
Artificial Intelligence In Medicine 137 (2023) 102495

A
0
n

Contents lists available at ScienceDirect

Artificial Intelligence In Medicine

journal homepage: www.elsevier.com/locate/artmed

Research Paper

A model-driven transformation approach for the modelling of processes in
clinical practice guidelines
Begoña Martínez-Salvador a,∗,1, Mar Marcos a,1, Patricia Palau b,c,2, Eloy Domínguez Mafé b,d,2

a Department of Computer Engineering and Science, Univ. Jaume I, Spain
b Cardiology Department, Hospital Clínico Universitario de Valencia, Univ. de València, Spain
c INCLIVA Instituto de Investigación Sanitaria, Univ. de València, Spain
d Predepartmental Unit of Medicine, Univ. Jaume I, Spain

A R T I C L E I N F O

Keywords:
Clinical practice guidelines
Computer-interpretable guidelines
Modelling of processes in clinical practice
guidelines
Model-driven development
BPMN
PROforma
ATLAS transformation language

A B S T R A C T

Clinical Practice Guidelines (CPGs) include recommendations aimed at optimising patient care, informed by a
review of the available clinical evidence. To achieve their potential benefits, CPG should be readily available
at the point of care. This can be done by translating CPG recommendations into one of the languages
for Computer-Interpretable Guidelines (CIGs). This is a difficult task for which the collaboration of clinical
and technical staff is crucial. However, in general CIG languages are not accessible to non-technical staff.
We propose to support the modelling of CPG processes (and hence the authoring of CIGs) based on a
transformation, from a preliminary specification in a more accessible language into an implementation in a
CIG language. In this paper, we approach this transformation following the Model-Driven Development (MDD)
paradigm, in which models and transformations are key elements for software development. To demonstrate
the approach, we implemented and tested an algorithm for the transformation from the BPMN language for
business processes to the PROforma CIG language. This implementation uses transformations defined in the
ATLAS Transformation Language. Additionally, we conducted a small experiment to assess the hypothesis that
a language such as BPMN can facilitate the modelling of CPG processes by clinical and technical staff.
1. Introduction

Clinical Practice Guidelines (CPGs) are ‘‘statements that include
recommendations intended to optimise patient care that are informed
by a systematic review of evidence and an assessment of the benefits
and harms of alternative care options’’ [1]. Research has demonstrated
that CPGs have the potential of translating clinical research results to
practice, and to improve the quality and outcomes of healthcare. To
achieve these benefits, CPGs should be available at the point where
the encounter between the patient and the clinician occurs [2]. An
effective way to accomplish this is by translating the recommendations
within CPGs into a computer-interpretable format [3]. Thus, Computer-
Interpretable Guidelines (CIGs) can be defined as formalised versions
of CPG contents intended to be executed as part of clinical decision
support systems.

Over the last 20 years, several modelling languages for CIGs were
proposed in the Medical Informatics and AI in Medicine areas. Among
the most important ones, in chronological order, are [2,4,5]: Arden Syn-
tax, PROforma, Asbru, EON, Prodigy, GLIF, and GUIDE. An important

∗ Corresponding author.
E-mail address: begona.martinez@uji.es (B. Martínez-Salvador).

1 PhD
2 MD, PhD

part of these languages refers to the procedures to perform, covering
both concrete clinical actions (e.g., diagnostic tests) and more or less
complex combinations of actions (e.g., choices, sequences) [6]. Addi-
tionally, these CIG languages usually provide editing tools to facilitate
the authoring of models. However, encoding clinical recommendations
into a CIG language is a difficult and demanding task. On one hand,
a proper understanding of CPG recommendations necessitates from a
clinical background. On the other hand, CIG languages are in general
poorly accessible to clinicians without technical skills. For these rea-
sons, it has been acknowledged for some time that the collaboration
of clinical and technical staff is crucial for the authoring of CIGs [7–
9]. Some authors even have demonstrated that the models obtained by
mixed (clinical and technical) teams were superior to those produced
by either clinical or technical staff alone [10].

The research problem we address is the difficulty of encoding the
recommendations of CPGs into a CIG language. In this context, we
advocate promoting the involvement of clinicians in the encoding of
CPG recommendations. Besides, clinicians should be able to recognise
vailable online 23 January 2023
933-3657/© 2023 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.artmed.2023.102495
Received 25 April 2022; Received in revised form 13 December 2022; Accepted 18
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

January 2023

https://www.elsevier.com/locate/artmed
http://www.elsevier.com/locate/artmed
mailto:begona.martinez@uji.es
https://doi.org/10.1016/j.artmed.2023.102495
https://doi.org/10.1016/j.artmed.2023.102495
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artmed.2023.102495&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Artificial Intelligence In Medicine 137 (2023) 102495B. Martínez-Salvador et al.
the recommendations they have authored in the resulting CIGs. Rather
than directly encoding the guideline in one of the above-mentioned
languages, we propose to support the authoring of CIGs based on
transformations, from a preliminary description in a more accessi-
ble language, into a detailed implementation in a CIG language. For
this purpose, and specifically focusing on the modelling of clinical
processes in the CPG, we use the Business Process Modelling and
Notation (BPMN) [11] as a bridge language between the textual CPG
and the CIG language. BPMN, whose latest specification is BPMN 2.0,
is an OMG proposal which is widely accepted for process modelling in
many areas [12].

In the field of Medicine, BPMN has been in use for over a decade. In
this sense, some works have reported a quick and intuitive familiarisa-
tion with the language, and a better understanding of the processes for
non-technical staff, facilitating collaboration and communication [13,
14]. In recent years, there has been an increase in the publishing
activity in this regard, as evidenced by recent review papers [15,16].
The literature analysis by De Ramón et al. [15] confirms the utility of
the use of BPMN in the design, optimisation and automation of clinical
processes, as well as a greater involvement of clinical staff derived from
this use. The review work by Tomaskova and Kopecky [16] identifies
the description of clinical processes and decision-making among the
main purposes of analysed publications. The scope of the latter review
is widespread, including several approaches related to knowledge rep-
resentation of clinical processes [6,17–19]. Zerbato et al. [17] worked
on the use of BPMN for modelling clinical protocols, with special focus
on modelling temporal aspects. Kaiser and Marcos [6] compared the
expressiveness of CIG and business process languages (not only BPMN)
in terms of the so-called workflow control patterns. Combi et al. [18]
proposed a methodology to model decision-intensive care pathways,
combining BPMN and DMN (Decision Modelling Notation, also an
OMG proposal). Lastly, Martínez-Salvador and Marcos [19] proposed a
transformation-based refinement approach that uses BPMN to support
the encoding of clinical processes into CIG languages, jointly by clinical
and IT staff. Following a similar idea, the work by Gonzalez-Lopez
et al. [20] (in this special issue) presents a process-oriented method-
ology, based on BPMN, for modelling surgical processes involving
healthcare domain experts.

Following a transformation-based approach, in this work we tackle
the transformation to support the authoring of CIGs applying the
Model-Driven Development (MDD) paradigm from Software Engineer-
ing. In MDD, models are first-class artefacts in the development of
software and transformations are the main operation. In this context,
we define MDD transformations to obtain the target model in a CIG
language from a source model in BPMN, dealing with the metamodels
(or schemes) of these languages and implementing the solution in terms
of the elements of those metamodels. The MDD transformation itself is
defined in the ATLAS Transformation Language (ATL) [21].

We demonstrate this novel approach by choosing the above-ment-
ioned BPMN notation and the PROforma CIG language as source and
target languages, respectively. PROforma is an executable CIG language
tailored to capture medical knowledge which has been successfully
used for deploying clinical decision support systems [22]. Compared
to BPMN, PROforma is in general less intuitive for clinicians not only
because it includes much more process detail (it is an executable lan-
guage) but also because many of these details are not displayed graph-
ically. Note that a comparison of the BPMN and PROforma languages
is outside the scope of this work.

Additionally, we describe the results of a small experiment we have
conducted to evaluate our hypothesis that a more accessible language
facilitates the early stages of the CPG modelling task by mixed teams
with clinical and technical staff. The observations gathered during our
experiment show that, after a short introduction to the BPMN language,
clinicians can not only be engaged but also take a leading role in the
modelling task. The results of our experiment also support the greater
2

accessibility to clinicians of BPMN notation.
2. Materials and methods

2.1. Representation of clinical processes

CPGs contain evidence-based recommendations for the best man-
agement of patients with a specific clinical condition. Regarding their
appearance and structure, they are usually text documents of varying
length, describing in detail the recommended actions for the diag-
nosis and/or treatment of a particular disease. Sometimes CPGs are
augmented with more structured information like tables summarising
key recommendations and flowcharts structuring and specifying some
recommendation steps for ease of understanding.

Clinical processes in guidelines typically include requests for data,
and cover both concrete clinical actions (e.g., diagnostic tests) and more
or less complex combinations of actions such as choices and sequences.
Most times an order is established in the mentioned steps, for example,
a sequence. However, in other situations, some actions could be done
in parallel or simply the order is not relevant. In most cases, clinical
processes within CPGs are rather complex. Therefore, the use of ele-
ments for encapsulating some parts in the representation may increase
readability. For example, a set of interventions to perform a complex
task could be encapsulated for the sake of clarity. Encapsulation can
be also useful when there are different treatments according to certain
patient features, for example for postmenopausal women. As a result,
CPGs could be considered as a hierarchy of tasks or clinical processes.

It is also worth mentioning that guidelines could contain some
recommendations that affect only a subgroup of patients. For exam-
ple, an additional test may be recommended for a group of patients
while not for the rest. Moreover, usually guidelines contain iterative
steps, specially related to some therapeutic actions, like in the case
of chemotherapy. Finally, notice that CPGs are formulated in natural
language, therefore the processes they contain are inherently struc-
tured [6], which means that for every process branching it is possible
to define a corresponding joining, and thus that all branch-join points
can be properly paired. All these features must be considered when
modelling guidelines in both BPMN and PROforma.

2.1.1. Clinical guidelines in BPMN
BPMN is a complex graphical language with about 50 constructs.

However, some studies conclude that a common core set and an ex-
tended core set of elements, representing about 24% of the total el-
ements, constitute the most frequently used elements to design pro-
cesses [23]. In this line, our experience modelling in BPMN the clinical
processes of different CPGs confirms that the BPMN constructs included
in the core and extended sets more than cover the representation needs
of CPGs. Note that in this section, we restrict our discussion to the
minimal set of BPMN elements required to represent clinical processes
according to our experience. These include: events, tasks, gateways,
sequence flows, and sub-processes. See Fig. 1 for an example of clinical
process modelled in BPMN.

Events, tasks and gateways are types of BPMN flow objects. Events
are something that happens during the course of a process. Graphi-
cally, events are represented as circles. Tasks are atomic activities and
represent the actions to be performed. They are depicted as rounded
rectangles. Gateways control branching and merging of flows in a pro-
cess. There are different types of gateways that correspond to different
control flow structures: alternative paths, that can be deterministic
(XOR-gateway) or not deterministic (OR-gateway), and parallel paths
(AND-gateway). Gateways are represented as diamonds with a mark
inside that indicates the type of gateway. Moreover, if gateways branch
the control flow, they are known as diverging gateways. Conversely,
gateways that merge flows are known as converging gateways.

The elements in a BPMN process are connected using sequence flows,
graphically depicted as arrows (see Fig. 1). Sequence flows define the
order of execution of the BPMN flow objects. Each sequence flow

has exactly one source and one target. Sequence flows starting in a

Artificial Intelligence In Medicine 137 (2023) 102495B. Martínez-Salvador et al.
Fig. 1. BPMN diagram for the diagnosis of heart failure in the cases of acute and non-acute onset. Circles are the start and end events. Rounded squares represent tasks or
sub-processes (marked with a plus sign). Diamonds are diverging and converging gateways. In this example all the gateways are XOR-gateways. Sequence flows (arrows) connect
all the elements.
diverging (X)OR-gateway3 are conditional sequence flows since they
have conditions that must be met in order to follow the corresponding
flow. These diverging gateways might also be the origin of a default
sequence flow that would be chosen when none of the conditions of
the alternative sequence flows are satisfied.

Sub-processes are compound activities. A sub-process is depicted as
a single node but contains its own process diagram. Graphically, it is
represented as a rounded rectangle marked with a plus sign (+), thus
indicating that its own diagram can be displayed. They are used to hide
the complexity of a process by encapsulating a set of tasks that are
needed to reach a goal, or to define a specific kind of execution for the
activities within the sub-process, such as any sequential ordering. As
explained in the previous section, clinical processes are rather complex
and therefore sub-process encapsulation is used to increase readability.
In BPMN, it is also possible to indicate that a task or sub-process can be
repeatedly executed. This feature can be used for iterative procedures
included in CPGs.

A clinical process is represented in BPMN as a directed acyclic
graph [19]. Each graph has a start event and an end event as starting
and finishing points, respectively. In the graph, events, tasks, gateways
and sub-processes are connected by means of sequence flows. Diverging
gateways split the flow into two or more paths. Conversely, converging
gateways merge flows. As an illustration, Fig. 1 shows the BPMN graph
for the diagnosis of chronic heart failure in the cases of acute and non-
acute onset. The graph includes several sub-processes which contain
their own graph, resulting in a hierarchy of acyclic graphs. It can be
observed that it is a structured graph, i.e. every diverging gateway has
its corresponding converging gateway (of the same type), and all pairs
of diverging–converging gateways are properly nested. As mentioned
before, we deal with structured graphs because clinical processes in
CPGs are inherently structured. Structuredness is a desirable prop-
erty of business process graphs to avoid structural conflicts such as
deadlocks [24].

3 From now on, we will use the notation (X)OR-gateway to refer to both
XOR-gateways and OR-gateways.
3

2.1.2. Clinical guidelines in PROforma
As mentioned before, PROforma is a CIG language which has been

successfully used for implementing numerous clinical decision support
systems [22]. In PROforma, a guideline is modelled as a plan made up
of one or more tasks [25]. Tasks are the building blocks of PROforma.
There are four types of tasks: enquiries, decisions, actions and plans.
Enquiries are tasks that request data, i.e. the value of one or more data
items or sources, from the external environment (for example a user
or a database). Actions represent those activities to be performed by
an external agent (for example, clinical procedures). Decisions are tasks
that represent a choice among different options or candidates. Finally,
plans group together a set of other tasks. Since plans may contain
other plans in turn, PROforma allows the definition of hierarchical
task networks. The tasks in a plan are usually ordered using scheduling
constraints and/or different types of task conditions. If none of them are
given, then a parallel execution is assumed.

Decisions are a key element of the PROforma language and require
additional attributes. As explained above, they involve a choice among
different options, named candidates. Each candidate has one or more ar-
guments which are truth-valued expressions that determine the choice
of that candidate. These expressions usually describe the arguments
for (in favour) or against the candidate. Additionally, each candidate
has a recommendation rule, which is an expression that calculates the
support for the candidate considering all its arguments. Finally the
choice mode of the decision, single or multiple, determines how many
candidates can be recommended by the decision.

In the PROforma graphical notation each plan is depicted as a
directed acyclic graph (see example in Fig. 2) in which nodes represent
tasks and arcs represent scheduling constraints. The different shapes
of the nodes correspond to the different types of tasks. Concretely,
squares correspond to actions, circles correspond to decisions, dia-
monds represent enquires, and round-edged rectangles correspond to
plans. Scheduling constrains are directed arcs indicating that the task
at the head of the arc cannot be considered for execution until the task
at the tail (antecedent) has finished.

Regarding the execution of a PROforma plan, a task will be con-
sidered for activation when all its scheduling constraints have been
met, that is, when all its antecedent tasks have been either completed
or discarded [25]. In that case, the task will be activated if at least

Artificial Intelligence In Medicine 137 (2023) 102495B. Martínez-Salvador et al.
Fig. 2. PROforma top-level plan for the diagnosis of heart failure on acute and non-acute onset, modelled from scratch from the textual CPG.
Fig. 3. Schema of a model-driven transformation in the context of OMG.
Source: Adapted from Figure 2 in [21].

one of its antecedent tasks has been completed. Otherwise, it will be
discarded. Additionally, tasks may also have different types of condi-
tions that have to be met before activation. These include preconditions
and wait conditions. Both are truth-valued expressions that are checked
once the scheduling constraints of the tasks are met. Then, in the case
of a precondition, the task will be activated if the precondition holds
and discarded otherwise. In the case of a wait condition, the task will
stay dormant until the condition holds. For more details on PROforma,
refer to OpenClinical.net resources [26].

Note that many of the above elements (e.g. candidates, arguments,
preconditions, wait conditions) are described as code and are not dis-
played in the PROforma graphical notation. As a consequence, although
at first glance the process in Fig. 2 may seem simpler than the one
in Fig. 1, is not so for the clinician because she/he must be able to
understand the associated PROforma code for a correct interpretation
of the process. For the sake of simplicity, only the graphical description
is shown in the figure.

2.2. Model-driven development to support modelling of CPG processes

Starting from the hypothesis that a more accessible language such
as BPMN can facilitate the CPG modelling task, in this work we sup-
port the authoring of PROforma CIGs using transformations between
these languages. MDD is a known approach used to improve software
development processes by means of models and transformations, which
are used to map information from a source model to obtain the target
model [27]. MDD was developed to solve some of the most important
problems in software development, namely: to increase productivity, to
document the transformation, to increase portability, and to improve
interoperability. It has been argued that MDD has several advantages
over traditional software development, such as increasing productivity
and reliability [28,29].
4

A recent study [30] comparing MDD with respect to traditional soft-
ware development concludes that MDD is the most useful method in the
long run, with a greater learning curve but compensated with a lower
development effort. MDD relies on transformations between source
and target models. Transformations following the MDD paradigm are
described in a more abstract and readable way, compared to transfor-
mations written in a general-purpose programming language. Thus, the
MDD approach is also useful to trace and document the transforma-
tion [31].

In the literature, model transformations can be classified accord-
ing to different criteria regarding their source and target artefacts or
models [32]. According to these criteria, we classify our transformation
as follows. Regarding the number of input and output models, it is a
one-to-one transformation, since there is a single input model and a
single output model. Since the input and output modelling languages
are different, it is an exogenous transformation. Because the input
language, BPMN, is not as specific (and detailed) to capture the rich
content of clinical processes as the PROforma language, we can say
that the models lie in different abstraction levels. Thus, we consider
the transformation as a vertical transformation or refinement. Finally,
according to the criterion technical space, our transformation belongs
to the same technical space since all the metamodels conform to the
Meta-Object Facility by OMG (see below). To sum up, we deal with a
one-to-one exogenous vertical transformation (i.e. a translation) [32].

Hereafter, the main elements of our MDD approach, namely the
metamodels of the BPMN and PROforma languages and the ATL lan-
guage used for the implementation of transformations, are described.

2.2.1. Metamodels
Metamodels are a prerequisite for MDD. A metamodel is a precise

description of the structure, elements and well-formed rules of the
language of the model. A model-driven transformation4 consists in the
automatic generation of a target model from a source model by means
of a transformation definition, which is a set of rules that describe how
a model (source) is transformed into another model (target) [32] in
terms of the metamodel elements. Model transformation can support
a wide range of tasks, including refinement, synthesis, abstraction,
translation, refactoring, or merging of models. A model transformation
follows a common pattern known as model transformation pattern [21].
This pattern has three elements (see Fig. 3): Ma, Mb and Tab. Ma is
the input model that conforms to the source metamodel MMa. Mb is
the output model conforming to the target metamodel MMb. In other
words, Ma is an instance of the metamodel MMa, and similarly with
Mb and MMb. Tab is a transformation definition in a transformation
language that automatically generates Mb from Ma. Ultimately, Tab

4 Henceforth, the term model transformation is used instead of model-
driven transformation.

Artificial Intelligence In Medicine 137 (2023) 102495B. Martínez-Salvador et al.
Fig. 4. Simplified UML class diagram of the BPMN metamodel.
conforms to MMt, which corresponds to the abstract syntax of the trans-
formation language. Then, the transformation definition Tab describes
how Ma can be transformed into Mb. Note that all the metamodels
conform to a meta-metamodel, which in our case corresponds to the
Meta-Object Facility (MOF5) promoted by OMG.

BPMN 2.0 metamodel. The source metamodel is the official BPMN
metamodel provided by OMG, which is MOF-compliant and is based
on the BPMN 2.0 specification [11]. This metamodel has a consid-
erable size, consistent with the great number of language elements.
We describe next a selected subset of these elements, shown in a
simplified manner in Fig. 4. The main element of a BPMN model is
a Process, which is a Flow Element Container composed of 0
or more Flow Elements. Sequence Flow and Flow Node are both
subtypes of the entity Flow Element. Likewise, the entities Event,
Activity and Gateway are subtypes of Flow Node, and Task and
Sub Process are subtypes of Activity. A Sub Process is also a
type of Flow Element Container, which means that it may contain
some Flow Elements. With respect to events, Start Event and
End Event are subtypes of Event. Finally, the entity Gateway has
the attribute gateway Direction, amongst others, and the subtypes
Exclusive Gateway, Inclusive Gateway and
Parallel Gateway.

Flow Nodes are referenced as a source and/or as a target in
Sequence Flows. Focusing on Events, a Start Event can only
be a source for Sequence Flows, while an End Event can only

5 MOF is an OMG standard for MDD.
5

be a target for them. Both Activities and Gateways may be a
source and/or a target for Sequence Flows. Note that if a node
is a source for one or more sequence flows, this implies that it has
one or more outgoing sequence flows; similarly, being the target
for one or more sequence flows means that there are one or more
incoming sequence flows (see the outgoing and incoming la-
bels in Fig. 4). Lastly, the entity Sequence Flow has as subtypes
Conditional Sequence Flow and Default Sequence Flow.
These subtypes are only allowed for sequence flows going out from
diverging gateways. On the other hand, a
Conditional Sequence Flow must have a
Conditional Expression.

The BPMN 2.0 editor we have used in our work is the BPMN
Modeller plugin available for the Eclipse IDE, which is based on the
BPMN metamodel by OMG, and therefore is MOF-compliant.

Proforma metamodel. The developers of the target language, PRO-
forma, do not provide a metamodel defining its syntax. For this reason,
we have defined a UML class diagram for the elements of the language
(see Section 2.1.2) and, based on it, we have generated a metamodel
suitable for our purposes (see below). Note that this metamodel in-
cludes all the details of the PROforma language and therefore can be
used to derive the PROforma format, which is plain text.

The metamodel of PROforma (Fig. 5) contains 14 entities and 24
relations among those entities. The entity Process must contain a sin-
gle Plan, through the relation topLevelPlan, and may have some
Data and also some Triggers. Every Plan has a SubProcess,
which contains one or more Tasks and may contain several
SchedulingConstraints. Task is a generalisation of the entities

Artificial Intelligence In Medicine 137 (2023) 102495B. Martínez-Salvador et al.

a
F
C
P

f
e
o
p
m
f
T
t

2

a
A
g

Fig. 5. UML class diagram of PROforma metamodel.
Action, Enquiry, Decision and Plan, corresponding to the four
types of tasks in PROforma. The entity SchedulingConstraint is
associated with the entity Task via two relations, since each schedul-
ing constraint must have one source task and one target task. The
entity Enquiry is associated with Data that represents the data to
be entered by the user. The entity Decision can also have some
Data, and additionally it has two or more Candidates. In turn,
Candidate must have a Rule and may have some Arguments.

inally, each Argument is related to one Condition. This entity
ondition has several other associations with the entities Task and
lan, in order to model the different types of conditions.

Based on this UML class diagram, we have obtained the PRO-
orma metamodel (PROforma.ecore file) using the Eclipse Mod-
lling Framework (EMF) Generator Model tool.6 Additionally, with
ther EMF tools we have derived an editor for PROforma models com-
liant with our metamodel. This editor has been used to validate the
etamodel, by modelling a significant CPG sample (including the CPGs

rom the OpenClinical.net repository7 used in a previous work [33]).
he guideline used in this work has also been modelled conforming to
he PROforma metamodel with the same tool.

.2.2. The ATLAS transformation language
In MDD, the characteristics of the transformation language or tool

re equally important to the ones of the model being transformed [32].
mong the desirable characteristics are: (i) the transformation lan-
uage should allow creating/editing/deleting transformations; (ii) it

6 https://www.eclipse.org/modeling/emf/ (last access: April 21st, 2022).
7 https://www.openclinical.net/library/ (last access April 21st, 2022).
6

should allow grouping and composing transformations; (iii) the defined
transformations should be generic; (iii) the language should support
traceability; (iv) it should be compliant to standards; and (v) it should
be accepted by the user community. In this work, we use the AT-
LAS Transformation Language (ATL) [21], that meets most of these
properties and also conforms to MOF.

ATL is a hybrid model transformation language, i.e. it contains
declarative and imperative constructs, developed as part of the ATLAS
Model Management Architecture (AMMA). ATL is supported by a set
of development tools built on the Eclipse environment: an editor, a
compiler, a debugger, and an engine [34]. ATL is applied in the context
of the above-mentioned model transformation pattern (see Fig. 3): a
source model Ma is transformed into a target model Mb according
to a transformation definition Tab, that corresponds to a programme
𝑚𝑚𝑎2𝑚𝑚𝑏.𝑎𝑡𝑙 written in the ATL language.

As mentioned above, ATL provides both declarative and imperative
constructs. The use of the declarative constructs is encouraged since
the transformation has more advantages in this way [34]: (i) the
transformation tends to be closer to the way developers intuitively
perceive it; (ii) it hides the details, thus complex transformations can
be written with a simple syntax; and (iii) it allows traceability between
the source and target models. In the rest of the section we focus on the
declarative aspects of ATL, which are the ones we have used in this
work.

A transformation programme is a set of rules that describe how to
obtain the output model from the input model. The transformation rule
is the basic construct of the ATL language. A rule is a description of
how one or more constructs in the input model should be transformed
into one or more constructs in the output model. Transformation rules
in ATL are organised in modules. A module has a mandatory header

https://www.eclipse.org/modeling/emf/
https://www.openclinical.net/library/

Artificial Intelligence In Medicine 137 (2023) 102495B. Martínez-Salvador et al.

1

1

1

section and a set of helpers and transformation rules. Helpers are meth-
ods applied to an element of the source metamodel and can be called
from different points of the ATL transformation programme. Matched
rules are the declarative ATL rules and are composed of a source pattern
and a target pattern. They are executed over matches of the source
pattern in the source code. For a given match, the elements of the target
pattern are created and their attributes are initialised according to the
bindings, which are the elements of the source metamodel that appear
in the target pattern. If the value of the binding expression is a source
element, then it is first resolved into an element of the target model.

There are different types of matched rules differing on the way
they are triggered. Standard matched rules are applied once for every
match found in the source model. Lazy rules are triggered by other rules
and they can be applied on a single match as many times as they are
referred to by the rules, generating a new set of target elements each
time. Lastly, unique lazy rules are lazy rules but they are applied only
once for a given match. A more comprehensive description of the ATL
language can be found in [21].

3. Implementation of the approach

As explained before, model transformations work at metamodel
level. In the context of the transformation from BPMN to the PROforma
CIG language, it is not possible to establish a 1:1 correspondence
between all the elements of both metamodels. For example, the trans-
formation of a choice among alternative options has to deal with
different elements of the metamodels. In general, transformations are
not trivial and require to define complex queries on the source model
and produce complex results, since the solution does not depend on a
single metamodel element but on a set of elements and involve related
features. For this reason, we do not approach the transformation of
the entire model as a whole, but we consider smaller parts whose
elements are related. In order to accomplish this, we leverage the
graph-oriented quality of the source model. Taking advantage of the
fact that BPMN clinical guidelines are structured graphs (see Sec-
tion 2.1.1), we divide the model in smaller parts by implementing a
structure-identification strategy [35] (see Section 3.2), and then, we
define model transformations for those smaller parts or structures.

The structure-identification strategy consists in identifying in the
source language a series of structures of interest (or components)
considering the target language. In our target model (PROforma) there
are sets of tasks executed in sequential order, in parallel or in non-
deterministic order, and we also have decisions. Accordingly, we need
to identify in the BPMN model sequences, parallel branches and alterna-
tive branches. For example, since our source model (BPMN) is a struc-
tured graph, a parallel structure will be defined by a diverging AND-
gateway along with the sequence flows starting from that gateway, and
will be delimited by the corresponding converging AND-gateway. The
rest of structures will be identified in a similar way.

In the rest of the section we describe the main transformation
algorithm, i.e. the structure-identification strategy, the mapping of
identified BPMN components, and the ATL rules.

3.1. Transformation algorithm

The input to the algorithm (source model) is a BPMN representation
of the clinical processes of the CPG, that is stored as a graph data
structure. More accurately, as a hierarchy of graphs since the model
uses sub-processes which are themselves graphs. In such representation,
we can find different types of nodes connected by sequence flows that
define sequences, split branches and join branches.

The transformation method we have implemented has two parts
that we have called the reducing phase and the expanding phase, as
shown in Algorithm 1. In each iteration of the reducing phase, the
innermost structure of interest (or one of them), is identified in the
input graph (line 5 of Algorithm 1). Then, a new node is created that
7

stores the identified structure as a stand-alone BPMN process, which
requires that a start and an end event are added to the sub-graph
so that the resulting structure conforms to the BPMN metamodel. At
this point, the corresponding ATL transformation for the identified
structure of interest is called and the PROforma fragment resulting from
the transformation is also stored in the new node (lines 7 and 8 of
Algorithm 1). Finally, the whole sub-graph (of the identified structure)
is replaced by the new node and the number of nodes of the input graph
is updated (lines 9 and 10 of Algorithm 1). This reducing phase finishes
when the whole graph has been reduced to a single node.

1 Algorithm: Bpmn2PROformaATLTransf
input : A BPMN model of the CPG/CPG fragment conforming

to the BPMN metamodel
output: A PROforma model of the CPG/CPG fragment

conforming to the PROforma metamodel

2 Store the BPMN model in a graph (a hierarchy of graphs
if it contains sub-processes);
// Reducing phase

3 nNodes ← number of nodes of the current graph;
4 while 𝑛𝑁𝑜𝑑𝑒𝑠 > 1 do
5 Identify the sub-graph that constitutes the

innermost structure of interest;
6 Store a BPMN process with this sub-graph in node;
7 Call the proper ATL module;
8 Store the resulting PROforma code in node;
9 Replace sub-graph by node;
10 Update nNodes;

// Expanding phase
1 topNode ← single node of the graph after the reducing

phase;
2 JoinPROforma (topNode);
3 return PROforma model;

Algorithm 1: Bpmn2PROformaATLTransf algorithm to ob-
tain a PROforma model from a BPMN one using ATL
transformations.

The expanding phase starts with this last node (lines 11 and 12 of
Algorithm 1). The algorithm recursively extracts the computed PRO-
forma fragment and replaces the node by its content (see Algorithm 2).
Then, it properly embeds the PROforma code of each node.

1 Algorithm: JoinPROforma

input : currentNode, with a BPMN model of an identified
structure and a partial PROforma model
(without the details of innermost identified
structures)

output: A complete PROforma model for the identified
structure

// Recursive algorithm
2 PROformaModel ← PROforma code stored in currentNode;
3 foreach node in the BPMN model of currentNode do

JoinPROforma (node);
4 return PROforma model

Algorithm 2: JoinPROforma algorithm to compose the
PROforma model of an identified structure of interest.

The final PROforma code is embedded from top to bottom. Each
time a node is replaced by its PROforma content, it is necessary to
connect the first element/s with its/their predecessors through PRO-
forma scheduling constraints, and respectively the last element/s with
its/their successors. Notice that it is impossible to know in advance
all the details (predecessors and successors) until the JoinPROforma
algorithm finishes. To illustrate this, consider the fragment in Fig. 6.
In this example, Fig. 6(a) shows a possible first expansion of the
last node after finishing the reduction phase. In Fig. 6(b), the expan-
sion of node1 is schematically represented. Shaded nodes represent
final PROforma elements and dotted arrows represent temporary PRO-
forma scheduling constraints. Fig. 6(c) shows possible expansions of

Artificial Intelligence In Medicine 137 (2023) 102495B. Martínez-Salvador et al.

n
c
s
s
(

E
f
i
m
a
t

c
u

(

2

Fig. 6. Schema to illustrate the expanding phase.
ode1.1 and node1.2. Notice that the scheduling constraints may
hange as the expanding phase (Algorithm 2) progresses. As we de-
cribe below (see Section 3.3), we map parallel components to plans,
ince they facilitate the introduction of these scheduling constraints
see dotted areas in Fig. 6).

The implementation of the algorithm has been carried out in the
clipse IDE. It combines imperative methods in Java and model trans-
ormations in ATL. Both the identification of the structures of interest,
n the reducing phase, and the expanding phase have been imple-
ented in Java. For this part (identification of structures of interest

nd graph reduction), we have used the open-source Java JDOM API8

o manipulate the XML information of the source and target models.
The ATL rules are organised into modules that are programmatically

alled from Java methods in the reducing phase. To do that, we have
sed the ATL’s EMF Transformation Virtual Machine,9 (EMFTVM), and

we have cloned and adapted the ATLauncher10 project to our purposes.
Each module is self-contained and includes all the rules and helpers
needed to complete the transformation of a structure of interest (see
Section 3.4).

3.2. Identification of structures of interest

The structure-identification strategy we use was proposed to im-
plement generic strategies for transforming from a graph-oriented lan-
guage (BPMN) to a block-oriented one, such as BPEL [35,36]. As
sketched before, the strategy consists in identifying in the source lan-
guage a series of structures of interest considering the target language.

Henceforth, we refer to such structures of interest as components
[19]. A component is a connected sub-graph with at least two nodes,
a single entry node and a single exit node, and without any start and
end events. We distinguish between parallel components and sequential
components or sequences. In a sequence, every node has a single pre-
decessor and a single successor, except for the entry and exit points. A
parallel component has as entry point a diverging gateway node and as
exit node a converging gateway of the same type. According to the type

8 http://www.jdom.org/docs/apidocs/org/jdom2/input/SAXBuilder.html
accessed April 21st, 2022)

9 https://wiki.eclipse.org/ATL/EMFTVM (last access April 21st, 2022).
10 https://github.com/guana/ATLauncher by Victor Guana (last access April
8

1st, 2022).
of the gateway, we classify parallel components into XOR-parallel com-
ponents, OR-parallel components or AND-parallel components. Note
that these components should not be confused with the homonymous
BPMN constructs. XOR-parallel components represent a single choice
among the branches starting from it, depending on which condition
of the sequence flow is met. In the case of OR-parallel components,
several branches may be executed if more than one condition is met.
Finally, AND-parallel components represent parallel execution of the
subsequent branches. To identify the proper components in the input
model, we have adapted the token analysis algorithm [37] to the
singularities of clinical guidelines [19].

In most cases, a guideline in BPMN consists of a combination of
sequence and parallel components. These components can be combined
in different ways, for instance any fragment of a sequence can be
a parallel component, and in a parallel component it is possible to
have sequences and other parallel components in turn. Our structure-
identification implementation covers also such cases. Moreover, the
implementation deals with BPMN sub-processes by means of recursive
calls that address the graphs they contain.

3.3. Mapping of BPMN components to PROforma

We address the model transformation of the whole BPMN guideline
by identifying in the input simpler (and easier to transform) compo-
nents. Thus, each time a component is identified, the adequate ATL
module is called. In order to define the ATL rules to be included in each
module (see Section 3.4), the necessary mappings must be established
between the elements of the BPMN metamodel and of the PROforma
metamodel. Table 1 shows these mappings.

In Table 1 we distinguish the mappings related to the BPMN com-
ponents, at the top, from the mappings of single BPMN elements, at the
bottom. Regarding the mappings of BPMN components, any sequence
in BPMN will be translated into a sequence of tasks in PROforma, where
tasks can be actions or plans. Next, AND-parallel components will be
modelled in PROforma as a plan where the successor elements of the
diverging AND-gateway are part of the content of the plan. Finally,
any (X)OR-parallel component will be mapped to a plan with an inner
decision (in fact, the diverging gateway will be transformed into the
decision). The mapping to PROforma plans facilitates the construction
of the final PROforma model, as explained in Section 3.1.

With respect to the mappings for single BPMN elements, note that
some elements either do not have an explicit representation in PRO-
forma and thus are ignored in the transformation, or are considered

http://www.jdom.org/docs/apidocs/org/jdom2/input/SAXBuilder.html
https://wiki.eclipse.org/ATL/EMFTVM
https://github.com/guana/ATLauncher

Artificial Intelligence In Medicine 137 (2023) 102495B. Martínez-Salvador et al.

c
s

1

1

1

1

1

Table 1
Mappings between BPMN and PROforma.

BPMN PROforma

Sequential component Sequence of elements
AND-parallel component Plan
XOR-parallel component Plan with decision
OR-parallel component Plan with decision
Start event –
End event –
Sequence Flow Scheduling constraint
Task Action
Sub-process Plan
Diverging (X)OR-gateway Decision
Condition in Conditional Sequence Flow Argument in decision

Target reference of a sequence flow outgoing from a diverging (X)OR-Gateway Candidate in decision
Rule for a candidate in decision

Diverging AND-gateway –
Any converging gateway –
1

1

1

1

1

2

2

2

in combination with other PROforma elements. For example, start and
end events are implicitly represented in PROforma by means of a
plan containing the sub-graph in between them. As an illustration of
the second case, a conditional expression in a conditional sequence
flow coming out from a diverging XOR-gateway is used to define an
argument in a PROforma decision.

3.4. ATL rules for BPMN to PROforma transformation

We have defined ATL rules according to the correspondences shown
in Table 1. Each component has a dedicated ATL module, that contains
several matched rules and helpers to perform the model transformation
from BPMN to PROforma. As an illustration, in this section we explain
the ATL module for transforming an (X)OR-parallel component into
a PROforma plan with an inner decision, since it is one of the most
complex ones and uses several ATL features. Note that both XOR and
OR-parallel components are translated to a plan with an inner decision
derived from the same BPMN elements.

Standard matched rules. As previously said, an ATL matched rule is
omposed of a source pattern and a target pattern. The source pattern
tarts with the keyword from and the target pattern starts with to.

For a given match of the source pattern in the source model, the target
elements and their attributes are created and they are initialised using
the binding expressions. For example, consider Listing 1: every BPMN
process is transformed to a PROforma top-level plan p, with the set
of attributes listed in parentheses, such as id, name, cycleNumber,
etc. Those attributes are initialised with the binding expression on the
right. If the binding expression contains a source element, it should first
be resolved into a target element. For example, this is the case of the
binding expressions in lines 17 and 19.

Listing 1: ATL rule for transforming a BPMN (X)OR-parallel
component into a PROforma plan with a decision. The rule implicitly
triggers other standard ATL rules for each BPMN sequence flow going
out from the diverging exclusive gateway, for each task and for the

exclusive gateway itself.
1 rule Process2Process {
2 from
3 bpmnPro: bpmn20!Process
4 to
5 t: proforma!Process(
6 topLevelPlan <− p
7),
8 p: proforma!Plan(
9 id <− ’Plan_ ’ + bpmnPro .id,
0 name <− ’Plan ’ + bpmnPro .name,
1 cycleNumber <− 1,
2 optional <− ’false ’,
3 automatic <− ’false ’,
4 subprocess <− s
9

1

5),
6 s: proforma!Subprocess(
7 schConstraint <− (bpmnPro .flowElements−> select(e |
8 e .sequenceFlowFromDivExcGateway ())),
9 task <− (bpmnPro .flowElements−> select(e | e .isTask () or
0 e .divergingExcGateway ()))
1)
2 }

In line 17, a scheduling constraint is created and initialised from
each BPMN sequence flow outgoing from a diverging exclusive gate-
way. Since this is a source element, it first has to be resolved to a target
element. This causes the implicit triggering of rule SqFlow2SchCon
straint. In order to select the adequate source sequence flows, the
helper SqFlowFromDivExcGateway is used. Notice that a schedul-
ing constraint is created for every match in the source model. Similarly,
in line 19 a PROforma task is created for every BPMN task or di-
verging exclusive gateway. Again, the proper ATL rule is implicitly
executed to transform those elements into target elements. Two rules
are possible here, depending on the case: the rule that transforms a
BPMN task into a PROforma action (Task2Action), and the one that
transforms a diverging exclusive gateway into a PROforma decision
(ExcGateway2Decision). The latter is shown in Listing 2.

Lazy rules. Lazy rules are triggered by other rules and can be executed
over a single match as many times as they are referred to by the other
rule. For example, rule ExcGateway2Decision triggers the lazy
rule SqFlow2Candidate in the binding expression of the attribute
candidate (see line 12 in Listing 2), in order to create the candidates
and their decision rules corresponding to the PROforma decision. List-
ing 3 shows the code of this lazy rule. The to section of the rule creates
a candidate along with the PROforma rule for that candidate. Notice
that the binding of the attribute argument (line 9 in Listing 3) is either
a BPMN conditional expression (line 10) or the result of triggering
the lazy rule SqFlow2DefaultArgument (line 12), depending on
whether the sequence flow contains a condition or not. In the first case,
the source element is resolved by implicitly triggering a standard rule.

Listing 2: ATL rule for transforming a BPMN diverging exclusive
gateway into a PROforma decision. The candidates of the decision

and their attributes are obtained through the explicit triggering of the
lazy rule SqFlow2Candidate

1 rule ExcGateway2Decision {
2 from
3 bpmnExcGtw: bpmn20!ExclusiveGateway(
4 bpmnExcGtw .divergingExcGateway ())
5 to
6 t: proforma!Decision(
7 id <− bpmnExcGtw .id,
8 name <− bpmnExcGtw .name,
9 cycleNumber <− 1,
0 optional <− ’false ’,

Artificial Intelligence In Medicine 137 (2023) 102495B. Martínez-Salvador et al.

1

1

1

1

1

1

1

1

1

1

1

1

1

s
t
r
h
r
S
g
3
d
o
f

L

1

1

1

1

t
w
d
f

1 automatic <− ’false ’,
2 candidate <− (bpmnExcGtw .outgoing −> collect (e |

thisModule .SqFlow2Candidate(e)))
3)
4 }

Listing 3: ATL rule for building a candidate of the PROforma
decision, its argument and its recommendation rule. If the candidate
is the targetRef of a conditional sequence flow, the stardard rule
FormalExp2Argument is implicitly triggered. However, if the
argument corresponds to a default sequence flow, the lazy rule

SqFlow2DefaultArgument is called.
1 lazy rule SqFlow2Candidate {
2 from
3 bpmnSF: bpmn20!SequenceFlow(bpmnSF .

sequenceFlowFromDivExcGateway ())
4 to
5 t: proforma!Candidate(
6 id <− ’C_ ’ + bpmnSF .targetRef .id,
7 name <− ’C ’ + bpmnSF .targetRef .name,
8 recommendationRule <− r,
9 argument <− (if not bpmnSF .conditionExpression .

oclIsUndefined () then
0 Sequence{bpmnSF .conditionExpression}
1 else
2 Sequence {thisModule .SqFlow2DefaultArgument(

bpmnSF) }
3 endif)
4),
5 r: proforma!Rule(
6 ruleExpression <− ’net_support(’ + bpmnSF .sourceRef .id + ’,

’ + ’C_ ’ + bpmnSF .targetRef .id + ’) >= 1 ’
7)
8 }

Helpers. Finally, the module for an (X)OR-parallel component contains
everal helpers. Helpers can be used either in the source or in the
arget patterns of the rule. Most of them are attribute helpers, which
eturn a Boolean value that is used to confirm whether the element
as certain features, for instance a diverging exclusive gateway (see
ule ExcGateway2Decision in Listing 2). In the case of the rule
qFlow2Candidate, the proper matches are the sequence flows out-
oing from diverging exclusive gateways (see from section in Listing
). Additionally, we have implemented an operation helper for the
efault condition of the component, built as the negation of all the
ther conditions. The definition of this helper uses the imperative
eatures of the ATL (see Listing 4).

isting 4: Operation helper returning a string for the default sequence
flow as the negation of all the other conditions

1 helper def : getConditions(excGtw: bpmn20!ExclusiveGateway) : String
=

2 excGtw .outgoing −> collect(e| e .conditionExpression) −> asSet ()
−>

3 iterate(cond ; conj: String= ’ ’ | conj +
4 if (not cond .oclIsUndefined ()) then
5 if conj= ’ ’ then
6 ’not (’ + cond .body + ’) ’
7 else
8 ’ and not (’+ cond .body + ’) ’
9 endif
0 else
1 ’ ’
2 endif)
3 ;

Fig. 7 shows all the rules and helpers involved in the module to
ransform a BPMN (X)OR-parallel component into a PROforma plan
ith a decision task. Rectangles represent the rules and the font in-
icates the type of rule: regular font for standard rules and italics
10

or lazy rules. The arrows indicate the dependencies among the rules,
i.e. implicit triggering or explicit triggering in the case of lazy rules.
Helpers are indicated as ovals connected to the rules which use them.

As a result of the use of the structure-identification and graph
reduction strategies, the design of the ATL rules has been approached
in a manageable way. For example, all the XOR-gateways in Fig. 1 are
ultimately reduced to a schema similar to the one shown in Fig. 8,
which makes model transformation affordable. As the transformation
algorithm proceeds, these elements will expand in new PROforma
processes until the final transformation is obtained, as explained before.

4. Results

4.1. Application of the transformation algorithm

We have applied our approach to an extract of the CPG for the diag-
nosis and treatment of acute and chronic heart failure (HF henceforth),
developed by the European Society of Cardiology [38]. As most CPGs,
it is a comprehensive document (85 page long) that includes several
tables and flow-charts that visually support the recommendations. Con-
cretely, the selected extract deals with the diagnosis of HF in the cases
of acute and non-acute onset.

In order to apply our approach to a real use case, the first step
is modelling the recommendations for the selected extract in BPMN.
For this purpose we have used the Eclipse BPMN Modeller, which is a
graphical editor for BPMN models. Fig. 1 shows the resulting process
diagram in BPMN, which is a graph that includes 10 diverging XOR-
gateways, representing choices, and their corresponding converging
gateways. The graph also has four sub-processes, which contain their
own process diagram.

The input to the transformation algorithm is the XML file of the
above BPMN graph, as generated by the BPMN Modeller tool. The
reduction phase of this graph includes the identification of the XOR-
parallel components and of the sequential components that subse-
quently appear when replacing those parallel components by a node.
Notice that the algorithm always identifies the innermost component.
As explained before, each one of these components is transformed
to PROforma by executing the corresponding ATL module. The final
PROforma representation is obtained by embedding the resulting PRO-
forma, starting from the last node (top-level node) after the graph
reduction completes.

The output of the transformation algorithm is shown in Fig. 9. Since
the BPMN process starts with a diverging XOR-gateway, the top-level
plan of the PROforma resulting from the transformation (transformed
PROforma henceforth) has a single plan. This plan contains one de-
cision, four scheduling constrains, and four plans (with additional
contents). Fig. 10 shows the representation of the contents of this plan
in the PROforma graphical notation. Besides, Fig. 11 shows the original
BPMN model highlighting the BPMN elements and components in
Fig. 10. Both figures (also the XML code in Fig. 9) have circled numbers
to indicate a mapping between elements. Number 1⃝corresponds to the
decision, which is further detailed in Fig. 12, and numbers 4⃝, 6⃝, 8⃝,
and 9⃝are the PROforma plans.

Notice that the use of the structure-identification strategy forces
the introduction of new plans. For these additional elements, and also
for the PROforma elements that do not have a BPMN counterpart, the
transformation algorithm generates names using a predefined naming
convention, such as Decision_ExclusiveGateway_7.

The decision task 1⃝has two candidates, each of them with one
argument and one recommendation rule. The argument condition for
the first candidate (line 16 in Fig. 12) is obtained from the conditional
expression of the corresponding BPMN conditional sequence flow. Sim-
ilarly, the argument condition for the second candidate (line 22) is
derived from a default sequence flow using the ATL helper shown in
Listing 4.

Some discussion follows on the results of the application of our

transformation algorithm. We have checked that it is able to generate

Artificial Intelligence In Medicine 137 (2023) 102495B. Martínez-Salvador et al.
Fig. 7. ATL rules and helpers in the module for the transformation of BPMN (X)OR-parallel components.
Fig. 8. Schema of the BPMN XOR-parallel component obtained after the reduction
phase of the graph in Fig. 8.

all the needed PROforma elements, including the candidates of decision
tasks along with all their details, from a structured BPMN model given
as input. The only missing parts are the source data elements required
by the conditions in the candidate arguments. For this reason, some
final editing is required to fine-tune the transformed PROforma model.
This is due to the plain text format used in the conditional expressions
of the original BPMN model. Note that these elements could be properly
generated if a more structured format for BPMN conditions were used.

For the time being, the verification of the PROforma model obtained
in the transformation (after the required editing) is done manually.
This includes not only verifying that all elements have been correctly
translated into the model, but also that its execution produces the
results intended by the modeller. An important part is verifying that all
conditions have been properly transcribed. For instance, in the case of
(X)OR-parallel components, this implies checking that the expressions
in BPMN conditional sequence flows have been copied to the argumen-
t/condition of the adequate candidate in the corresponding PROforma
decision. Note that all PROforma conditions will be treated as hard
constraints, although the clinician will usually be able to confirm which
action to undertake (or which candidate to choose).

The transformed PROforma model is structured since it reflects the
structure of the input BPMN model. When comparing the transformed
PROforma model (in Fig. 10) with a manually developed PROforma
model for the same process (in Fig. 2), it can be seen that the for-
mer contains more levels and elements. The reason for that is the
structure-identification strategy, which divides the BPMN model in
more manageable structures and thus forces the introduction of new
plans. Related to this, the necessary ATL rules are designed for (and
applied to) more simple and clearly defined model components. Other-
wise, the features of the BPMN language would make the application
of an MDD approach very challenging.
11
4.2. Modelling of clinical processes in BPMN by a clinical–technical team

To assess our hypothesis that a more accessible language such as
BPMN can foster the engagement of clinicians in the CPG modelling
task from its initial stages, we have conducted a small experiment. The
experiment involved one knowledge engineer (BMS coauthor) together
with two specialists in Cardiology (PP and EDM coauthors). The other
knowledge engineer (MM) participated as an observer during the pro-
cess. The initial objective of the experiment was to model the same
process fragment both in BPMN and PROforma, to obtain feedback
(qualitative and comparative) from the cardiologists on the suitability
of these two languages for modelling clinical processes, but also to
observe the collaborative modelling process. The process fragment that
the cardiologists chose to model was the flowchart for the diagnosis of
HF included in the 2021 version of the guideline. As modelling tools,
the knowledge engineers selected intuitive and easy-to-use graphical
editors, when possible.

The structure designed for the modelling exercises consisted of the
following steps: (1) basic training in the language (BPMN or PROforma)
by the knowledge engineer; (2) initial modelling of the clinical process
individually by each cardiologist, to better get acquainted with the
language; (3) discussion on the models and resolution of doubts and
queries, jointly by the cardiologists and the knowledge engineer; (4) re-
finement of the initial models and agreement on a single shared model,
by the cardiologists alone; and (5) discussion on the shared refined
model and agreement on the final model, again by the cardiologists
and the knowledge engineer. Note that the discussions on the models
usually include both technical details of the language and clinical
aspects of the process.

The BPMN modelling exercise was carried out in all its phases
without major problems. However, the PROforma modelling exercise
could not be completed because the cardiologists, after the initial
training in the language, found it too complex to use it themselves. This
confirms that not all languages are equally accessible to clinicians. As a
demonstration of the language after not having completed the exercise,
a PROforma model of the same process carried out by the knowledge
engineer was presented to the cardiologists and its behaviour was
discussed with them.

At the end of the experiment, the cardiologists were asked to fill
out a short survey which consisted of 15 Likert statements (i.e. with
5-point scale answers) plus 4 open questions. According to the answers
(mostly agree or strongly agree, for all statements), they agree on the
ease of use of the BPMN language after a basic initial training, and
on the understandability of the resulting BPMN models. They view
favourably that BPMN models facilitate the discussion of clinical issues,

Artificial Intelligence In Medicine 137 (2023) 102495B. Martínez-Salvador et al.
Fig. 9. Top-level plan of the transformed PROforma model obtained from the BPMN model shown in Fig. 11.
Fig. 10. Top-level plan of the transformed PROforma model in graphical notation.

both with clinicians of the same speciality and with other clinical staff.
They also agree that BPMN models help in a deeper understanding of
12
clinical processes and that, consequently, could improve the practical
application of CPG recommendations. In a different area, they note
that BPMN could help in the training of Cardiology residents. As far as
PROforma is concerned, the cardiologists feel that, since the building
blocks of the language are more complex, it would take more time to
get acquainted with the language and that the modelling task would be
more time-consuming for them. On the positive side, they point out that
PROforma models would be a good tool to keep track of the dynamics
of the clinical process, since these models can be executed.

For her part, the knowledge engineer highly values the involvement
of the experts in the process modelling task from the very beginning,
and all that this implies (the possibility of discussing clinical and
technical aspects with them, or the refinement of the BPMN model in
collaboration with them). Consequently, the final BPMN model is more
comprehensive and better conforms to the knowledge of the intended
clinical user, compared to a BPMN model developed by knowledge
engineers alone.

Artificial Intelligence In Medicine 137 (2023) 102495B. Martínez-Salvador et al.
Fig. 11. Input BPMN model showing the correspondences with the PROforma elements in Figs. 9 and 10.
Fig. 12. Details of decision task 1⃝ in Fig. 9.
To sum up, in view of the results of our small experiment we can
conclude that clinicians can be more easily engaged in the modelling
of clinical processes when using a language such as BPMN, and that
they can even take a leading role in this task. Moreover, this easy-to-use
notation allows for the collaboration of mixed clinical–technical teams,
resulting in models of higher quality.

5. Conclusions

With the aim of facilitating the development of CIGs and to in-
volve clinicians in this task, we propose to support the modelling of
clinical processes in CPGs based on transformations, from a prelim-
inary description in the BPMN notation for business processes to a
detailed implementation in a CIG language, in this case PROforma. We
tackle these transformations following the MDD paradigm, which is a
relatively unexplored approach in the area of CIGs.
13
We have implemented an algorithm that exploits the graph-oriented
nature of the source BPMN model, identifying structures of interest
that are then transformed to the target PROforma model by applying
transformation rules in the ATL language. In addition to the algorithm
itself, we have developed the necessary PROforma metamodel and ATL
transformation rules. We have tested our implementation (algorithm
plus ATL rules) on an extract of a CPG for the diagnosis and treatment
of HF. Besides, we have conducted a small experiment to assess whether
BPMN is accessible to clinicians, and that by using it they can be more
easily involved in the modelling of clinical processes.

Our proposal to support the modelling of clinical processes using
BPMN as a bridge language and transformations is based on the ideas
of Kaiser et al. [6]. In previous works we have addressed this problem
with the same rationale of using BPMN and transformations but without
following the model-driven paradigm [19,39]. This work is also in-
spired by Murzek et al. [40] work, which focuses on the transformation

Artificial Intelligence In Medicine 137 (2023) 102495B. Martínez-Salvador et al.
of structural patterns but suggests a segmentation of the input model to
overcome the difficulties of a full model-driven transformation between
two business process modelling languages.

In the area of CPGs, the work by Pérez et al. [41] is pioneering
in the application of an MDD approach. This work presents a model-
to-text tool that transforms a CPG model in terms of UML statecharts
into a model checking representation thereof, for verification purposes.
Our approach is similar but differs in two important aspects, apart from
the final goal. On one hand, our method implements a model-to-model
transformation based on a declarative transformation language, and
on the other hand, the source and target languages we use are very
different. In particular, we claim that the source BPMN language we use
is better tailored to the purpose of involving clinicians in the modelling
of CPG processes. The work by Farkash et al. [42] focuses on a solution
for the representation of CPGs so that clinicians can easily read and
verify them against patient data in the Electronic Health Record. They
propose modelling CPGs as NRL rules and then translating them into
OCL constraints by using MDD transformations. Although the simplicity
of rules may be ideal in certain scenarios, they cannot easily express
the variety of clinical processes that can be found in complex CPGs.
Moreover, it can be argued that in general rules are a less intuitive
and engaging formalism for clinicians compared to BPMN. Less directly
related to our work, the goal of the work by Nyameino et al. [43]
is the gamification of CPG content for clinicians in training. For this
purpose, they exploit the entity model of a clinical encounter and the
workflow model of clinical processes involved. In this case the approach
is model-driven but no transformations are used.

The MDD paradigm used in this work allows us to describe complex
transformations in a more compact way, and with a higher level of
abstraction, compared to our previous solutions. As a consequence,
our approach benefits from improved explainability, traceability, and
comprehension of the transformations. Besides, the transformations
are standalone entities implemented as ATL modules, which facilitates
their maintainability and reusability. An additional advantage of our
approach is that it can be generalised to transform BPMN models
to models in other target CIG languages. By defining rules for other
languages, it would be possible to capitalise on the effort of modelling
a guideline in BPMN. A parallel could be drawn with the model-driven
architecture proposed by OMG [44], which distinguishes platform-
independent models (PIMs) from platform-specific models (PSMs), and
where a PIM could be transformed into various PSMs. In our case,
BPMN is the notation for PIMs whereas PROforma and other CIG lan-
guages serve for PSMs. We believe that it would be easier to convince
a medical institution to adopt BPMN (which is an OMG standard) than
to adopt a particular CIG language. In this context, our approach would
be highly beneficial.

As mentioned above, a limitation of our approach is that the re-
sulting PROforma models have a more complex structure, with more
elements, compared to manually developed PROforma models. Notice
that this is related to the structure-identification strategy used, rather
than to the use of MDD tools. Another problem is related to our choice
of BPMN notation as a preliminary modelling language. This choice is
motivated by our focus on the procedural part in CPGs. This implies
that, in the case of CPGs with higher declarative content and few
procedural parts, the BPMN notation would not be appropriate and
therefore our approach would be less beneficial.

To sum up, we have not only tested our implementation on a
realistic CPG fragment, but we have also shown in a preliminary
experiment that clinicians can play an active and collaborative role in
CPG modelling when using a language such as BPMN. Taken together,
these results suggest that our BPMN and transformation-based approach
to support the modelling of CPG processes (and hence CIGs) is feasible.
As future work, it would be necessary to carry out a further and more
comprehensive evaluation to determine if the approach and developed
tools adequately serve this purpose.
14
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This research has been supported by the Spanish Ministry of Econ-
omy and Competitiveness through project TIN2014-53749-C2-1-R.

References

[1] Graham R, Mancher M, Wolman DM, Greenfiled S, Steinberg E, editors. Clinical
practice guidelines we can trust. The National Academies Press; 2011.

[2] Peleg M. Computer-interpretable clinical guidelines: A methodological review. J
Biomed Inform 2013;46(4):744–63.

[3] Sonnenberg FA, Hagerty CG. Computer-interpretable clinical practice guidelines.
Where are we and where are we going? Yearb Med Inform 2006;145(58):145–58.

[4] Peleg M, Tu S, Bury J, Ciccarese P, Fox J, et al. Comparing computer-
interpretable guideline models: A case-study approach. J Am Med Inform Assoc
2003;10(1):52–68.

[5] De Clercq PA, Blom JA, Korsten HHM, Hasman A. Approaches for creating
computer-interpretable guidelines that facilitate decision support. Artif Intell Med
2004;31(1):1–27.

[6] Kaiser K, Marcos M. Leveraging workflow control patterns in the domain of
clinical practice guidelines. BMC Med Inform Decis Making 2016;16:1–23.

[7] Patel VL, Arocha JF, Diermeier M, Greenes RA, Shortliffe EH. Methods of
cognitive analysis to support the design and evaluation of biomedical systems:
The case of clinical practice guidelines. J Biomed Inform 2001;34(1):52–66.

[8] Seyfang A, Miksch S, Marcos M, Wittenberg J, Polo-Conde C, Rosenbrand K.
Bridging the gap between informal and formal guideline representations. In:
Frontiers in Artificial Intelligence and Applications, vol. 141, 2006, p. 447–51.

[9] Seyfang A, Martínez-Salvador B, Serban R, Wittenberg J, Miksch S, Marcos M, et
al. Maintaining formal models of living guidelines efficiently. In: Bellazzi R, Abu-
Hanna A, Hunter J, editors. Artificial intelligence in medicine. Berlin, Heidelberg:
Springer Berlin Heidelberg; 2007, p. 441–5.

[10] Patel VL, Allen VG, Arocha JF, Shortliffe EH. Representing clinical guidelines
in GLIF: Individual and collaborative expertise. J Am Med Inform Assoc
1998;5(5):467–83.

[11] Object Management Group (OMG). Business process model and notation (BPMN)
version 2.0. 2011.

[12] Reichert M. What BPM technology can do for healthcare process support. In:
Artificial intelligence in medicine. 2011, p. 2–13.

[13] Scheuerlein H, Rauchfuss F, Dittmar Y, Molle R, Lehmann T, Pienkos N,
Settmacher U. New methods for clinical pathways -Business process modeling
notation (BPMN) and tangible business process modeling (t.BPM). Langenbeck’s
Arch Surg 2012;755–61.

[14] Kirchner K, Malessa C, Scheuerlein H, Settmacher U. Experience from collabo-
rative modeling of clinical pathways. In: M. Hess HS, editor. Modellierung Im
gesundheitswesen: Tagungsband des workshops im Rahmen der modellierung.
2014, p. 13–24.

[15] De Ramón Fernández A, Ruiz Fernández D, Sabuco García Y. Business process
management for optimizing clinical processes: A systematic literature review.
Health Inform J 2020;26:1305–20.

[16] Tomaskova H, Kopecky M. Specialization of business process model and notation
applications in medicine - A review. Data 2020;5:1–42.

[17] Zerbato F, Oliboni B, Combi C, Campos M, Juarez JM. BPMN-based repre-
sentation and comparison of clinical pathways for catheter-related bloodstream
infections. In: Proceedings - 2015 IEEE international conference on healthcare
informatics. Institute of Electrical and Electronics Engineers Inc.; 2015, p.
346–55.

[18] Combi C, Oliboni B, Zardini A, Zerbato F. Seamless design of decision-intensive
care pathways. In: Proceedings - 2016 IEEE international conference on health-
care informatics. Institute of Electrical and Electronics Engineers Inc.; 2016, p.
35–45.

[19] Martínez-Salvador B, Marcos M. Supporting the refinement of clinical pro-
cess models to computer-interpretable guideline models. Bus Inf Syst Eng
2016;58(5):355–66.

[20] Gonzalez-Lopez F, Martin N, de la Fuente R, Galvez-Yanjari V, Guzmán J,
Kattan E, et al. ProDeM: A process-oriented delphi method for systematic
asynchronous and consensual surgical process modelling. Artif Intell Med
2022;135:1–14.

[21] Jouault F, Allilaire F, Bézivin J, Kurtev I. ATL: A model transformation tool. Sci
Comput Program 2008;31–9.

[22] Sutton DR, Fox J. The syntax and semantics of the proforma guideline modeling
language. J Am Med Inform Assoc 2003;433–43.

http://refhub.elsevier.com/S0933-3657(23)00009-X/sb1
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb1
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb1
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb2
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb2
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb2
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb3
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb3
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb3
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb4
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb4
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb4
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb4
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb4
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb5
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb5
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb5
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb5
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb5
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb6
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb6
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb6
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb7
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb7
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb7
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb7
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb7
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb8
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb8
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb8
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb8
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb8
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb9
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb9
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb9
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb9
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb9
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb9
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb9
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb10
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb10
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb10
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb10
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb10
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb11
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb11
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb11
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb12
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb12
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb12
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb13
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb13
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb13
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb13
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb13
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb13
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb13
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb14
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb14
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb14
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb14
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb14
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb14
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb14
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb15
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb15
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb15
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb15
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb15
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb16
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb16
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb16
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb17
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb17
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb17
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb17
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb17
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb17
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb17
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb17
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb17
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb18
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb18
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb18
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb18
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb18
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb18
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb18
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb19
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb19
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb19
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb19
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb19
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb20
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb20
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb20
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb20
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb20
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb20
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb20
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb21
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb21
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb21
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb22
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb22
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb22

Artificial Intelligence In Medicine 137 (2023) 102495B. Martínez-Salvador et al.
[23] Zur Muehlen M, Recker J. How much language is enough? Theoretical and
practical use of the business process modeling notation. In: Advanced information
systems engineering. 2008, p. 465–79.

[24] Mendling J, Reijers HA, van der Aalst WM. Seven process modeling guidelines
(7PMG). Inf Softw Technol 2010;52:127–36.

[25] Marcos M, Campos C, Martínez-Salvador B. A practical exercise on re-engineering
clinical guideline models using different representation languages. In: AI in
medicine: Knowledge representation and transparent and explainable systems.
2019, p. 3–16.

[26] OpenClinical CIC: OpenClinical.net. 2020, http://www.openclinical.net. [Ac-
cessed 22 May 2020].

[27] Bézivin J. In search of a basic principle for model driven engineering. Spec
Novatica Issue - UML Model Eng 2004;21–4.

[28] Mellor SJ, Clark AN, Futagami T. Model-driven development. IEEE Software
2003;20:14–8.

[29] Selic B. The pragmatics of model-driven development. IEEE Software
2003;20:19–25.

[30] Martínez Y, Cachero C, Meliá S. MDD vs. traditional software development: A
practitioner’s subjective perspective. Inf Softw Technol 2013;55:189–200.

[31] Sendall S, Kozaczynski W. Model transformation: The heart and soul of
model-driven software development. IEEE Software 2003;42–5.

[32] Mens T, Van Gorp P. A taxonomy of model transformation. Electron Notes Theor
Comput Sci 2006;125–42.

[33] Torres-Sospedra J, Martínez-Salvador B, Sancho CC, Marcos M. Process model
metrics for quality assessment of computer-interpretable guidelines in proforma.
Appl Sci 2021;11–(7).

[34] Jouault F, Kurtev I. Transforming models with ATL. In: Models 2005 workshops,
LNCS 3844. 2006, p. 128–38.
15
[35] Mendling J, Lassen KB, Zdun U. On the transformation of control flow between
block-oriented and graph-oriented process modelling languages. Bus Process
Manag J 2008;96–108.

[36] Ouyang C, Dumas M, Van Der Aalst W, Hofstede AT, Mendling J. From business
process models to process-oriented software systems. ACM Trans Software Eng
Methodol 2009;1–37.

[37] Götz M, Roser S, Lautenbacher F, Bauer B. Token analysis of graph-oriented
process models. In: Proceedings - IEEE international enterprise distributed object
computing workshop. 2009, p. 15–24.

[38] Ponikowski P, et al. ESC guidelines for the diagnosis and treatment of acute and
chronic heart failure. Rev Española de Cardidol 2016;2129–200.

[39] Martínez-Salvador B, Marcos M, Riaño D. An algorithm for guideline trans-
formation: From BPMN to SDA. In: Procedia Comput Sci. 63, 2015, p.
244–51.

[40] Murzek M, Kramler G, Michlmayr E. Structural patterns for the transformation of
business process models. In: Proc. - 10th IEEE int. enterprise distributed object
computing conf. workshops. 2006, p. 1–18.

[41] Pérez B, Porres I. Authoring and verification of clinical guidelines: A model
driven approach. J Biomed Inform 2010;43(4):520–36.

[42] Farkash A, Timm JT, Waks Z. A model-driven approach to clinical practice
guidelines representation and evaluation using standards. In: Studies in health
technology and informatics, vol. 192, 2013, p. 200–4.

[43] Nyameino JN, Rabbi F, Ebbesvik BR, Were MC, Lamo Y. A model driven
approach to the development of gamified interactive clinical practice guidelines.
In: ENASE 2019 - Proceedings of the 14th international conference on evaluation
of novel approaches to software engineering. 2019, p. 147–58.

[44] OMG Standards Development Organization. Model driven architecture. 2022,
https://www.omg.org/mda/. [Accessed 18 August 2022].

http://refhub.elsevier.com/S0933-3657(23)00009-X/sb23
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb23
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb23
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb23
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb23
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb24
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb24
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb24
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb25
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb25
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb25
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb25
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb25
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb25
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb25
http://www.openclinical.net
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb27
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb27
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb27
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb28
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb28
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb28
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb29
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb29
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb29
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb30
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb30
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb30
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb31
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb31
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb31
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb32
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb32
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb32
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb33
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb33
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb33
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb33
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb33
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb34
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb34
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb34
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb35
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb35
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb35
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb35
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb35
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb36
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb36
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb36
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb36
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb36
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb37
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb37
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb37
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb37
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb37
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb38
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb38
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb38
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb39
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb39
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb39
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb39
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb39
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb40
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb40
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb40
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb40
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb40
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb41
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb41
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb41
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb42
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb42
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb42
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb42
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb42
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb43
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb43
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb43
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb43
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb43
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb43
http://refhub.elsevier.com/S0933-3657(23)00009-X/sb43
https://www.omg.org/mda/

	A model-driven transformation approach for the modelling of processes in clinical practice guidelines
	Introduction
	Materials and methods
	Representation of clinical processes
	Clinical guidelines in BPMN
	Clinical guidelines in PROforma

	Model-driven development to support modelling of CPG processes
	Metamodels
	The ATLAS Transformation Language

	Implementation of the approach
	Transformation algorithm
	Identification of structures of interest
	Mapping of BPMN components to PROforma
	ATL rules for BPMN to PROforma transformation

	Results
	Application of the transformation algorithm
	Modelling of clinical processes in BPMN by a clinical–technical team

	Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References

