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ABSTRACT

Remote sensing is also benefiting from the quick develop-
ment of deep learning algorithms for image analysis and clas-
sification tasks. In this paper, we evaluate the classification
performance of a well-known Convolutional Neural Network
(CNN) models, such as ResNet50, using a transfer learning
approach. We compare the performance when using vector-
features acquired from general purpose data, such as the Im-
ageNet [1], versus remote sensing data like BigEarthNet [2],
UCMerced [3], RESISC45 [4] and So2Sat [5]. The results
show that the model pre-trained on RESISC-45 data achieved
the highest accuracy when classifying the Eurosat [6] testing
dataset. This was followed by the model pre-trained on Ima-
genet with 95.94% and BigEarthNet with 95.93%. When pre-
sented with diverse remote sensing data, the classification im-
proved in regards to large quantities of general-purpose data.
The experiments carried out also show, that multi modal (co-
registered synthetic aperture radar and multispectral) did not
increase the classification rate with respect to using only mul-
tispectral data. The source codes of this work are available for
reproducible research at https://github.com/itzahs/CNN-RS.

Index Terms— deep learning, transfer learning, remote
sensing, Keras, Tensorflow

1. INTRODUCTION

Deep learning (DL) in remote sensing is often linked to im-
age processing tasks such as image fusion, segmentation, and
registration; and to classification tasks that include land cover
and land use classification (LCLU), scene classification, and
object detection [7]. Convolutional Neural Networks (CNN)
are at the core of supervised image classification tasks using
DL. Proven architectures like ResNet50 [4] are available as
ready-to-use models in DL libraries (e.g. Keras [8]).

One of the common approaches is to implement trans-
fer learning techniques to exploit large quantities of general-
purpose data that is publicly available data (e.g. ImageNet
[9]) in order to extract the main image features like borders,
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textures, and so forth. Then, instead of starting from a ran-
dom initialization of the model parameters and training the
model from the scratch, it is possible to leverage the features
previously learned with other data and only calibrate the final
layers in a small set of remote sensing images annotated for
the specific problem to solve.

However, the main limitation of these general pre-trained
models with respect to remote sensing is that benchmark
archives contain RGB images while satellite imagery is usu-
ally composed of multiple bands (multispectral and hyper-
spectral) with different resolutions. In some cases, they
are co-registered using multiple sensors (e.g. Optical and
Synthetic Aperture Radar (SAR) [5]). Besides, in general im-
age recognition problems, images are annotated by a single
high-level category label whereas land cover is a pixel-wise
classification problem [2].

In this paper, we aim to evaluate the transferability of
proven architectures such as ResNet50 by comparing the
results of a classification using feature vectors trained on
general-purpose data matched up against remote sensing-
specific data. In the first approach, we used a model pre-
trained on Imagenet whereas in the second one we used
transfer learning from standardized remote sensing models
available in Tensorflow [10]. In section 2, first, we introduce
the remote sensing datasets that were used to train the con-
sidered models. Then, we conduct the classification using
transfer learning into the chosen benchmark data set: the
Eurosat [6]. In section 3., we show the comparative results
based on accuracy and compare them to the results reported
by [6] on the Eurosat databse when training a ResNet50 from
the scratch. Finally in Section 4., we provide conclusions and
limitations regarding the transferability of standardized DL
architectures in remote sensing.

In an effort to contribute to reproducible science, all
the scripts and source code can be run directly in Google
Colab Pro and are available in the following repository:
https://github.com/itzahs/CNN-RS.

2. DATA AND METHODS

In this section, we describe the transfer learning implemen-
tation process using the Keras [8] library for DL. First, we
present the previous-trained models available, and then the



preprocessing of the input data to perform the classification.

2.1. Remote sensing DL models

The Tensorflow Hub repository contains a collection of five
pre-trained models for remote sensing focused on satellite
and airborne imagery [11]. These models use standard-
ized datasets for classification tasks and share the same
ResNet50 V2 architecture [1]. We used the models trained on
benchmark data for remote sensing available in TensorFlow
datasets, which are summarized in the table 1.

Table 1. Remote Sensing datasets in Tensorflow

Pre-training datasets Source Size  Image size
BigEarthNet [2] Sentinel-2 590k 120x120*
Eurosat [6] Sentinel-2 27k 64x64
RESISC45 [4] Aerial 31.5k  256x256
So2Sat [5] Sentinel-1/2 376k 32x32
UC Merced [3] Aerial 2.1k 256x256

*Image size varies depending on resolution, from 120x120 to
60x60 and to 20x20.

The first two of these datasets are based on Sentinel-2
satellite imagery and incorporate multispectral information,
including analogous bands for RGB. The largest one is the
BigEarthNet [2] with 590,326 Sentinel-2 image patches dis-
tributed over 43 classes. In comparison, the Eurosat [6] has
a total of 10 classes with 27,000 labeled and geo-referenced
images. So2Sat [5] is a co-registered dataset with Sentinel-1
and Sentinel-2. The last two datasets are based on aerial im-
agery. They correspond to the RESISC45 [4], a collection of
31,500 RGB images for 45 scene classes as well as the UC
Merced [3] which covers 21 land use classes with 100 images
per class.

In addition to the RS models, we used a ResNet50 model
pre-trained with Imagenet weights. To date (01/17/2022), Im-
agenet contains 14,197,122 images from 21, 841 categories.

2.2. Data preprocessing

In order to measure the classification performance of all the
pre-trained models, we established a reference benchmark
dataset. We decided to use the Eurosat for training, valida-
tion, and testing with a 60-10-30 percent split respectively.
This dataset is relatively large and balanced, containing be-
tween 2000 to 3000 images per class. Furthermore, it has a
reported classification accuracy of 95.32% for 70-30 training-
test splits using a ResNet-50 architecture when training that
model from the scratch [6].

Since the image patches have a size of 64x64 pixels, we
resized them to 224 x 224 as this is the standard input size of
all RS TensorFlow models. This was also necessary to im-
plement the ResNet50-Imagenet in Keras. Nevertheless, we

normalized the images between [0, 1], taking into account the
dynamic range of each image type, u8int values for RGB im-
ages and 16uint for multispectral. Concerning the inputs for
the ResNet50 model with Imagenet weights, we used the pre-
processing_input module. This component converts the RGB
to BGR format and zero-centers each color channel with re-
spect to the ImageNet dataset. Finally, no image augmenta-
tion was applied as it affects the intensity of the values and
should be discarded [11].

Our approach was to carry out a feature extraction from a
previously trained ResNet50 [1] architecture and freeze it to
repurpose the feature maps learned into another data domain
as seen in figure 1.
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Fig. 1. Eurosat classification with transfer learning

We used the weights of Imagenet, BigEarthNet, RE-
SISC45, So2Sat, and UCMerced and keep the auto-encoder
layers frozen or non-trainable. We also added new trainable
layers on top corresponding to Eurosat RGB (3 bands and 10
classes) or All (13 bands and 10 classes). Since all the input
data has to be in 3 channels only, we use a 2D convolution
layer for dimensional reduction when using multispectral data
for the pre-trained RGB-based models (table 2).

Afterwards, we trained the classifier on top of the pre-
trained model, followed by flattening the ResNet50 base-
model output, and by a fully connected ReLu layer with 512
activation nodes. A Dropout layer with dropout nodes was
set to 0.2 and passed to a fully connected (Dense) layer with
10 possible classes and softmax activation.

We carried out each experiment for 100 epochs while
monitoring the validation accuracy and loss. We initially
used a batch size of 128, but due to hardware limitations it
couldn’t be performed when using all multispectral bands.



Table 2. Model summary for the multispectral classification

Layer type Output shape # Param
Conv2D (None, 224, 224, 3) 42
Keraslayer* (None, 2048) 23,633,899
Flatten (None, 2048) 0
Dense_1 (None, 512) 1,049,088
Dropout (None, 512) 0
Dense_2 (None, 10) 5,130

Total parameters : 24,688,159
Trainable parameters: 1,054,260
Non-trainable parameters: 23,633,899

*ResNet-50 models pre-trained on ImageNet or RS datasets.

In order to keep a straightforward implementation, no fine-
tuning was performed.

All the experiments for RGB images have been conducted
in Google Colab Pro with 16GB GPU and 25GB RAM.
Whereas the classification with all 13 bands was executed on
Ubuntu 20.04 x64 server with 11GB GPU and 112GB RAM.

3. EXPERIMENTAL RESULTS

In this section, we summarize the results and make a compar-
ison of the models performance based on the achieved accu-
racy on the reference dataset chosen for the experiments, that
is Eurosat dataset.

The highest accuracy was achieved by the features ex-
tracted from the RESISC45 with a 97.23% for a 64 batch
size and 97.10% for a 128 batch size. One of the featured
strengths of the reference dataset is that it has a balanced num-
ber of images (700 per class), with high within-class diversity
and between-class similarity for increased complexity [4]. It
is also the only dataset holding different spatial resolutions,
from scenes classifying airplanes and rectangular farmlands
to clouds.

Table 3. Transfer-learning from a ResNet50 model pre-
trained on benchmark datasets and tested on Eurosat

128 batch size 64 batch size

Model Loss Acc Loss Acc

Imagenet[1] 0.4819 09594 0.5782  0.9593
So2Sat[5] 0.3302 0.8970 0.3831 0.8922
UC Merced[3] 0.2327 0.9486 0.2822  0.9475
RESISC45[4] 0.1345 0.9710 0.1554  0.9723
BEN-RGBJ[2] 0.1729 0.9593 0.2007 0.9586
BEN-ALLJ2] - -¥ 0.2915 0.9406

*Experiment could not be performed due to hardware limitations.
BEN stands for BigEarthNet.

The other two models that overcome the classification
benchmark of 95.32% in Eurosat are the Imagenet with
95.94% and the BigEarthNet-RGB with 95.93%. The more
general Imagenet performs similarly to the remote sens-
ing specific BigEarthNet. Both models were trained with
datasets containing a large number of images, allowing them
to reach high generalization ability. A possible drawback for
BigEarthNet is that this dataset contains imbalanced classes,
which can lower overall accuracy. For example, the mixed
forest has over 217k images, whereas continuous urban fabric
10k and burnt areas 328. Furthermore, it is worth mentioning
that, in BigEarthNet all tiles were atmospherically corrected,
unlike the Eurosat that contains images with a color cast due
to atmospheric effects [6] [2].

The UCMerced and the BigEarthNet models with all the
spectral bands performed below the benchmark with 94.75%
and 94.06% respectively in a 64 batch size. Although ini-
tial CNN layers for dimensionality reduction is well-suited
for processing multiband remote-sensing data [7] and several
studies have found that including all bands outperforms RGB
bands [6] [2] it was not the case in this study. This is mainly
due to fact that the BigEarthNet model available was trained
only in the RGB representation and not on full multispectral
bands datasets.

The poorest performance corresponds to the So2Sat fea-
tures with 89.22% for a 64 batch size. The dataset used to
train this model is multi-modal, meaning that contains images
from the synthetic aperture radar and multispectral (Sentinel-
1 and Sentinel-2 respectively). The RGB image models might
not have benefited completely from this, whereas it is possible
that other datasets such as the recently released BigEarthNet-
MM [12] might take advantage of this feature.

4. CONCLUSIONS

In the comparison study here presented, we analyzed the per-
formance of 5 models corresponding to a pre-trained archi-
tecture of ResNet50 on remote sensing models and the well-
known Imagenet. Overall, transfer learning from both general
images and remote sensing performed better than training the
models from the scratch with random initialization of the pa-
rameters according to the accuracy reported in Eurosat.

As a result of this evaluation, the RESISC-45 model, us-
ing the RGB band combination outperformed the rest of the
models used in this study, with an overall classification ac-
curacy of 97.10% in a 128 batch size and 97.23% in a 64
batch size. Thus, the main conclusion from this work is that
for classifying remote sensing datasets it is more relevant to
have more diverse representations from remote sensing data
than training the models on an all-purpose dataset such as Im-
agenet.
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