decrease in the number of miners along with the centralization of the hash rate/share

are threats to the security of these blockchains (bitcoin and Ethereum), therefore un-

derstanding the behavior of the miners becomes a relevant research topic.

It is concluded that according to the analysis carried out, the centralization of the

hash rate seems to be a real threat. On the one hand, for bitcoin, only 18 miners

representing 0.00905014% of the total number of miners have 51.01% of the hash rate

in the entire period. In other words, 99.9658% of the total miners only reach 35.88%

of the total hash rate. On the other hand, for the crypto Ethereum network, only 13

miners representing 0.23% of the total number of miners collectively achieve 78.18% of

the share, i.e. 98.82% of miners collectively achieve 6.10% of the total share.

In both scenarios, there is a real possibility that a 51% attack could take place if the

most powerful miners get together, which violates the main general assumption of the

blockchains. Now, there is a real negative incentive to perform such an attack because

the credibility of the blockchain network will go to zero, as well as the value of the

crypto assets; thus, a self-protection policy takes place in these public networks by its

members. However, there are plenty of other blockchains, public and private, in which

the value loss maybe not be too critical to discourage such attacks to obtain a specific

asset. This centralization of hash rate/share and its risks imply that all new prevention

mechanisms to address this kind of vulnerability must take this new situation seriously

in their considerations.
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Protocols

Consensus protocols are a fundamental part of any blockchain; although several proto-

cols have been in operation for several years, they still have drawbacks. Proof-of-Work

(PoW) and Proof-of-Stake (PoS) protocols are the most popular; however, they still

have limitations. In particular, the consensus mechanism PoW is inefficient regarding

energy consumed by its participants [Aponte et al., 2021a]. For instance, some may

be susceptible to a 51% attack, which may suppose a high risk to the trustworthiness

of the blockchains. Although this attack is theoretically possible, executing it in prac-

tice is often regarded as arduous because of the premise that, with sufficiently active

members, it is not ’straightforward’ to have much computing power. However, in the

previous chapter it was seen that in current public blockchains, this risk real and makes

it imperative to keep exploring new protocols.

The community has made efforts to solve this and other blockchain problems, which

has resulted in the birth of alternative consensus protocols [Oyinloye et al., 2021]. This

chapter presents a detailed proposal of a Proof-of-Accuracy protocol, which aims to de-

mocratize the miners’ participation within a blockchain, control the miners’ computing

power, and mitigate the majority attacks.

As evidenced in Section 2.1, there is little research on Proof-of-Accuracy consensus

protocols. In particular, its study and development have been theoretical. According

to [Kudin et al., 2019], implementing this algorithm requires some components, such

as selection of a coordinator, generation of a secret, generation and distribution in the

network of parts of the secret, and competition between the participants to find the parts

and reconstruct the secret. However, no proposal has presented a concrete protocol.

This chapter presents a detailed proposal for the formalization of a Proof-of-Accuracy

protocol.

The protocol proposal is presented progressively, starting with an initial blueprint

(based on different components described in [Kudin et al., 2019] and its drawbacks),

which is improved in terms of security. Earlier versions of the protocol feature the

mentioned phases; however, the new version (see Section 5.1.7) removes the need for a



71

coordinator and combines the Proof-of-Work feature with access to random locations

to improve the protocol’s resistance to majority attacks.

The chapter is structured as follows: Section 5.0.1 presents an description of Proof-of-

Accuracy consensus protocol. Section 5.1 presents the protocol proposal, introducing it

progressively from earlier versions. This section presents the notation we use to describe

our protocol and its earlier designs, a general description of the generic protocol, the

assumptions, and the description of the proposed protocol. Section 5.2 presents an

analysis of the proposed protocol. In particular, it presents a deep analysis of its

mining process, computational costs, and security. Section 5.3 presents a prototype

implementation of the proposed protocol. Section 5.4 presents a qualitative comparison

between the proposed protocol and other consensus protocols proposed in the literature.

Section 5.6, shows the conclusions and describes future research directions.

5.0.1 Proof-of-Accuracy Protocol

[Kudin et al., 2019] presented novel ideas for creating new consensus protocols, intro-

ducing two possible protocols: protocol simple tickets and Proof-of-Accuracy consensus

protocol (PoAc); these ideas are theoretical with no concrete implementation.

PoAc features an effort or work (CPE) component since the selection of the node that

wins the right to add the new block to the network is not only based on calculating

the solution of a problem with a certain threshold of computational complexity but

also should include a proof that the winning node has the necessary data pieces for the

calculation of the solution of the problem.

These data pieces must be correctly defined and follow a random distribution to ensure

that the task of collecting these pieces is stochastic and feasible in a given interval of

time, which may be increased by adding some decoy pieces and distributing them with

the genuine data pieces on the network [Oyinloye et al., 2021].

The network participants vie for accessing the data pieces needed to solve the mining

problem, which helps participants with little computing skills have the opportunity

to win the Proof-of-Work and add a new block to the chain. Figure 5-1 shows the

flow of the Proof-of-Accuracy consensus protocol, which features a random selection

of a coordinator, who generates a secret, divides it into shares, and distributes them

among participants. The mining process then starts and consists of accessing these

shareholders to reconstruct the secret. The mining party reconstructing the secret will

acquire the right to add a new block to the blockchain.

A recent paper [Kaur et al., 2022] proposed a delegated Proof-of-Accessibility (DPoAC)
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protocol, mostly based on the previous idea. It employed secret sharing, PoS with

random selection, and an interplanetary file system (IPFS). This protocol is similar

to the initial design presented in Section 5.1.5 and follows a similar flow as shown in

Figure 5-1. The main difference is that the coordinator stores the n shares of the secret

in different n nodes on the IPFS network. For a mining party to acquire block creation

rights, the party has to access these shareholders to reconstruct the secret.

As analyzed in Section 5.1.5, this approach has a drawback in that it heavily relies on

the coordinator, meaning this node gains too much knowledge of the secret and may

take advantage of it to favor any mining party.

Figure 5-1: Proof of accuracy flowchart.
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5.1 Proposed Protocol

This section introduces the proposed protocol. The Section 5.1.1 introduces the nota-

tion that will be used throughout the section. The Sections 5.1.5 and 5.1.6, describe

earlier versions of the proposed protocol, highlighting their weaknesses and disadvan-

tages. These earlier versions serve as a base to introduce the proposed protocol. Finally,

the proposed protocol is presented in Section 5.1.7.

5.1.1 Notation

The notation to be used throughout the section is introduced. Specifically, Table 5-1

summarizes the notation.

Table 5-1: Summary of notation.
Symbol Description

t ∈ N A positive integer.

n ∈ N A positive integer.

m ∈ N A positive integer.

m0 ∈ N A positive integer.

m1 ∈ N A positive integer.

G ∈ N Denotes a cyclic group of order q

q ∈ N A prime number

p = 2q + 1 A safe prime number

g ∈ G A public generator of G
Zp The ring of integers modulo p

IDm = {1, 2, . . . ,m} The set of m identifiers

i ∈ IDm An identifier in IDm

si(j) : IDm \ {i} −→ {1,−1} ⊆ Zq

[Hoogerwerf et al., 2021] si(j) =

{
1 if i > j

−1 if i < j
(5-1)

H0 : {0, 1}∗ → {0, 1}m0 Denotes a cryptographic hash function

H1 : {0, 1}∗ → {0, 1}m1 Denotes a cryptographic hash function

0 ≤ pmin ≤ 1 ∈ R Denotes a probability (protocol pa-

rameter)

5.1.2 General Description

The progressive versions of the protocol are built upon the cryptographic components

required to compose a Proof-of-Accuracy (PoAc) protocol described by [Kudin et al.,

2019]. In particular, according to [Kudin et al., 2019], a PoAc protocol features the

selection of a coordinator among all the participants, the joint generation of a secret

by all the participants, the generation of shares of the generated secret, decoy shares,

the distribution of all of them over the network participants, the mining process among
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the mining parties to reconstruct the generated secret, and the proof of recovering the

secret by the winning party. The cryptographic tools used are described below.

Single Broadcast-Based Joint Random Number Generation Protocol

The proposed protocol uses a joint random number generation protocol as described

in [Hoogerwerf et al., 2021,Kursawe et al., 2011]. According to their designers, these

protocols do not require a secure network and need one transmission per network node.

The protocol [Hoogerwerf et al., 2021] features additive aggregation instead of a multi-

plicative aggregation as in the protocol presented in [Kursawe et al., 2011].

The arithmetic carried out by m participants in the protocol [Hoogerwerf et al., 2021]

works over a cyclic group G ⊆ Zp generated by g with order q, where q and p = 2q+1 are

prime numbers. Each participant generates a Diffie-Hellman-like key pair (κi, pki = gκi)

and shares its public key with the other network participants. With the set of public

keys, the participant i computes Ri =
∑m

j=1,j ̸=i si(j)pk
κi
j ∈ Zp, generates ci ∈ Zp,

and calculates γi = ci + Ri. At the last step, a randomly chosen coordinator takes

the role of the combiner and collects all the γi values, and computes α =
∑m

i=1 γi =∑m
i=1 ci+

∑m
i=1Ri =

∑m
i=1 ci, since

∑m
i=1 Ri = 0 (see proof in [Hoogerwerf et al., 2021]),

which will be the input secret passed to the next sub-protocol.

Shamir’s Secret Sharing Scheme

Shamir’s secret sharing scheme aims to divide a secret α in s parts (α1,α2 . . .αs) so that

with any t of the s parts, α can be reconstructed, but every set of t− 1 reveals nothing

about α [Boneh and Shoup, 2020]. Shamir’s secret sharing scheme stems from a general

fact of polynomial interpolation: A polynomial of maximum degree t− 1 defined over a

field is fully determined by t points of the polynomial. In our particular case, we work

it over Zq, which is a field when q is a prime number [Boneh and Shoup, 2020].

The s parts are called genuine parts, the valid ones to reconstruct the secret. Also, n−s
non-genuine parts are generated and distributed among the participants. Combining

genuine and non-genuine parts allows for adjusting the difficulty in collecting t genuine

parts to recover the secret. Algorithms 1 and 2 describe the inner workings of Shamir’s

secret sharing scheme.

Schnorr Non-Interactive Zero-Knowledge Scheme

Schnorr non-interactive zero-knowledge (NIZK) scheme is a non-interactive variant of

the three-pass Schnorr identification scheme. The Schnorr NIZK scheme allows a prover
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Algorithm 1 generates the t-out-of-s sharing of α
1: function Gsh(s, t, α)

2: choose a1, . . . , at−1 ← Zq at random and define a polynomial

f(x) := at−1x
t−1 + at−2x

t−2 + . . .+ a1x+ α ∈ Zq.

3: for i← 1 to s do

4: select xi randomly from Zq, such that xi ̸= xj for all j ∈ {1, . . . , i− 1}
5: yi ← f(xi)

6: αi ← (xi, yi)

7: end for

8: return (α1, α2, . . . , αs)

9: end function

Algorithm 2 recovers α given t genuine shares
1: function Csh(α1 = (x1, y1), . . . , αt = (xt, yt))

2: α← 0 ∈ Zq

3: for i← 1 to t do

4: λi ← 1 ∈ Zq

5: for j ← 1 to t do

6: if i ̸= j then

7: λi ← λi · −xj

xi−xj

8: end if

9: end for

10: α← α+ yi · λi

11: end for

12: return α

13: end function
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to prove to any verifier their knowledge of a discrete logarithm without leaking any

information about its value [Boneh and Shoup, 2020]. Algorithm 3 shows how a proof

gets generated, while Algorithm 4 shows how a proof gets verified.

Algorithm 3 generates a proof
1: function genProof(α, u, id)

2: αt
R←− Zq

3: ut ← gαt

4: c← H0(g, ut, u, id).

5: αz ← αt + c · α
6: return (id, ut, αz)

7: end function

Algorithm 4 verifies a proof
1: function verifyProof(id, ut, αz, u))

2: c
′ ← H0(g, ut, u, id).

3: uz ← gαz .

4: if uz = utu
c′ then

5: return 1

6: else

7: return 0

8: end if

9: end function

Digital Signatures

A digital signature scheme SS consists of the following algorithms [Boneh and Shoup,

2020].

• G is a probabilistic algorithm that takes a security parameter. It outputs a pair

(vk, sk), where sk is a secret signing key, and vk is a public verification key.

• sign is a probabilistic algorithm that is invoked as σ ← sign(sk,m), where sk

is a secret key (as output by the key generation algorithm) and m is a message.

The algorithm outputs a signature σ.

• verify is a deterministic algorithm invoked as b← verify(vk,m, σ), where b is

a bit. If b = 1, then it means the signature is accepted, or else it is rejected.
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5.1.3 Threat Model

We assume a semi-honest adversary, i.e., one who corrupts parties but follows the

protocol as specified. Under this threat model, the corrupt parties follow the rules

of the protocol honestly but they may attempt to learn as much as possible from the

messages they receive from other parties to control the creation of blocks in the chain.

Furthermore, there may be several colluding corrupt parties combining their partial

views to learn information. Semi-honest adversaries are regarded as passive since they

do not take any active actions other than attempting to learn private information by

observing a view of the protocol execution. Semi-honest adversaries are also commonly

called honest-but-curious.

The view of a party is regarded as its private inputs, its memory data, and the list of

all messages received during the protocol. In this sense, the view of an adversary is

composed of the combined views of all corrupt parties. Therefore, under this threat

model, any information the adversary learns from the run of the protocol must be a

computable function on the input of its combined view [Evans et al., 2018].

5.1.4 Initial Assumptions

We assume that each participant has access to a long-term key pair (sk, vk) generated by

a signature scheme SS. Furthermore, each participant has access to a digital certificate

that proves the validity of the corresponding public verification key vk. Additionally,

when two participants want to communicate, a secure channel is established between

them via a protocol such as Transport Layer Security (TLS) [Boneh and Shoup, 2020].

5.1.5 Initial Design

Here, we present our first attempt to build a proof of accuracy protocol. In particular,

this initial design is a proof-of-concept based on the cryptographic components required

to compose a Proof-of-Accuracy (PoAc) protocol described by [Kudin et al., 2019].

Specifically, [Kudin et al., 2019] presents the main cryptographic constituents to build

such a protocol, but they do not present a concrete cryptographic construction of the

protocol.

It is assumed that there are m + 1 participants. One of them assumes the role of

coordinator with identifier 0. Additionally, each of the m remaining participants is

given a unique identifier i ∈ IDm. The arithmetic works over a cyclic group G ⊆ Zp

generated by g and whose order is a prime number q with p = 2q+1 (p a prime number).

The initial design runs as follows.
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1. Participant i generates an ephemeral key pair by selecting the private key κi ∈ Zq

at random and computing the public key pki ← gκi ∈ G

2. Participant i sends the ephemeral public key pki to the other m− 1 participants.

3. Once participant i receives other participants’ ephemeral public keys, the partic-

ipant computes Ri as Ri =
∑m

j=1,j ̸=i si(j)pk
κi
j , where s is the function defined in

Equation (5-1).

4. Each participant i selects ci ∈ Zq at random and computes γi = ci + Ri. The

participant then sends its γi to the coordinator.

5. Once the coordinator receives γi’s from all participants, the coordinator will com-

pute the secret α as

α =
m∑
i=1

γi =
m∑
i=1

ci +
m∑
i=1

Ri =
m∑
i=1

ci,

since
∑m

i=1 Ri = 0.

6. The coordinator generates s shares of α, (α1, . . . , αs) ← Gsh(s, t, α), and n − s

random points αs+1, αs+2, . . . αn from Zq × Zq. The coordinator then computes

u = gα and shuffles the genuine and non-genuine points, forming the list A =

[αi1 , αi2 , . . . , αin ], with 1 ≤ i1, i2, . . . , in ≤ n. The coordinator now computes

σ0 = sign(sk0,H1(A ∥ u ∥ Bl)) where Bl is the last block in the blockchain. The

coordinator now makes A, u, σ0 publicly accessible to all participants.

7. At this point, the mining process begins. A mining party will attempt to re-

construct the secret α by finding t genuine points from A. In particular, the

participant first collects A, u, σ0 from the coordinator, and may check whether

σ0 is a valid signature for H1(A ∥ u ∥ Bl). The participant then selects t points

α1, . . . , αt, computes α′ ← Csh(α1, . . . , αt), and checks whether u is equal to gα
′
.

Once the participant finds t suitable points, the participant will proceed with step

8. Otherwise, the participant will attempt to find t genuine points.

8. A mining party with identifier id proves its knowledge of the correct α′ to other

participants by using the Schnorr non-interactive zero-knowledge scheme. Specif-

ically,

a) The participant computes proof = (id, ut, αz) ← genProof(α′, u, id). He

then publishes (mid, σid) to the network, where

mid ← (proof, A, u, σ0)

and σid ← sign(skid,H1(mid)).
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b) Any verifier can check a solution (mid, σid) by calling the function check

shown by Algorithm 5.

Algorithm 5 checks a solution

1: function check(mid, σid, vkid, vk0, Bl)

2: b0 ← verify(vkid,H1(mid), σid)

3: if b0 = 1 then

4: (proof, A, u, σ0)← mid

5: b1 ← verify(vk0,H1(A ∥ u ∥ Bl), σ0)

6: (id, ut, αz)← proof

7: b2 ← verifyProof(id, ut, αz, u)

8: if b1 = 1 and b2 = 1 then

9: return Accept

10: else

11: return Reject

12: end if

13: else

14: return Reject

15: end if

16: end function

Analysis of the Initial Design

Here, the initial design is analyzed

Correctness Step 7 is analyzed of the initial design. Note that what the coordinator

does is to call Gsh(s, t, α), creating s genuine shares for α, any t of which serves to

reconstruct α. Hence, any mining party that finds t genuine shares among the n entries

in A will successfully reconstruct the secret.

Drawbacks The major drawback of the initial design is that it heavily relies on the

coordinator since this coordinator aggregates all γi to obtain the secret α and then

computes the s shares of α and n − s random points, which means the coordinator

gains too much knowledge of α and, hence, may take advantage of this knowledge to

favor any mining party.

Ideally, this coordinator must not know α, neither the s genuine shares of α nor the

n − s random points, i.e., the coordinator only should serve as an aggregator of data.
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The following design improves upon the initial one by exploiting further the aggregating

protocols [Hoogerwerf et al., 2021,Kursawe et al., 2011] to compute the genuine and

non-genuine shares securely.

5.1.6 An Improved Design

Let us assume that there are t participants. One of them assumes the role of the

coordinator with identifier 0. Each participant other than the coordinator has a unique

identifier i ∈ IDt−1. The arithmetic works over a cyclic group G ⊆ Zp generated by g,

whose order is a prime number q with p = 2q + 1 (p a prime number). The improved

design runs as follows:

1. Participant i generates n+ 1 ephemeral key pairs

(κi,0, g
κi,0), (κi,1, g

κi,1), . . . , (κi,n, g
κi,n)

by randomly selecting κi,k ∈ Zq and computing gκi,k for each k ∈ {0, 1, . . . , n}.

2. Participant i sends its ephemeral public keys

(gκi,0 , gκi,1 , gκi,2 , . . . , gκi,n)

to all other participants.

3. After receiving the ephemeral public keys from each other participant, the par-

ticipant i computes the following vector

Ri = (Ri,0, Ri,1, . . . , Ri,n),

where

Ri,0 =
t−1∏

j=1,j ̸=i

(gκj,0)si(j)κi,0

and

Ri,k =
t−1∑

j=1,j ̸=i

si(j)(g
κj,k)κi,k

for each k ∈ {1, 2, . . . , n}.

4. Participant i selects γi, ci
R←− Zq and a probability pi

R←− [pmin, 1]. This participant

computes the vector Ci = (gγiRi,0, ei,1 +Ri,1, . . . , ei,n +Ri,n), where

ei,k =

{
cik

i + γi mod q with probability pi

z
R←− Zq with probability 1− pi

and sends Ci to the coordinator
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5. Once the coordinator receives each Ci for i = 1, . . . , t − 1, the coordinator will

compute

A =

(
t−1∏
i=1

Ci,0,

t−1∑
i=1

Ci,1, . . . ,

t−1∑
i=1

Ci,n

)
(5-2)

The coordinator now computes σ0 = sign(sk0,H1(A ∥ Bl)), where Bl is the last

block in the blockchain. The coordinator now makes A, σ0 publicly accessible to

all participants.

6. At this point, the mining process begins. A mining party first collects A and σ0

from the coordinator, and may check whether σ0 is a valid signature for H1(A ∥
Bl). It then will attempt to find t unique indices 1 ≤ k1, k2, . . . , kt ≤ n, such that

A0 = gα
′
, where

α′ ← Csh((k1, Ak1), (k2, Ak2), (k3, Ak3), . . . , (kt, Akt)).

Once the participants find t suitable points, they will proceed with step 7. Oth-

erwise, they will attempt to find t genuine points.

7. A mining party with identifier id proves its knowledge of the correct α′ to other

participants by using the Schnorr non-interactive zero-knowledge scheme. Specif-

ically,

a) The participant computes proof = (id, ut, αz) ← genProof(α′, A0, id). He

then publishes (mid, σid) to the network, where mid ← (proof, A, σ0) and

σid ← sign(skid,H1(mid)).

b) Any verifier can check a solution (mid, σid) by calling the function check

shown by Algorithm 6.

Analysis of the Improved Design

Here, the improved design is analyzed. Before diving into the details, the following

claim is presented, which will be useful during the analysis.

Lemma 5.1.1 Let us assume there are t participants and let G be a cyclic group,

generated by g. Each participant i generates

(κi,1, g
κi,1), . . . , (κi,n, g

κi,n),

where κi,k is taken randomly from Zq. For a fixed k, let participant i collect gκj,k for all

j ̸= i and compute Ri,k =
∏t

j=1,j ̸=i(g
κj,k)si(j)κi,k , then
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Algorithm 6 checks a solution

1: function check(mid, σid, vkid, vk0, Bl)

2: b0 ← verify(vkid,H1(mid), σid)

3: if b0 = 1 then

4: (proof, A, σ0)← mid

5: b1 ← verify(vk0,H1(A ∥ Bl), σ0)

6: (id, ut, αz)← proof

7: b2 ← verifyProof(id, ut, αz, A0)

8: if b1 = 1 and b2 = 1 then

9: return Accept

10: else

11: return Reject

12: end if

13: else

14: return Reject

15: end if

16: end function

t∏
i=1

Ri,k = 1

Proof.

Note that
∏t

i=1Ri,k =
∏t

i=1

∏t
j=1,j ̸=i(g

κj,k)si(j)κi,k . Consider the term (gκi,k)sj(i)κj,k .

Since −si(j) = sj(i) for i ̸= j, the term (gκi,k)sj(i)κj,k = (gκj,k)−si(j)κi,k . Therefore both

(gκj,k)si(j)κi,k and (gκj,k)−si(j)κi,k appear in the product. Therefore, the product is 1.

Correctness We analyze Steps 5 and 6 of the improved design. Let us assume that

each Ci obtained from participant i was created with a fixed probability pi. Note that

since
∏t−1

i=1 Ri,0 = 1, (by Lemma 5.1.1)

A0 =
t−1∏
i=1

Ci,0 =
t−1∏
i=1

gγiRi,0 =
t−1∏
i=1

gγi
t−1∏
i=1

Ri,0 =
t−1∏
i=1

gγi = g
∑t−1

i=1 γi = gα = u

where α =
∑t−1

i=1 γi mod q.

Let us fix a k with 1 ≤ k ≤ n. Let us assume that Ci,k = cik
i + γi + Ri,k mod q for

all 1 ≤ i ≤ t− 1. By construction, this occurs with probability ρ = p1p2 . . . pt−1. Since
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∑t−1
i=1 Ri,k = 0 (By Lemma 5.1.1) then

Ak =
t−1∑
i=1

Ci,k =
t−1∑
i=1

cik
i +

t−1∑
i=1

γi +
t−1∑
i=1

Ri,k = P (k)

where P (x) = ct−1x
t−1 + ct−2x

t−2 + . . .+ c1x+ α.

If the mining party finds t suitable k1, k2, . . . , kt, then

Ak1 = P (k1), Ak2 = P (k2) . . . , Akt = P (kt).

Therefore, A0 = gα
′
, where

α′ = Csh((k1, Ak1), (k2, Ak2), . . . , (kt, Akt)).

Drawbacks The improved design still relies on a coordinator, but now this coordinator

does not know α, neither the s genuine shares of α nor the n − s random points, i.e.,

the coordinator only serves as an aggregator of data; if the coordinator wants to know

the secret α, it will have to perform step 6 of the improved design as any other mining

party would. However, having a coordinator still presents a unique point of failure for

this approach. Also, it solely relies on the Proof-of-Work performed by a mining party

at step 6, which may not have a solution. To reduce power concentration, hence, the

possibility of a 51% attack [Aponte-Novoa et al., 2021], and increase the fairness of

the mining process, a new version should complement the Proof-of-Work with other

approaches; for example, access to random locations, similar to PoC [Oyinloye et al.,

2021].

Another drawback is that any mining party will attempt to recover α from A at step 6.

Ideally, any mining party should only know how to reconstruct gα rather than α. An-

other issue may arise if the cyclic group G is set to another one (e.g., a subgroup of the

points of an elliptic curve). If that is the case, a mapping to associate each element of

G with an element of Zq will be required. In this version, this is not a problem since

we are assuming the arithmetic works over a cyclic group G ⊆ Zp generated by g with

order q, where p = 2q + 1 and p, q are prime numbers. Hence, the computation of

Ri,k =
t−1∑

j=1,j ̸=i

si(j)(g
κj,k)κi,k

for each k ∈ {1, 2, . . . , n} does not present any inconvenient.

Our final version deals with the drawbacks of the improved design by introducing the

following features:
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• Permit a mining party to access Ci at different locations and compute a new

vector A independently with the collected Ci’s.

• Use only the multiplicative version of the aggregating protocol [Kursawe et al.,

2011] to compute the ciphertexts of the shares.

• Exploit the homomorphic properties of ElGamal-based cryptographic schemes to

allow any mining party to reconstruct gα from the ciphertexts of the shares.

5.1.7 Our Proposed Protocol

Let us assume that there are t−1 participants. Each participant has a unique identifier

i ∈ IDt−1. The arithmetic works over a cyclic group G generated by g and whose order

is a prime number q. Our proposed protocol runs as follows.

1. Participant i generates n+ 1 ephemeral key pairs

(κi,0, g
κi,0), (κi,1, g

κi,1), . . . , (κi,n, g
κi,n)

by selecting κi,k ∈ Zq at random and computing gκi,k for each k ∈ {0, 1, . . . , n}.

2. Participant i sends its ephemeral public keys

(gκi,0 , gκi,1 , gκi,2 , . . . , gκi,n)

to all other participants.

3. After receiving the ephemeral public keys from the other t− 2 participants, par-

ticipant i computes the following vector

Ri = (Ri,0, Ri,1, . . . , Ri,n),

where

Ri,k =
t−1∏

j=1,j ̸=i

(gκj,k)si(j)κi,k

for each k ∈ {0, 1, . . . , n}

4. At this point, the mining process begins. A mining party will have to contact each

participant i and request a Ci from it. Specifically, upon request, the participant

i executes (Ci, σi) ← generateC(ski, Ri, Bl), shown by Algorithm 7, where Bl is

the last block in the blockchain.

The participant i then sends (Ci, σi) to the requesting mining party. Note that

the mining party may check whether σi is a valid signature for H1(Ci ∥ Bl). Once
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Algorithm 7 generates the pair (Ci, σi)

1: function generateC(ski, Ri, Bl)

2: pi
R←− [pmin, 1].

3: ci
R←− Zq

4: γi
R←− Zq

5: Ci,0 ← gγiRi,0

6: for k ← 1 to n do

7: p
R←− [0, 1]

8: if p ≤ pi then

9: ei,k ← cik
i + γi mod q

10: else

11: ei,k
R←− Zq

12: end if

13: Ci,k ← gei,kRi,k

14: end for

15: σi ← sign(ski,H1(Ci ∥ Bl)).
16: return (Ci, σi)

17: end function

the mining party contacts each participant i and collects the corresponding Ci,

the party then computes A as

A =

(
t−1∏
i=1

Ci,0,
t−1∏
i=1

Ci,1, . . . ,
t−1∏
i=1

Ci,n

)
.

The mining party’s goal is to find unique indices 1 ≤ k1, k2, . . . , kt ≤ n, such that

A0 = w

with

w = (Ak1)
λk1 · (Ak2)

λk2 . . . · (Akt)
λkt

and

λkj =
t∏

r=1
r ̸=j

−kr
kj − kr

for 1 ≤ j ≤ t.

Once the participant finds t unique indices, the participant will proceed with step

5. Otherwise, this mining party may attempt step 4 again.
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5. When a mining party with identifier id reconstructs w, i.e., finds suitable unique

indices 1 ≤ k1, k2, . . . , kt ≤ n, it will publish (mid, σid) to the network, where

mid = (id, k1, k2, . . . , kt, (C1, σ1), (C2, σ2), . . . , (Ct−1, σt−1)),

and

σid = sign(skid,H1(mid)).

6. Any verifier can check a solution (mid, σid) by calling the function check shown

by Algorithm 8.

Algorithm 8 checks a solution
1: function check(mi, σid, vkid, vk1, vk2, . . . , vkt−1, Bl)

2: b0 ← verify(vkid,H1(mid), σid) .

3: if b0 = 1 then

4: (id, k1, k2, . . . , kt, (C1, σ1), (C2, σ2), . . . (Ct−1, σt−1))← mid

5: for i← 1 to t− 1 do

6: if verify(vki,H1(Ci ∥ Bl), σi) = 0 then

7: return Reject

8: end if

9: end for

10: Compute

A =

(
t−1∏
i=1

Ci,0,

t−1∏
i=1

Ci,1, . . . ,

t−1∏
i=1

Ci,n

)
.

11: With the given indices 1 ≤ k1, k2, . . . , kt ≤ n, compute λkj =
∏t

r=1
r ̸=j

−kr
kj−kr

for 1 ≤
j ≤ t.

12: Compute w = (Ak1)
λk1 · (Ak2)

λk2 . . . · (Akt)
λkt

13: if w = A0 then

14: return Accept

15: else

16: return Reject

17: end if

18: else

19: return Reject

20: end if

21: end function
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5.2 Protocol Analysis

In this section, a deeper analysis of the proposed protocol is done.

5.2.1 Correctness of Our Proposed Protocol

We now analyze step 4 of our proposed protocol. Let us assume that each Ci obtained

from participant i was created with a fixed probability pi. Note that
∏t−1

i=1 Ri,k = 1 for

any 0 ≤ k < n (by Lemma 5.1.1), then

A0 =
t−1∏
i=1

Ci,0 =
t−1∏
i=1

gγiRi,0 =
t−1∏
i=1

gγi
t−1∏
i=1

Ri,0 =
t−1∏
i=1

gγi = g
∑t−1

i=1 γi = gα = u

where α =
∑t−1

i=1 γi mod q.

Let us fix a k with 1 ≤ k ≤ n. Let us assume that Ci,k = gei,kRi,k with ei,k =

cik
i + γi mod q for all 1 ≤ i ≤ t − 1. By construction, this occurs with probability

ρ = p1p2 . . . pt−1. Therefore,

Ak =
t−1∏
i=1

Ci,k =
t−1∏
i=1

gei,kRi,k =
t−1∏
i=1

gei,k
t−1∏
i=1

Ri,k = g
∑t−1

i=1 cik
i+

∑t−1
i=1 γi = gP (k)

where P (X) = ct−1X
t−1 + ct−2X

t−2 + . . .+ c1x+ α with α =
∑t−1

i=1 γi.

If the mining party finds t suitable k1, k2, . . . , kt, then

Ak1 = gP (k1), Ak2 = gP (k2) . . . , Akt = gP (kt).

Hence,

A0 = gα = gP (0) = (Ak1)
λk1 · (Ak2)

λk2 . . . · (Akt)
λkt ,

where

λkj =
t∏

r=1
r ̸=j

−kr
kj − kr

with 1 ≤ j ≤ t.

The section 5.2.2, extend the analysis of this mining process.

5.2.2 Mining Process

Here further analyzed step 4 of the proposed protocol.
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Estimating n and s

Let t be fixed and let Ci be the array obtained from participant i at step 4 of the

proposed protocol for 1 ≤ i ≤ t− 1. Assume that Ci,k for 1 ≤ k ≤ n has been

created with probability pi by the participant i. Note that the value Ak depends on

Ci,k for 1 ≤ i ≤ t− 1. Therefore, ρ =
∏t−1

i=1 pi is the probability of obtaining a genuine

entry Ak in A. If the random variable X is defined as the number of genuine Ak’s in

the sequence of values A1, A2, A3, . . . , An, then X follows a binomial distribution with

success probability ρ in the sequence of n independent trials. Therefore, the expected

number of genuine Ak’s is given by E[X] = n·ρ. By choosing n, such that E[X] ≥ t, s is

expected to be greater than t. Since pmin is known and 0 ≤ pmin ≤ p1, p2, . . . , pt−1 ≤ 1,

then n · pt−1
min ≤ n · ρ = E[X], and so

E[X] ≥ smin = n · pt−1
min ≥ t

when n ≥ t
pt−1
min

.

Expected Number of Attempts for Recovering A0

The expected number of attempts is estimated to solve the Proof-of-Work assuming

that the number of genuine Ai’s is at least t, i.e. s ≥ t (otherwise, the PoW cannot be

solved). Let Z be the set of all combinations [k1, k2, . . . , kt] out of [1, 2, . . . , n].

A first strategy by the miner is to select Ω ⊆ Z and call mining0(Ω, A) as shown by

Algorithm 9. ω is called a genuine combination if the reconstructed w is equal to A0 (i.e.,

line 7 of the function mining0 satisfies). Otherwise, ω is a non-genuine combination.

Algorithm 9 describes the first mining strategy
1: function mining0(Ω, A)

2: while True do

3: ω
R←− Ω

4: [k1, k2, . . . , kt]← ω

5: Compute λkj =
∏t

r=1
r ̸=j

−kr
kj−kr

for 1 ≤ j ≤ t.

6: Compute w = (Ak1)
λk1 · (Ak2)

λk2 . . . · (Akt)
λkt

7: if w = A0 then

8: return ω

9: end if

10: end while

11: end function

Let N = |Ω| be the total number of combinations in Ω. Let K1 be the number of
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genuine combinations in Ω. Therefore, K2 = N − K1 is the number of non-genuine

combinations in Ω. When Ω = Z, N =
(
n
t

)
and K1 =

(
s
t

)
Let Y0 be the random variable that counts the number of iterations to find a gen-

uine combination in Ω using the strategy mining0. Therefore, Y0 follows a geometric

distribution with success probability K1

N
. Hence,

Pr[Y0 = y0] = (1− K1

N
)y0−1K1

N

for y0 = 1, 2, 3, . . . and = E[Y0] = N/K1.

Note that at any iteration of mining0, nothing is learned about a particular Ai, i.e., it

does not learn whether Ai is genuine or non-genuine, but instead, it does learn whether

a particular combination ω is genuine or not.

A seemingly better strategy is to pick Ω ⊆ Z and call mining1(Ω, A) as shown by

Algorithm 10. Furthermore, if the mining party has access to computational resources,

the party then may make a partition of Z, i.e. pick Ω1,Ω2, . . . ,Ωnp with Ωi ∩ Ωj = ∅
for 1 ≤ i, j ≤ np with i ̸= j, and Z =

⋃np

i=1Ωi; and sets and runs np parallel processing

tasks, where the processing task i searches over Ωi, viz. executes mining1(Ωi, A).

Algorithm 10 describes the second mining strategy strategy
1: function mining1(Ω, A)

2: for each ω ∈ Ω do

3: [k1, k2, . . . , kt]← ω

4: Compute λkj =
∏t

r=1
r ̸=j

−kr
kj−kr

for 1 ≤ j ≤ t.

5: Compute w = (Ak1)
λk1 · (Ak2)

λk2 . . . · (Akt)
λkt

6: if w = A0 then

7: return ω

8: end if

9: end for

10: return ⊥
11: end function

Let Y1 be the random variable that counts the number of iterations to find a genuine

combination in Ω using the strategy mining1. According to [Ahlgren, 2014],

Pr[Y1 = y1] =

(
N−y1+1

K1

)(
N
K1

) K1

N − y1 + 1

for any y1 ∈ {1, . . . , K2 + 1}. Hence, EY1 = E[Y1] =
∑K2+1

y1=1 y1Pr[Y = y1] =
N+1
K1+1

.

Since K1 ≤ N , then K1N +K1 ≤ K1N +N and, therefore, EY1 =
N+1
K1+1

≤ N
K1

= EY0 .
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Experimental Results

Let P be the set {0.9, 0.93, 0.95, 0.98, 1} and T be the set {20, 30, 40, 50, 60}. The

following experiment is carried out, in which a trial consists of the following steps.

1. Choose pmin ∈ P , t ∈ T . For the selected pair (pmin, t), choose a value for n, such

that n ≥ t
pt−1
min

.

2. For the selected three-tuple (pmin, t, n), perform 100 runs of a modified mining

phase (step 5 of the proposed protocol). At each run, the corresponding A is

constructed; the numbers of genuine Ai (i.e., the value of s), E[X], and smin are

computed. Moreover, E[Y0] and E[Y1] are computed, assuming Ω = Z.

3. At the end of the trial, the means of all values s, E[X], smin, E[Y0], and E[Y1]

are respectively computed.

Figures 5-2–5-6 show the results obtained for pmin ∈ P , t ∈ T , and proper values of n.
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(a) t = 20 (b) t = 30

(c) t = 40 (d) t = 50

(e) t = 60

Figure 5-2: Results obtained for pmin = 0.90 ∈ P , t ∈ T , and proper values of n.
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(a) t = 20 (b) t = 30

(c) t = 40 (d) t = 50

(e) t = 60

Figure 5-3: Results obtained for pmin = 0.93 ∈ P , t ∈ T , and proper values of n.
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(a) t = 20 (b) t = 30

(c) t = 40 (d) t = 50

(e) t = 60

Figure 5-4: Results obtained for pmin = 0.95 ∈ P , t ∈ T , and proper values of n.
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(a) t = 20 (b) t = 30

(c) t = 40 (d) t = 50

(e) t = 60

Figure 5-5: Results obtained for pmin = 0.98 ∈ P , t ∈ T , and proper values of n.
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(a) t = 20 (b) t = 30

(c) t = 40 (d) t = 50

(e) t = 60

Figure 5-6: Results obtained for pmin = 1 ∈ P , t ∈ T , and proper values of n.



96 5 On Proof-of-Accuracy Consensus Protocols

5.2.3 Computational Cost Analysis

In this section, the computation costs related to some critical steps of the protocol are

analyzed. Let CGO denote the cost of a group operation, and let CFA, CFM , and CFI

denote the costs of a field addition, field multiplication, and field inversion, respectively.

CGE denote the cost of an exponentiation in the group, i.e., am with a ∈ G. Using a

generic fast exponentiation algorithm, then CGE will have a cost of, at most, r · CGO,

where r = ⌈log2(m)⌉.

Computational Costs of Step 4

Once a participant collects all Ci, the participant needs to compute Ak =
∏t−1

i=1 Ci,k for

k = 0, . . . , 1, . . . n. Note that computing Aj has a cost of (t− 2)CGO; hence, computing

A has a cost of (n+ 1)(t− 2)CGO.

Once the participant computes A, the mining process begins. Until completing the

challenge, the participant will keep on selecting t distinct indices 1 ≤ k1, k2, . . . , kt ≤
n out of {1, 2, . . . , n}, computing w = (Ak1)

λk1 · (Ak2)
λk2 . . . · (Akt)

λkt with λkj =∏t
r=1
r ̸=j

−kr
kj−kr

for 1 ≤ j ≤ t, and checking whether A0 = w.

So the cost of computing w, denoted as Cw, is Cw = t · CGE + (t− 1) · CGO + t(t− 1)(2 ·
CFM + CFI). Therefore, the whole mining process cost is roughly EY1(Cw + δ) with δ

being a constant.

5.2.4 Security Analysis

The goal of the adversary is to gain control over the creation of new blocks in the

chain. To that end, he must generate solutions to the Proof-of-Works of the protocol

and prove their validity to the other participants of the network. Since we assume the

adversary is semi-honest, he follows the rules of the protocol but may want to learn as

much as possible from the messages he receives from other parties to gain control over

the creation of blocks in the chain.

First, note that the proposed protocol in steps 1–3 uses the joint random number

generation protocol in parallel. At step 3 of the proposed protocol, what participant

1 ≤ i ≤ t − 1 does is to create n + 1 ElGamal public keys Ri,k, 0 ≤ k ≤ n from the

other participant’s public gκj,k for 1 ≤ j ≤ t− 1. Since the Ri,k values are constructed

from random Diffie-Hellman public-key and cannot be distinguished from random R’s,

the security of this protocol can be reduced to the decisional Diffie-Hellman problem

on the group G [Hoogerwerf et al., 2021]. Furthermore, note that the private key
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associated with the public key Ri,k is given by
∑t−1

j=1,j ̸=i κj,k · si(j) · κi,k mod q for each

k ∈ {1, 2, . . . , n} and is unknown to any participant, even colluding corrupt parties.

At step 4 of the protocol, a participant, say i, will send back Ci with the corresponding

signature σi to any requesting mining party. Note that each Ci,k is of the form gϵRi,k

for some ϵ ∈ Zq, i.e., Ci,k represents the ElGamal ciphertext of the message gϵ under

the public key Ri,k.

Claim 1. A mining party can obtain a proper and fresh A = [A0, A1, A2, . . . , An] if

and only if the mining party has access to the corresponding t− 1 Ci and computes

A =

(
t−1∏
i=1

Ci,0,
t−1∏
i=1

Ci,1, . . . ,
t−1∏
i=1

Ci,n

)
.

Proof.

In a direction (only if), in section 5.2.1 proved it. In the other direction, if the requesting

mining party has access to l0 different Ci,k (possibly previous ones) with l0 ̸= t−1, then

the computed Ak =
∏l0

i=1 Ci,k will be of the form gβ for some random β ∈ Zq. Hence,

the adversary only learns gβ and nothing else.

Claim 2. A mining party cannot reuse a Ci for future challenges.

Proof. Upon request to participant i at step 4, a mining party obtains (Ci, σi), where

σi ← sign(ski,H1(Ci ∥ Bl)), with Bl being the last block. Hence, the mining party

cannot reuse any (Ci, σi) as part of a solution to a future challenge. In particular, by

calling the function check(), as shown by Algorithm 8, any verifier can discover any

cheater.

Moreover, the mining process is fair. Let us now assume a mining party, possibly an

attacker, constructs a proper and fresh A, then such a party may start the mining

process. By construction, such a party does not know whether he will find t suitable

k1, k2, . . . , kt in such A, with

Ak1 = gP (k1), Ak2 = gP (k2) . . . , Akt = gP (kt).

such that

A0 = gα = gP (0) = (Ak1)
λk1 · (Ak2)

λk2 . . . · (Akt)
λkt ,

where

λkj =
t∏

r=1
r ̸=j

−kr
kj − kr

for 1 ≤ j ≤ t.
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If the mining party does not find suitable indices in A, the mining party may contact

any of the t − 1 participants to construct a proper and fresh A and start the mining

process again. Furthermore, the party may request multiple Ci’s from a participant i,

and then pick only a Ci from the available ones for each i to obtain proper and fresh

A’s, and finally search suitable indices in each created A.

From the previous analysis, it is concluded that the proposed protocol can be regarded

as secure and fair, assuming a semi-honest adversary.

5.3 Implementation

A proof-of-concept implementation of the proposed protocol was coded in the Python

programming language. To simulate the protocol’s behavior on a peer-to-peer network,

the implementation of a decentralized peer-to-peer network by [Snoeren, 2021] was

used. The protocol code was adjusted and some framework classes were modified for the

correct implementation of the protocol and its peer-to-peer simulation. After making

adjustments to the decentralized peer-to-peer network implementation, the logic of the

proposed protocol was written in the following python classes:

• Generator class contains methods to create generators for G.

• Zq class contains methods to carry out operations in Zq.

• MyRsa class contains methods for generating and validating RSA digital signa-

tures.

• Participant class encloses the logic of the proposed protocol. It internally makes

calls to P2P methods to send and receive messages over a P2P network.

• Protocol class contains the main method. It deals with instantiating the partici-

pants and calling functions for each protocol’s phase.

The protocol code was published on GitHub [Aponte-Novoa and Villanueva-Polanco,

2022c] and can be executed in a Google Colab notebook [Aponte-Novoa and Villanueva-

Polanco, 2022a].

5.4 Comparison with Other Approaches

Following a similar approach as in [Aponte et al., 2021a], a qualitative comparison

between the proposed protocol and the following proof-based consensus protocols is

carried out: Pure PoW [Nakamoto, 2008], Cuckoo hash function-based PoW [Pagh
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and Rodler, 2001], Prime number finding-based PoW [Sunny, 2013], Double puzzles-

based PoW [Eyal and Sirer, 2014], Non-outsourceable puzzles [Miller et al., 2015],

Bitcoin-NG [Eyal et al., 2016], GHOST strategy [Sompolinsky and Zohar, 2013], Gen-

eralized PoW [Tang et al., 2017], Pure PoS (Nextcoin) [Nxt, ], State of the block-based

PoS [Nguyen and Kim, 2018a], PoS by coin flipping from many nodes [DBL, 2019],

Delegated PoS [Del, ], Coin age-based PoW difficulty re-designation (Ppcoin) [Sunny

and Scott, 2012], Stake-based PoW difficulty re-designation (Blackcoin) [Vasin, 2014],

Coin age with an exponential decay function [Ren, 2014], Combining PoW and PoS

to append blocks sequentially [Duong et al., 2020], with difficulty adjustment [Chep-

urnoy et al., 2018], Proof of activity [Bentov et al., 2014], Puzzles designed for human

PoW [Blocki and Zhou, 2016], Proof of burn [P4Titan, 2014], Proof of space [Park

et al., 2018], Proof of elapsed time [saw, ], Proof of luck [Milutinovic et al., 2016],

Multichain [Greenspan et al., 2015] ; and the following Vote-based consensus protocols:

Hyperledger with practical Byzantine fault tolerance [Hyp, b], Symbiont, R3 Corda

with BFT-SMaRt [Sym, b,Cor, ], Iroha with Sumeragi [iro, ,Hyp, a], Ripple [Schwartz

et al., 2014], Stellar [Mazieres, 2015], Quorum with Raft [Lamport, 2001], Chain [Fed,

].

To perform a qualitative comparison, A set of characteristics that all these protocols

shared are defined. Additionally, for each feature, a rank of values with their corre-

sponding numeric values are defined. Table 5-2 shows the defined features with the

values they can assume.
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Table 5-2: Features and values used to cluster.
Feature Description Value

Energy efficiency Efficient energy used to perform the tasks of the protocol Yes = 0 No = 1

Modern hardware Modern hardware requirements

No need = 0, Low need

= 1, Need = 2, High =

3

Forking Possibility to perform a forking of the main chain

Never = 0, Very dif-

ficult = 1, Difficult =

2, Probably = 3, Very

Probably = 4, Never =

0

Double-spending at-

tack
Possibility of a double-spending attack

Difficult = 1, More or

less = 2, Easy = 3

Block creation speed Speed to create a block
Very fast = 0, Fast = 1,

Low = 2, Very low = 3

Mining Pool Amenable to mining pool creation

Never = 0, Very diffi-

cult = 1, Can be pre-

vented = 2, Difficult to

prevent = 3, It occurs

= 4

Number of participants Number of participants in the protocol
Mostly unlimited = 0,

Limited = 1

Decentralization Decentralization of participants
Mostly high = 0, Low

= 1

Trust Trust of the network
More trustful = 0, Less

trustful = 1

Node Identities Node identity management No = 0, Yes = 1

Security threat Security threat to network
More serious = 0, Less

serious = 1

Award-giving Award-giving to miner nodes Yes = 0, Mostly no = 1

Based on what is found in the literature, a value per feature per protocol is assigned,

creating a dataset whose rows represent the names of protocols and columns represent

the features. then hierarchical clustering over the dataset to group the protocols is

applied; worked with the method of least variance (Ward’s method); which seeks to

obtain the least variability intra-cluster to ensure that each group is the most homoge-

neous possible. Finally the group is identified (and, hence, the features) in which the

proposed protocol (PoAc) was located. Figure 5-7 shows the groups created by the

clustering algorithm.
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Figure 5-7: Hierarchical clustering dendrogram.

As a result of the hierarchical clustering, it is identified that PoAc is part of a group

made up of Proof-of-Space, Proof-of-Burn, and puzzle designed for human PoW. Based

on the previously defined features, it can be said that these protocols share the following

features:

• Non-energy-efficient.

• Their need for modern hardware for its execution is low.

• They may present forking.

• Resistant to double-spending attack.

• Strategies may be deployed to prevent mining pools.

• High decentralization.

• Trustful

• Award-giving to a node adding a block to the chain.

It consider that the proposed protocol may be implemented and deployed in any

blockchain, which decides the selection of the winning participant; that is, who wins the

right to add a new block to the main chain, through a Proof-of-Work based protocol
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(PoW). Additionally, the proposed protocol does not require the participants to have

any particular hardware, making it implementable in blockchains where the hardware

of the participants features any computing power.

5.5 Discussion of a potential application

A particular use case can be a decentralized application for registering anonymous

touristic information where each participant in the network corresponds to a touristic

operator. For this application, the integrity and availability of the data are crucial,

and so there must be a control on registering data in the blockchain, making a con-

sensus necessary. The touristic operators feature pieces of hardware that may not be

homogeneous and typically present a low level of computation.

Additionally, this scenario may use its cryptocurrency for the consortium of touristic

operators. A tourist can use it to carry out monetary transactions with the different

operators, requiring trust between the participants. In addition to the touristic opera-

tors and their resources, tourists would participate in the network, even in the protocol,

with mobile devices featuring varying computing power.

5.6 Conclusions

Although the study of alternative consensus protocols has taken an interest in the

scientific blockchain community recently, most of the related works are still theoretical

ideas. Proof-of-Accuracy protocols are a particular case since there are few papers

about them in the literature, presenting neither concrete proof-of-accuracy protocols

nor implementations.

This chapter introduced a new Proof-of-Accuracy protocol, starting with an initial

and insecure design, which progressively improved regarding security. The proposed

protocol removed the need for a coordinator and combined the proof of work component

with access to random locations to improve the protocol’s resistance to majority attacks.

The analysis pointed out that it is secure and fair assuming a semi-honest adversary.



6 On Detecting Cryptojacking on

Websites: Revisiting the Use of

Classifiers

Cryptojacking is an illegal and unauthorized mining activity on the victim’s computer,

using the computational power of the victim’s device to extract cryptocurrencies, which

generates large computational consumption, reducing the computational efficiency of

the victim’s computer. Moreover, this attack may be used by a powerful attacker

to increment their computationally power, posing a risk to any blockchain based on

mining [Carlin et al., 2020,Aponte et al., 2021a,Tayyab et al., 2022,Wu et al., 2022,

Bijmans et al., 2019,Aponte-Novoa et al., 2021,Aponte-Novoa and Villanueva-Polanco,

2022b].

Cryptojacking on websites uses JavaScript code to mine cryptocurrencies. This tech-

nique does not require installing javascript code to perform the mining process. All it

takes is for the user to load the infected website in their browser for the illegal mining

code to execute in the browser of the victim’s computer [Cry, a]. According to [Cry,

b], many websites have been infected by cryptojacking, such as personal blogs up to

Alexa-ranking websites. Also, it noted that as of January 2022, there were around 3000

sites websites that offered online cryptojacking scripts.

Cryptojacking detection techniques such as browser extensions and antiviruses pro-

vide a partial solution to the cryptojacking problem since attackers can avoid them

by employing obfuscation techniques or renewing domains or malicious scripts rela-

tively frequently. [Tekiner et al., 2021]. Cryptojacking boomed with the birth of service

providers that offer ready-to-use implementations of mining scripts in web browsers.

Therefore, attackers can reach many more victims via websites. These service providers

are Coinhive [Coi, ] and Cryptoloot [Cry, c].

As seen in [Ying et al., 2022,Hernandez-Suarez et al., 2022,Naseem et al., 2021,Om Ku-

mar and Sathia Bhama, 2019,Liu et al., 2018,Sivaraju, 2022,Petrov et al., 2020], there

is a recent trend of applying specialized deep learning models to detect cryptojacking

in websites. However, specialized deep learning models might pose challenges with ref-
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erence to their deployment and performance. So this chapter seeks to explore machine

learning models (comparatively simpler than deep learning models) for cryptojacking

classification to identify which of these machine learning models may render similar

or better results. Hence, this chapter takes previous works as a reference, particularly

the recent specialized deep learning model and the dataset presented and collected in

[Hernandez-Suarez et al., 2022]. This dataset was used to train and validate multiple

machine learning classification algorithms to detect cryptojacking on websites and make

a comparison between the machine learning models and the specialized deep learning

model.

This chapter is organized as follows: Section 6.1.1, presents three different cases of cryp-

tojacking. Section 6.2 presents different techniques for the detection of cryptojacking,

Section 6.3 describes the dataset’s selection and content, and presents an exploratory

data analysis. This section shows a correlation and clustering of data, and also describes

feature selection and split and normalization process. Some machine learning models

for detecting cryptojacking on the website are presented in the section 6.3.3. Next,

Section 6.4 shows the results, and the Section 6.5 an idea of implementing a hybrid,

lightweight, usable, privacy-preserving mechanism added to a web browser for blocking

websites that potentially may be infected by cryptojacking is presented. Then, some

conclusions are given.

6.1 Some cases of cryptojacking

6.1.1 Cryptojacking on websites

Websites of different kinds have been victims of strong cryptojacking type malicious

software actions. In early 2018, the online video-sharing platform YouTube was illegally

compromised where the CoinHive miner ran on its ads [You, , kas, ], and the Russian

Nuclear Weapon Research Center [Rus, ]

6.1.2 Cryptojacking with advanced techniques

Other attacks have used advanced techniques in the spread of cryptojacking; an exam-

ple of this was when the botnet called Vollgar attacked all Microsoft SQL (MSSQL)

databases servers to take control of administrative accounts and inject malicious miners

into those servers [MSS, ]. Another example of the use of these advanced techniques

was presented with the Zoom video conferencing software. In this case, the attackers

merged cryptojacking malware with the main zoom application and published it on dif-

ferent file-sharing platforms [Zoo, ]. Similarly, this technique was used in the Nintendo
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Switch consoles [nin, ]. Another use case of these advanced techniques was presented

in MikroTik routers between July and August of 2018, where a cryptojacking cam-

paign managed to compromise more than 200,000 MikroTik routers, primarily located

in Brazil. In the same way, researchers observed that routers that were not MikroTik

were also compromised [tre, ]. Moreover, a recent study explores cryptojacking and its

impact on Electric Vehicles [Malik and Anwar, 2022].

In 2019, 8 applications were detected and removed from the Microsoft Store in Windows

10. When the user installed and opened these applications, they secretly downloaded

cryptojacking’s JavaScript code, which carried out mining tasks for the Monero cryp-

tocurrency, notably affecting the user device performance [Mic, ,Sym, a].

In 2018, researchers from RedLock dedicated to computer security discovered that at

least one unknown computer criminal broke into an Amazon Cloud account associated

with Tesla and used it to mine cryptocurrencies. In this attack, the Stratum mining

protocol was used, and the true IP address of the mining pool was hidden and kept the

CPU consumption low [Tes, ].

6.1.3 Cryptojacking in industrial control systems or Critical Servers

The impact of cryptojacking has surpassed the borders of traditional websites, affecting

industrial control systems and critical servers, In January 2020, following a report on the

bug bounty website www.hackerone.com, the US Department of Defense discovered that

its government and military servers were affected by cryptojacking to mine the currency

Monero illegally [ZDN, ,Dec, a]. In 2019, a Russian nuclear warhead facility employee

was fined around $7000 for illegally mining bitcoin using the facility’s servers [Dec, b]

6.2 Related works

The literature presents different techniques for the detection of cryptojacking on web-

sites; however, these solutions present some limitations related to performance, trans-

parency and effectiveness.

A hardware-based approach to cryptojacking detection is presented in [Ying et al.,

2022]. This method takes advantage of the Intel Processor Trace mechanism to collect

control flow information at runtime from the web browser. This technique uses two

optimization approaches based on library functionality and information gain to prepro-

cess control flow information. It also takes advantage of a Recurrent Neural Network

(RNN) for cryptojacking detection.
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A method that performs a fingerprinting technique to detect possible malicious sites

is presented in [Hernandez-Suarez et al., 2022], which is then characterized with an

autoencoding algorithm that keeps the best information of the infection vestiges to

maximize the classification power by means of a deep dense neural network.

A lightweight cryptojacking detection system that uses deep learning techniques to

accurately detect the presence of unwarranted mining activity based on emerging We-

bAssembly (Wasm) based cryptojacking malware in real-time is introduced at [Naseem

et al., 2021]. This system employs an image-based classification technique to distinguish

between benign web pages and those using Wasm. Specifically, the classifier implements

a convolutional neural network (CNN) model.

A detection and control method for IoT botnets is presented in [Om Kumar and

Sathia Bhama, 2019], which uses a deep learning model and cryptojacking activities

carried out by the bot. This method performs malicious attack detection by implement-

ing a sparse autoencoder composed of an input layer, a hidden layer, and an output

layer.

A method for detecting silent browser mining behavior is presented in [Liu et al.,

2018]. This method drives known malicious mining samples, extracts heap snapshots

and stack code functions of a dynamically running browser, and performs automatic

detection based on a recurrent neural network (RNN).

A method called CapJack to identify illicit bitcoin mining activity in a web browser

using cutting-edge CapsNet technology is presented in [Sivaraju, 2022]. Deep learning

framework CapsNet employs heuristics based on system behavior to detect malware

effectively.

A detection method called CoinPolice is presented in [Petrov et al., 2020]; that method

flips throttling against cryptojackers, artificially varying the browser’s CPU power to

observe the presence of throttling. Based on a deep neural network classifier, CoinPolice

can detect hidden miners

6.3 Methodology

This section, describes the methodology whose phases are shown in Fig. 6-1.

1. Selection of the dataset.

2. Exploratory data analysis. In this phase, a correlation matrix is calculated and

perform clustering of the dataset. Additionally, the feature selection process,

dataset normalization, and dataset splitting are performed.
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Figure 6-1: Methodology

3. Exploration of Classification Models. In this phase, the Sparse Autoencoder

+ Deep Dense Neural Network model for Cryptojacking detection [Hernandez-

Suarez et al., 2022] is reproduced. Additionally, different classifiers for Crypto-

jacking detection were trained and tested.

4. Results Presentation. The results of applying K-means clustering to the dataset,

as well as the results of cross-validation and evaluation of the different classifier

models are presented.

The development of these phases was carried out in a notebook in the Google Co-

laboratory (Google Colab) environment using the Python programming language and

libraries such as NumPy, Pandas, Seaborn, MatPlotLib, TensorFlow, Keras and scikit-

learn. The interested reader can see the source code here [Aponte-Novoa et al., 2022a].

The different classification models were executed in the virtual machine offered by

Google Colab, which has the following characteristics: 2.20GHz Intel Xeon processor,

12G of RAM, and Ubuntu 18.04.6 LTS Operating system.

6.3.1 Selection of Dataset

The dataset that was collected in [Hernandez-Suarez et al., 2022] is used, which contains

records of host-based and network-based features associated with websites. Also, each

record is labeled whether a website is infected or not by cryptojacking. According

to [Hernandez-Suarez et al., 2022], the procedure to capture these samples includes

three layers: the first of these is called fingerprinting, in which the sites that may

contain signs of cryptomining are captured. After this, data based on the network is

captured, which includes the information flows of the traffic that transits through the

HTTP, HTTPS, and TCP protocols and finally the host-based data is captured, which

consists of the tracking of the website once that interacts with the browser. The dataset

used in this chapter comprises 9292 benign sites and 3434 sites labeled and validated as

cryptojacking infected. The host-based and network-based features that compose the

dataset are indicated in Table 6-1. In addition to these features, the dataset presents

an attribute called Label, representing the class or classification of the sample where 1

indicates a sample of a site labeled as cryptojacking infected and 0 a benign site.
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Table 6-1: Host-based and Network-based Features [Hernandez-Suarez et al., 2022]
Host-based

Feature Description

C1 Time in C1 is a subset of the total processor idle time

C2
Time at C2 is a state of lower energy and higher output latency

than Time at C1

C3
Time at C3 is a lower energy state and higher output latency than

Time at C2

I/O Data Operations
Speed at which the process is issuing read and write I/O opera-

tions

I/O Data Bytes
Speed at which the process is reading and writing bytes in I/O

operations

Number of subprocesses
Number of sub-processes that are currently active in a parent

process

Time on processor The total time, in seconds, that a process has been running

Disk Reading/sec Speed of disk reading operations

Disc Writing/sec Speed of writing operations to disk

Confirmed byte radius
The ratio of Memory/Bytes committed and Memory/Confirma-

tion limit

Percentage of processor usage Elapsed time on the processor when an active thread is running

Pages Read/sec
Speed rate at which the disk was read in order to resolve hard

page errors

Pages Input/sec
Speed at which pages are written to disk to free up space in phys-

ical memory

Page Errors/sec This is the average number of pages with faults per second

Network-based

Feature Description

Bytes Sent The rate at which bytes leave the browser’s HTTP requests

Received Bytes (HTTP) Speed of bytes arriving to the browser’s HTTP responses

Network packets sent Speed of sending packets in the TCP protocol

Network packets received Packet reception speed over the TCP protocol

6.3.2 Exploratory data analysis

This section shows a correlation and clustering of the data, and also describes feature

selection and split and normalization process of the dataset.

Correlation

It was verified that the dataset does not present missing cells and duplicate rows.

As expected, the dataset does not present these cases thanks to the fact that after

its collection, the collectors went through a pre-processing process. To identify the

existing correlation between the different features that make up the dataset and the

classification class, a correlation matrix is built by employing the method corr of

pandas.DataFrame with the default parameters (method=’pearson’, min periods=1,

numeric only= NoDefault.no default) (see Fig 6-2).

This matrix tells us that the feature Percentage of processor usage is the one that
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Figure 6-2: Feature Correlation Matrix

presents the highest positive correlation with the classification of the website (label).

On the other hand, the features C1, C2, C3, Number of subprocesses, confirmed byte

radius and Page Errors/sec have, in their order, the highest negative correlation with

website ranking.

Clustering

Due to the essence of the dataset, it is known that its records are divided into two

categories: the first is the records of sites infected with cryptojacking (labeled with 1)

and the records of benign sites (labeled with 0). To verify and analyze how well these

records are grouped, according to their features, the unsupervised learning algorithmK-

Means Clustering is used, which groups the unlabeled dataset into K different clusters.

First, the elbow method to determine the number of clusters in the dataset is used.

Fig. 6-3 shows the elbow of the curve at three, but for the reason explained previously,

two is given as the number of clusters parameter to the K-Means algorithm.
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Figure 6-3: Elbow Curve

Next, the elements on the dataset were grouped using the K-Means algorithm with

the parameters n clusters = 2, random state = 0 and init = ”k −means + +”. ”k-

means++” is a method that chooses the first centroid to the location of a randomly

selected data point and then chooses subsequent centroids of the remaining data points,

based on a probability proportional to the square of the distance from the nearest

existing centroid of a given point. It is helpful to choose the centroids to be as far

away as possible from each other, to try to cover the data space occupied since the

initialization [Arthur and Vassilvitskii, 2007].

The K-Means algorithm was applied to all the dataset entries and generated a figure

to visualize the group assignment for each sample of the dataset group, only taking

C1, C2, and C3 features. Fig. 6-4 shows that the application of clustering to the

dataset results in two well-defined groups corresponding to the samples of benign sites

and infected websites.

Feature Selection

Extracting relevant features from the raw data is paramount for Intrusion Detection

System (IDS) classification [Prashanth et al., 2022]. For feature selection, first, the

features with a p-value less than or equal to 0.05 were select and later statistical methods

with the f classif function and the univariate filtering function “Anova Scores” for 10
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Figure 6-4: Clustering of dataset entries

Table 6-2: Parameters used in the feature selection methods
Method Paramethers

p-value p-value ¡= 0.05

Anova scores n splits=5, n repeats=5, random state=12345, score func = f classif, k= 5/10

RFECV wrapper

estimator=LogisticRegression, step=1, cv= StratifiedKFold(n splits=5, ran-

dom state=12345, shuffle=True ), min features to select=1, scoring=’f1’,

verbose=2, n jobs=−1

and 4 features was applied. “Anova Score” fits a simple linear model between a single

feature and the outcome, then the p-value for the whole model Ftest is returned [car,

]. In addition, an RFECV wrapper method was applied, which is a feature ranking

with recursive feature elimination, and cross-validated selection of the best number of

features [RFE, ]. The parameters used in the feature selection are in Table 6-2. For

each of these filters, a subset of data was selected to be used in the cross-validation.

Split and Normalization of the dataset

After exploring the dataset, the features are separated in a X set and the label category

in a Y set. The records of the dataset are split for training (80% of them) and testing

(20% of them). For this partition, the parameters random state = 42 and stratify = y

are used. The stratify parameter makes a split so that the proportion of values in the

sample produced will be the same as the proportion of values provided to parameter
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stratify. Because the ranges for the different data features are very different, the Stan-

dard Scaler to the training and testing datasets is applied for the original dataset and

the other datasets created in the Feature Selection step.

6.3.3 Exploration of Classification Models

Having the dataset, a subset of training data and a subset of test data are prepared.

Also, normalization to the data is applied. With the normalized data, the Sparse

AutoEncoder (SAE) + Deep Dense Neural Network (DDNN) model is replicated, as

proposed in [Hernandez-Suarez et al., 2022], to have a point of comparison for the

proposed models. Later some techniques are applied for the selection of features. After

this, 6 reference models are defined for classification, such as Logistic Regression, De-

cision Tree, Random Forest, Gradient Boosting, K-Nearest Neighbor, and XGBoost.

With these reference models, the different datasets obtained in the selection of features

are tested, performing cross-validation for each of these sets. Finally, the performance

of the classification models is measured using precision, recall, and F1-score.

Sparse Autoencoder + Deep dense Neural Network

According to the results shown in [Hernandez-Suarez et al., 2022], the Sparse AutoEn-

coder + Deep Dense Neural Network model is an state-of-the-art model for cryptojack-

ing detection. In [Hernandez-Suarez et al., 2022] the reader can see the comparison

between this model and other proposed models. In this chapter, this model is re-

produced to validate the results against the proposed methods, using the mentioned

dataset.

Classification Models

This section considers the following classification models.

• Logistic Regression or LR is a standard probabilistic statistical classification

model widely used in different disciplines, such as computer vision, and mar-

keting, among others [Feng et al., 2014].

• A Decision Tree is a hierarchical structure built using a data set’s features (inde-

pendent variables). In a Decision Tree, each node is partitioned according to a

measure associated with a subset of features [Suthaharan, 2016]. This algorithm

repeatedly divides the data set according to a criterion that seeks to maximize

the separation of the data, resulting in a tree-like structure [Breiman et al., 2017].
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Table 6-3: Models parameters
Model Parameters

Logistic regression default

Decision Tree criterion= ’gini’, max depth=5, min samples leaf=20, random state=12345

Random Forest n estimators=25

Gradient Boosting
n estimators=20, learning rate=0.5, max features=2, max depth=2, ran-

dom state=0

k-Nearest Neighbor n neighbors = 36, p = 1 (manhattan distance)

XGBoost max bin=255

• A Random Forest is a collection of decision trees associated with a set of bootstrap

samples, generated from the original data set. The nodes are partitioned based

on the entropy or Gini index of a selected subset of the features [Suthaharan,

2016].

• Gradient Boosting is a widely used machine learning algorithm due to its effi-

ciency, accuracy, and interoperability [Friedman, 2001]. This algorithm achieves

state-of-the-art performance in many machine learning tasks, such as multi-class

classification [Li, 2012], click prediction [Richardson et al., 2007] and learning

to rank [Burges, 2010].

• K-Nearest Neighbor classifier, unlike other methods, uses the data directly for

classification, without first building a model [Dasarathy, 1991,Ripley, 2007]. One

of the advantages of the K-nearest neighbors algorithm over other algorithms

is the fact that the neighbors can provide an explanation for the classification

result [Dreiseitl and Ohno-Machado, 2002].

• XGBoost is a scalable ensemble machine learning and gradient boosting technique

focusing on performance and speed. This technique allows for solving problems

of ranking, classification, and regression. [Omer and Shareef, 2022]

The classification models are instantiate and trained. Table 6-3 shows the parameters

used in these algorithms. With the different models, cross-validation is performed

with the different datasets, and the mean and standard deviation of the accuracy are

calculated.

6.4 Results

6.4.1 K-Means clustering

Once the clustering model has been trained, the dataset is taken and look for which

element is the closest to the centroid of each of the two groups; these elements will be
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Table 6-4: Values of the features of representatives of clusters
Feature Cluster 1 (y=0) Cluster 2 (y=1)

C1 82.2145 8.2148

C2 73.1083 25.4516

C3 3.9767 6.4803

I/O Data Operations 32.7094 18.8409

I/O Data Bytes 121124.1414 39403.4743

Number of subprocesses 30 31

Time on processor 0.4967 0.1733

Disk Reading/sec 16.6267 4.9044

Disc Writing/sec 1.3781 0

Bytes Sent/sent 915.6518 210.0906

Received Bytes (HTTP) 12258.8161 3844.3897

Network packets sent 6.1794 1.6865

Network packets received 10.1138 3.6172

Pages Read/sec 0.6446 0.0665

Pages Input/sec 0 0

Page Errors/sec 13351.0499 1633.1676

Confirmed byte radius 28.9634 27.1788

Percentage of processor usage 17.7854 91.7852

taken as the representatives of each of the groups. For each of these representatives,

the values of your features and their category are verified (Table. 6-4 ). It can be seen

that the category for each representative is different (benign/infected), and the values

of some features are distant from each other.

With the clustering model created and trained, it is applied to the test dataset, obtain-

ing the two clusters. With the help of the representative elements of each cluster, the

clusters corresponds to the benign sites and which to the infected ones are built. With

this information, the cluster assigned to each element of the test dataset and the set of

labels (y) corresponding to the test dataset, a classification report is calculated, where

it is assumed that the cluster assignment to each sample of the dataset corresponds

to classification between benign site and infected site. In this report, it obtains an

accuracy = 0.9902 and precision = 0.988201.

6.4.2 Feature Selection

Table 6-5 presents the results of applying the methods for selecting features. It shows

the method used and its selected features. 15 and 12 features are obtained with p-value

and ”RFECV wrapper” methods respectively.
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Table 6-5: Selected features
Method Selected features

p-value

C1, C2, C3,I/O Data Operations, I/O Data Bytes, Number of sub-

processes, Time on processor, Disk Reading/sec, Received Bytes

(HTTP), Network packets sent, Network packets received,Pages In-

put/sec, Page Errors/sec, Confirmed byte radius, Percentage of pro-

cessor usage

anova scores

4 features
Percentage of processor usage, C1, C2, C3

anova scores

10 features

Percentage of processor usage, C1, C2, C3, Number of subprocesses,

Confirmed byte radius, Page Errors/sec, I/O Data Operations,Disk

Reading/sec , I/O Data Bytes

RFECV

wrapper

Percentage of processor usage, Network packets sent, I/O Data Bytes,

I/O Data Operations, Received Bytes (HTTP), Disc Writing/sec,

Network packets received , C2, Bytes Sent/sent , Confirmed byte

radius, Time on processor, C1

6.4.3 Cross-Validation

For the cross-validation and evaluating the models, the datasets are described in Ta-

ble 6-6. The results of this process is shown in Table 6-7 and Table 6-8

The results of the cross-validation of the different classification models with each of the

datasets are presented in Table 6-7

Table 6-6: Datasets Description
Dataset Name Description

All features dataset complete dataset

15 features dataset dataset of 15 features selected with p-value

4 features dataset dataset of 4 features selected with anova Scores method

10 features dataset dataset of 10 features selected with anova Scores method

12 features dataset dataset of 12 features selected with RFECV wrapper method
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Table 6-7: Cross-Validation models
Logistic regression

dataset mean accuracy standard deviation accuracy

All features dataset 0.9917 0.0020

15 features dataset 0.9911 0.0020

4 features dataset 0.9911 0.0023

10 features dataset 0.9912 0.0021

12 features dataset 0.9919 0.0018

Decision Tree

All features dataset 0.9914 0.0018

15 features dataset 0.9921 0.0022

4 features dataset 0.991 0.0018

10 features dataset 0.991 0.0018

12 features dataset 0.9915 0.0020

Random Forest

All features dataset 0.9944 0.0015

15 features dataset 0.9944 0.0014

4 features dataset 0.9906 0.0017

10 features dataset 0.9943 0.0015

12 features dataset 0.9947 0.0013

Gradient Boosting

All features dataset 0.9926 0.0018

15 features dataset 0.9919 0.0019

4 features dataset 0.9905 0.0022

10 features dataset 0.9919 0.0020

12 features dataset 0.9932 0.0016

k-Nearest Neighbor

All features dataset 0.9878 0.0018

15 features dataset 0.9878 0.0020

4 features dataset 0.9913 0.0021

10 features dataset 0.9891 0.0019

12 features dataset 0.9889 0.0019

XGBoost

All features dataset 0.9947 0.0016

15 features dataset 0.9946 0.0016

4 features dataset 0.9908 0.0018

10 features dataset 0.9942 0.0017

12 features dataset 0.9950 0.0017

6.4.4 Model Selection and Evaluation

Table 6-8 shows the main metrics obtained with the classification models.
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Table 6-8: Results of evaluating the models
SAE + DDNN [Hernandez-Suarez et al., 2022]

benign malign

Dataset Accuracy Precision Recall F1-score Precision Recall F1-score

All features dataset 0.9893 0.9941 0.9911 0.9926 0.9823 0.9712 0.9891

Logistic regression

benign malign

Dataset Accuracy Precision Recall F1-score Precision Recall F1-score

All features dataset 0.9937 0.9957 0.9957 0.9957 0.9884 0.9884 0.9884

15 features dataset 0.9937 0.9957 0.9957 0.9957 0.9884 0.9884 0.9884

4 features dataset 0.9918 0.9946 0.9941 0.9944 0.984 0.9854 0.9847

10 features dataset 0.9925 0.9957 0.9941 0.9949 0.9841 0.9884 0.9862

12 features dataset 0.9941 0.9957 0.9962 0.996 0.9898 0.884 0.9891

Decision Tree

benign malign

Dataset Accuracy Precision Recall F1-score Precision Recall F1-score

All features dataset 0.9902 0.9904 0.9962 0.9933 0.9896 0.9738 0.9817

15 features dataset 0.9918 0.993 0.9957 0.9944 0.9883 0.9811 0.9847

4 features dataset 0.9906 0.9925 0.9946 0.9936 0.9854 0.9796 0.9825

10 features dataset 0.9906 0.9946 0.9925 0.9935 0.9797 0.9854 0.9826

12 features dataset 0.9918 0.993 0.9957 0.9944 0.9883 0.9811 0.9847

Random Forest

benign malign

Dataset Accuracy Precision Recall F1-score Precision Recall F1-score

All features dataset 0.9957 0.9957 0.9984 0.997 0.9956 0.9884 0.992

15 features dataset 0.9953 0.9962 0.9973 0.9968 0.9927 0.9898 0.9913

4 features dataset 0.9906 0.9925 0.9946 0.9936 0.9854 0.9796 0.9825

10 features dataset 0.9949 0.9952 0.9978 0.9965 0.9941 0.9869 0.9905

12 features dataset 0.9949 0.9952 0.9978 0.9965 0.9941 0.9869 0.9905

Gradient Boosting

benign malign

Dataset Accuracy Precision Recall F1-score Precision Recall F1-score

All features dataset 0.9937 0.9957 0.9957 0.9957 0.9884 0.9884 0.9884

15 features dataset 0.9929 0.9952 0.9952 0.9952 0.9869 0.9869 0.9869

4 features dataset 0.991 0.9935 0.9941 0.9938 0.984 0.9825 0.9832

10 features dataset 0.9925 0.9946 0.9952 0.9949 0.9869 0.9854 0.9862

12 features dataset 0.9929 0.9946 0.9957 0.9952 0.9883 0.9854 0.9869

k-Nearest Neighbor

benign malign

Dataset Accuracy Precision Recall F1-score Precision Recall F1-score

All features dataset 0.9906 0.9904 0.9968 0.9936 0.9911 0.9738 0.9824

15 features dataset 0.9906 0.9909 0.9962 0.9936 0.9897 0.9753 0.9824

4 features dataset 0.9921 0.9946 0.9946 0.9946 0.9854 0.9854 0.9854

10 features dataset 0.9894 0.9909 0.9946 0.9928 0.9853 0.9753 0.9802

12 features dataset 0.9902 0.992 0.9946 0.9933 0.9853 0.9782 0.9817

XGBoost

benign malign

Dataset Accuracy Precision Recall F1-score Precision Recall F1-score

All features dataset 0.9965 0.9973 0.9978 0.9976 0.9942 0.9927 0.9934

15 features dataset 0.9965 0.9973 0.9978 0.9976 0.9942 0.9927 0.9934

4 features dataset 0.9910 0.9925 0.9952 0.9938 0.9868 0.9796 0.9832

10 features dataset 0.9965 0.9973 0.9978 0.9976 0.9942 0.9927 0.9934

12 features dataset 0.9965 0.9973 0.9978 0.9976 0.9942 0.9927 0.9934
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Figure 6-5: Feature Importance logistic regression Model

The simple model Logistic Regression and the advanced model XGBoost are used as a

reference, and to search for the features with the most importance in the classification

process. As seen in Fig. 6-5, positive coefficients indicate that the event (malign) is

more likely at that level of the predictor than at the reference level. Negative coefficients

indicate that the event (malign) is less likely at that level of the predictor than at the

reference level. It can be seen that the features ”Percentage of processor usage” or

”Network packets sent” indicate that the event is more likely, while the variables C1 or

”Confirmed byte radius” suggest that the event is much less likely. As seen in Fig. 6-6,

it can be noticed that the variables C1, C2, ”Percentage of processor usage”, and ”Disc

Writing/sec” are the most important in the classification process of XGBoost model.

6.5 Integration Scenario

Taking the ideas described in [Cozza et al., 2020,Guarino et al., 2022,Ikram et al., 2016],

the feasibility of a hybrid, lightweight, usable, privacy-preserving mechanism added to

a web browser for blocking websites that potentially may be infected by Cryptojacking



6.6 Conclusions 119

Figure 6-6: Feature Importance XGBoost Model

is clear. The envisioned approach exploits the blacklisting technique, widely used in

this field, and a machine learning classifier to classify websites as benign or malign. The

output from a classifier allows for updating the blacklists used to filter/block blacklisted

websites. Additionally, this approach can be enhanced by introducing an ML-Based

model to detect JavaScript malicious code inserted in websites or content shared with

the user. To improve the usability of the mechanism, live alerts may be generated for

the users for providing them a comprehensive awareness and full control of potential

cryptojacking threats.

6.6 Conclusions

In this chapter, six Machine Learning models are explored for detecting cryptojacking

on websites. The exploration started with a simple model as Logistic Regression, and

then moved to more advanced algorithms in terms of tabular data classification, such as

XGBoost, Decision Trees, Random Forest, Gradient Boosting, and K-Nearest Neighbor

models. Furthermore, various feature selection methods were used, such as those based
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on statistical methods, e.g. Test Anova, and other methods called Wrappers, in order

not only to reduce the complexity of the built models but also to know the features

with greater predictive power.

From the results, these conclusions could be drawn:

1. With 12 of the 18 features obtained with the RFECV method, an accuracy similar

to that of other works [Hernandez-Suarez et al., 2022, Liu et al., 2018, Naseem

et al., 2021,Om Kumar and Sathia Bhama, 2019,Gomes and Correia, 2020] based

on Deep Learning techniques was reached. Even, as observed in Table 6-7, with

a dataset of only 4 features, an accuracy of 99.11% was obtained using Logistic

Regression, and an accuracy of 99.13 was obtained with k-Nearest Neighbor.

2. The most relevant features in the case of Logistic Regression were C1, ”Percentage

of processor usage”, ”I/O Data Bytes” and, ”Network packets sent”, while the

most important features in the case of XGBoost were ”Percentage of processor

usage”, ”Network packets sent”, ”Time on processor” and C1.

It is concluded that by using simpler models such as Logistic Regression, Decision

Tree, Random Forest, Gradient Boosting, and K-Nearest Neighbor models, a ML-based

classification component can be built, with a success rate similar to or greater than that

of advanced algorithms such as XGBoost and even those of other works based on Deep

Learning. Additionally, the simplicity of these models help the evaluator interpret the

results and know the inner-working of these models in comparison with other advanced

models based on Deep Learning, which are regarded as black boxes.
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In this work we revisited the Majority attack, also named 51% vulnerability, one of

the main drawbacks of blockchain networks. As discussed previously, this problem

occurs because a blockchain network is based on a distributed consensus mechanism to

establish trust in the network, and if an attacker, or group of malintentioned users, can

carry out an attack by owning more than 51% of the blockchain network’s computing

power (hash power), they can rewrite the blockchain and violate its main principles.

Therefore, this thesis work proposed objective was to ”Design and implement detec-

tion and mitigation strategies of the majority attack (51% attack) in a distributed

blockchain system, based on the characterization of the miners’ behavior.” Four signif-

icant contributions are presented in this work, to contribute to the main goal of this

research.

First of all, a new characterization of consensus algorithms was presented, which can be

used to find families of mechanisms using cluster based classification. The results show

the identification of new clusters of consensus mechanisms, and describes the behavioral

patterns not seen before in the literature.

The second contribution was a detailed characterization of the miners in the bitcoin

and crypto ethereum blockchains, to prove the computing distribution assumption is

not completely alligned with the reality of these blockchain networks and that the

creation of profiles may allow the detection of anomalous behaviors and prevent 51%

attacks. The analysis results show that, in the last years, there has been an increasing

concentration of hash rate power in a very small set of miners, which generates a real

risk for current blockchains. Also, there is a pattern in mining among the main miners,

which makes it possible to identify out-of-normal behavior.

The third and main contribution of this thesis is a detailed proposal of a Proof-of-

Accuracy protocol. The proposed protocol improves the original proposal by removing

the need for a coordinator and combines the Proof-of-Work feature with access to ran-

dom locations to improve the protocol’s resistance to majority attacks. It aims to

democratize the miners’ participation within a blockchain, control the miners’ comput-

ing power, and mitigate the 51% vulnerability.
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Finally, an exploration of some machine learning classification models for detecting

cryptojacking, are presented. The results suggest that simple models, such as Logistic

Regression, Decision Tree, Random Forest, Gradient Boosting, and k-Nearest Neighbor

models, can achieve success rates similar to or greater than that of advanced algorithms

such as XGBoost and even those of other works based on Deep Learning.

Based on the conclusions of this work, the following ideas for future works are proposed:

1. An area that can be explored is the definition of the requirements for new consen-

sus algorithm; that is, according to each characteristic such as energy consump-

tion, modern hardware, and bifurcation described in Table (3-1. Another proposal

is to include the type of problem to be solved, given that some of these charac-

teristics may not be relevant for all particular cases and thus, it may change the

decision of what type of algorithm to use. Likewise, in future work must consider

the conditions for applying certain consensus algorithms by analyzing character-

istics that can be more or less efficient depending on the scenario in which they

work.

2. A tool to identify anomalous behavior can be implemented to detect a possible

attack being performed by a miner or group of miners and generate a general alert

to protect the integrity of the blockchain.

3. The proposed protocol can be analyzed and improved in a scenario with dis-

honest participants, where they may not follow its rules or carry out attacks

compromising its secret information. Another research topic is to make the proto-

col quantum-resistant since it is a Diffie-Hellman-like cryptographic construction,

which is not quantum-resistant.
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Mahanti, A. (2016). Towards seamless tracking-free web: Improved detection of

trackers via one-class learning. CoRR, abs/1603.06289.

[Javed et al., 2021] Javed, I. T., Alharbi, F., Bellaj, B., Margaria, T., Crespi, N., and

Qureshi, K. N. (2021). Health-id: A blockchain-based decentralized identity man-

agement for remote healthcare. Healthcare, 9(6).

[Kaur et al., 2022] Kaur, M., Gupta, S., Kumar, D., Verma, C., Neagu, B.-C., and

Raboaca, M. S. (2022). Delegated proof of accessibility (dpoac): A novel consensus

protocol for blockchain systems. Mathematics, 10(13).

[Komodo, 2018] Komodo (2018). Komodo: An Advanced Blockchain Technology,

Focused on Freedom. https://cryptorating.eu/whitepapers/Komodo/2018-02-14-

Komodo-White-Paper-Full.pdf. Accessed 2021-06-18.

[Kudin et al., 2019] Kudin, A. M., Kovalenko, B. A., and Shvidchenko, I. V. (2019).

https://www.coindesk.com/bitcoin-miners-ditch-ghash-io-pool-51-attack
https://www.coindesk.com/bitcoin-miners-ditch-ghash-io-pool-51-attack


130 Bibliography

Blockchain Technology: Issues of Analysis and Synthesis. Cybernetics and Systems

Analysis, 55(3):488–495.

[Kurpjuweit et al., 2021] Kurpjuweit, S., Schmidt, C. G., Klöckner, M., and Wagner,
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