
Convolution Operators for Deep Learning
Inference on the Fujitsu A64FX Processor

Manuel F. Dolz
Universitat Jaume I de Castellón, Spain

dolzm@icc.uji.es

Héctor Martı́nez
Universidad de Córdoba, Spain

el2mapeh@uco.es

Pedro Alonso, Enrique S. Quintana-Ortı́
Universitat Politècnica de València, Spain

palonso@dsic.upv.es,quintana@disca.upv.es

Abstract—The convolution operator is a crucial kernel for
many computer vision and signal processing applications that
rely on deep learning (DL) technologies. As such, the efficient im-
plementation of this operator has received considerable attention
in the past few years for a fair range of processor architectures.

In this paper, we follow the technology trend toward integrat-
ing long SIMD (single instruction, multiple data) arithmetic units
into high performance multicore processors to analyse the bene-
fits of this type of hardware acceleration for latency-constrained
DL workloads. For this purpose, we implement and optimise
for the Fujitsu processor A64FX, three distinct methods for the
calculation of the convolution, namely, the lowering approach,
a blocked variant of the direct convolution algorithm, and the
Winograd minimal filtering algorithm. Our experimental results
include an extensive evaluation of the parallel scalability of these
three methods and a comparison of their global performance
using three popular DL models and a representative dataset.

Index Terms—Convolutional neural networks, high perfor-
mance, SIMD arithmetic units, ARM-based A64FX processor.

I. INTRODUCTION

Many current multicore architectures integrate several levels

of cache to hide the memory access cost as well as SIMD

(single instruction, multiple data) arithmetic units to improve

raw performance by operating simultaneously with multiple

data items grouped as a vector [1]. Concerning the latter,

the trend in past decades has been to expand the width of

these units, for example, from 64 bits in MMX (Intel Pentium

MMX, AMD K6-2; 1997–1998), to 128 bits in SSE (Intel

Pentium III, AMD Athlon XP; 1999), 256 bits in AVX (Intel

Sandy Bridge, AMD Bulldozer; 2011), and 512-bit in AVX-

512 (Intel Xeon Phi, Intel Skylake; 2013). In addition, SIMD

units are also present in many processors of IBM’s PowerPC

series; ARM’s scalable vector extension (SVE) supports SIMD

units of up to 2048 bits; and SIMD extensions have been

proposed for the RISC-V instruction set architecture (ISA).

While the SIMD-oriented evolution of the hardware is

intended to boost performance, whether this improvement

can be realised in practice depends on the target algorithm

and operand dimensions. Along this line, in this work, we

investigate the benefits and caveats of exploiting long, 512-

bit SIMD units for deep learning (DL) inference workloads

with latency constraints. In particular, we address the high-

performance calculation of the convolution operator, a key

kernel for many DL tasks in computer vision and signal

processing [2], [3], using three distinct methods on the Fujitsu

A64FX processor. In doing so, we make the following specific

contributions:

• For the lowering approach [4]–[6], we integrate an im-

plementation of the IM2ROW transform with a high-

performance A64FX-specific instance of the general ma-

trix multiplication (GEMM) based on the basic linear

algebra instantiation framework (BLIS) [7].

• We develop BLIS-like A64FX-specific microkernels

which are then leveraged to obtain an efficient blocked

variant of the direct convolution algorithm [3], [8].

• We modify the Winograd minimal filtering algorithm

significantly to adapt it to the 512-bit SIMD units of the

A64FX [9], [10].

• Using three popular DL models and a reference dataset,

we conduct a complete evaluation of the previous three

methods on the A64FX, focused on the impact of the

SIMD units and the multi-threaded parallelisation.

In summary, we explore the efficiency of the 512-bit SIMD

vectorisation and OpenMP-based parallelisation of three pop-

ular methods for the convolution, on the Fujitsu A64FX

processor, for latency-constrained DL workloads.

The rest of the paper is structured as follows. In Sec-

tion II we briefly review the convolution operator together

with a basic realisation. In the following three sections, we

then present the A64FX implementations for the three target

methods: the lowering approach in Section III; the direct

convolution in Section IV; and the Winograd algorithm in

Section V. Next, in Section VI, we report the results of our

experimental evaluation. Section VII reviews some related

libraries that support the convolution algorithms presented in

this work. Finally, the paper is closed in Section VIII with a

few concluding remarks.

II. BRIEF INTRODUCTION TO THE CONVOLUTION

The convolution operator

O = CONV(F, I), (1)

receives 4-dimensional (4D) input and filter tensors, respec-

tively I and F , to produce a 4D output tensor O, where:

• I consists of b input images of size hi × wi × ci each,

hi × wi denote the image height × width, and ci stands

for the number of input channels.

160

2022 IEEE 34th International Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD)

Work licensed under Creative Commons Attribution NonCommercial, No Derivatives 4.0 License. https://creativecommons.org/licenses/by-nc-
nd/4.0/

20
22

 IE
EE

 3
4t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Co
m

pu
te

r A
rc

hi
te

ct
ur

e
an

d
Hi

gh
 P

er
fo

rm
an

ce
 C

om
pu

tin
g

(S
BA

C-
PA

D)
 |

 9
78

-1
-6

65
4-

51
55

-0
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SB

AC
-P

AD
55

45
1.

20
22

.0
00

27

wo

ho

hf

wf

ci

C o

ci co

wi

hi

Filters

Input
Output

1

hf

wf

ci

Fig. 1: Sliding window of co filters over a single input image

producing the output of the convolution operator for each

output channel.

• Similarly, O is composed of b outputs of size ho×wo×co
each, ho × wo represent the output height × width, and

Co is the number of output channels.

• Finally, F comprises co filters of dimension hf ×wf ×ci
each, and hf×wf correspond to the filter height × width.

For simplicity, we assume hereafter that the filter is applied

with unit vertical/horizontal strides, and the output is not

padded. In consequence, ho = hi−hf +1, wo = wi−wf +1.

1 void ConvDirect(I[b][hi][wi][ci],

2 F [ci][hf][wf][co],

3 O[b][ho][wo][co]) {
4 for (h = 0; h < b; h++)
5 for (i = 0; i < ci; i++)
6 for (j = 0; j < co; j++)
7 for (k = 0; k < wo; k++)
8 for (l = 0; l < ho; l++)
9 for (m = 0; m < wf; m++)

10 for (n = 0; n < hf; n++)
11 O[h][l][k][j] += I[h][l + n][k + m][i]

12 · F [i][n][m][j];
13 }

Listing 1: Basic algorithm for the direct convolution.

The basic algorithm for the direct convolution in Listing 1

shows that each filter convolves a subtensor of the inputs, with

the same dimension as the filter, to render a single scalar value

(entry) for one of the co outputs. The filter is then repeatedly

applied to the whole input, in a sliding window manner, to

produce the complete entries of this single output; see Figure 1

and [3].

The basic algorithm for the direct convolution consists of

7 nested loops traversing the (b, ci, co, wo, ho, wf , hf) dimen-

sions of the problem. The ordering of the loops, together with

the layout of the tensors, dictate the memory access pattern.

The algorithm there adopts the standard NHWC format for the

input/output tensors and the CRSK format for the filter tensor.

(A popular alternative is to store the input/output tensors in

the NCHW format and the filter tensor in the KCRS format.)

Furthermore, as the loops in the algorithm are independent

of each other, they can be reorganised in any other order. At

this point, we note that, for latency-constrained scenarios, the

input images have to be processed as soon as they arrive, which

implies that b = 1. This corresponds to the so-called single-

stream case of the ML Commons benchmark for inference on

the edge (see https://mlcommons.org/).

In the following sections, we review three different meth-

ods to compute the convolution operator and their high-

performance implementations on the A64FX, exploiting the

512-bit SIMD units in this processor via ARM SVE intrinsics.

In particular, we target 1) the lowering approach; 2) a blocked

variant of the direct algorithm; and 3) the Winograd algorithm.

The general view of these methods and their high-performance

implementations is that the best option largely depends on the

parameters that define the convolution.

III. THE LOWERING APPROACH

A high-performance realisation of the convolution operator

can be obtained for current computer architectures by casting

this operator in terms of a large matrix-matrix multiplication

(GEMM). For this purpose, assuming the input/output tensors

are stored following the NHWC layout (and the filters in the

CRSK layout), the lowering approach:

1) Initially applies the IM2ROW transform [4] to the 4D

input tensor I in order to build an augmented 2D matrix

A, of size m × k = (bhowo) × (cihfwf), as shown in

the algorithm in Listing 2.

2) Computes the output of the convolution directly from

the GEMM:

C = A ·B, (2)

where C ≡ O is the output tensor, viewed as an m×n =
(bhowo) × co matrix; and B ≡ F is the filter tensor,

viewed as a k × n = (cihfwf)× co matrix.

These two steps are combined graphically in Figure 2. The

lowering approach performs exactly the same arithmetic op-

erations as the direct convolution in Listing 1, and therefore,

has the same numerical properties.

1 void Im2Row(A[bhowo][cihfwf], I[b][hi][wi][ci])
2 {
3 for (h = 0; h < b; h++)
4 for (i = 0; i < ci; i++)
5 for (k = 0; k < wo; k++)
6 for (l = 0; l < ho; l++) {
7 r = l + khi + hwihi;
8 for (m = 0; m < wf; m++)
9 for (n = 0; n < hf; n++) {

10 c = n + mhf + iwfhf;
11 A[r][c] = I[h][l + n][k + m][i];
12 } } }

Listing 2: Algorithm for the IM2ROW transform.

A. High performance GEMM and lowering

On the positive side, the large dimension of the GEMM

appearing in the lowering approach favours an efficient ex-

ploitation of long SIMD units and exposes a high degree of

loop-level parallelism for multicore architectures. In addition,

the lowering approach simply needs to invoke an existing high-

performance implementation of GEMM, such as that in the

BLIS framework [7] for the A64FX [11], to obtain a seamless

vectorisation/parallelisation.

161

co

(c
i
·h

f
·
w
f)

(b
·h

o
·
w
o
)

(ci · hf · wf)

B

C = A ·B

wf

hf

co

ci

co

b

wo

ho

RESHAPE(F)

RESHAPE(O)

O
F

IM2ROW(I)

b

ci
wi

hi

I
…

…

A

Fig. 2: Convolution operator via the IM2ROW transform. Check

also the order of the dimensions for A and B. For example,

bhowo instead of howob.

B. Accelerating the IM2ROW transform

On the negative side, the lowering approach requires a large

workspace A (hfwf times larger than I), and incurs a certain

overhead due to the data copies for the IM2ROW transform.

Exploiting SIMD parallelism in the IM2ROW transform is

not straightforward. This kernel only performs data movements

between I and the workspace A, so we can only benefit

from SIMD loads/stores. Let us inspect in some detail the

algorithm in Listing 2 though. Assuming a row-major storage

for the tensors, and reordering the algorithm so that the loop

indexed by i (traversing the ci dimension of the problem)

becomes the innermost loop, we can observe that the algorithm

reads ci contiguous elements of I (innermost loop indexed by

i) to then copy these entries into non-contiguous positions

of A. Therefore, we can only leverage SIMD loads to retrieve

the data of A into the processor SIMD registers, but we

cannot then employ SIMD stores to write these values to the

corresponding positions in A.

In contrast, parallelising the IM2ROW transform can be

easily done by adding the appropriate OpenMP directive to

the most appropriate loop(s), preferably one of the outermost

ones or a collapsed combination of them.

IV. THE BLOCKED ALGORITHM FOR THE DIRECT

CONVOLUTION

In [12], we combined the blocking strategy in [8] for

the direct convolution algorithm with the packing schemes

employed in the high-performance formulation of GEMM [7].

The result was a new blocked version of the direct convolution,

illustrated by the algorithm in Listing 3, with the following

properties:

– Mimicking the high-performance realisations of GEMM

in GotoBLAS2, BLIS, OpenBLAS, and AMD AOML,

all the arithmetic is enclosed inside a micro-kernel that

computes a GEMM to update a small mr × nr micro-tile

of the result (in this case, O).

– The dimensions of the micro-tile are decoupled from the

cache blocking parameters wo,b, co,b, ci,b.

– The contents of the input tensor are packed into an

mc × nc buffer Ac to allow that its entries are accessed

with unit stride from the micro-kernel. (For simplicity,

the algorithm in Listing 3 only indicates the loop inside

which the packing routine is placed.)

– The filter tensor is re-packed into a 5D tensor, of

dimension hf ×wf × co/co,b× ci× co,b. As the filters do

not vary during inference, this only needs to be done once

for the DNN model and its cost becomes negligible. This

type of packing enables unit-stride accesses to B from

the micro-kernel.

A significant key to attaining high performance in the blocked

direct convolution lies in the utilisation of an architecture-

specific micro-kernel. Contrary to [8], the decoupling of the

micro-tile dimensions from the cache blocking parameters in

our case, combined with the packing of the input tensor [12],

permits leveraging existing high-performance micro-kernels,

specifically tuned for a concrete processor architecture.

1 void ConvDirect_Blocked(I[b][hi][wi][ci], F [ci][hf][wf][co],

2 O[b][ho][wo][co]) {
3 for (h = 0; h < b; h++)
4 for (i′ = 0; i′ < ci/ci,b; i′++)
5 for (l = 0; l < ho; l++)
6 for (k′ = 0; k′ < wo/wo,b; k′++)
7 for (n = 0; n < hf; n++)
8 for (m = 0; m < wf; m++) {
9 // Here packing for Ac

10 // Ommitted for simplicity
11 for (j′ = 0; j′ < co/co,b; j′++)
12 for (jj = 0; jj < co,b; jj += nr)
13 for (kk = 0; kk < wo,b; kk += mr) {
14 // Micro-kernel
15 for (ii = 0; ii < ci,b; ii++)
16 for (jr = kk; jr < kk + mr; jr++)
17 for (ir = co,b; ir < co,b + nr; ir++)
18 O[h][l][k′ · wo,b + jr][j

′ · co,b + ir]

19 += I[h][l + n][k′ · wo,b + jr + m][i′ · ci,b + ii]

20 · F [j′ · co,b + ir][n][m][i′ · ci,b + ii];
21 } } }

Listing 3: Blocked variant of the direct convolution.

A. Micro-kernels for high performance

The BLIS framework [7] favours portability by encod-

ing most of the GEMM kernel in a high-level programming

language such as C. An efficient exploitation of the cache

hierarchy is then attained via a proper configuration of a few

blocking parameters [13], and the only architecture-specific

piece of code boils down to the micro-kernel, which is usually

encoded in a low-level programming language.

The BLIS micro-kernel computes the GEMM

Cr = αAr ·Br + β Cr, (3)

where α, β are both scalars, Cr is a micro-tile of dimension

mr × nr, and Ar and Br are micro-panels of dimensions

162

+=

p
r

p
r

1 void Gemm_microkernel(Cr[mr][nr],

2 Ar [mr][kc], Br[kc][nr]) {
3 for (pr = 0; pr < kc; pr++)
4 Cr += Ar(:, pr) · Br(pr, :);
5 }

Fig. 3: The BLIS micro-kernel.

respectively given by mr × kc and kc × nr. (For the blocked

direct convolution, Cr is part of the output tensor, Ar of the

augmented matrix, Br of the filter tensor, and kc = ci,b.)

Furthermore, Ar, Br are stored contiguously in memory, re-

spectively in column- and row-major order, as a result of

previous packings, while Cr can be stored in either column-

or row-major order, but not necessarily contiguously [7].

Hereafter we will consider the case α = 1, β = 1, which

is the one necessary in the blocked direct convolution for DL

inference.

Most high-performance implementations of the BLIS micro-

kernel, (including that specifically developed for the A64FX,)

materialise the micro-kernel as a sequence of kc outer prod-

ucts, each updating the full mr × nr micro-tile Cr; see

Figure 3. The outer products are then decomposed into a

number of AXPY (scalar α times x plus y) vector operations,

each updating (part of) either a column or a row of Cr

(depending on whether the entries of the micro-tile are re-

spectively stored column-wise or row-wise). The micro-kernel

is usually encoded in assembly, in order to take advantage of

low-level prefetching instructions, and the AXPY updates are

vectorised using SIMD instructions. Furthermore, mr, nr are

selected to maximise the utilisation of the hardware SIMD

registers, and kc is determined as a function of nr and some

properties of the processor L1 cache, such as capacity and

associativity degree [13].

B. Micro-kernels for the blocked direct convolution on the
A64FX

The BLIS framework includes a micro-kernel specifically

developed and tuned for the A64FX [11] which delivers very

high performance for large matrix multiplications involving

“squarish” matrix operands. Unfortunately, the dimensions of

the input/output/filter tensors for the blocked direct convolu-

tion are often highly rectangular, with one dimension much

larger than the others. In these circumstances, an alternative

micro-kernel, different from that packed with BLIS for the

A64FX, may be more efficient.

Developing a high-performance micro-kernel in assembly

is a complex, error-prone task due to the low-level, close-

to-hardware features of that programming language. To tackle

this, in this work we opted for embedding ARM SVE intrinsics

into a C-encoded micro-kernel, in order to ease the devel-

opment, and thus be able to create multiple distinct micro-

kernels. After an evaluation of these variants, we selected a

micro-kernel for the A64FX with the following characteristics:

1) The basic datatype is IEEE 32-bit floating-point (FP32).

2) The micro-tile dimension is set to mr×nr = 14×32. A

total of 28 512-bit SIMD registers (viewed as a matrix

with 14 rows and 2 columns,) are dedicated to store the

entries of the micro-tile Cr. As each SIMD register can

store up to 16 FP32 numbers, this results in the required

14× (2 · 16) = 14× 32 micro-tile.

3) Two SIMD registers are dedicated to store (2 · 16 =) 32

entries of Br.

4) The entries of Ar are retrieved from memory individu-

ally, and then immediately broadcast into a SIMD vector

register to participate in the corresponding AXPY update.

5) Each iteration of the micro-kernel loop for kc repeats

the following: Upload a row of Br (with 32 elements)

to then update the full (14× 32) micro-tile with respect

to a column of Ar (with elements loaded one-by-one)

and that row of Br.

6) SIMD fused multiply-add operations (FMA) are em-

ployed to update the entries of Cr.

A simplified implementation of the micro-kernel is shown

in Listing 4. The micro-tile Cr (for Cr) is assumed to be

stored in row-major order, with leading dimension (i.e., stride

between consecutive elements in the same column) ldC. The

micro-panels Ar, Br (for Ar, Br) are stored in column- and

row-major order respectively, with leading dimensions mr, nr
(for mr, nr).

C. OpenMP parallelisation

The blocked direct convolution presents a considerable

number of independent loops, which offer a rich variety of

parallelisation opportunities (loop-level parallelism) that can

be exploited, for example, via OpenMP. This is further dis-

cussed when analysing the parallel scalability of the algorithms

in Section VI.

V. THE WINOGRAD ALGORITHM

The previous sections described how to obtain high per-

formance implementations of the convolution operator, based

on the lowering approach and the direct algorithm, on the

A64FX. In doing so, they exposed an increasing level of

complexity for this task: From simply encoding the IM2ROW

transform plus invoking a high-performance instance of GEMM

(specifically tuned for this architecture,) for the lowering

approach; to developing an architecture-specific micro-kernel

and then leveraging it from the blocked direct convolution. In

this section, we show that the Winograd algorithm requires a

significant step further along this path, asking for an elaborate

reformulation of the underlying scheme in order to exploit the

long SIMD arithmetic units in the A64FX.

A. Algorithm formulation

The Winograd (minimal filtering) algorithm provides a

method to obtain a realisation of the convolution operator with

163

1 #define Crow(a1, a2) Cr[(a1)*(ldC)+(a2)]
2 #define mr 14
3 #define nr 32
4 #define B0 C00n
5 #define B1 C01n
6 #define A0 C10n
7 #define VSET(V, Vvalue) { V = svdup_n_f32(Vvalue); }
8 #define VLOAD(V, Vvalue) { V = svld1_f32(pred16, Vmem); }
9 #define VMLA(C, A, B) { C = svmla_f32_z(pred16, C, B, A); }

10 #define VLMAx2(C0, C1, B0, B1, A0, Avalue) { VSET(A0, Avalue); VMLA(C0, B0, A0); VMLA(C1, B1, A0); }
11 #define VUPDATE(Cn, C, Cmem) { Cn = VLOAD(Cmem); C = svadd_f32_z(pred16, C, Cn); svst1_f32(pred16, Cmem, C); }
12
13 // Registers for micro-tile of C, A, B and final update
14 svfloat32_t C00, C01, C10, C11, C20, C21, /* Omitted for brevity */ C013, C113,
15 C00n, C01n, C10n, C11n;
16 // Ensure no read/write beyond limits (16 FP32 numbers)
17 svbool_t pred16 = svwhilelt_b32_u32(0, 16);
18
19 // Set micro-tile of C in SIMD registers to zero
20 VSET(C00, 0); VSET(C01, 0);
21 VSET(C10, 0); VSET(C11, 0);
22 // Set C20, C21, C30,... to zero omitted for brevity
23 VSET(C130, 0); VSET(C131, 0);
24 // Iterate in loop from pr = 0 to Kc-1
25 for (int pr=0, baseA=0, baseB=0; pr<Kc; pr++, baseA+=mr, baseB+=nr) {
26 // Load row of B for current iteration
27 VLOAD(B0, &Br[baseB]); VLOAD(B1, &Br[baseB + 16]);
28 // Update micro-tile
29 VMLAx2(C00, C01, B0, B1, A0, Ar[baseA + 0]);
30 VMLAx2(C10, C11, B0, B1, A0, Ar[baseA + 1]);
31 // Update of C20, C21, C30, C31,... omitted for brevity
32 VMLAx2(C130, C131, B0, B1, A0, Ar[baseA + 13]);
33 }
34 // Load contents of C from memory, add to micro-tile,..., and store back in memory
35 VUPDATE(C00n, C00, &Crow(0, 0)); VUPDATE(C01n, C01, &Crow(0, 16));
36 VUPDATE(C10n, C10, &Crow(1, 0)); VUPDATE(C11n, C11, &Crow(1, 16));
37 // Reuse C00n, C01n, C10n, C11n to avoid register spilling
38 VUPDATE(C00n, C20, &Crow(2, 0)); VUPDATE(C01n, C21, &Crow(2, 16));
39 VUPDATE(C10n, C30, &Crow(3, 0)); VUPDATE(C11n, C31, &Crow(3, 16));
40 // Remaining operations, for C40, C41, C50, C51,..., omitted for brevity

Listing 4: Structure of the 14× 32 micro-kernel that computes Cr = Ar ·Br + Cr, implemented using ARM SVE intrinsics.

a reduced arithmetic cost [14]. Concretely, given a convolution

layer that applies a filter F to a single input image I , consisting

of ci input channels, in order to produce a single output

O, with co channels, the Winograd-based convolution can be

expressed as

Oj = MT
(∑ci

i=1

(
GFj,i G

T
)� (

HT Ii H
))

M,
j = 1, 2, . . . , co,

(4)

where G and H respectively denote the transformation ma-

trices for the filter and input matrices; M is the inverse

transformation matrix; Fj,i is the i-th channel of the j-th filter;

Ii is the i-th channel of the input image; Oj is the j-th channel

of the output; and � denotes the Hadamard (or element-wise)

multiplication [9].

From a practical point of view, the 2D Winograd-based

convolution applies an r × r filter to a t × t input tile in

order to produce an s × s output tile, with t = s + r − 1.

An input image I , of dimension hi × wi (and consisting of

ci input channels), is processed by partitioning it into t × t
tiles, with an overlapping factor of r − 1 elements between

neighbouring tiles, yielding �hi/s��wi/s� tiles per channel.

In this algorithm, choosing a larger value for s reduces the

number of arithmetic operations, unfortunately at the cost of

introducing numerical instability in the computation [15]. For

that reason, s is usually set to be small, with two popular cases

being W (s×s, r×r) = W (2×2, 3×3) and W (4×4, 3×3).

(G Fj,i GT) (HT Ii H)

Fj,i

t
t

…

…

t
t

…

…

3) Batched
GEMM

t
t

…

…

k

hi /s wi /s

(MT M)

hi /s wi /s

co ci

ci

co

ci

Ii

1) Filter transform 2) Input transform

4) Output inverse
transform

hi

wi

r

r

ho

wo

Oi

U

V

t

t

t

t

t
t

t

t s

s
co

ci

Fig. 4: Workflow of the GEMM-based Winograd algorithm.

According to the Winograd formula in (4), the intermediate

Hadamard products are summed over all ci channels to pro-

164

duce the j-th output channel. Thus, by properly scattering each

filter and input transformed tile along the t× t dimensions on

two intermediate workspaces, U and V respectively of sizes

t × t × co × ci and t × t × ci × (�hi/s��wi/s�), both the

Hadamard products and the element-wise summations can be

collapsed into t× t independent matrix-matrix multiplications

(also known as a “batched” sequence of GEMM). Finally, the

same coordinates of the resulting t × t matrices are gathered

to form a new t × t tile, which is then used to compute the

inverse transform as an s× s tile on the output tensor.

Figure 4 depicts the general workflow of this variant of

the Winograd algorithm, exposing the four major phases: 1)

filter transform; 2) input transform; 3) “batched” GEMM; and

4) output inverse transform. In the example, the algorithm

receives input and filter tensors, respectively of size hi×wi×ci
and ci × r × r × co, to produce an output tensor of size

ho × wo × co = (hi − r + 1)× (wi − r + 1)× co.

To close this brief review of the Winograd algorithm, in

DL applications the aforementioned 3D input/output tensors

may comprise an additional dimension, b, for the number of

independent images to process.

B. Vectorising the input transform

For the GEMM-based Winograd convolution, vectorising

the input transform with different values of s and r entails

re-implementing phase 2 in Figure 4. This is due to the

distinct dimensions and sparsity patterns of the transformation

matrix H generated on the s+ r− 2 polynomial interpolation

points [9]. Given that the most popular alternatives leverage

small values of s and r, such as W (2 × 2, 3 × 3) and

W (4×4, 3×3), vectorising this phase on the A64FX requires

unrolling (up to a certain degree) the loops iterating over the

input tiles in order to fully exploit the 512-bit SIMD units.

This technique, referred to as macro-tiling, aims at processing

a horizontal (and optionally vertical) block of consecutive tiles

of the input images in a single iteration so that the macro-tile

columns, stored in vector registers, exploit their full length.

Depending on the Winograd variant, the macro-tile can thus

accommodate a different number of tiles in both the horizontal

and vertical axes.

Figure 5 illustrates the macro-tiling technique for the input

transform (phase 2 of the Winograd-based convolution), with

W (2× 2, 3× 3), for simplicity targeting 256-bit SIMD units,

able to operate with up to 8 FP32 numbers. In this case, the

application of the input transform to the tiles of a macro-

tile is split into two sub-operations. The first performs the

multiplication D′
i = HT ·Di, where Di is a macro-tile of size

ht ×wt = 6× 8, aggregating a block of Ii, comprising 2× 3
input tiles of size t× t = 4× 4 overlapping each other r − 1
rows and columns. By overlapping r − 1 columns between

neighbouring tiles, the number of arithmetic operations is

reduced by a factor of 1 − t×wt

t+s×(wt−1) , given that these can

be leveraged for the tiles that are immediately on the right.

Unfortunately, the results related to the r−1 overlapping rows

in Di cannot be leveraged for the tiles that are immediately

below. In this case though, the aggregation of two rows of

tiles in Di yields a square 8 × 8 matrix that is easy to

transpose. The second multiplication V T
i = HT · D′

i
T

uses

the previously transposed macro-tile DT
i and is computed

similarly, with the exception that there are no overlapping

columns in the transposed resulting matrix V T
i . This macro-

tiling technique can be generalised for any other values of

r, s, and permits taking advantage of long vector registers.

However, an implementation using ARM SVE intrinsics has

to be manually customised to operate with the appropriate

number of elements (i.e., hht and wt), which is contrary to

the SVE’s focus on code portability.

Fig. 5: Example of the Winograd macro-tiling technique for

computing the input transform Vi = HT IiH using the W (2×
2, 3 × 3) alternative on 256-bit registers with capacity for 8

FP32 numbers.

At this point, we note that the filter transform only needs

to be computed once, independently of the number of images

to process, and that this can be done offline. Therefore, its

contribution to the inference time is negligible. (This is similar

to the transform of the filter tensor in the blocked direct

convolution.) Also, the output transform was vectorised using

the macro-tiling technique applied to the input transform but,

due to the more complex access pattern for the result tensor,

it did not contribute to any performance improvement.

C. Exploiting thread-level parallelism using OpenMP

In addition to the introduction of SVE intrinsics, the four

phases of the algorithm can be individually parallelised using

OpenMP, as the kernels involved by the transform matrices

for the filter/input/output tiles present no data dependencies.

To augment loop-level parallelism, we used the OpenMP

collapse clause to fuse the first two loops in each phase:

across the co and ci dimensions in phase 1; the b and ci
dimensions in phase 2; the two loops iterating over t in

phase 3; and the b and co dimensions in phase 4. Each

individual t × t GEMM kernel in phase 3 (see Figure 4) is

executed serially but we parallelise their calculation across

the t × t dimensions. Thus, each GEMM kernel in our

165

Winograd implementation is executed sequentially in order

to avoid the exploitation of nested parallelism by setting the

OMP_MAX_ACTIVE_LEVELS environment variable to 1.

VI. EXPERIMENTAL RESULTS

A. Experimental setup

The following experiments were performed using IEEE

FP32 arithmetic on a single node of the MareNostrum 4 CTE-

ARM cluster, a platform equipped with Fujitsu FX1000 nodes

at the Barcelona Supercomputing Center (BSC). Each node

of this cluster features a 48+4-core Fujitsu A64FX processor

running at 2.20 GHz, with the cores grouped into 4 Core

Memory Groups (CMGs), each with 12 compute cores plus

an additional assistant core for the operating system. The

cluster nodes are equipped also with 32 GiB of HBM2 memory

(per node) and run a Red Hat Enterprise Linux 8 Operating

System with the following software used for the experiments:

GCC v10.2.0, Python v3.9.13, Numpy v1.23.0rc1, and BLIS

v0.8.1. For the experiments, we pinned a single worker thread

per physical (compute) core via numactl. To ensure repro-

ducibility, all experiments were repeated a large number of

times and the results averaged.

During the experiments we measure the execution time of

the convolution layers present in three popular DL models:

ResNet-50 (v1.5) [3], GoogleLeNet [16], and VGG16 [17], all

three combined with the ImageNet dataset [18]. The number of

images/batch size was set to b = 1 in order to reflect the single-

stream scenario of the ML Commons benchmark for inference

on the edge, thus prioritising latency over throughput.

B. Parallel scalability

Our first experiment is designed to expose the parallel scal-

ability of the high-performance implementations of the three

target methods on the A64FX. For that purpose, in Figure 6

we report the speedup of each algorithm when running on

4, 8 and 12 (compute) cores of a single CMG (with one

thread per core), with respect to its corresponding sequential

version. For brevity, we only report the acceleration factors for

(the convolution layers of) ResNet-50 but similar results were

observed for the two other DNN models. The SIMD-aware

A64FX implementation of the Winograd algorithm used the

W (2×2, 3×3) variant on a macro-tile of size ht×wt = 10×16
comprising 4 × 7 input tiles. Remind that this algorithm can

only be applied to convolution layers with hf × wf = 3× 3,

which explains the smaller number of results in the last plot

of the figure.

For the lowering approach (top plot), the results show a sta-

ble speedup for the executions on 4 threads, slightly superior

to 3× in all except 8 of the last 9 layers. A trend towards

a decrease in the speedup is visible for the last layers in the

executions with 8 threads and, especially, those involving 12

threads. Concretely, for both thread configurations, we can

observe drops in the speedup from layers #41, #83, and #145.

For example, for 12 threads, these three drops separate the

layers into four groups, with speedups close to 8× up to

layer #38 (except for layer #6), in the range 5.9–7× for layers

#41–#80, around 5× for layers #83–#142, and near to 4× for

layers #145–#170 (except for layer #150). This behaviour of

the lowering-based algorithm can be related to the dimensions

of the GEMM operations present in each of these layer groups.

The blocked direct convolution (middle plot) displays lim-

ited parallel scalability, with very low speedups (even smaller

than 1, which corresponds to slowdowns) for the initial layers

yet slightly growing towards the final layers. For example,

for 12 threads the speedup is above 6× for one layer only

(#150) and superior to 5× for three other layers (#148, #160,

and #170). However, the acceleration factors are much meagre

for all other layers. This is motivated by the dimensions of

the convolution parameters in ResNet-50, which offer scarce

opportunities to extract loop-level parallelism that can be

efficiently exploited with OpenMP. Here we tested different

options, parallelising distinct loops of the algorithm (see

Listing 3) and exploring a task-based parallelisation. We

also merged pairs of loops, either automatically using the

collapse OpenMP clause, or manually by performing a

strict distribution of the iteration spaces, with similar or even

worse results. In the end, the small values for ci, co, ho, wo,

for many convolution layers in the range of a few dozens, is

a strong limiting factor for the scalability of this convolution

algorithm.

The speedups of the Winograd algorithm (bottom plot)

exhibit a behaviour that is somewhat in the middle between

those of the other two algorithms for 4 threads. In contrast,

for 12 threads the algorithm exhibits a severe limitation on

the parallel scalability, with a speedup of 7× in the first two

layers but around or even below 4× in all other cases.

C. Global comparison

We next conduct a direct comparison of the (high-

performance implementations of the three) convolution algo-

rithms. For that purpose, we utilise the GFLOPS (billions

of floating-point operations per second) rate, using a flop

count of 2cicohowohfwf for all three algorithms. This metric

offers a scaled version of the execution time; allows a fair

comparison of all three algorithms, independent of the actual

number of floating-point operations; and, in contrast with the

time, improves the visibility of the results by setting the same

upper bound for all layers and models (corresponding to the

processor peak performance). To reduce the number of results,

we only report the GFLOPS using 12 threads next.

The rates in Figure 7 show that the lowering approach is

the global winner in terms of performance due to its superior

parallel scalability. (In contrast, when running on a single core,

we observed that the blocked direct convolution provides a

more efficient solution.) For ResNet-50, the lowering approach

delivers between 150 and 250 GFLOPS in most layers while

for GoogleLeNet and VGG16 we can observe peaks of up

to 600 GFLOPS. In general, the blocked direct convolution is

only superior for a few of the final layers in ResNet-50, and

Winograd is always outperformed by one of the two other

algorithms. (Remind that, for Winograd, results for layers with

a filter size different from 3× 3 are not available.)

166

�
�
�
�
�

�
�

�
�
�
�
�

�
�

�
�
�
�
�

�
�

Fig. 6: Speedups of the lowering approach, the blocked direct convolution and the Winograd algorithm (top, middle and bottom,

respectively) for ResNet-50+ImageNet using 4, 8 and 12 threads/cores of a single CMG of the A64FX.

D. Impact on the DL models

The three selected DL models comprise a large number of

convolution layers but also other types of operators (batch

normalisation, non-linear activation functions, fully-connected

layers, etc.). Therefore, it is important to put the previous

results in perspective by investigating the actual impact of the

high-performance implementations of the convolution methods

on the total inference time. To analyse this effect, we integrated

the distinct convolution options into our PyDTNN framework

for high performance inference (and training) DL [19], [20],

and performed a complete execution of the inference process.

Figure 8 displays the absolute (aggregated) time for the

three DL models. As we have not implemented the Winograd

algorithm for convolutional layers with a filter distinct from

3 × 3, the convolution operator is computed in those cases

using the lowering approach. The consequence is that we

can only compare the results for the Winograd algorithm

and the lowering approach in the plots of the figure with

care; and, more importantly, we should avoid any type of

comparison between the Winograd algorithm and the blocked

direct convolution, because the former is a mixed option,

where the Winograd algorithm is replaced by the highly

efficient lowering approach for many layers. The plots in the

figure show acceleration factors for the lowering approach over

Winograd that range between 1.11× for GoogleLeNet and

1.86× for VGG16; and over the blocked direct convolution

between 1.29× for GoogleLeNet and 2.48× for VGG16. This

exposes the remarkable advantage of the lowering approach

over the two alternatives also for the complete inference

process.

VII. RELATED WORK

There exist some vectorised CPU implementations in the

literature for the direct, GEMM-based, and Winograd-based

convolutions. The implementation of these algorithms for x86-

64 CPUs can be found, for instance, in Intel’s oneDNN [21]

using SIMD AVX2/AVX512 instructions for several data types

(INT8, FP32, and BF16). NNPACK [22] also implements

these algorithms for x86-64 and ARM architectures using,

respectively, AVX2 and NEON intrinsics, though the pack-

age has some limitations concerning the filter sizes for the

direct and Winograd algorithms. Concretely, for the direct

convolution, NNPACK only accepts 1 × 1 kernels, while the

Winograd implementation is limited to 3 × 3 filters, in both

167

� �
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

���� ����

�

����

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	
�

�

�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
	
�

�
�

�
�
�

����

�

�
�
�
�
�
�

Fig. 7: GFLOPS of the high performance implementations of the convolution algorithms for ResNet-50, GoogleLeNet and

VGG16 (top, middle and bottom, respectively) with ImageNet using 12 threads/cores of a single CMG of the A64FX.

cases without any stride. The ARM Compute Library [23]

also provides support for these three convolution algorithms

with a set of optimisation strategies including SIMD NEON

and SVE instructions for different tensor layouts and data

types, such as FP32, FP16, INT8, UINT8 and BF16. For the

Winograd algorithm, the ARM Compute Library leverages the

W (4×4, 3×3) variant. However, the implementations that use

SVE intrinsics are only available for the GEMM-based convo-

lution. Other libraries, such as FeatherCNN [24], also provide

highly-tuned implementations but only for the Winograd-based

convolution on ARM CPUs using NEON intrinsics and a

combination of algorithmic optimisations that help improve

both computational efficiency and memory locality. Although

all these libraries have their merits, not all of them include

implementations for the three algorithms which exploit the

512-bit SIMD units via SVE intrinsics on the Fujitsu A64FX

processor.

VIII. CONCLUDING REMARKS

We have implemented, optimised and evaluated three algo-

rithms for the convolution operator on the Fujitsu processor

A64FX, with a strong focus on “long SIMD-vectorisation” and

efficient OpenMP-based parallelisation. This effort has pro-

duced a number of insights, which are likely to be extensible

to other multicore architectures with long SIMD units:

1) In general, the lowering approach can be easily ported to

other architectures while retaining much of the perfor-

mance. The blocked direct convolution can also be effi-

ciently migrated, subject to a manageable architecture-

specific optimisation work (especially, when leveraging

high-level vector intrinsics instead of assembly code). In

contrast, vectorising the Winograd algorithm is a com-

plex task and, even when encoded with SVE, the per-

formance of the resulting codes is not directly portable

to architectures with other SIMD lengths.

2) The blocked direct convolution and the Winograd al-

gorithm exhibit limited loop-level parallelism. In con-

sequence, lowering is the best approach in terms of

performance when using multiple cores. When running

on a single core, the blocked direct convolution provides

a competitive alternative and the Winograd algorithm

is the best option only in a few cases (due to the

difficulties in efficiently exploiting long SIMD units for

this algorithm).

168

�
��
�
��
�

�
��
�
��
�

�
��
�
��
�

Fig. 8: Aggregated time for the ResNet-50, GoogleLeNet and VGG16 models.

3) The blocked direct convolution requires a special pack-

ing of the filters, which in training has to be recalculated

in each iteration. A similar comment applies to the

calculation of the filter transform for the Winograd

algorithm.

4) The lowering approach and the blocked direct convo-

lution are highly flexible, but the former requires a

significant additional workspace.

To close this short review, the Winograd algorithm does

not have the same numerical properties as the two other

methods, although the analysis of that is beyond the scope of

this paper. Also, when the goal is DL training, the backward

pass for Winograd and the blocked direct convolution are not

straightforward to implement.

ACKNOWLEDGMENTS

This research was partially sponsored by projects TIN2017-

82972-R of Ministerio de Ciencia, Innovación y Univer-
sidades and Prometeo/2019/109 of the Generalitat Valen-
ciana. Héctor Martı́nez is a postdoctoral fellow supported

by the Consejerı́a de Transformación Económica, Industria,
Conocimiento y Universidades de la Junta de Andalucı́a.

Manuel F. Dolz was also supported by the Plan GenT

project CDEIGENT/2018/014 of the Generalitat Valenciana.

This project has received funding from the European High-

Performance Computing Joint Undertaking (JU) under grant

agreement No 955558. The JU receives support from the EU

Horizon 2020 research and innovation programme, and Spain,

Germany, France, Italy, Poland, Switzerland, Norway.
We thank the Barcelona Supercomputing Center for granting

the access to the Fujitsu A64FX system were the developments

and tests were performed.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach. San Francisco: Morgan Kaufmann Pub., 2017.

[2] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis,” ACM Comput. Surv.,
vol. 52, no. 4, pp. 65:1–65:43, Aug. 2019.

[3] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proc. of the IEEE, vol.
105, no. 12, pp. 2295–2329, 2017.

[4] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” in 10th Int. Workshop Fron-
tiers in Handwriting Recogn., 2006, Université de Rennes, France.

[5] E. Georganas et al., “Anatomy of high-performance deep learning
convolutions on SIMD architectures,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis, ser. SC ’18. IEEE Press, 2018.

[6] P. San Juan, A. Castelló, M. F. Dolz, P. Alonso-Jordá, and E. S.
Quintana-Ortı́, “High performance and portable convolution operators
for multicore processors,” in 2020 IEEE 32nd Int. Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD),
2020, pp. 91–98.

[7] F. G. Van Zee and R. A. van de Geijn, “BLIS: A framework for rapidly
instantiating BLAS functionality,” ACM Trans. Math. Softw., vol. 41,
no. 3, pp. 14:1–14:33, 2015.

[8] J. Zhang, F. Franchetti, and T. M. Low, “High performance zero-memory
overhead direct convolutions,” in Proc. 35th Int. Conf. Machine Learning
– ICML, Vol. 80, pp. 5776–5785, 2018.

[9] A. Lavin and S. Gray, “Fast algorithms for convolutional neural net-
works,” in 2016 IEEE Conf. on Computer Vision and Pattern Recogn.
(CVPR), 2016, pp. 4013–4021.

[10] A. Zlateski, Z. Jia, K. Li, and F. Durand, “The anatomy of efficient
FFT and Winograd convolutions on modern CPUs,” in Proc. ACM Int.
Conference on Supercomputing, ser. ICS ’19, 2019, p. 414–424.

[11] R. G. Xu, “BLIS & TBLIS on SVE and Apple AMX,” 2021,
ARM HPC User Group – SC’21. [Online]. Available: https:
//www.youtube.com/watch?v=xMiWe07Rjss

[12] S. Barrachina et al., “Reformulating the direct convolution for high-
performance deep learning inference on ARM processors,” Cluster
Computing, 2022, in review.

[13] T. M. Low, F. D. Igual, T. M. Smith, and E. S. Quintana-Ortı́, “Analytical
modeling is enough for high-performance BLIS,” ACM Trans. Math.
Softw., vol. 43, no. 2, pp. 12:1–12:18, Aug. 2016.

[14] S. Winograd, Arithmetic Complexity of Computations. Society for
Industrial and Applied Mathematics, 1980.

[15] B. Barabasz, A. Anderson, K. M. Soodhalter, and D. Gregg, “Error
analysis and improving the accuracy of Winograd convolution for deep
neural networks,” ACM Trans. Math. Softw., vol. 46, no. 4, Nov. 2020.

[16] C. Szegedy et al., “Going deeper with convolutions,” CoRR, vol.
abs/1409.4842, 2014. [Online]. Available: http://arxiv.org/abs/1409.4842

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. 25th Int. Conf. Neural
Information Processing Systems (NIPS), 2012, pp. 1097–1105.

[19] S. Barrachina, A. Castelló, M. Catalan, M. F. Dolz, and J. Mestre,
“PyDTNN: a user-friendly and extensible framework for distributed deep
learning,” The Journal of Supercomputing, vol. 77, 09 2021.

[20] S. Barrachina, A. Castelló, M. Catalán, M. F. Dolz, and J. I. Mestre,
“A flexible research-oriented framework for distributed training of deep
neural networks,” in 2021 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2021, pp. 730–739.

[21] Intel, “oneAPI Deep Neural Network Library - oneDNN,” 2021.
[Online]. Available: https://github.com/oneapi-src/oneDNN

[22] M. Dukhan, “Nnpack: Acceleration package for neural networks
on multi-core cpus,” 2016. [Online]. Available: https://github.com/
Maratyszcza/NNPACK

[23] ARM, “Arm compute library,” 2021. [Online]. Available: https:
//github.com/ARM-software/ComputeLibrary

[24] H. Lan, J. Meng, C. Hundt, B. Schmidt, M. Deng, X. Wang, W. Liu,
Y. Qiao, and S. Feng, “FeatherCNN: Fast inference computation with
TensorGEMM on ARM architectures,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 3, pp. 580–594, 2019.

169

