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a b s t r a c t

Accidents on the road have always been a major concern in
modern society. According to the World Health Organization,
globally road traffic collisions are one of the leading and fastest
growing causes of disability and death. The present research
work is conducted on ten years of traffic accident data in an
urban environment to explore and analyze spatial and temporal
variation in the accidents and related injuries. The proposed
spatiotemporal model can make predictions regarding the num-
ber of injuries incurred on individual road segments. Bayesian
methodology using Integrated Nested Laplace Approximation
(INLA) with Stochastic Partial Differential Equations (SPDE) has
been applied to generate a predicted risk map for the entire
road network. The current study introduces INLA- SPDE modeling
to perform spatiotemporal predictive analysis on selected areas,
precisely on road networks instead of traditional continuous
regions. Additionally, the result risk maps act as a baseline
to identify the safe routes in a spatiotemporal context. The
methodology can be adapted and applied to enhanced INLA-SPDE
modeling of spatial point processes precisely on road networks.
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1. Introduction

With the growth of population and economic development, the process of urbanization is
ccelerating, and the number of vehicles in urban cities is increasing. In recent years, road traffic
ollisions have become a major concern in modern society. According to 2018 global status report
n road safety by the World Health Organisation, every year, around 1.2 million people die on
he world’s roadways, with another 20 to 50 million suffering non-fatal injuries. Traffic accident
s declared as one of the leading causes of death for people of all ages (WHO, 2019). Literature
uggests road infrastructure and uncontrolled vehicle speed increase accident risk (Briz-Redó et al.,
019). Additionally, temporal factors (time of the day or weekend nights) act as decisive aspects in
he number and impact of accidents (Farmer, 2005; Liu and Sharma, 2017).

In the field of road safety, identifying relevant factors and spatio-temporal modeling of traffic
ccidents have been a major focus of research (Williamson and Feyer, 1995; Prasannakumar et al.,
011; Zhong-xiang et al., 2014; Cantillo et al., 2016; Khulbe and Sourav, 2019). A series of studies
Jegede, 1988; Farmer, 2005; Aghajani et al., 2017; Shafabakhsh et al., 2017) have been conducted
o explore historical data in order to identify risk factors and assess the likelihoods of crash-
elated events in order to categorize spatiotemporal factors influencing traffic accidents. Research in
uitable statistical methodologies to analyze traffic accident data is a fundamental line of research in
he field of traffic safety analysis. We can focus on detecting areas with a high accident concentration
hot spot detection methods) and focus on modeling traffic accident risk (expressed by raw accident
ounts or accident rates) depending on a set of predictive covariates. In statistical analysis and
rediction modeling, these factors are regarded as significant predictors.
Accessible, and sustainable transport systems in cities are a core target of 2030 sustainable de-

elopment goals (SDGs) adopted by the United Nations (UNDP, 2021). Thus, there is an opportunity
o apply advanced computational techniques to the problem of road safety and traffic management.
arious models and techniques have been developed and explored in this domain (Karaganis and
imis, 2006; Pulugurtha and Sambhara, 2011; Castro et al., 2012; Boulieri et al., 2016; Khulbe
nd Sourav, 2019). Analyzing traffic safety performance by understanding crash fatality rates
nd influencing factors is essential for developing well-informed policies and designing effective
ountermeasures. Understanding the causes of the crashes, identifying appropriate solutions, and,
roactively adopting or using them helps improve traffic safety. Studies like, Xu and Huang (2015),
uo et al. (2018) and Wang et al. (2019), highlight the existence of spatial autocorrelation of traffic
ccident events. In this line to analyze spatial and spatio-temporal distribution of traffic collisions,
tatistical inference comes along with Bayesian methodology. Boulieri et al. (2016) designed a
pace–time multivariate Bayesian model to analyze road traffic accidents by severity in different
ities of the UK. A Bayesian approach with Markov chain Monte Carlo (MCMC) simulation methods
as traditionally been used to fit generalized linear mixed models (GLMM) in a spatial context
Wikle et al., 1998). However, the computation time for MCMC models is considerably high for
ig datasets (Rue et al., 2009; Smedt et al., 2015). As recommended by Rue et al. (2009), while
rocessing spatial data we can utilize integrated nested Laplace approximations (INLA) in conjunc-
ion with SPDE to balance speed and accuracy of the models. But, in the context to traffic accident
vent modeling, there are limited contributions using INLA-SPDE approach. Recently, Galgamuwa
t al. (2019) used Bayesian spatial modeling with INLA in predicting road traffic accidents based on
nmeasured information at road segment levels. Similar study by Chaudhuri et al. (2022) explores
patiotemporal modeling of traffic accidents on the road network of London, UK based on an explicit
etwork triangulation using INLA-SPDE.
The aim of this paper is to propose a multi-disciplinary road-safety analysis technique by

ntroducing spatio-temporal modeling of traffic accidents using Bayesian methodology restricted
ntirely on to the road network. We introduce an advance and realistic computational strategy
o construct spatial triangulation restricted only onto the network topology. The proposed model
an predict a risk index over individual road segments generating a categorized risk map of the
ntire road network. The study is conducted on ten years road traffic accidents data from the city
f Barcelona, Spain. R (version R 4.1.2) programming language (R. Core Team, 2021) has been used
or statistical computing and graphical analysis. All computations were conducted on a quad-core
ntel i9-4790 (3.60 GHz) processor with 32 GB (DDR3-1333/1600) RAM.
2
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Fig. 1. Location of Barcelona city and road network of the study area. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

The rest of the paper is organized as follows. Section 2 presents the methods adopted in the
urrent study. The beginning of the section reports about the study area and data settings along with
fficial sources of data. A description of the spatio-temporal modeling framework with emphasis
n SPDE triangulation designed precisely on road network is discussed in Section 2.2. Section 3
s devoted to present the results of model prediction and risk map analysis. Some discussions are
ighlighted in Section 4. The paper ends with some concluding remarks in Section 5.

. Methods

.1. Data settings

Barcelona is the largest and the capital city of the community of Catalonia, Spain. This second
ost populous municipality of Spain is located on the coast of northeastern of the country. Fig. 1
hows the location of Barcelona city, and the boundary of the municipality highlighted in red.
ccording to Barcelona’s city hall open data service (Open Data BCN) (OpenDataBCN, 2021), the
ity has a population of 1.6 million and approximately 15,748 inhabitants per square km. Besides
eing one of the major cultural, economic, and financial center, Barcelona is also a transport hub
or entire southwestern Europe. The city municipality maintains an extensive motorway network.

In the current study, we have considered a small area (4.4 square km) from the central part
f Barcelona consisting of 2058 road segments as depicted in Fig. 1 inside the black circle. The
oad network is also accessed from Open Data BCN repository. The police department in the city
aintains records of traffic accidents. Detailed records about the circumstances of road accidents
n public roads, corresponding casualties and injuries are managed and published annually by Open
ata BCN. The data is free and available under the Creative Commons Attribution 4.0 for public sector
nformation. During the period of January 2010 to December 2019 the study area has records of
3
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11,067 traffic accidents. Fig. A.8 in the Appendix shows the road networks in the study area with
traffic accident locations highlighted in red.

Five datasets from Open Data BCN have been accessed for the study, which are referred to
he accident itself and interrelated by a record code from 2010 to 2019. The recorded common
ttributes are unique event id, district and neighborhood, location postal address and geographical
oordinates, occurrence day and time, kind of day (working or holiday). Each of dataset contain
he following temporal variables: year, month, and time of accident. Related to spatial variables
e made few changes. In raw dataset, individual accident locations in most cases are not located
xactly on the road segment. We have shifted individual locations to the nearest road segments.
n addition, we calculated the on road network distance of nearest bus stop, municipality market,
estaurant, school, street market for each accident locations. These distances are used as spatial
ovariates in the dataset. We report that the traffic intensity records for each road segment are
ollected from TomTom Traffic Stats (TomTom, 2021).
It is noteworthy to mention that values of traffic intensity for individual road segments is not

irectly available from TomTom dataset. We used three variables to calculate the traffic intensity
uch as, road length ranging from 3.69 to 186.25 meter, road type (values 1 to 7, higher the value
ess the traffic) and road speed limit (18 to 80 km per hour) where roads having 30, 35 and 50 km
er hour cover 21%, 28% and 35% of the total. Our proposed formula to calculate the traffic intensity
s:

Traffic Intensity = (Speed Limit/Type of Road) ∗ ln(Road Length)

here, ln stands for natural logarithm that is log to the base of e. Fig. A.9 in the Appendix depicts
he calculated traffic intensity for individual road segments of the study area.

We are using the road length in natural logarithm (ln) scale to reduce the range of road length
alues. Other variables available in the dataset are number of victims, vehicles involved, minor
nd major injured persons, and number of casualties for each accident records. We have used the
umber of minor injured person as the response variable in our models. Traffic accidents recorded
ith only one minor injury comprises the maximum percentage of records (74.8.76%) followed by
wo minor injuries (15.42%), and 3 or more minor injuries (3.42%). The record shows 6.4% of the
ccidents are without having any minor injuries. We note that most accidents (99.85%) are having
o causality. The number of traffic accidents documented in each of the study years (2010–2019) is
imilar, with the highest number (1270) recorded in 2016 and the lowest number (847) recorded in
011. In case of monthly records for the entire study period, January records the minimum accident
ounts (846) and July has the maximum value (1023). It is worth noting that, almost 50% of all
ccidents occur during office hours, which are from 8 a.m. to 11 a.m. and from 3 p.m. to 6 p.m.

.2. Statistical analysis

Random spatial events, such as traffic accidents, form irregularly scattered point patterns over
egions of interest. Literature shows, spatio-temporal point process models are useful tools for
erforming focused statistical analysis (Karaganis and Mimis, 2006; Loo et al., 2011; Juan et al.,
012). In this context, Liu et al. (2017) propose that the occurrence of traffic accidents depend
n spatio-temporal interacting and triggering factors (Liu et al., 2017). Moreover, we can find
ecent studies (Galgamuwa et al., 2019; Moradi and Mateu, 2019; Chaudhuri et al., 2021) on
patio-temporal point processes over networks that are able to identify spatial autocorrelations
nd interactions between points in the pattern. We open the door to consider binomial regression
odels in combination with a Bayesian framework for the prediction of traffic accidents on indi-
idual road segments by aggregating data for the occurrence of accident injuries per road segment
iven the total traffic intensity. We have used a computationally faster solution for prediction of the
arginal distributions for latent Gaussian models and models with a large number of geo-locations
y using a Laplace approximation for the integrals with the integrated nested Laplace approximation
INLA) method. (Rue et al., 2009). It focuses on models that can be expressed as latent Gaussian
arkov random fields (GMRF) (Rue and Held, 2005). We follow this approach combining a spatio-
emporal binomial regression method within a Bayesian framework using INLA and stochastic

4
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partial differential equation (SPDE). In particular, specification of the binomial distribution in INLA
for responses y = 0, 1, 2, . . . , n is represented as

Prob (y) =

(
n
y

)
py (1 − p)(n−y) (1)

here, n is the number of trials and p is the probability of success in each trial (Rue et al., 2009).
The mean and variance of y are respectively µ = np and σ 2

= np (1 − p) and the probability p
s linked to the linear predictor by

p(η) =
exp(η)

1 + exp(η)
For the current study, let Yit be the observed number of minor injuries in road traffic accidents
on the ith road segment and at the tth day, t = 1, . . . , T . The average daily traffic intensity for
individual road segment is represented by Nit . We assume that conditional on the relative risk, ρit ,
the number of observed events follows a binomial distribution

Yit |ρit ∼ Binomial (Nitρit)

where the log-risk is modeled as

logit (ρit) = β0 + ZT
i βi + S (xi) + δt + ϵi (2)

Here, S (xi) and δt account for the spatially and temporally structured random effects, respectively
and ϵi stands for an unstructured zero mean Gaussian random effect and logbeta precision param-
eters 0.5 and 0.01, defined as penalized complexity priors (Simpson et al., 2017). Zi represents
all covariates included in the model. We assigned a vague prior to the vector of coefficients
β =

(
β0, . . . , βp

)
which is a zero mean Gaussian distribution with precision 0.001. All parameters

associated to log-precisions are assigned inverse Gamma distributions with parameters equal to 1
and 0.00005.

To compute the joint posterior distribution of the model parameters, we use an INLA-SPDE
method, as introduced by Lindgren et al. (2011). SPDE consists in representing a continuous spatial
process, such a Gaussian field (GF), using a discretely indexed spatial random process such as a
Gaussian Markov random field (GMRF). In particular, the spatial random process represented by S
(.) explicitly denote dependence on the spatial field, follows a zero-mean Gaussian process with
Matérn covariance function represented as

Cov(S(xi), S(xj)) =
σ 2

2ν−1Γ (ν)
(κ∥xi − xj∥)νKν(κ∥xi − xj∥) (3)

here Kν (.) is the modified Bessel function of second order, and ν > 0 and κ > 0 are the smoothness
nd scaling parameters, respectively. INLA approach constructs Matérn SPDE model, with spatial
ange r and standard deviation parameter σ . The parameterized model we follow is of the form

(k2 − ∆)(α/2)(τS(x)) = W (x)

here ∆ =
∑d

i=1
∂2

∂x2i
is the Laplacian operator, α = (ν + d/2) is the smoothness parameter, τ is

nversely proportional to σ and W (x) is a spatial white noise and κ > 0 is the scale parameter,
elated to range r , defined as the distance at which the spatial correlation becomes small. For each
, empirically derived definition r =

√
8ν/κ with r corresponding to the distance where the spatial

orrelation is close to 0.1 (Blangiardo and Cameletti, 2015). Note that we have d = 2 for a two-
imensional process, and we fix ν = 1, so that α = 2 in our case. We report that, heterogeneity,
nobserved factors specific to each accident, although invariant over time, were captured by an
dentical and independently distributed random effect of zero mean and constant variance.

The temporal random effect (δt ) is assumed to be a smoothed function, in particular a random
alk of order one (RW1) (Rue et al., 2009). On the other hand, INLA-SPDE requires a triangulation
r mesh structure to interpolate discrete event locations to estimate a continuous process in space
Rue et al., 2017). We use the centroids of each road segment as the target locations over which we
5



S. Chaudhuri, M. Saez, D. Varga et al. Spatial Statistics 53 (2023) 100722

o

b
n
i
t
p
0

S

t
s
h
b
t

a
t
p
l
i
b
t
(
n
c
b
i
o

i
c

R

e

Fig. 2. Region mesh with non-convex hull boundary in blue and data locations highlighted as red points. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

uild the mesh. A detailed description of building a Delaunay’s triangulation with emphasis on a
etwork mesh is shown in Section 2.2. Centroids of individual road segments and the triangulations
n the mesh are used to generate the projection matrix. We assign penalized complexity priors for
he parameters to create INLA-SPDE model object for the Matérn model (Simpson et al., 2017). In the
arametrization process we set prior according to hyperparameters for range as prior.range (0.01,
.01) and standard deviation as prior.sigma (1, 0.1).

PDE network triangulation:
To begin, we use the traditional SPDE method to triangulate the entire study area by considering

he boundary for continuous spatial structure. According to Verdoy (2019), the best fitting mesh
hould have enough vertices for effective prediction, but the number should be within a limit to
ave control over the computational time. Following this principle, from a battery of meshes the
est fitting mesh is selected having 2352 vertices. Fig. 2 depicts region SPDE mesh with 11,067
raffic accident locations highlighted as red points.

While fitting the mesh (as depicted in Fig. 2) a problem appears. Although the sampled traffic
ccidents are discrete spatial sites situated exclusively on the road networks, the models fitted with
he mesh span the entire study area. So, it is not realistic and ambiguous for the model prediction to
rovide results in areas without a road network where traffic accidents are unlikely to occur. This
eads to the motivation of designing SPDE triangulation precisely on road networks. The technique
s carried out in three steps: first, a buffer region is generated for each road segment, then a clipped
uffer polygon is created that only includes the area covered by the road network, and finally, SPDE
riangulation is applied to the clipped polygon to create SPDE Network Mesh. We use R package rgeos
Bivand et al., 2017) to build buffers for individual road segment. While selecting the buffer size we
eed to balance between number of vertices used to build the triangulated mesh and computational
ost (Krainski et al., 2018; Verdoy, 2019). We tested several buffers before deciding on a 15 meters
uffer as the optimal one. In the next step, we merge individual buffer segments and convert them
nto a single polygon clipped within a bounding box covering the study area. The clipped polygon
f the buffered segments is depicted in Fig. A.10, with accident locations highlighted as red points.
In the final step of building the proposed network mesh we use the centroids of each segment as

nitial Delaunay’s triangulation nodes on the clipped polygon. Fig. 3 depicts the SPDE mesh precisely
reated on the road network, with accident locations highlighted in red.

isk map design:
In this section we discuss about the process of designing the traffic accident risk map for the

ntire road network of the study area. The predicted daily number of minor injuries on individual
6



S. Chaudhuri, M. Saez, D. Varga et al. Spatial Statistics 53 (2023) 100722

N
r
n
t

m
f
o

R
v
f
i
t
v
c

t
h
m

Fig. 3. Network mesh with data locations highlighted in red. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

road segment obtained using the binomial model has been considered as the initial Risk Score
(Rscore) on that particular segment for that day. According to the literature on road safety before
modeling any risk map, a predetermined category range must be determine (Curran-Everett, 2013).
Keeping this in mind, we follow the European Road Assessment Programme (EuroRAP) standard to
create the risk ratings of the motorways and other national roads in Europe (‘Risk mapping for the
TEN-T in Croatia, Greece, Italy and Spain: Update’, 2016). We implement these 0 to 4 categorical
values ranging from low risk to high risk defining what we call a Risk Index. We thus consider a
normalization for the raw risk scores following a dynamic normalization technique. Initially, the
risk range (Rrange) is calculated as

Rrange =
(max.Rscore − min.Rscore)
no. of risk categories

ext, we use Rrange and Rscore values in the proposed metric system to calculate the normalized
isk index categories. As a relevant example in Table 1, we depict the values of categories in the
ormalized scale considered as the proposed risk categories to design the traffic risk map. We note
hat the metric system can be replicated using any other alternative risk index.

We depict an example of how risk index values are calculated using the proposed normalizing
etric reported in Table 1. Consider the following scenario: a user wants to calculate the risk index

or a specific road segment where four minor injury cases from traffic accidents have been recorded
n a given day. So, the Rscore of that segment is 4. Based on the traffic accident records for all the

road segments on that particular day, assume that the maximum Rscore is 15 and the minimum
score is 0. In the present study, five risk categories have already been considered (i.e., the risk index
alues 0–4). Using Equation 4, we can calculate Rrange is 3. Now, we can report that the risk index
or the example road segment will match with the second normalize condition, indicating that it
s a low–medium risk road segment with risk index value 1 for that particular day considered in
he example. In this process, on the same day different segments can have diverse set of risk index
alues depending on their individual Rscore. Alternatively, the risk index value for the same segment
an vary on different days and months.
The risk-index algorithm implemented here has intended to categorize road segments based on

he records of number of minor injuries incurred in each segment. As a result, segments having
igher minor injury counts are categorized as accident-prone or high-risk roads. Other traffic risk
odeling algorithms can use a similar concept.
7
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Table 1
Normalization metric for risk index values.
Normalize condition Risk index Safety measure

Rscore = 0 or Rscore < Rrange 0 Low risk
Rrange ≤ Rscore < 2 × Rrange 1 Low-medium risk
2 × Rrange ≤ Rscore < 3 × Rrange 2 Medium risk
3 × Rrange ≤ Rscore < 4 × Rrange 3 Medium-high risk
4 × Rrange ≤ Rscore 4 High risk

Table 2
Fitted model DIC, WAIC and CPO values.
Model mesh DIC WAIC CPO

Region mesh 23687.41 23674.25 0.3246
Network mesh 23654.73 23647.06 0.3243

Inference:
Inferences are made following a Bayesian perspective, using the INLA approach (Rue et al., 2009,

017). We used priors that penalize complexity (called PC priors). These priors are robust in the
ense that they do not have an impact on the results and in addition the notion of scale determines
he magnitude of effects and simplifies interpretation of results (Simpson et al., 2017).

All analyses are carried out using the free software R (version 4.1.2) (R. Core Team, 2021), through
he INLA package (Rue et al., 2009; Lindgren, 2012; Rue et al., 2017, ‘R. INLA Project’, 2020). Maps
elated to study area, Barcelona street network with accident locations and traffic intensity map
re designed using ArcGIS Desktop Soft- ware (version 10.8. Redlands) (ESRI, 2021). Other maps
o depict SPDE mesh generation technique and plotting risk maps are designed using R package
apview (Appelhans et al., 2016).

. Results

In this section, we present the results of the methodological approach developed in Section 2.
e provide results on model fitting, validation, and prediction along with risk maps of accidents.
he proposed model (mentioned in Eq. (2)) is fitted using both region mesh as depicted in Fig. 2
nd our proposed network mesh as depicted in Fig. 3. Both models are fitted to the daily accident
ecords for the years 2010 to 2018. The remaining accident records of 2019 have been used to
est the fitted model. It is worthy to mention that we have executed series of similar models for
oth categories of mesh, using different dimensions of SPDE meshes with different combinations of
ovariates. In each case, deviance information criterion (DIC) and the Watanabe–Akaike information
riterion (WAIC) are used to assess the performance of the models, and to select the best fitting
odel by balancing model accuracy against complexity (Spiegelhalter et al., 2002). Models having
maller WAIC value, despite the added complexity, provide a more appropriate fit to sampled data
Blangiardo and Cameletti, 2015). In Table 2 we report the summary results (DIC, WAIC and CPO)
elated to goodness-of-fit along with computational time (in seconds) for only the best fitted models
rom individual region mesh and network mesh categories. We note the computational time (in
econds) of the best fit model with region mesh (336) is substantially lower compared to the best
it model with proposed network mesh (3187). This can be explained due to higher number vertices
n network mesh (14,368) than the region mesh (2352).

DIC values shown in Table 2 indicate that the WAIC value of model with proposed network mesh
23,647.06) is lower compared to the other. Thus, to model the spatio-temporal structure of traffic
ccidents on road networks of Barcelona, the binomial model with SPDE network mesh is selected.
e additionally note that the model is best by considering random spatial and temporal effects

ogether with set of covariates mentioned in Section 2.1. When the covariates are not considered,
he model provided larger DIC and WAIC values.
8
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Fig. 4. Marginal posterior distributions of covariate coefficients.

The posterior distribution of fixed and random effects included in the model are depicted in
Figs. 4 and A.11 (in Appendix). In particular, Fig. 4 shows the marginal posterior distributions of
all fixed effects. Additionally, Table 3 depicts the coefficients and 95% of credibility intervals of all
fixed effects.

We note that six covariates, namely time of day, distances from nearest bus stop, school,
restaurant, municipality, and street markets have no influence in our model. The positive mean
values for covariates such as number of vehicles involved in accident and type of road indicate
positive influence in the model. It is worthy to note that when the number of causalities and major
injuries in individual traffic accident are high then the record of minor injuries is lower compared
to other cases, thus there exists a negative association for these two covariates in our model. The
covariate associated to number of causalities has the highest negative mean value which indicates
strong negative influence on the model. Additionally, road length and speed limit of individual road
show negative influence in our model. Indicating when the road length is high and speed limit is
also high the number of minor injuries in a collision is comparatively lower than other short roads
and low speed tracks.

Moreover, Fig. A.11 in the Appendix depicts the marginal posterior mean of spatial S (.) and
temporal δt random effects with 95% credible intervals. The horizontal axis of Fig. A.11 (top) in the
Appendix represents the 14,368 triangulation nodes of the SPDE network mesh used in the model.
A stronger and significative spatial effect is observed on the vertices of triangles on road segments
having higher traffic accident occurrence (highlighted in Fig. 3 as dark red patches). The vertices
without accident events show no spatial effect. Similarly, Fig. A.11 (bottom) in the Appendix
exhibits the variation of the marginal posterior mean of the daily temporal random effects over
the entire study period (2010 to 2019).

We finally report that the spatial effect parameters κ and τ have mean values 92.16 and 0.31 as
depicted in Fig. A.12 (in the Appendix) that shows the marginal posterior distributions of the two
hyperparameters for the spatial random field. Using τ and κ we can get the value of spatial range

r = 0.055 km or 55 m. Using the fitted model, we can analyze the goodness-of-fit of the model by

9
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Table 3
Marginal posterior mean and credible interval of fixed effects.
Covariate Mean Credible interval

Nearest bus stop distance 0.002 −0.001, 0.003
Nearest municipality market distance 0.002 −0.001, 0.004
Nearest restaurant distance 0.000 0.000, 0.000
Nearest school distance 0.000 0.000, 0.000
Nearest street market distance 0.003 −0.001, 0.007
Number of deaths −1.108 −1.915, −0.301
Number of major injuries −0.730 −0.906, −0.555
Number of vehicles 0.083 0.055, 0.110
Road length −0.004 −0.005, −0.004
Road speed limit −0.029 −0.032, −0.026
Road type 0.211 0.188, 0.234
Time of day 0.002 −0.001, 0.006

Fig. 5. Residual (observed minus predicted) plots.

onsidering prediction over unsampled locations (Zuur et al., 2017). The fitted model is projected
nto the mesh at each road segment for this prediction.

The proposed model is tested using accident records for the final study year 2019 combined with
he entire model fitting 2010–2018 dataset. We compute predictions as well as their corresponding
esiduals (observed minus predicted). Fig. 5 depicts such residual plots. We note the residual values
re generally close to zero and have no discernible structure.

isk map:
We follow the risk map metrices in Section 2.2 and use safety measure scale shown in Table 1

o calculate the risk index for individual road segments. The predicted values for 2019 are used to
onstruct the normalized risk index values.
Fig. 6 (top) shows the location of 1209 original road accident in 2019. The corresponding

rojected risk map for 2019 as a whole is shown in Fig. 6 (bottom). The color scales (0–4) used
n the risk map follow the same safety measure scale used in Table 1. A visual comparison of the
redicted risk map with the original road accident record shows that the road segment containing
he observed cluster of accidents is correctly predicted by the risk map as medium to high-risk
oads.

Similarly, roads that are predicted to have low or moderate risk are originally roads with no or
ery few incidents. We report that similar results are observed while comparing the predicted risk
ap for individual dates in 2019 with the corresponding original accident records.
10



S. Chaudhuri, M. Saez, D. Varga et al. Spatial Statistics 53 (2023) 100722

s
t
T
i
o
i
s
p
f
p
t
r

Fig. 6. Top: Observed traffic accident events recorded in 2019.
Bottom: Predicted risk map for 2019.

The current results show that the proposed model can produce the road safety index of all road
egments, including small details of each junction or sharp turnings. In addition, identifying po-
entially dangerous roads can serve as baseline for geographic analysis of road safety management.
he daily predicted risk maps can have strategic applications in developing GIS analytical tools to
dentify and depict possible safe routes. For example, in Fig. 7 (top) the start and destination points
f a particular user is highlighted by green and red map pins. The user can choose path B which
s considered to be shorter in length compared to path A. But in terms of safety measure the user
hould opt for path A as the cumulative risk index for this path is much less compared to the shorter
ath B. As the proposed dynamic risk map provides information about the entire road network, it is
lexible enough to generate possible alternative safe route(s) between any source and destinations
airs as depicted in another similar example in Fig. 7 (bottom). In this example the length of both
he roads between source and destination points are same but in terms of risk index path B is
elatively unsafe compared to path A.
11
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Fig. 7. Predicted risk map baseline to identify the safe route.
Top: Example 1, Bottom: Example 2.

. Discussion

In recent years, spatiotemporal modeling of traffic accidents and risk mapping has gained
ttention, particularly in the domain of multi-dimensional road safety management. INLA-SPDE
pproach involves projecting the fitted model into the mesh at precise spatial locations, in this
ase the sampling points (here accidents locations) are located only on the road network. But
raditional SPDE mesh is generated for the entire study area which includes road network as well
s other regions. In that case, the output of the model may be unavoidably generalized because it
ill estimate predicted values for regions where there is no chance of an incident occurring. To
void this ambiguity, we introduce the novel concept of designing the SPDE triangulation precisely
n the road network. As a result, instead of performing spatio-temporal predictive analysis on the
ull continuous region, the proposed INLA-SPDE modeling took a new step by executing it only on
elected sections (particularly for road networks).
In this context, Chaudhuri et al. (2022) recently proposed spatiotemporal modeling of road traffic

ccidents using explicit network triangulation. However, the study only used types and surfaces
12
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of roads as covariates in the model. Significant exogenous variables related to traffic flow, traffic
control and temporal variables such as time of accident occurrence and other spatial covariates are
ignored in the modeling process. Furthermore, no analysis to compare and identify alternative safer
roads is performed in the previous study. Whereas the results of the current study show that, when
fitted with selected covariates, the proposed model can generate predicted risk maps of the entire
road network for any urban study area. In that sense, the model proposed in this study is dynamic in
nature. Additionally, Bayesian methodology is implemented using computationally faster INLA-SPDE
approach where the number of covariates can be updated at any stage and the level of significance
for individual covariates can be analyzed for further emphasis on the selection of significant factors
causing traffic accidents.

Regarding the limitations and future works, we note that the buffer road network used in the
urrent study has complex boundary regions which have some influence on the spatial effect of
he model. According to Krainski et al. (2018), the first step in fitting an SPDE model is to create
mesh to represent the spatial process. Building SPDE mesh for a continuous region is relatively
asier compared with the proposed SPDE network mesh. In the current study, fine tuning is required
o identify the best fit values for minimum allowed distance between vertices and maximum
ermissible triangle edge length for the inner (and outer) regions. Moreover, additional points
round the boundary, or outer extension, must be selected with care. As a rule of thumb, the
ariance near the boundary is inflated by a factor of 2 along straight boundaries and by a factor
f 4 near right-angled corners (Lindgren and Rue, 2015). The complex boundary region of the
uffer road network with several right-angled corners (as depicted in Fig. A.10) makes the process
ritical. The boundaries in the proposed mesh are located inside the mesh and not outside, as in
standard mesh and that creates fictitious spatial structures. Because of this complex boundary
ature, it is unavoidable to reduce high boundary effect that might cause a variance twice or
our times as great at the border as it is within the domain (Lindgren, 2012; Lindgren and Rue,
015). Additionally, though the residual diagnostics and predicted risk maps produced by the model
atches with the original observed records; but the correlation values of the model indicate room

or improvement. Thus, for detailed understanding of the performance of the model, it may be
eneficial to analyze further the model fitting phase using INLA-SPDE with a diverse set of spatial
nd temporal covariates, spatial and temporal structures, and space–time interactions. This paves
he way for future research works in this domain and to reduce the boundary effects in the model
esults.

The final outcomes of the proposed model are predicted risk maps for the entire road network.
hus, using these maps, the road safety index of individual road segments, including small details of
ach junction point or sharp turn, can be obtained at a glance. This can act as baseline information
or geospatial analysis on road safety metrics to design strategic geographical information system
GIS) analytical tools to identify and depict possible safe routes as depicted in Fig. 7. Similar
esearch work by Hannah et al. (2018) considers only spatial traffic variables like speed limits, street
unctions, and type of street. But the current study has proposed a more flexible and statistically
onvincing solution by implementing both spatial and temporal covariates in the predictive model.
e note another crucial application of the model is in analyzing change and trend pattern of traffic

ccidents. Fig. 6 is the combined predicted traffic risk map for all days in 2019. As mentioned
n Section 3 similar dynamic risk maps can be developed for individual months, weeks or even
ays. Using these maps trends in traffic accident risk can be identified for individual roads or, road
unctions. A better understanding of these patterns may have implications for road safety measures.
dentification of gradual changes in risk patterns and related potential factors, is of interest for future
esearch works on change point detection.

Interestingly, the predicted risk maps can be used as an important guideline for traffic manage-
ent authorities to identify potentially dangerous roads in any urban region and can take strategic
easures and actions to prevent traffic accidents in advance. As a result, risk maps can be used

o better understand accident hotspots, improve traffic safety measures, and conceivably can have
n impact on public health by reducing traffic accidents. In addition, as the model is flexible and
eneral, it can be applied to a wide range of related problems. The current methodology can be
mplemented for smart transportation systems by predicting traffic flow and reducing congestion
13
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on roads. This would enable transport authorities to better manage the traffic condition during peak
hours and would allow users to choose the best routes to their destinations. In context to smart
cities, an intelligent traffic management system based on the proposed model can feasibly control
air pollution caused by fine particulate matter emitted by transportation. It can have potential
implications to achieve air quality levels for particles in suspension in line with the guideline value
of the World Health Organization (WHO, 2019).

Consequently, we report that the proposed modeling approach could be a major step forward
n the understanding of road safety measure and can act as a baseline in strategic decision making
o control traffic collisions. The novel contribution of this work is that it is able to take advantage
f INLA-SPDE approach precisely on road network rather than for continuous region. As a result,
he model can predict risk factors for individual road segments and generate dynamic risk maps for
he entire network. In conclusion, although it may be complicated to control the boundary effect in
he complex network triangulation method, this work is able to present a model that can provide
ccurate predictions of accident-prone roads and help in identifying alternate safe routes between
ny source and destination pairs.

. Conclusion

The current study implements Bayesian methodology by including INLA and SPDE to design a
ynamic spatio-temporal analysis model predicting the occurrence of traffic accidents in the city of
arcelona, Spain. The use of SPDE network triangulation to estimate the spatial auto-correlation of
iscrete events is novel in this study. The methodology used in the study is a new step to perform
patio-temporal analysis precisely on road network and contributes to the relatively small amount
f literature in this domain. Moreover, the dynamic risk maps of traffic accidents are one of the
nteresting outcomes. The risk maps can have strategic applications in road safety measures and
esigning travel risk maps for tourists, corporate travelers, and emergency service providers. The
ethodology to identify safe routes is dynamic and can be adapted and applied to other locations
lobally. Furthermore, the current study opens future research scopes to explore the influence
f boundary effects on model performance and analyze the variation in spatial effects. We are
nvestigating these anomalies of the spatial impact in a subsequent study project and working on
possible solution to the problem.
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ppendix

.1. Data settings

See Figs. A.8 and A.9.

.2. Methodology

See Fig. A.10.

.3. Results

See Figs. A.11 and A.12.

Fig. A.8. Location of road network of the study area with traffic accident locations. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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i

Fig. A.9. Traffic intensity on individual road segments of the study area.

Fig. A.10. Polygon of buffered road segments, red points indicate traffic accident locations on the road network. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.11. Top: Marginal posterior mean of the spatial random effect S (.).
Bottom: Marginal posterior mean of the temporal random effect δt .

Fig. A.12. Marginal posterior distributions of hyperparameters κ and τ for the spatial random field S (.).
17
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