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Abstract

In this paper a methodology to identify several points of the frequency response of a system using a single experiment is
proposed. The identification is performed using the information obtained from an asymmetric relay feedback experiment. The
frequency response points that are estimated correspond to the fundamental oscillation frequency induced by the asymmetric
relay and its harmonics. The method is easy to implement since it only requires linear algebra operations, but relies on a proper
data selection, which is largely studied, to obtain the most accurate results. The proposed method allows a Least Squares
formulation, which has also been studied, and presents some benefits in terms of accuracy for certain cases. The presented
results are validated experimentally using a practical identification case.
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1 Introduction

Among the system identification tools that have been
developed in the domain of control engineering, relay-
feedback identification method can be found as one of the
most used and studied. One of the firsts works presenting
a relay-feedback experiment can be found in [12], but
it was not until mid 80s when the main ideas regarding
the relay-feedback identification were further developed
in [1].

Successive improvements have been done from the orig-
inal idea [18,20], however, most of the published works
use the Describing Function (DF) method [13] as the
analysis tool. The DF method allows obtaining the ulti-
mate gain, the ultimate frequency and the phase lag of
the process with a simple harmonic analysis [8].

Some works have been conducted aiming to extract more
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information from the system using this basis. Such works
usually require either to extend the duration of the ex-
periments or to modify the loop structure to a differ-
ent extent. For example, several works modify the relay
setup to obtain oscillation frequencies lower than the ul-
timate frequency, to that end, different strategies can be
implemented, for instance including time delays in the
loop [16,17,30], inserting an integrator [7,33,39], modi-
fying the hysteresis of the relay [18] or modifying the
vertical asymmetry [11].

Other works are focused on improving the degree of ac-
complishment of the filtering hypothesis that the DF
technique assumes. This is attained by modifying the
loop structure to induce more sinusoidal-like oscillations,
using for instance a pre-load relay [35], a saturation relay
[40], adding more levels at the output of the relay [34],
or using a mapping function to the relay output [15].
Other authors propose schemes with multiple relays [6],
or substituting the relay by a Symmetric-Send-On-Delta
(SSOD) non-linearity [26].

However, there exist other lines of research which use
analysis techniques others than the Describing Function.
The usage of such tools generally produces more accu-
rate results at the expense of requiring more time to
be obtained. Some of these methods are based on the
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Fourier transform [4,5,37], another work defines the A-
locus to identify low order systems [10], and others pro-
pose to take into account the effect of harmonics in the
response [14]. Other authors also consider the shape of
the induced oscillation for the identification procedure
[21,36]. Other works like [2,3] relate the characteristics
of the temporal response of an asymmetric relay exper-
iment with the parameters of FOPTD and IPTD mod-
els by using the inverse Laplace transform. Another ap-
proach, called the 2-shifting method was described in
[9], which allows obtaining 2 points of the frequency re-
sponse. This method has been further developed result-
ing in the n-shifting method which has been used to iden-
tify n points instead [27,28]. Certainly, there exist other
approaches to the identification problem, for example
the one presented in [38], which proposes to replace the
traditional relay by a parasitic relay or a cascade relay.
These kinds of approaches improve the identification re-
sults, but add complexity to the procedure.

All in all, there are a wide range of alternatives to im-
prove the identification results with regard to the origi-
nal idea, however, most of them require either to expand
the duration of the experiments, introduce modifications
or further elements on the loop, or involve more com-
plicated calculations which could be a problem for the
practical application of the methodology.

One of the paramount virtues of the relay feedback ex-
periment is its simple setup. Some of the aforementioned
works present different degrees of variation with regard
to the relay structure, among these works, the variation
presented in [28], which is a fully asymmetric and delay-
ing relay, named FAD relay for short, can provide flexi-
bility without compromising the difficulty of the setup.
The FAD relay contains biases in its detection and in its
output, and some user-defined delay to its output, which
as it was shown in [28] allows decreasing the fundamen-
tal oscillation frequency, being, thus, possible to iden-
tify regions of the frequency response below the ultimate
frequency. The information provided by this region is of
interest, for example, for tuning PID controllers.

In this paper, the concepts and methodology for iden-
tification developed in [22] will be applied to the asym-
metric relay, which is the simplest version of the FAD
relay. The proposal allows obtaining several points of
the frequency response with the information gathered
from only one sustained oscillation. Unlike other meth-
ods, this approach does not increase the duration of the
experiments to obtain several points of the frequency
response, overcoming the necessity of repeating several
feedback relay experiment with different delays for ob-
taining them. With the obtained points, it can then be
obtained a parametric transfer function using any of the
methods presented in [23] to tune a controller or di-
rectly use a tuning method that can be applied to non-
parametric models like [29]. The obtained results are

directly applicable to any auto-tuning method that re-
quires several frequency response points [25].

Besides, it is shown that with a proper selection of the
samples accurate estimations are obtained without in-
volving complicated calculations. These samples, which
are expressed as fractions of the oscillation period, are se-
lected according to calculus criteria, and therefore, they
do not depend on the shape of the oscillation. Those time
fractions are always the same and can be directly selected
once the period of the induced oscillation is known. Un-
like the results presented in [22], where an ideal relay is
used, the characteristics of the asymmetric relay allows
obtaining sustained oscillation with harmonic content in
both odd and even harmonics, allowing to estimate more
points of the frequency response in the region of interest.
In addition, it is shown that some induced oscillations
are suitable to identify until a certain number of points
in the frequency domain.

The result of the identification procedure presented in
this paper is a non-parametric model in the frequency
field. However, unlike the standard methods for obtain-
ing this kind of models, which use the Fourier transform
of the input and output signals, the proposed method re-
lies on the use of the Fourier series. This is possible due
to the periodic response of the system under relay feed-
back experiment. This fact avoids some issues related
with the calculation of the Fourier transform of aperi-
odic signals, as the leakage error [31]. The results of the
method are affected by the truncation of the Fourier se-
ries and for the measurement error, whose effects have
been addressed in the paper.

The paper is organized as follows. In Section 2, the loop
setup for identification as well as the main elements in-
volving the identification procedure are presented. Sec-
tion 3 details the main results obtained and proposes
the guidelines to perform the identification. In Section
4 the proposed method is applied to several case stud-
ies. Section 5 describes the effect of noise on the identi-
fication procedure. In Section 6 the applicability of the
proposed identification method is evaluated following a
Least Squares approach. Then, an experimental case is
addressed in Section 7. Finally, the conclusions about
this work are drawn in Section 8.

2 Problem statement

Consider the block diagram of a loop with an asymmetric
relay as it is shown in Figure 1, where yr, e(t), u(t) and
y(t) are the reference, error, relay output and measured
output signals respectively. In this diagram, the process
to identify is denoted by G(s) and the asymmetric relay
with its own block. The asymmetric relay considered has
uA and uB as upper and lower drive levels, and eA and
eB as upper and lower switch points. The relationship
between the input signal e and the output signal u for
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Fig. 2. Input-Output relationship for the asymmetric relay.
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Fig. 3. Generic oscillation waveform for a system with an
asymmetric relay.

the asymmetric relay is depicted in Figure 2. An example
oscillation is presented in Figure 3, where the error signal
e(t) and the relay output u(t) are shown. The error signal
is quantized by the relay according to the commutation
thresholds eA and eB resulting in the output signal u(t).
This signal switches from uA to uB , which correspond
to the relay drive levels, at the commutation time ρsTo,
being To the oscillation period and ρs the time fraction
where the switch is produced.

The relay feedback experiments for identification use the
sustained oscillations induced by the relay to obtain in-
formation about the process to identify. Most of classical
approaches are focused on identifying the ultimate oscil-
lation point, which corresponds to the point where the
phase of G(s) is −180◦. While the information provided
by this point is useful, for instance for tuning PID con-
trollers, it does not provide any information about the
low frequency response of the process, which can play
an important role in the behavior of the closed-loop re-
sponse of the controlled system.

The goal of this paper is to perform a relay feedback
identification experiment with the asymmetric relay and
provide an estimation of those points of the frequency re-
sponse of the process whose frequency corresponds to the
oscillation frequency and its multiples, also called har-
monics. This kind of identification procedure has been

developed in [22] for the relay feedback experiment, and
some of those ideas are extended to the asymmetric re-
lay case.

To start with the identification procedure, the relay out-
put signal u(t), depicted in Figure 3, is obtained whose
expression corresponds to (see Appendix A):

u(τTo) =ρs(uA-uB) + uB+

2(uA-uB)
π

∞∑
n=1

1

n
sin(πnρs) cos(πn(2τ -ρs))

(1)

where the time variable has been expressed as a product
of the oscillation period To and a time fraction τ ∈ [0, 1].

This expression is used to compute the measured output
of the system y(t), which is presented in equation (2),
and includes the gain of the process G(0) and is a func-
tion of the real and imaginary parts of the oscillation
frequency ωo and its harmonics ωn = nωo.

For the identification procedure presented, it is assumed
that the system gain G(0) is known. There exist several
methods to identify it, for example, with a step response
experiment around the operation point or using the out-
put of a biased relay as shown in [19,32]:

G(0) = −

2π∫
0

e(t)dωt

2π∫
0

u(t)dωt

. (3)

This last method may result more convenient due to the
usage of an asymmetric relay.

At this point, equation (2) is expressed as a linear equa-
tion where the information related to the process, which
is gathered in the real and imaginary parts of each har-
monic, is to be determined. Using this equation, a study
about its use for the estimation of the frequency response
points of G(s) is presented in the following sections.

3 Main result

Regarding to equation (2), under the identification of
processes perspective, the real and imaginary parts of
the process are seen as unknown quantities. Further-
more, focusing on the summation, for each harmonic n
considered in that summation, two unknowns are added,
which are the real and imaginary part of that particular
harmonic. For example, to calculate the real and imag-
inary part of the fundamental frequency, a system of
equations formed by two instances of equation (2) with
different values of τ would be needed at least. If an addi-
tional harmonic wants to be computed, then 4 unknowns
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y(τTo) = [ρs(uA − uB) + uB ]G(0)+

2(uA − uB)

π

∞∑
n=1

1

n
sin(πnρs) [<{G(jωn)} cos(πn(2τ − ρs))−={G(jωn)} sin(πn(2τ − ρs))]

(2)

appear, needing at least 4 equations. Generally speak-
ing, to compute the first n harmonics a number of equa-
tions l ≥ 2n is needed. Thus, the system of equations to
solve can be formulated generally as:

Yl×1 = Ȳl×1 +
2(uA − uB)

π
Al×2nB2n×2nS2n×1, (4)

where each of the presented elements is described in
equations (5) and (6), where 1 is a l × 1 column vector
in which every element is equal to 1. Therefore, the fre-
quency response points of the process contained in S,
considering l = 2n, can be obtained by computing:

S =
π

2(uA − uB)
(AB)−1(Y − Ȳ ). (7)

In any linear system, the matrix to invert can strongly
influence the accuracy of the obtained solution, which
in this case, is the matrix AB. Regarding to each of
these matrices separately, it can be seen that they mainly
depend on the commutation time fraction ρs and on the
time fractions of the different samples taken τi. Hence,
the value of samples taken, gathered in Y , do not have
an impact on the accuracy of the solution, being the
commutation time and the choice of the samples taken
the paramount parameters that determine the accuracy
of the obtained solution.

The structure of these matrices, allow pre-calculating
the values of ρs and τi that lead to the most accurate
solution. This choice is important since some combina-
tions of values of τi could lead to a linear dependent sys-
tem of equations or to some systems of equations where
two equations are very similar. To illustrate this fact,
consider a simple case where n = 3, the samples τi are
chosen evenly spaced as follows:

τi =

[
0,

1

6
,
2

6
,
3

6
,
4

6
,
5

6

]
,

and for illustrative purposes let us consider ρs = 1/3.
The matrix A according to expressions in (5) results in:

A =


0.5 −0.5 −1 0.866 0.866 0
1 1 1 0 0 0
0.5 −0.5 −1 −0.866 −0.866 0
−0.5 −0.5 1 −0.866 0.866 0
−1 1 −1 0 0 0
−0.5 −0.5 1 0.866 −0.866 0

 .

As it can be seen, all the elements of the last column
of this matrix are zeros, which makes A not invertible,
making this choice of the sample times τi not suitable
for the identification.

Besides, choosing a set of τi according to any arbitrary
sampling pattern could also lead to a linear system in
which small errors in the measured signal, due to noise
for instance, could lead to a significant loss in the accu-
racy of the final solution.

This accuracy or sensitivity of the solution is measured
by the condition number κ(·) which can be computed as:

κ(·) = ‖·‖
∥∥·−1

∥∥
where the operator ‖·‖ denotes the matrix norm. For the
calculations in this work, it is considered the euclidean
condition number, obtained with the euclidean norm.

With regard to the condition number ofAB the following
expression can be used:

κ(AB) ≤ κ(A)κ(B)

which allow defining an upper bound for the condition
number of AB by computing the condition number of
each of them. This is specially useful since matrix B is
more dependent on the running experiment, because it
depends on the asymmetry of the induced oscillation,
and matrix A mostly depends on the choice of the sam-
ples τi. In addition, by computing them separately the
analysis results easier and enlightening.

3.1 Characterizing κ(B)

Regarding to B, since it is a normal matrix (BBT =
BTB), its condition number can be computed as:

κ(B) =
|λmax(B)|
|λmin(B)|

, (8)

being λmax(B) and λmin(B) the maximum and mini-
mum eigenvalues of B. Since B is a diagonal matrix, its
eigenvalues are the elements of the diagonal, resulting in
the condition number of B to be expressed as:

κ(B) =

max
1≤i≤n

|sin(iπρs)/i|

min
1≤i≤n

|sin(iπρs)/i|
. (9)
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Y =


y(τ1To)

y(τ2To)

...

y(τlTo)

 , A =


cos (π(2τ1 − ρs)) ... cos (nπ(2τ1 − ρs)) − sin (π(2τ1 − ρs)) ... − sin (nπ(2τ1 − ρs))

cos (π(2τ2 − ρs)) ... cos (nπ(2τ2 − ρs)) − sin (π(2τ2 − ρs)) ... − sin (nπ(2τ2 − ρs))

... ... ... ...

cos (π(2τl − ρs)) ... cos (nπ(2τl − ρs)) − sin (π(2τl − ρs)) ... − sin (nπ(2τl − ρs))

 , (5)

B = diag

(
sin(πρs), ...,

sin(nπρs)

n
, sin(πρs), ...,

sin(nπρs)

n

)
, Ȳ = [ρs(uA-uB)+uB ]G(0)1 and S =



<{G(jωo)}
...

<{G(jnωo)}
={G(jωo)}

...

={G(jnωo)}


.

(6)

0 0.2 0.4 0.6 0.8 1

100
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102

103

ρs

κ
(B

)

n = 2 n = 3 n = 4 n = 5

Fig. 4. Condition number κ(B) for all the values of ρs and
considering different harmonics.

Since the denominator can be made 0 for some combi-
nations of ρs and i there exist several combinations of ρs
and the number of harmonics to compute n that should
be avoided. The values of ρs to avoid for a given number
of harmonics considered can be expressed as:

ρs =
j

i
; i = 1, ..., n and j = 0, ..., i (10)

which will make the matrix B non invertible.

Therefore, if we consider for example n = 2, the values
of ρs which would lead to an ill-conditioned B matrix
are: 0, 1 and 1/2, but if we consider n = 3 instead the
values 1/3 and 2/3 are added to this list.

A representation of the condition number κ(B) for all
the range of ρs and considering several harmonics n is
presented in Figure 4, where it can be seen that by in-
creasing the number of harmonics the new critical set of
values for ρs includes the precedents. In addition, values
of ρs closer to the ones described by equation (10) will
also result in an ill-conditioned matrix B. This result
shows that some oscillations are only suitable to identify
until a certain number of points in the frequency domain.

Local minima for κ(B) are found approximatively in the

middle between the values to avoid and the absolute
minimal values are found at the origin and at ρs = 1.
Intuitively, it can be seen that:

lim
ρs→0

sin(nπρs) ≈ ρs,

which leads approximatively to an identity matrix mul-
tiplied by ρs.

With κ(B) already characterized, the study of the con-
dition number of A can be addressed. Regarding to ma-
trix A the arguments of the sinusoidal functions can be
rewritten using the following expression for the sake of
simplicity:

2τi − ρs = θi, (11)
simplifying the analysis.

3.2 Characterizing κ(A)

Regarding to the condition number κ(A), it can be ob-
tained as:

κ(A) =
σmax(A)

σmin(A)
(12)

where σmax(A) and σmin(A) are maximal and minimal
singular values ofA respectively, which can be calculated
as the square root of the eigenvalues of the matrix AAT ,
which can be defined with the following expression:

(AAT )i,j =

n∑
η=1

cos(ηπ(θi − θj)) (13)

This matrix has some characteristics which can be spot-
ted immediately, which are that the elements of the
main diagonal are equal to n since cos(0) = 1, and that
(AAT )i,j = (AAT )j,i since cos(α) = cos(−α).

In order to make κ(A) the minimum possible, which
would be κ(A) = 1, and since all the elements of the main
diagonal are the same, the minimum for κ(A) would be
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obtained by making all the elements outside the main
diagonal of AAT equal to 0:

(AAT )i,j =

n∑
η=1

cos(ηπ(θi − θj)) = 0; i 6= j (14)

which developed can be expressed in a compact form as
in equation (15). Keeping in mind that θj−θi 6= 2k, k ∈
Z, the general solution to equation (15) is given by:

θj − θi =


2k

n

2k − 1

n+ 1

, k ∈ Z (16)

Despite the wide range of possible solutions given by the
parameter k, for simplicity, only those that keep θ ∈ [0, 2]
will be considered. This is due to the fact that the sam-
ples τ are taken in a single oscillation period, which im-
plies τi ∈ [0, 1]. Besides, the commutation time fraction
ρs ∈]0, 1[, and using expression (11) would imply that
θ ∈]−1, 3[, however, the effect of ρs will be proven to be
negligible, therefore, we will only consider θ ∈ [0, 2].

From these solutions it has been found that: 1) It is not
possible to make all the elements outside the main di-
agonal equal to 0, 2) There exist several combinations
of (θi, θj) that make the element (AAT )i,j = 0 and
3) the maximum set of phases {θ1, θ2, ..., θk} that make
(AAT )i,j = 0, i ≤ k, j ≤ k has size n and correspond to
those that fulfill (see Appendix B):

θk =
2k

n
+O; k = 0, ..., n− 1 , O ∈

[
0,

2

n

]
(17)

This set of phases will be used for the calculus of κ(A).
Any lag O could be used for the calculations, but for the
sake of simplicity consider O = 0.

With this set of phases half of the required values for
θ have been covered. Let us consider that to cover the
remaining n values, the same set of phases is considered
but adding a constant phase lag ψ resulting in:

θk =


2(k − 1)

n
if k = 1, ..., n

2(k − n− 1)

n
+ ψ if k = n+ 1, ..., 2n

, (18)

leading to a simple set of phases defined by the index k
and the phase lag ψ.

By using these phases, the resulting matrix AAT can be
expressed as a block matrix which facilitates computing

the characteristic polynomial pλ, which has the expres-
sion presented in equation (19), calculations detailed in
Appendix C.

From this expression, the eigenvalues of AAT are ob-
tained, which are:

λ = n± n cos(nπψ), λ = n± n cos
(nπ

2
ψ
)

Computing the square root of the ratio between the max-
imum and the minimum of these eigenvalues results in
the condition number of A. The minimum among all the
possible values has been found to be κ(A) =

√
3, and is

obtained for the values of θk presented in equation (18)
considering a phase lag of ψ =

2

3n
.

Remark 1 If the choice of the values θk is increased by
a given constant O ∈ < such as that:

θ′k = θk +O, ∀k

the resulting condition number will be the same κ(A) =
κ(A′). Note that by construction, using the expression
(13), matrices (A′)(A′)T and AAT are equivalent since
the constant O is canceled:

((A′)(A′)T )i,j =
n∑

η=1

cos(ηπ(θ′i − θ′j)) =

n∑
η=1

cos(ηπ(θi − θj)) = (AAT )i,j

resulting in the same eigenvalues that those of AAT , and
therefore in the same condition number. This can be use-
ful in those cases where some of the collected data is
known to be corrupted, which allows selecting other data
for the identification.

With the set of phases obtained in equation (18) to-
gether with the results presented in Remark 1, the sam-
ples can be taken at time fractions τk = (θ′k + ρs)/2,
where θ′k = θk − ρs, and θk being obtained directly from
equation (18), resulting in:

τk =


k − 1

n
if k = 1, ..., n

k − n− 1

n
+

1

3n
if k = n+ 1, ..., 2n

, (20)

matching the first sample with the upwards switch of
the relay.

For several values of n, a summary of the correspond-
ing time fractions τk according to expression (20) is pre-
sented in Table 1.
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(AAT )i,j = csc
(π
2
(θj − θi)

)
sin

(nπ
2
(θj − θi)

)
cos

(
(n+ 1)π

2
(θj − θi)

)
= 0; θj − θi 6= 2k, k ∈ Z (15)

pλ(AA
T ) = det(AAT − λI) =

(
(n− λ)2 − n2 cos2(nπψ)

)(
(n− λ)2 − n2 cos2

(
nπψ

2

))n−1

(19)

Table 1
Summary of τk values leading to κ(A) =

√
3 as a function of the number of harmonics considered.

n τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12

2 0 1/2 1/6 2/3
3 0 1/3 2/3 1/9 4/9 7/9
4 0 1/4 1/2 3/4 1/12 1/3 7/12 5/6
5 0 1/5 2/5 3/5 4/15 1/15 4/15 7/15 2/3 13/15
6 0 1/6 1/3 1/2 2/3 5/6 1/18 2/9 7/18 5/9 13/18 8/9
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0 1 2 3 4
−0.5

0

0.5

t[s]

y
(t
)

n = 2 n = 3 n = 4 n = 10

Fig. 5. Oscillation waveform resulting from a given asymmet-
ric relay feedback experiment and an example of the samples
taken depending on the number of harmonics.

In Figure 5 an oscillation generated by an asymmetric
relay feedback experiment is presented together with the
samples y(τkTo) that should be taken to perform the
identification according to the presented results for dif-
ferent number of harmonics.

It is worth noting that unlike standard frequency re-
sponse identification methods, the approach proposed in
this paper does not lie on estimating the Fourier Trans-
form (FT) of sampled signals. Instead, the points of
the frequency response are calculated straightforward
by Fourier series using some properly selected samples
of the oscillatory response obtained from a relay feed-
back experiment. Therefore, some undesired effects as-
sociated with the calculation of the FT of finite series,
which result from the convolution of the spectrum of
both the sampled signal and the measurement window,
do not appear in our proposal. Similarly, the effect of
the boundary conditions, i.e. the values at the begin-
ning and at end of the experiment, which must be taken
in account in standard frequency domain identification
methods as a consequence of applying the Laplace trans-
form to obtain a frequency domain model, [24], does not
affect the results of the proposed procedure since such
models are not used. In the approach presented in this
paper the results are perturbed by both, the truncation
of the Fourier series that approximate the temporal re-
sponse of the system under oscillation and by the mea-
surement error in signal y. The effects of these sources
of estimation error will be analyzed in next sections.

4 Identification examples

In order to demonstrate the applicability of the proposed
method, some identification examples are performed us-
ing as process to identify the models presented in (21)-
(22), which contain some of the most common dynamics
encountered in industrial processes.

G1(s) =
e−s

2s+ 1

G2(s) =
e−s

(2s+ 1)2

G3(s) =
1

(s+ 1)(0.1s+ 1)2

(21)
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Fig. 6. Signals u(t) and y(t) for the system G1(s) used for
identification: y(t) in black, u(t) in blue and samples at time
fractions τk in red.

G4(s) =
1

(s+ 1)5

G5(s) =
1

(1 + s)(1 + 0.5s)(1 + 0.52s)(1 + 0.53s)

G6(s) =
e−0.3s

(1 + s)(1 + 0.7s)

G7(s) =
1− 0.5s

(s+ 1)3

G8(s) =
1

(s+ 1)((0.5s)2 + 0.7s+ 1)

(22)

For the experiments consider the choice of the asymmet-
ric relay parameters to be: uA = 0.25, uB = −0.05, eA =
0.548, eB = 0.448, and the reference to excite the sys-
tems is set to yr(t) = 0.5. For the calculations, it has
been considered the first 10 harmonics. Then, the time
fractions τk have been chosen according to expression
(20).

For each of the processes an experiment has been carried
out and the corresponding data has been gathered. For
example, for the process G1(s) the resulting oscillations
for the proposed set-up has been presented in Figure 6,
where y(t) is presented in black, u(t) in blue and the
samples taken for the identification in red.

Using these data, ρs has been computed and matrices
A and B calculated, allowing the estimation of the fre-
quency response points for each system, gathered in the
column vector S. As an example, the identification re-
sults obtained for system G1(s) are shown in Figure 7,
in which the frequency response of the system in the
Nyquist diagram has been presented in black, the points
to identify, which correspond to the oscillation harmon-
ics, are presented with black dots and the identified
points in red. As it can be seen, the method results in
an accurate estimation for the first points, specially con-
sidering that only 10 harmonics have been used. For the
last harmonics, which are not presented in the figure, an
estimation has also been computed using the method,
however, is not as accurate, presenting in some cases a

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

0.2

<

=

G(jω)

G(jnωo)

Ĝ(jnωo)

Fig. 7. Frequency response of system G1(s) in black, with the
target points to estimate in black dots and the estimation in
red.
Table 2
Relative error on the estimation for each model and harmonic
considering n = 10.

Err1 Err2 Err3 Err4 Err5

G1(s) 2.01 1.96 2.23 6.28 17.503
G2(s) 0.16 0.75 1.92 3.67 2.17
G3(s) 0.73 1.17 1.68 2.41 4
G4(s) 0.003 0.015 0.012 1.05 0.692
G5(s) 0.013 0.103 0.31 0.71 1.297
G6(s) 0.124 0.241 1.299 4.202 17.22
G7(s) 0.291 0.505 0.203 4.502 20.672
G8(s) 0.017 0.042 0.452 1.341 10.573

notable variation.

To quantify numerically the accuracy of the identifica-
tion the parameter Errn has been used, defined as:

Errn[%] =

∣∣∣G(jnωo)− Ĝ(jnωo)
∣∣∣

|G(jnωo)|
· 100, (23)

which represents the relative error on the estimation of
the harmonic n. This measure has been used to com-
pute the accuracy of the estimation of the first five har-
monics for the different processes presented in (21)-(22),
the results are gathered in Table 2. As it can be seen in
this table, the presented case G1(s) results in the most
inaccurate estimations among all the considered cases.
However, for this case, the results indicate that estima-
tions around Err = 2% are obtained for the first three
harmonics, which graphically in Figure 7 it can be seen
that it is a reasonable estimation.

The current estimation of the frequency response points
can be improved by considering more harmonics. This
is a straightforward conclusion from the Fourier series
analysis, the more harmonics are considered, the better
the shape of y(t) is approximated, and therefore, the
subsequent calculations are more accurate.
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Table 3
Err for the first 5 points obtained for process G1(s) consid-
ering n = 10 and n = 20 and the subsequent improvement.

Err1 Err2 Err3 Err4 Err5

n = 10 2.01 1.96 2.23 6.28 17.503
n = 20 0.43 1.06 1.92 2.93 4.02

Improvement 1.58 0.89 0.31 3.36 13.48

This can demonstrated using for example the process
G1(s). Another identification of the frequency response
points has been carried out using the same oscillation
that is presented in Figure 6, but doubling the number
of harmonics involved in the calculus for the identifica-
tion instead. Taking this into account the values τk are
selected according to expression (20) and the identifica-
tion is repeated. The relative error Errn for both iden-
tifications is presented in Table 3, where it can be seen
that improvements on the estimation are made for each
harmonic.

5 Measurement noise influence

By considering an asymmetric relay with hysteresis, as
depicted in Figure 2, it is assumed that the commutation
thresholds eA and eB are chosen properly to avoid com-
mutations due to noise. However, even if these switches
are avoided, noise still has an influence on the linear sys-
tem of equations used defined by (4), specifically on the
measures vector Y .

Naming as sk the k-th element of solution vector S and as
u a column vector with the magnitudes of the measured
noise, the influence of the noise on the final solution
s̃k can be determined by the following expression (see
Appendix D):

s̃k = sk +
π

2(uA − uB)
uT

[(
A−1

)T ]
∗,k

(
B−1

)
k,k

(24)

where subindex
[(
A−1

)T ]
∗,k

denotes the k-th column

of the matrix (A−1)T , (B−1)k,k the element (k, k) of
matrix B−1 and vector u denotes the magnitudes of the
measured noise for each sample.

(B−1)∗,∗ is known and can be computed as:

B−1 = diag

(
1

sin(πρs)
, ...,

n

sin(nπρs)
,

1

sin(πρs)
, ...,

n

sin(nπρs)

)
which indicates that the noise is amplified for higher
order harmonics. In addition, oscillations with values of
ρs near the ones indicated by equation (10) also amplify
the noise contribution for certain solutions s̃k.

As in practice, obtaining the vector u might not be pos-
sible, from the practical point of view it is desirable to
minimize its effect on the estimated solution s̃k, which
can be achieved by increasing the difference between the
relay drive levels (uA − uB). Increasing this magnitude
will also increase the magnitude of the oscillation while
not affecting the measuring noise u, which can be un-
derstood as reducing the Signal-to-Noise Ratio (SNR).
This effect can be seen in equation (24) where it appears
the ratio uT /(uA − uB).

6 Least Squares approach

In the equation system presented in expression (4) the
number of equations l was assumed equal to twice the
number of harmonics considered (2n), which kept matrix
A square. However, regarding to that expression, more
than 2n equations can be taken to determine n number
of points of the frequency response, becoming then a
Least Squares (LS) problem.

For the LS formulation, the question of how to select the
samples in order to obtain the most accurate response
can also be formulated. However, since in Section 3 it
has been found a sampling pattern that already provides
a good condition number for A, in this section, that
sampling pattern will be evaluated for the LS approach.

In Section 3, the time samples τk to select where defined
by expression (20). As it can be seen, that expression is
written in terms of the number of harmonics to calcu-
late, not in the number of equations that are involved,
which ultimately define the number of time fractions τk
to select. As in the LS approach the equation system is
overdetermined, more equations are involved, therefore,
the expression to obtain the time samples τk can be gen-
eralized as:

τk =


2(k − 1)

l
if k = 1, ..., l/2

2(k − 1)− l

l
+

2

3l
if k = l/2 + 1, ..., l

, (25)

which is equivalent to expression (20) when l = 2n. As
it can be seen, the number of equations l is always an
even number.

To test the influence of the selected samples on the condi-
tioning of A, a simple experiment has been run in which
κ(A) has been computed for combinations of l ∈ [4, 200]
and n ∈ [1, l/2-1], which are all LS cases. The sampling
times τk have been chosen according to equation (25)
for each case. The results are presented in Figure 8, in
which the obtained values of κ(A) have been presented
for its respective l and n but under the form of n/l.
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Fig. 8. Condition number of matrix A (κ(A)) obtained for
combinations of l ∈ [4, 200] and n ∈ [1, l/2-1].

This simple experiment shows that by using the sam-
pling pattern presented in equation (25), only two re-
sults are possible for the conditioning of A, which are
either κ(A) = 1 or κ(A) =

√
3, this last being the

value obtained for the square matrices case. The condi-
tion number improves (κ(A) = 1) for the cases in which
n/l < 1/4, being only critical the conditioning of B
which depends on the number of harmonics to identify
n.

With regard to the condition number of B (κ(B)), as
the size of this matrix depends exclusively on the num-
ber of harmonics to compute n, it remains as a square
matrix, and then the same results obtained in Section 3
are applicable.

To compare LS approach with the square matrices ap-
proach described in Section 3 let us introduce the fol-
lowing example:

Example 2 Consider a given process whose dynamics
are described by the following model:

G(s) =
e−s

5s+ 1
.

For the relay setup consider uA = 1, uB = −0.5,
eA = 0.488 and eB = 0.188. For the experiment, yr = 0
has been used, and the resulting data collected. The first
full oscillation obtained has been selected for identifica-
tion and it can be seen in Figure 9, where it has been
presented signals u(t) in blue and y(t) in black.

Let us consider that the first 6 harmonics are to be de-
termined. To that end, to perform the identification three
scenarios are presented. Firstly, a scenario where square
matrices are used (as in Section 3) considering l = 12
and n = 6. Secondly, a scenario where the LS approach
is followed considering l = 50 and n = 6. And finally,
another scenario where the same number of equations as
in the LS approach are used, but instead, square matrices
will be employed, using l = 50 equations and computing
n = 25 harmonics.

For each of these scenarios the samples τk are selected
according to equation (25). For the first scenario, the

0 5 10 15 20
−0.5

0

0.5

1

y
(t
),
u
(t
)

0 5 10 15 20
−0.5

0

0.5

1

t[s]

y
(t
),
u
(t
)

Fig. 9. Signals u(t) and y(t) for the system G(s) used for
identification: y(t) in black, u(t) in blue and samples at time
fractions τk in green for l = 12 on top and in red for l = 50
below.
Table 4
Err for the first 6 harmonics according to each case: 1) square
matrices with l = 12 and n = 6, 2) LS approach with l = 50
and n = 6, 3) square matrices with l = 50 and n = 25.

Err1 Err2 Err3 Err4 Err5 Err6

Case 1 7.48 10.07 13.81 23.11 45.7 2.24
Case 2 0.43 0.68 0.79 0.66 0.63 2.21
Case 3 0.44 0.61 0.62 0.5 0.74 1.71

samples τk have been highlighted in green on Figure 9
and, for the second and third scenarios, the corresponding
samples τk have been represented in red in that figure.
These samples together with the relay switch time fraction
ρs = 0.0968 allow obtaining the matrix A for each case.
Besides, matrix B is the same for the first two cases
cases since both aim to determine the same amount of
harmonics n, and bigger for the third case since n for
that case is also bigger.

With all the data collected, the identification has been per-
formed according to equation (4) to obtain the estimation
of the frequency response points contained on the vector
S. For the LS case the Moore-Penrose pseudo-inverse of
matrix AB has been used. The resulting estimations are
presented in Figure 10 for each case: the results for the
first case are presented in green, for the second case in
red and for the third case in orange. As it can be seen,
the results obtained for the LS scenario are more precise
than the ones obtained for the first scenario. In fact, they
seem more similar to the results obtained for the third
scenario. This is also reflected with the measure Errn,
which has been computed for the harmonics in common
to the three cases, and it is presented in Table 4.

Therefore, despite not presenting exactly the same solu-
tion S for cases 2 and 3, the precision of their estimation
is similar. This leads to think that accuracy in the esti-
mation of the frequency response depends on the number
of equations involved in the calculation. Thus, by using
the LS approach an accuracy similar to the square ma-
trices case, when using the same number of equations, is
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Fig. 10. Identification results: first case in green, square ma-
trices with l = 12 and n = 6; second case in red, LS approach
with l = 50 and n = 6; and third case in orange, square ma-
trices with l = 50 and n = 25.

obtained for the harmonics in common.

Therefore, the usage of the LS approach, a priori, does
not imply an improvement in the estimation of the har-
monics with regard to the square matrices case with the
same number of equations for the harmonics in common.
This seems to be in contradiction with the condition
number of the matrices involved, since for the square
case, the condition number of matrix B is superior than
for the LS case. Nevertheless, the condition number is re-
lated to the whole solution accuracy and does not reflect
effectively the accuracy of the harmonics in common.

The main benefit of the LS approach is that it allows
removing detrimental harmonics for the conditioning of
B. Regarding to the results presented for matrix B in
Section 3, as the number of harmonics n to compute in-
creased, the number of values for ρs which made the ma-
trix B singular increased. In the LS approach, the num-
ber of harmonics to calculate is lower than for the square
matrices approach for the same accuracy, which reduces
the number of critical values ρs to avoid. For example, if
for a given experiment a value of ρs = 1/9 was obtained,
with the square matrices approach we could only com-
pute a maximum of n = 8 harmonics, with its associated
accuracy, however, with the LS approach we can obtain
those first 8 harmonics with a level of accuracy similar

Amplifier DC motor

Encoder

b
Asymmetric

Relay−

µC-based card

y(t) [rad/s]

y(t) [V ]

yr

Fig. 11. Experimental setup and equivalent control loop.

to the one that would be obtained as if more harmonics
were used in the square matrices case.

Besides, the meaningful region of the frequency response
is described by the firsts harmonics, usually until a phase
of −180◦, which means that the rest of harmonics com-
puted by the square matrices approach are less mean-
ingful. Therefore, the usage of the LS approach does not
present drawbacks in this sense, since the harmonics that
are not computed are the least important.

7 Experimental case study

In this section, the principles proposed in this article are
applied to a real case. It has been considered an exper-
imental setup composed by a DC motor, which is reg-
ulated by an electronic card based on microprocessor,
which is in charge of the data acquisition and of actu-
ating on the system. This card actuates on the system
using a PWM signal, which is then introduced into an
electronic amplifier circuit which transforms it into the
motor operation voltages for the motor regulation. The
card displays as control output the mean tension of the
PWM in the card’s voltage scale, which ranges from 0V
to 5V, which is then translated to the PWM duty cycle.
The output of the motor is registered using an encoder,
which allows computing the position and speed of the
motor. The asymmetric relay for the identification is im-
plemented in this card. The experimental setup and the
equivalent loop are shown in Figure 11.

In this experiment the relationship between the speed
of the motor and the mean tension to deliver will be
characterized. For simplicity, only the measured voltage
data will be used, but the real speed values in [rad/s]

11



0 0.5 1 1.5
0.5

1

1.5
y
(t
)

0 0.5 1 1.5
2.5
3

3.5
4

4.5

t[s]

u
(t
)

Fig. 12. Signals y(t) and u(t) from the experiment with the
DC motor using an asymmetric relay. The first full cycle,
delimited by red lines, is used to perform the identification.

can be obtained by multiplying the measured output y
by the factor 204.6 [rad/s]/[V ].

For the experiment the parameters chosen for the asym-
metric relay implemented in the electronic card have
been chosen to be uA = 4, uB = 3, eA = 0.3, eB = −0.25
and the reference signal is set to maintain the controlled
output y(t) around 1, which will allow obtaining the mo-
tor frequency response in the surroundings of the oper-
ation point.

With the asymmetric relay configured an experiment
has been performed, obtaining the signals y(t) and u(t)
presented in Figure 12. This figure presents the collected
data, however, only the first complete full cycle, which
is delimited by two vertical red lines in both axis, is used
for the identification procedure.

From the highlighted section of oscillations y(t) and u(t)
the static gain of the process has been computed accord-
ing to expression (3). Besides, the switch time fraction
ρs and the oscillation period To have been measured re-
sulting in ρs = 0.0418 and To = 0.526 s.

For the identification two scenarios have been consid-
ered, one using square matrices and another one using
the Least Squares approach. For the square matrices,
l = 200 equations and n = 100 harmonics have been
considered, and for the LS approach n = 15 harmonics
using l = 200 equations. According to these scenarios,
the samples to compute the identification have been se-
lected according to the time fractions τk defined by ex-
pression (25). With all these data, the matrices A, B, Y
and Ȳ are constructed and the identification can be per-
formed for both cases.

The results of both identifications are presented graphi-
cally in the Nyquist diagram in Figure 13. The results of
identification when using square matrices are presented
in red, and the results obtained for the LS approach in
blue. For the square matrices approach, 100 points of the
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Fig. 13. Frequency response identification of DC motor trans-
fer function. In red, square matrices approach with l = 200
and n = 100. In blue, LS approach with l = 200 and n = 15.

estimated frequency response Ĝ(jnωo) are obtained, for
the LS case only 15. For comparative purposes, an ap-
proximated theoretical transfer function has been pre-
sented in black in both figures.

Despite the overwhelming amount of points presented in
the first case, not all of them present useful information.
Graphically, it can be seen that some of them diverge sig-
nificantly, and intuitively, as high harmonics are placed
near the origin in the Nyquist diagram, a small variation
in their estimation results in a high relative error.

8 Conclusions

In this paper, a methodology to obtain multiple fre-
quency response points of systems using the information
form a single asymmetric relay experiment has been pro-
posed. The method uses the information from an induced
oscillation to estimate the frequency response point re-
lated to the oscillation’s period and a customizable num-
ber of harmonics. The accuracy on the estimation of each
harmonic depends directly on the number of equations
used, which is also an user-defined parameter. Besides,
the proposal relies on the proper selection of the samples
taken, which affect directly on the accuracy. Guidelines
on how to select those samples are given. The method
is applied to several processes which summarize some of
the most common dynamics found in industry, showing
that it can produce accurate results.

The proposal presented in this paper is a generalization
of the standard relay feedback method which was origi-
nally developed to identify the ultimate point of the fre-
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quency response used in auto-tunning algorithms of PID
controllers. The new approach allows obtaining informa-
tion of several points in a wide range of frequency with-
out introducing variations in the experiment, keeping in
that way its simplicity. Therefore, the proposed method
can be useful to develop more sophisticated auto-tuning
algorithms preserving the well known advantages of the
relay feedback experiments.

The proposed method allows a Least Squares formula-
tion, which has also been studied under the scope of
the previously presented sample selection. The Least
Squares approach allows obtaining accurate results us-
ing the same sample selection. In fact, the accuracy of
the solution using a Least Squares approach is similar
to the accuracy of the square matrices approach using
the same number of equations for the harmonics in com-
mon. Furthermore, the Least Square approach can over-
come one disadvantage of the method which is the criti-
cal switching time fraction ρs, producing more accurate
results than the square matrices approach.

Finally, the proposed method has been applied to a
real experimental case. Some points of the frequency re-
sponse of a DC motor have been obtained using a single
oscillation. The experiment shows the application of the
proposed method using both the square matrices and
the Least Squares approaches, validating experimentally
their applicability and the accuracy in the estimation of
both approaches for the harmonics in common.
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Appendix A Fourier series expansion of y(τTo)

Consider the signal u(t) to be a square signal with pulse
width modulated by ρs as shown in Figure 3, then the
expression of u(t) can be obtained through Fourier series
expansion:

u(t) =
a0
2

+

∞∑
n=1

(
an cos(nωot) + bn sin(nωot)

)
,

where a0:

a0 =
2

To

ρsTo∫
0

uAdt+
2

To

To∫
ρsTo

uBdt = 2 (ρs (uA − uB) + uB) ,

and an and bn:

an =
2

To

ρsTo∫
0

uA cos(nωot)dt+
2

To

To∫
ρsTo

uB cos(nωot)dt

=
1

πn
(uA − uB) sin(2πnρs),

bn =
2

To

ρsTo∫
0

uA sin(nωot)dt+
2

To

To∫
ρTo

uB sin(nωot)dt

=
1

πn
(uA − uB)(1− cos(2πnρs)).

Substituting:

u(t) =ρs(uA − uB) + uB+
∞∑

n=1

(
1

πn
(uA − uB) sin(2πnρs) cos(nωot)+

1

πn
(uA − uB)(1− cos(2πnρs)) sin(nωot)

)
,

u(t) =ρs(uA − uB) + uB +
(uA − uB)

π

∞∑
n=1

1

n

(
sin(nωot)

+ sin(2πnρs − nωot)
)
,

u(t) =ρs(uA − uB) + uB+

2(uA − uB)

π

∞∑
n=1

1

n
sin(πnρs) cos(nωot− πnρs)

Expressing the time as a fraction of the oscillation period
τTo:

u(τTo) =ρs(uA − uB) + uB+

2(uA − uB)

π

∞∑
n=1

1

n
sin(πnρs) cos(πn(2τ − ρs)).

Then, y(t) is obtained by performing y = G ·u, where G
is the open-loop transfer function of the system, which
results in expression (26).

Appendix B Combination of solutions

The general solution of equation (15) is given by the
following expression:

θj − θi =


2k

n

2k − 1

n+ 1

, k ∈ Z

while avoiding θj − θi = 2k.
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y(τTo) = [ρs(uA − uB) + uB ]G(0)+

2(uA − uB)

π

∞∑
n=1

1

n
sin(πnρs) [<{G(jωn)} cos(πn(2τ − ρs))−={G(jωn)} sin(πn(2τ − ρs))]

(26)

Due to the physical meaning of the phases, θ is comprised
in a range from 0 to 2, therefore, the range of valid values
for k must take this into account.

To test if the solutions for equation (15) can make all the
elements outside the main diagonal of AAT equal to 0 it
must be tested for all the combinations of (i, j); i 6= j.

To facilitate this test, consider θ1 = 0, therefore, using
the expression for the solution and applying the appro-
priate range for k and removing θj 6=1 = [0, 2], we have:

θj 6=1 =



[
2

n
, ...,

2(n− 1)

n

]
[

1

n+ 1
,

3

n+ 1
, ...,

2n− 1

n+ 1

] .

Those are the values that should take the rest of θj to
produce a 0 in the element (AAT )1,j . Note that there are
2n− 1 elements in that expression, which are the rest of
phases θ.

Consider now that θ2 =
1

n+ 1
and repeat the test to see

if the phases θ coincide with those that θ1 requires. In
this case we should avoid θj 6=2 =

1

n+ 1
, resulting in:

θj 6=2 =



[
1

n+ 1
+

2

n
, ...,

1

n+ 1
+

2(n− 1)

n

]
[
0,

2

n+ 1
, ...,

2n

n+ 1

] .

As it can be seen the series θj 6=2 contains 0, which corre-
sponds to θ1, however, the rest of phases θj 6=2 that would
make (AAT )2,j = 0 differ from those that are required
by θ1. Therefore, AAT cannot be a diagonal matrix.

Until this point we have used for θ2 the first element from

the solution series for θj 6=1 =

[
1

n+ 1
,

3

n+ 1
, ...,

2n− 1

n+ 1

]
,

but for the rest of the elements the same result is ob-
tained.

Hence, consider now an element from the other solution
series, for example θ2 = 2/n, applying the same proce-

dure as before, omitting θj 6=2 =
2

n
:

θj 6=2 =



[
0,

4

n
,
6

n
, ..., 2

]
[
2

n
+

−1

n+ 1
, ...,

2

n
+

2n− 1

n+ 1

] .

In this case, θj 6=2 also contains 0, which corresponds to
θ1, but some of the elements of the first series of phases:[
0,

4

n
,
6

n
, ..., 2

]
, that make (AAT )2,j = 0, also belong to

the first series of phases that would make (AAT )1,j = 0.

This test can be repeated for the values in common in
both sets, and it would result in the same set of values
repeating for each set excluding the one that is being
tested. This can be seen regarding to the general expres-
sion of the solution set, the constraint θj − θi = 2k/n
has in the numerator an even number, thus, by adding
and subtracting a multiple of the same form will re-
sult in another member of the same set. However, if
we consider the elements resulting from the constraint
θj−θi = (2k−1)/(n+1) in the numerator there is an odd
number, which added to another odd number makes an
even number, falling outside the set. If that odd number
is added to the even part of the solution, the resulting
fraction cannot be simplified and therefore, it does not
coincide with the other odd parts of the solution either.

These values constitute a larger set of solutions that
the one tested before, specifically, if the previous test is
repeated, it can be seen that the size of the set is n, and
the elements that constitute it are:

θk =
2k

n
; k = 0, ..., n− 1

Generalizing this expression by considering θ1 6= 0 the
same pattern is repeated, resulting in:

θk =
2k

n
+O; k = 0, ..., n− 1 , O ∈

[
0,

2

n

]
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Appendix C Characteristic polynomial

Using the values of phase θ according to expression (18)
matrix AAT can be written as a block matrix as:

AAT =

[
α β

γ δ

]
where every sub-matrix has size n × n. The matrices
involved can be expressed as:

α = δ = n · In×n,

and β and γ as in expression (27).

The characteristic polynomial pλ(AAT ) is calculated as:

pλ(AA
T ) = det(AAT − λI2n×2n),

this does not change the elements in matrices β and γ,
and only subtracts λ to the main diagonal of matrices α
and δ, resulting in:

AAT−λI2n×2n =

[
α′ β

γ δ′

]
, with α′ = δ′ = (n−λ)In×n.

Since the presented blocks are square matrices and the
product of γ and δ′ fulfill the commutative property, the
determinant can be computed as:

det(AAT − λI2n×2n) =det(α′δ′ − βγ)

=det((n− λ)2In×n − βγ),

All the elements in the main diagonal of matrix βγ are
equal, which for simplicity will be referred to as a, the
elements outside that diagonal are equal between them,
and will be referred to as b:

(βγ)i,j =

{
a i = j

b i 6= j

Thus, the determinant for the characteristic polynomial
can be calculated as:∣∣∣∣∣∣∣∣∣∣∣

(n− λ)2 − a −b −b ... −b
−b (n− λ)2 − a −b ... −b
−b −b (n− λ)2 − a ... −b
... ... ... ...

−b −b −b ... (n− λ)2 − a

∣∣∣∣∣∣∣∣∣∣∣
.

Since applying linear operations between rows and
columns does not alter the value of the determinant, we
have subtracted to every row, except from the first one,
the first one, see expression (28), and then added to the

first column the other columns, see expression (29), re-
sulting in a triangular matrix, therefore the determinant
is the product of the elements in the main diagonal:

pλ(AA
T ) =

(
(n− λ)2 − a− b(n− 1)

) (
(n− λ)2 − a+ b

)n−1
.

Using symbolic calculus manipulations from the expres-
sions defining (βγ)i,j it has been obtained that:

−a− b(n− 1) = −n2 cos2(nπψ)

b− a = −n2 cos2
(
nπψ

2

)
Resulting in the characteristic polynomial presented in
expression (30).

Appendix D Noise influence calculation

The linear system presented in (4) can be expressed
for simplicity as b = AS where b = Y − Ȳ , and

A =
2(uA − uB)

π
AB.

Let a measurement with noise b̃ be defined as b̃ = b+ u
where u denotes a vector with the noise magnitudes,
then b̃ = AS̃. Solving by Cramer’s rule:

s̃k =
det(Ak)

|A|
,

where Ak is the matrix formed by replacing the k-th
column of A by the column vector b̃. Developing:

s̃k =
det

([
A∗,1...k−1 b+ u A∗,k+1...2n

])
|A|

=
det

([
A∗,1...k−1 b A∗,k+1...2n

])
|A|

+
det

([
A∗,1...k−1 u A∗,k+1...2n

])
|A|

=sk +
det

([
A∗,1...k−1 u A∗,k+1...2n

])
|A|

where A∗,i...j denotes all the rows of columns from i to
j. Second part of this expression can be further sim-
plified by developing the determinant by the column
k as the product of the vector u by the cofactor ma-
trix of A, cof(A). Knowing that cof(A) = adj(A)T and
|A|A−1 = adj(A):

s̃k =sk +
1

|A|
uT

[(
|A|A−1

)T ]
∗,k

= sk + uT
[(
A−1

)T ]
∗,k
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βi,j = γj,i = csc

(
π

2

(
(j − i)

2

n
+ ψ

))
sin

(
nπ

2

(
(j − i)

2

n
+ ψ

))
cos

(
(n+ 1)π

2

(
(j − i)

2

n
+ ψ

))
(27)

∣∣∣∣∣∣∣∣∣∣
(n− λ)2 − a −b −b ... −b

−b− (n− λ)2 + a (n− λ)2 − a+ b 0 ... 0
−b− (n− λ)2 + a 0 (n− λ)2 − a+ b ... 0

... ... ... ...
−b− (n− λ)2 + a 0 0 ... (n− λ)2 − a+ b

∣∣∣∣∣∣∣∣∣∣
(28)

∣∣∣∣∣∣∣∣∣∣
(n− λ)2 − a− b(n− 1) −b −b ... −b

0 (n− λ)2 − a+ b 0 ... 0
0 0 (n− λ)2 − a+ b ... 0
... ... ... ...
0 0 0 ... (n− λ)2 − a+ b

∣∣∣∣∣∣∣∣∣∣
(29)

pλ(AA
T ) =

(
(n− λ)2 − n2 cos2(nπψ)

)(
(n− λ)2 − n2 cos2

(
nπψ

2

))n−1

(30)

substituting A, note that B = BT and that B is a diag-
onal matrix:

s̃k = sk +
π

2(uA − uB)
uT

[(
A−1

)T ]
∗,k

(
B−1

)
k,k
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