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ABSTRACT 

Automated machine learning (AutoML) is the process of automating the entire machine learn-

ing workflow when applied to real-world problems. AutoML can increase data science produc-

tivity while keeping the same performance and accuracy, allowing non-experts to use complex 

machine learning methods. Tree-based Pipeline Optimization Tool (TPOT) was one of the first 

AutoML methods created by data scientists and is targeted to optimize machine learning pipe-

lines using genetic programming. While still under active development, TPOT is a very prom-

ising AutoML tool. This Thesis aims to explore the algorithm and analyse its performance using 

real word data. Results show that evolution-based optimization is at least as accurate as TPOT 

initialization. The effectiveness of genetic operators, however, depends on the nature of the test 

case. 
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1. INTRODUCTION 

Machine learning (ML) can still be challenging when implementing existing models to work 

well on your new dataset. The development of an ML model requires significant human exper-

tise. It requires being aware of available algorithms and models and their constraints. It is nec-

essary to use knowledge and experience-based intuition to determine the best ML architecture 

for each new application. However, even an expert has to iteratively implement alternative 

pipelines to find a good enough solution, which alone exposes an opportunity for automation. 

Besides the repetitive nature of many ML processes, the high demand for ML expertise and the 

shortage of ML specialists have inspired the creation of tools that reduce the manual efforts of 

developing different ML pipelines. 

Automated machine learning (AutoML) is the process of automating one or several 

ML workflow processes like model training, hyperparameter optimization and feature engi-

neering. AutoML allows non-experts to use complex ML methods, increasing the productivity 

of data scientists, ML engineers, and ML researchers while keeping the same performance and 

accuracy. AutoML methods vary from hyperparameter optimization to meta-learning and neu-

ral architecture search (Hutter et al., 2019). AutoML is usually built on one or several ML 

frameworks and specializes in automating standard ML (like Auto-Sklearn) or deep learning 

(DL) models (like AutoKeras). Recent works compare different AutoML tools based on their 

performance and features (Balaji & Allen, 2018; Truong et al., 2019).  

Tree-based Pipeline Optimization Tool (TPOT) was one of the first AutoML methods 

created by data scientists and is targeted to optimize ML pipelines using genetic programming, 

i.e., evolving pipelines by means of a process that resembles the natural evolution of species. 

While still under active development, TPOT is a very promising AutoML tool. TPOT is not 

limited to model selection and parameter optimization but automatically constructs and opti-

mizes tree-based ML pipelines, including data and feature preprocessing and selection and new 

feature construction. Although it has already proved its potential against standard ML analyses 

(Olson et al., 2016ab) and other AutoML tools (Balaji & Allen, 2018), scientists and ML prac-

titioners may still not understand how it actually works. 

This Thesis aims to explore the algorithm and analyse its performance using four test 

cases. TPOT exploration will show how pipelines are constructed and how genetic program-

ming operators optimize the solution. The further study will be split into two independent ex-

periments. Both of them are performed on the same datasets. The first experiment will deter-

mine if evolution benefits pipeline optimization by comparing the TPOT-optimized solutions 
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under different scenarios: one scenario that initialises 250 pipelines and others that evolve pipe-

lines for 5 and 10 generations. The second experiment will uncover how mutation and crossover 

determine optimization effectiveness. The performance of each genetic operator will be meas-

ured by the share of successful operations and analysed by its type, level of operation and gen-

eration. 

The following chapter provides a theoretical background for genetic programming—

the foundation of TPOT—and an in-depth overview of the TPOT optimization procedure. 

Chapter 3 describes the main components of further analysis: the objectives, data, and ap-

proaches to achieve stated objectives. Chapter 4 discusses experimental settings, test cases and 

results of the experiments. The thesis is concluded in chapter 5. The last chapter also includes 

recommendations for future works.  
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2. THEORETICAL BACKGROUND 

2.1. GENETIC PROGRAMMING 

First introduced and popularized by Koza (1992, 1994, 2010), genetic programming (GP) is a 

subfield of evolutionary algorithms. Like other evolutionary algorithms, GP is inspired by the 

process of natural selection and applies the principles of Darwin’s evolution theory. GP often 

uses tree-based data structures to represent the computer programs instead of the list structures 

typical for genetic algorithms. It applies biologically inspired operators: mutation, crossover, 

and selection, to solve optimization problems. A mutation is an innovation operator as it intro-

duces new genetic material variations inside the population. Crossover is a conservation oper-

ator as it keeps existing genetic material and passes it through generations. 

GP evolution process follows the steps described in Algorithm 2.1. Usually, the termi-

nation criterion is the number of generations the population is set to evolve. 

Algorithm 2.1. Genetic programming evolution algorithm. 

1. Initialization: generate a population of computer programs (individuals). 

2. Until termination criteria are not met, perform the following steps: 

2.1. Evaluate the performance of each individual and assign it a fitness value. 

2.2. Apply the following steps to create a new population: 

2.2.1. Selection: select a set of individuals probabilistically based on their fitness val-

ues. 

2.2.2. Reproduction: copy some of the selected individuals to the new population. 

2.2.3. Crossover: recombine randomly chosen parts of two selected individuals to 

create new ones. 

2.2.4. Mutation: substitute randomly chosen parts of a selected individual with ran-

domly generated new ones to create a new individual. 

3. Return the single best computer program existing in any generation. This result of the run 

of GP may be a solution or an approximate solution to the problem. 

Any GP individual represented as a tree is defined by a set of primitive functions and 

terminals. Functions may include mathematical functions, boolean, conditional and iterative 

operations. Terminals typically consist of problem variables and constants. Trees are generated 

randomly and, therefore, can vary in shape and size. During the evolution process, trees may 

consist of any combination of primitives and terminals while that combination can express a 

solution to the problem (sufficiency requirement), and each function can handle any combina-

tion of inputs it can encounter (closure requirement). Figure 2.1 illustrates an example of a three 

with arithmetical operators as primitives. 



 

4 

 

The selection algorithm decides which individuals will be replicated, mated, and mu-

tated. That decision is made based on individuals’ fitness values. The fitness value is a numeric 

score assigned by a fitness function and reflects how well a program (individual) fits its pur-

pose. The fitter the individual, the higher are chances of surviving or passing its genes to the 

next generation. The likelihood of being selected can be proportional to the fitness value (rou-

lette wheel selection), based on the rank individual takes according to their fitness value (rank-

ing selection) or based on a competition between a randomly chosen subset of individuals (tour-

nament selection). 

The crossover operator creates variations in the population by producing offspring that 

take parts taken from each parent. Figure 2.2 illustrates an example of a crossover between trees 

(a) and (b) that produce offspring: trees (c) and (d). Trees exchange subtrees below randomly 

chosen crossover points to produce the offspring who inherit a part of each parent tree. The 

crossover points of parent trees are marked with a dot in Figure 2.2. Illustrated crossover is 

called one-point crossover and is the most basic implementation.  

 

GP mutation randomly selects a mutation point and swaps a subtree located under that 

point with a randomly generated subtree. It requires only one parent. Figure 2.3 shows the 

Figure 2.1 Example of GP tree with four primitive 

nodes (white) and five terminal nodes (grey). 
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Figure 2.2 Example of GP crossover. Parent trees (a) and (b) produce offspring (c) and (d). 
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mutation of a tree (a) whose subtree was replaced with a randomly generated tree (e). A muta-

tion point is illustrated as a dot on edge. 

 

More advanced mutation and crossover algorithms can control the depth of the newly 

created trees, for example, by limiting the size of randomly created trees during mutation. In 

the case of crossover, different probabilities to be chosen as a crossover point can be assigned 

to parent tree nodes. 

2.2. TPOT 

Tree-based Pipeline Optimization Tool (TPOT) is an open-source library for Python that opti-

mizes ML pipelines using genetic programming (GP). GP primitives in TPOT are ML pipeline 

operators, i.e., existing ML algorithms like random forest regressor or standard scaler from 

Python packages like scikit-learn (Pedregosa et al., 2011). TPOT uses GP procedures to dis-

cover the best-performing pipeline for a given dataset. In order to automatically generate and 

optimize ML pipelines via GP algorithms, TPOT utilizes the Python package DEAP (Fortin et 

al., 2012). TPOT was first introduced by Olson et el. (2016). 

TPOT automates the part of the pipeline that includes feature creation, preprocessing 

and selection, model selection and parameter optimization. Therefore, input data must be valid, 

accurate, consistent, and complete. Median values impute all missing values. 

TPOT has frequently outperformed standard ML analyses (Olson et al., 2016ab, Le et 

al., 2020). It was also proved to perform better than other automated ML frameworks in solving 

regression problems and is second after auto-sklearn in classification problems (Balaji & Allen, 

2018). Other distinctive features of TPOT include the possibility to set a maximum execution 

time, pausing and resuming the optimization process, and exporting a model as Python code. 

Although TPOT search space can be adjusted through a custom configuration file, the 

following chapter describes the operation of the default configurations. The TPOT process 

 a 

x   x- 

 e 

 y  x- 
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xx
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Figure 2.3 Example of GP mutation. 



 

6 

description is based on studying the TPOT 0.11.7 code (https://github.com/EpistasisLab/tpot) 

and official documentation (http://epistasislab.github.io/tpot/). 

2.2.1. TPOT operators 

Depending on the selected configuration, TPOT applies a different set of operators. TPOT op-

erators include classifiers, regressors, preprocessors, selectors and a special type of operator 

that combines two copies of a dataset. Besides default configurations for classification and re-

gression, TPOT configurations include (1) cuML, which uses classifiers and regressors from 

cuml library, (2) light, (3) MDR, which uses feature constructors from MDR library, (4) NN, 

which uses PyTorch neural networks, and (5) sparse, which supports sparse matrices and uses 

One Hot Encoder. While classification has all five additional configurations, regression has all 

but “NN”. As will be seen later, the same operator can have different hyperparameter options 

under different configurations. 

Classifiers are supervised ML algorithms that learn to predict a class label of a given 

data point. TPOT uses a set of 17 classifiers. Twelve of those are algorithms from the sklearn 

library: three ensemble algorithms, two linear models, three naïve Bayes models, and one of 

each: neural networks, neighbour, tree, and support vector algorithms. Cuml is an ML library 

that allows running models on GPU effortlessly, which improves large dataset training time 10-

50 times compared to CPU-based equivalents like sklearn (Nolet et al., 2020). Two cuml algo-

rithms are used under cuML configuration. Extreme Gradient Boosting (XGB) classifier comes 

from the xgboost library. Two algorithms: Logistic Regression and Multilayer Perceptron, are 

based on PyTorch but adjusted for TPOT.  

ML algorithms typically have multiple hyperparameters. Like grid search, TPOT 

search space is limited to hyperparameter values specified in configuration settings. Hyperpa-

rameter combinations are calculated as a multiplication of all hyperparameter options. For ex-

ample, K Neighbors Classifier (sklearn) has three hyperparameters specified in TPOT config-

urations: (1) number of neighbours, which can be one of 100 values ranging from 1 to 100, (2) 

weight function, which can be either “uniform” or “distance”, and     a power parameter for 

the Minkowski metric: 1 for Manhattan distance and 2 for Euclidean distance. Therefore, K 

Neighbors Classifier (sklearn) model can have 400 different hyperparameter combinations. Un-

like other classifiers, Extreme Gradient Boosting (XGB) has a different number of hyperparam-

eters and, thus, a different number of hyperparameter combinations, depending on the config-

uration: nine hyperparameters in the case of cuML and 7 in others. Table 2.1 summarises 

https://github.com/EpistasisLab/tpot
http://epistasislab.github.io/tpot/
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classifier algorithms, their appearance in TPOT configurations, source libraries, and the number 

of hyperparameters and their value combinations. 

Table 2.1 Number of classifier hyperparameters (H), hyperparameter combinations (HC) and 

classifier appearance in configurations. 

Classifier Library H HC 
Applied in configuration 

default cuML light MDR NN sparse 

Logistic Regression cuml 2 33  
⚫     

K Neighbors Classifier cuml 2 100  
⚫     

Gradient Boosting Classifier sklearn 7 7600000 ⚫    
⚫  

Extra Trees Classifier sklearn 6 30400 ⚫    
⚫  

Random Forest Classifier sklearn 6 30400 ⚫    
⚫ ⚫ 

Logistic Regression sklearn 3 44 ⚫  
⚫ ⚫ ⚫ ⚫ 

SGD Classifier sklearn 8 6300 ⚫    
⚫  

Bernoulli NB sklearn 2 12 ⚫  
⚫  

⚫ ⚫ 

Gaussian NB sklearn 0 1 ⚫  
⚫  

⚫  

Multinomial NB sklearn 2 12 ⚫  
⚫  

⚫ ⚫ 

K Neighbors Classifier sklearn 3 400 ⚫  
⚫  

⚫ ⚫ 

MLP Classifier sklearn 2 20 ⚫    
⚫  

Linear SVC sklearn 5 440 ⚫    
⚫ ⚫ 

Decision Tree Classifier sklearn 4 7600 ⚫  
⚫  

⚫  

XGB Classifier xgboost 
7 

9 

20000 

22400 
⚫ 

  

 
⚫ 

  ⚫ 

  

⚫ 

  

Pytorch LR Classifier tpot/pytorch 4 240     
⚫  

Pytorch MLP Classifier tpot/pytorch 4 240     
⚫  

Regressors are ML algorithms that investigate relationships between variables and 

thus learn to predict continuous outcomes. Like in the case of classifiers, Extreme Gradient 

Boosting (XGB) regressor has a more extensive set of hyperparameters under cuML configu-

ration than other configurations. TPOT uses a set of 16 regressors, 11 of which are sklearn 

models: 4 ensembles, four linear models, one neighbour model, one tree model, and one support 

vector model. Four algorithms are from the cuml library, and one from xgboost. None of the 

neural algorithms is currently used to solve regression problems. Table 2.2 summarises regres-

sor algorithms used in TPOT, its source library, the number of hyperparameters and hyperpa-

rameter combinations used in TPOT and regressor appearance in configurations. 

Table 2.2 Number of regressor hyperparameters (H), hyperparameter combinations (HC) and 

regressor appearance in configurations. 

Regressor Library H HC 
Applied in configuration 

default cuML light MDR sparse 

Elastic Net cuml 2 105      

Lasso cuml 1 2      

Ridge cuml 0 1      

K Neighbors Regressor cuml 2 100      

Ada Boost Regressor sklearn 3 15      

Extra Trees Regressor sklearn 5 15200      
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Regressor Library H HC 
Applied in configuration 

default cuML light MDR sparse 

Gradient Boosting Regressor sklearn 9 182400000      

Random Forest Regressor sklearn 5 15200      

Elastic Net CV sklearn 2 105      

Lasso Lars CV sklearn 1 2      

Ridge CV sklearn 0 1      

SGD Regressor sklearn 8 3780      

K Neighbors Regressor sklearn 3 400      

Linear SVR sklearn 5 1100      

Decision Tree Regressor sklearn 3 3800      

XGB Regressor xgboost 
8 

10 

20000 

22400 

 

 
 
 

  
 

 

Preprocessing operators transform the dataset in some way. For example, scaling var-

iables might neglect the effect of varying magnitudes on distance-based and variance-sensitive 

models. Most of the preprocessors are from the sklearn library, which includes seven value 

preprocessors like normalizer, binarizer and scalers, two kernel approximations (Nystroem, 

RBF Sampler), two decomposition algorithms like independent component analysis (ICA) and 

principal component analysis (PCA), feature agglomeration algorithm that recursively merges 

pair of clusters of features. Table 2.3 summarises preprocessor algorithms used in TPOT, its 

source library, the number of hyperparameters and hyperparameter combinations used in TPOT 

and preprocessor appearance in configurations. TPOT does not use any preprocessors under 

MDR configuration and only uses One Hot Encoder under sparse configuration. 

Table 2.3 Number of preprocessor hyperparameters (H), hyperparameter combinations (HC) 

and preprocessor appearance in configurations for classification (⚫) and regression (). 

Preprocessor Library H HC 
Applied in configuration 

Default cuML light MDR NN sparse 

Binarizer sklearn 1 21 ⚫ ⚫ ⚫  ⚫  

Fast ICA sklearn 1 21 ⚫ ⚫   ⚫  

Feature Agglomeration sklearn 2 15 ⚫ ⚫ ⚫  ⚫  

Max Abs Scaler sklearn 0 1 ⚫ ⚫ ⚫  ⚫  

Min Max Scaler sklearn 0 1 ⚫ ⚫ ⚫  ⚫  

Normalizer sklearn 1 3 ⚫ ⚫ ⚫  ⚫  

Nystroem sklearn 3 1890 ⚫ ⚫ ⚫  ⚫  

PCA sklearn 2 10 ⚫ ⚫ ⚫  ⚫  

Polynomial Features sklearn 3 1 ⚫    ⚫  

RBF Sampler sklearn 1 21 ⚫ ⚫ ⚫  ⚫  

Robust Scaler sklearn 0 1 ⚫ ⚫ ⚫  ⚫  

Standard Scaler sklearn 0 1 ⚫ ⚫ ⚫  ⚫  

Zero Count tpot 3 1 ⚫ ⚫ ⚫  ⚫  

One Hot Encoder tpot 3 5 ⚫ ⚫   ⚫ ⚫ 

Selecting a relevant subset of variables can reduce the training time and overfitting 

and improve accuracy and model interpretability. TPOT uses scikit-learn (sklearn) selection 

algorithms in most configurations, including the default one. Those algorithms apply common 
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approaches for dimensionality reduction: removing features with low variance (Variance 

Threshold),  univariate feature selection (Select Percentile, Select FWE), recursive feature elim-

ination (RFE) and selection from a model based on importance weights. Under MDR configu-

ration, TPOT uses scikit-rebate (skrebate) Relief-based feature selection algorithms. Table 2.4 

summarises selector algorithms used in TPOT, its source library, the number of hyperparame-

ters and hyperparameter combinations used in TPOT and selector appearance in configurations. 

The “Select from model” algorithm has a higher number of hyperparameters and hyperparam-

eter combinations under default and sparse classification configurations than regression config-

urations. Recursive feature elimination (RFE) can only be used to solve classification problems. 

Table 2.4 Number of selector hyperparameters (H), hyperparameter combinations (HC) and 

selector appearance in c configurations for classification (⚫) and regression (). 

Selector Library H HC 
Applied in configuration 

Default cuML light MDR NN sparse 

Select Fwe sklearn 2 50 ⚫ ⚫ ⚫  ⚫ ⚫ 

Select Percentile sklearn 2 99 ⚫ ⚫ ⚫  ⚫ ⚫ 

Variance Threshold sklearn 1 8 ⚫ ⚫ ⚫  ⚫ ⚫ 

RFE sklearn 4 800 ⚫    ⚫ ⚫ 

Select From Model sklearn 
4 

3 

840 

420 
⚫ 
⚫ 

   
⚫ 

 
⚫ 
⚫ 

ReliefF skrebate 2 30    ⚫   

SURF skrebate 1 5    ⚫   

SURFstar skrebate 1 5    ⚫   

MultiSURF skrebate 1 5    ⚫   

Multifactor dimensionality reduction (MDR) algorithms convert two or more variables 

to a single attribute, which changes the data representation space (Sohn et al., 2017). Two al-

gorithms: MDR and continuous MDR, are used to engineer new features for classification and 

regression problems, respectively. Feature construction operator is available only under MDR 

configuration. Table 2.5 summarises details about feature constructor algorithms used in TPOT. 

Table 2.5 Number of feature constructor hyperparameters (H), hyperparameter combinations 

(HC) and their appearance configurations for classification (⚫) and regression (). 

Feature Constructor Library H HC 
Applied in configuration 

MDR 

MDR mdr 2 4 ⚫ 

Continuous MDR mdr 2 4 ⚫ 

Default configuration covers a sufficient number of classifiers, regressors, preproces-

sors and selectors. CuML configuration has much fewer options in classifiers and regressors, 

however, included algorithms are more efficient than default ones. Light configuration algo-

rithms are limited only to computationally efficient ones. MDR is the only configuration that 

allows feature construction and relief-based feature selection. It uses no preprocessors and 
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single classifier and regressor options: Logistic regression and Elastic Net CV, respectively. 

NN is an extended version of the default configuration that allows running neural network al-

gorithms. Currently, it can only be used for classification. Running TPOT on sparse data re-

quires using a separate configuration with a limited number of classifiers and regressors and 

the only preprocessor—One Hot Encoder. Additionally, all configurations have a special oper-

ator that combines two copies of input data. However, this is not included in the total number 

of operators in individual fitness calculations. 

2.2.2. TPOT pipeline 

Operators discussed in the previous chapter are sequentially combined to create a pipeline. Tree 

representation of TPOT pipelines allows performing genetic operations: mutation and crosso-

ver. Each pipeline has at least one primitive node, either a classifier or a regressor, and a set of 

terminals: input matrix and hyperparameters. The initially generated population consists only 

of trees with at most two operators, but with a custom template, it is possible to initialize pipe-

lines in different sizes. Pipelines can grow or shrink with generations. 

 A pipeline can be expressed as a string. A simple example is Pipeline 2.1: a classifi-

cation model with one primitive node and three hyperparameters. Pipeline 2.2 is more complex 

and much less intuitive for a human. Figure 2.4 visualizes Pipeline 2.2 as a horizontal tree with 

a root node on the left. Primitives and input matrices are highlighted in red and blue, respec-

tively. Figure 2.4 shows Pipeline 2.2 consists of a classifier, a preprocessor, and a selector: 

KNeighborsClassifier(input_matrix, n_neighbors=10, p=2, weights=distance) (2.1) 

GradientBoostingClassifier(CombineDFs(Nystroem(SelectPercentile(input_matrix, 

percentile=33), gamma=0.35000000000000003, kernel=linear, n_components=5), 

input_matrix), learning_rate=1.0, max_depth=6, max_features=0.4, 

min_samples_leaf=13, min_samples_split=13, n_estimators=100, subsample=0.8) 

(2.2) 

Figure 2.4 Example of a tree-based representation of TPOT pipeline. 
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Gradient Boosting classifiers combine two data copies as input, one of which is row data. At 

the same time, the other is a preprocessed set of selected variables. 

The optimal pipeline discovered by TPOT is then converted into Python code. The 

code generated by TPOT only requires specifying the input data source. Otherwise, it is ready 

to run. The code imports all necessary functions, and the data extracts features and target values, 

splits data into training and testing sets, creates a pipeline using a pipeline constructor from the 

scikit-learn library, trains the pipeline and predicts the result. An example of a python code 

generated by TPOT can be found in Appendix 1. 

2.2.3. Individual fitness evaluation 

TPOT optimizes the accuracy achieved by the pipeline while accounting for its complexity, 

making an optimization process a two-objective problem. By default, model performance is 

evaluated in terms of accuracy (Equation 2.1) for classification problems and negative mean 

squared error (Equation 2.2) for regression problems. Thus, model performance is always a 

maximization problem. Other classification and regression score options vary from average 

precision to ROC AUC score and from negative median absolute error to R2. K-fold cross-

validation is used to get a more accurate performance evaluation. TPOT uses a 5-fold CV by 

default. Sacrifice for evaluation accuracy is increased evaluation time. 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (2.1) 

 −𝑀𝑆𝐸 = −
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1  (2.2) 

Pipeline complexity is evaluated by a number of operators, which include classifiers, 

regressors, preprocessors, and selectors. Operators that combine datasets do not contribute to 

the number of operators. The complexity objective is the minimization problem. TPOT uses the 

Pareto front to evaluate individual fitness by finding a trade-off between two objectives. 

2.2.4. Evolution algorithm 

Like any other genetic programming algorithm, TPOT evolves a population over a given num-

ber of populations, and the fittest individual from the last generation is selected as an optimal 

solution. However, every new generation is selected from a combination of previous population 

individuals and its offspring. Offspring is generated by mutation, crossover, or reproduction 

with given probabilities. Individuals subject to mutation and crossover are chosen randomly 

regardless of their fitness values. Algorithm 2.2 briefly summarises the process of discovering 

the TPOT optimal pipeline. 
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Algorithm 2.2. TPOT evolution algorithm. 

0. Set a number of individuals in the population: population_size (default 100), number of 

generations to evolve the population: generation (default 100), number of offspring to 

produce in each generation: lambda (default equal to population_size), probability rate 

for mutation mutation_rate (default 0.9), probability rate for crossover crossover_rate 

(default 0.1). 

1. Initialize a population set of population_size individuals. 

2. Repeat generation times: 

    2.1. Repeat lambda times: 

           2.1.1. Randomly choose one of three options: 

2.1.1.1. With probability mutation_rate, randomly select an individual from the 

population, mutate the individual, and add a mutated individual to the 

offspring set. 

2.1.1.2. With probability crossover_rate, randomly select a pair of individuals 

from a set of eligible crossover pairs, mate them, and add the first outputting 

individual to the offspring set. 

2.1.1.3. With probability 1 - mutation_rate - crossover_rate, randomly select an 

individual from the population, and add it to the offspring set. 

    2.2. Merge the population set with the offspring set. 

    2.3. Perform a selection of population_size individuals based on individual fitness values 

to create a new population set. 

3. Select the fittest individual. 

The selection operator used by TPOT is NSGA-II from the DEAP library (known as 

selNSGA2 in DEAP), which takes k individuals from a set of individuals larger than k and 

selects each individual at most once. NSGA-II or Non-dominated Sorting GA-II is a fast multi-

objective evolutionary algorithm that uses non-dominated sorting and sharing. It has a better 

convergence to the near-Pareto-optimal front than older (Deb, 2002). 

The crossover operator is a one-point crossover based on a similar algorithm from the 

DEAP library (cxOnePoint). First, a set of individual pairs eligible for crossover is created. 

Individuals are eligible for crossover if they are not the same and share at least one primitive. 

Then crossover is performed on a randomly chosen pair of eligible individuals. If no pairs are 

eligible for crossover, the mutation is performed instead. 

 The mutation operator randomly selects between three options: insert, shrink and 

replace a node. Insert and shrink options add and remove a tree element. If replacement is 

chosen, the algorithm randomly selects a node within an individual. If that node is terminal (i.e., 

a hyperparameter), the operator replaces it with a random allowed value. If the selected node is 

a primitive, the operator replaces the whole subtree, which has that primitive as a root, with 

another randomly created subtree.  
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3. METHODOLOGY 

3.1. APPROACH 

TPOT aims to discover the optimal pipeline by evolving a population of individuals or pipelines 

over generations. As discussed before, evolution involves performing genetic operations—mu-

tation and crossover—and selection over randomly initialized pipelines. The value of TPOT is 

based on the idea that genetic operators benefit pipeline optimization.  

The first experiment determines if evolving pipelines with TPOT output better-per-

forming results than just initializing pipelines. For results to be comparable, both scenarios must 

have the same number of pipelines involved. For example, evolving 50 pipelines for five gen-

erations involves the same number of pipelines as initializing 250 pipelines.  

A deeper analysis would require comparing model performances on different stages of 

evolution, i.e., generations. That would answer the question: if and when (i.e., in which gener-

ation) evolution scenario performance reaches the value of initialization scenario performance? 

The second experiment aims to investigate the effectiveness of TPOT mutations and 

crossovers and discover what makes GP operators effective. Operator effectiveness is deter-

mined by the share of operators that improve the fitness value of the pipeline.  

3.2. OBJECTIVES 

The main objectives of this thesis are: 

• To determine if evolving pipelines with TPOT output better-performing results than just 

initializing pipelines. 

• To compare different scenario performances over generations and determine the number 

of generations necessary for evolving pipelines to reach the level of initialized pipelines. 

• To evaluate the performance of mutations and crossovers. 

The first experiment will cover the first two objectives, and the second experiment the 

last one. Experiments are run independently from each other. Nevertheless, both experiments 

are repeated 30 times and run on the same four test cases described in detail in chapter 4.2. 

3.3. DATA 

After running the TPOT optimization process on some training data, TPOT returns a fitted 

TPOT object, which can be exported as a python code or used to get a prediction score. If the 

TPOT verbosity parameter is set to 2 or higher, then TPOT prints the best internal CV score for 

each generation and the best pipeline as a string. Therefore, available information about TPOT 
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optimization includes pipeline performance scores, internal CV scores and best pipelines. Two 

later are available in the program output stream. TPOT library code manipulations allowed 

extracting the best pipeline and evolution process details: genetic operator (mutation, 

crossover), pipeline, size and score of a selected individual (parent) and an individual after the 

operation (offspring). The rest of the metrics are calculated from extracted data: operation 

success rate, size increase, mutation type, mutated object, crossover type, crossover base, 

pipeline tree depth and operation level. 

Scores 

The analysis includes three types of scores: training, test and internal. The test score is the main 

performance indicator for a predictive model. Training score helps to detect overfitting. Internal 

CV score is a way to evaluate pipeline performance while training the pipeline. 

First, a dataset is split into training and test subsets. The training set accounts for 90% 

of all data and is used for TPOT optimization. A training score evaluates the performance of 

the resulting pipeline trained on training data to predict target values of the same data. A test 

score is based on the pipeline's ability to predict target values of new data—testing subset.  

Internal CV tests the pipelines on different folds of training data and returns the aver-

age score. Internal CV score is included in the pipeline fitness value and plays a crucial role in 

the pipeline selection. The best internal score is the CV score of the fittest pipeline in its gener-

ation, and it can be accessed from the TPOT output stream if it is run with high verbosity. 

Scores of individuals before and after mutation and crossover are also internal CV scores. They 

are used to calculate the improvement rate. 

Test cases include both classification and regression problems. In both cases, default 

scores are used: accuracy for classification and negative MSE for regression. Negative MSE is 

converted into negative RMSE (Formula 3.1) for interpretability. 

 −RMSE = −√−(−MSE) (3.1) 

Success rate 

Success or improvement rate is a ratio of the number of successful or improved operations to 

the total number of operations (Equation 3.2). Successful operations are crossovers and muta-

tions that improve the score of the pipeline. In other words, if the score of the individual selected 

for mutation or crossover is lower than the score after mutation or crossover, then the operation 

is considered successful (Equation 3.3).  

 𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 =
∑ 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖

𝑁
𝑖=1

𝑁
 (3.2) 
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 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖 = {
1 , 𝑖𝑓 𝑠𝑐𝑜𝑟𝑒_𝑎𝑓𝑡𝑒𝑟𝑖 > 𝑠𝑐𝑜𝑟𝑒_𝑏𝑒𝑓𝑜𝑟𝑒𝑖

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.3) 

While mutation requires one input individual (pipeline), crossover requires two. 

Crossover outputs two modified individuals; however, TPOT takes only the first one to the 

offspring set. In order to determine if a crossover is successful, the resulting individual (first 

offspring) is compared to the parent with the highest score. 

Mutation metrics 

Mutation operations differ by the type of mutation and the mutated object. During mutation, 

tree nodes or subtrees can be added to, removed, or replaced in the pipeline. Having both 

pipelines before and after the operation allows us to identify which part of the pipeline was 

changed: classifier, regressor, preprocessor, selector, combiner or hyperparameter.  

In order to determine mutation type, pipelines before and after the operation are com-

pared. Pipeline strings are converted into lists of pipeline elements, comparing which gives lists 

of added and removed elements. A mutation is additive if only a list of added elements has 

values. A mutation is subtractive if only a list of removed elements has values. If both lists have 

values, then mutation has replaced an object. Empty lists mean no changes. Matching resulting 

list elements with the pipeline operator dictionary identifies the mutated object. 

Crossover metrics 

As mutation has only one input pipeline, it was also decided to keep only one input pipeline for 

crossover: the fittest parent, which score is compared with the score of the offspring. Any of 

two parents can be the fittest. The first offspring typically has a root of the first parent and a 

subbranch from the second. Sometimes the root node of the offspring is inherited from the 

individual before crossover—the fittest parent or alpha. In other cases, the root note is inherited 

from the “unseen” parent—parent beta. If both trees are the same or none of the nodes match, 

it is impossible to distinguish the root origin. For an individual to be a root parent, two condi-

tions should be met: (1) root classifier (or regressor) match and (2) at least all but one (n-1) root 

classifier (or regressor) hyperparameters match. 

Crossovers can also be characterized by the type of switched pipeline tree parts: one 

node (leaf) or a subtree (branch). The crossover type is “leaf” if the difference between the 

pipelines before and after the operation is one hyperparameter. It is a “branch” type if the dif-

ference is multiple connected nodes or a subtree. If both trees are the same or none of the nodes 

match, the type is not available. 

Operation level 
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The range of possible operation levels depends on the pipeline tree depth. The maximal opera-

tion level equals the tree's depth and implies changes in tree leaves (hyperparameters). The 

operation level is equal to zero if changes are performed in the root node. TPOT pipeline depth 

is often equal to the number of pipeline operators. The depth is smaller than the number of 

operators when a combiner is used in the pipeline because combiners can create forks in the 

tree that allow multiple operators to be on the same level. 

3.4. HYPOTHESIS TESTING 

The main performance indicators in this thesis are a score indicating how accurately the TPOT-

generated pipeline can predict target values of unseen data and genetic operator success rate. 

Pipeline performance scores can be normally distributed or skewed in any direction if the prob-

lem is complex or the model is far from optimal. Scores of easy problems tend to be close to 

optimal (accuracy = 1 or -RMSE = 0) and negatively skewed. The Shapiro-Wilk test is used in 

this work to check whether scenario score or improvement rate distributions are Gaussian. 

Mann-Whitney U test, also known as the Wilcoxon-Mann-Whitney test, is a nonpara-

metric statistical significance test for two independent samples. It is applied if at least one of 

the distributions is not Gaussian. If both distributions are normal, Student’s T test determines 

if their means are significantly different. Each experiment is repeated 30 times and thus outputs 

30 values, which is considered enough for a central limit theorem to hold. That makes the mean 

and standard deviation of observed scores an accurate approximation of the actual ones. 

P-value is the probability of obtaining test results at least as extreme as the result ob-

served. The threshold for p-values used in this thesis is 0.05. Any value below indicates that 

compared distributions are significantly different. In cases where the significance level is not 

stated, the value of 5% should be assumed. 
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4. EXPERIMENTAL STUDY 

The study consists of two experiments. Both experiments aim to evaluate the effect of evolution 

(mutation and crossover) on the quality of the model trained using TPOT.  

The first experiment compares the scores of models selected as a result of either evo-

lution or initialization according to the following four scenarios: 

1. Initializing 250 individuals. 

2. Evolving 50 individuals for 5 generations with default mutation and crossover rates 

(0.9 and 0.1, respectively). 

3. Evolving 25 individuals for 10 generations with default mutation and crossover rates 

(0.9 and 0.1, respectively). 

4. Evolving 50 individuals for 5 generations with custom mutation and crossover rates 

(0.5 and 0.5). 

All the scenarios involve exactly 250 individuals in total. That is because preliminary 

experiments showed that it is enough to get accurate model scores (see Results section) for 

simple problems like ”Breast cancer” and “Concrete” and decent scores for more complex prob-

lems: like “Waveform” and “Bioavailability”  see Chapter 4.2).  

Each scenario was run 30 times on each of four test cases: two classification problems 

 “Breast cancer” and “Waveform”  and two regression problems  “Bioavailability” and “Con-

crete” . The conclusion about the significance of evolution-added value is based on two anal-

yses. First is an analysis of the distribution of accuracy and RMSE scores for each test case 

separately. The second is the development of the best internal Cross-Validation (later CV) score 

over generations compared to the best internal CV scores of initializations—the first scenario. 

The second experiment analyses the performance of genetic operators: crossover and 

mutation. A crossover takes two individuals as parents and returns two offspring, but in TPOT, 

only the first (by order) offspring is taken as an output. Mutation, however, inputs and outputs 

one individual. Every time an operation happens, the fitness values of input and output individ-

uals are evaluated and compared. TPOT always aims to maximize fitness; therefore, operations 

that output individual fitness is higher than input individual fitness are called successful or im-

proved. In the case of crossover, the highest parent fitness is compared with the first offspring’s 

fitness. TPOT uses a Pareto front that evaluates two fitnesses: model best internal CV score 

(accuracy or MSE) and the size of the individual. In operator effectiveness evaluation, only the 

CV score is taken into account. Operator effectiveness is based on a relative number of suc-

cessful operations in each test case. 
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4.1. EXPERIMENTAL SETTINGS 

As discussed above, the study consists of two experiments. The first experiment compares the 

performance of the models generated according to three scenarios: (1) initialization of 250 in-

dividuals, (2) evolution of 50 individuals for 5 generations, and (3) evolution of 25 individuals 

for 10 generations. Both evolution scenarios use default TPOT parameters for mutation and 

crossover rates: 0.9 and 0.1 (Table 4.1). In the second experiment, the performance of mutation 

and crossover operations is evaluated; therefore, mutation and crossover rates are adjusted to 

equal 0.5. This results in about 125 operations of each kind per run per test case and about 3750 

operations in total (30 runs, one test case). The second experiment setting corresponds to sce-

nario 4 (Table 4.1). Besides extra computation regarding operator effectiveness, the second 

experiment also produces the output valid for the analysis of the first experiment. Therefore, 

scenario 4 is also included in this analysis. 

Table 4.1 Experimental scenario settings 

Scenario Repetitions Generations Population size Mutation rate Crossover rate 

1 30 1 250 0 0 

2 30 5 50 0.9 0.1 

3 30 10 25 0.9 0.1 

4 30 5 50 0.5 0.5 

The number of generations cannot be set to zero in TPOT. Therefore, to simulate the 

initialization of 250 individuals, TPOT is run for one generation with mutation and crossover 

rates equal to zero. Thus, only the selection was used in scenario 1. In this thesis, only scenarios 

with mutation or crossover operations are called evolution. 

TPOT optimization is run with default configurations for both classification and re-

gression problems. That implies that solution search space includes classifiers and regressors 

from sklearn and xgboost libraries, selectors, and preprocessors from sklearn. It excludes fea-

ture construction operators and neural network-inspired models. 

The random seed is set to be equal to the microsecond of the current timestamp and is 

reset every time (1) before splitting the dataset into training and testing and (2) before running 

the TPOT algorithm. TPOT is trained on 90% of the dataset and tested on the rest 10%. Each 

experiment is run 30 times for each of the 4 test cases. 

Experiments are written and run with Python 3.9 using TPOT 0.11.7 and DEAP 1.3.1 

as the basis and with the help of NumPy 1.22.3 and scikit-learn 1.0.2. 
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4.2. TEST CASES 

An experimental study is performed on four test cases—two classifications and two regression 

problems. None of the cases has missing values nor required pre-processing. The basic infor-

mation about the test cases is summarized in Table 4.2. 

Table 4.2 Test case descriptions 

Name Type Attributes Instances Output range 

Breast cancer Classification 30 569 1 = malignant, 0 = benign 

Waveform Classification 40 5000 0 = Class 1, 1 = Class 2, 2 = Class 3 

Bioavailability Regression 241 359 [0.4; 100] 

Concrete Regression 8 1030 [2.33; 80.6] 

4.2.1. Breast cancer 

Breast Cancer Wisconsin (Diagnostic) Data Set (Wolberg et al., 1995) (later: breast cancer) is 

a classification dataset applicable for breast tumour diagnoses, which was first introduced in 

the research by Street et al. in 1993. It consists of 569 instances of described characteristics of 

the cell nuclei extracted from the digitized image of fine needle aspirate of a breast mass via 

the image analysis program Xcyt (Mangasarian et al., 1995). 357 (or 63%) of the instances are 

malignant, and the rest (212 or 37%) are benign. Each image consisted of multiple nuclei; there-

fore, each instance is described as a mean, standard error, and the worst value of each of 10 

features: radius, texture, perimeter, area, smoothness, compactness, concavity, number of con-

cave points, symmetry, and fractal dimension. There are 30 attributes in total. 

Street et al. (1993) performed classification using MSM-T (Multi-surface method – 

Tree), and the resulting classifier with three features—mean texture, worst area, and worst 

smoothness—had an accuracy of 97.3%. 

4.2.2. Waveform 

Waveform Database Generator (Version 2) Data Set (Breiman et al., 1988) (later: waveform) 

is a synthetically generated dataset with 5000 instances equally split into three classes that are 

described with 40 features—consecutive “height” values, which plot has a waveform. Three 

basic waveforms gradually increase, reach their peaks in the 7th, 11th, and 15th attributes, and 

decrease to the initial value of zero (Figure 4.1 Base Waves). All base waveforms are six units 

high at their peaks and are zeros after the 21st attribute. Three dataset classes are linear combi-

nations of two different base waveforms with added noise generated with a normal distribution 

centred around 0 with a standard deviation of 1. Class 1 is a combination of 1st and 3rd 
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waveform, class 2: 1st and 2nd, and class 3: 2nd and 3rd. Figure 4.1 shows 100 instances of 

each class. 

 

4.2.3. Bioavailability 

Human oral bioavailability measures the percentage of an oral administered drug dose that ef-

fectively reaches systemic blood circulation. The bioavailability dataset contains 359 drug mol-

ecule observations with measured bioavailability values and 241 molecular descriptors that 

identify a drug. Each of 359 drug molecular formulas is expressed in a line notation called 

simplified molecular-input line-entry system (SMILES) that allows extracting bi-dimensional 

molecular descriptors using ADMET Predictor software. The dataset is the same as in Archetti 

et al. (2007). 

Table 4.3 Example of a drug expressed in linear notation (SMILES) and as a set of molecular 

descriptors. 

Drug SMILES Molecular descriptors 

Dopamine 

C8H11NO2 
NCCc1cc(O)c(O)cc1 

log D6.5 −3.37 

Δ log Db −0.90 

pKa 8.9 

... ... 
 

Source: Yoshida & Topliss (2000). 

Figure 4.1 Basic waveforms and 100 instances of each of the three 

classes. 
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4.2.4. Concrete 

The dataset was first introduced in the research by Yeh (1998). It consists of 1028 observations 

of concrete mixtures and eight variables that describe the compressive strength of concrete: 

cement (kg/m3), fly ash (kg/m3), blast furnace slag (kg/m3), water (kg/m3), superplasticizer 

(kg/m3), coarse aggregate (kg/m3), fine aggregate (kg/m3) and age of testing (days). Yeh (1998) 

uses artificial neural networks that result in R2 equal to 0.9143 on average for randomly sampled 

data (testing set), which was concluded to outperform the model based on regression analysis. 

4.3. EXPERIMENTAL RESULTS 

4.3.1. Initialization vs evolution 

As discussed in the Experimental study chapter, the first experiment aims to provide a basis for 

the comparison of multiple scenarios. Scenario 1 initializes 250 individuals, scenario 2 evolves 

50 individuals for 5 generations, and scenario 3 evolves 25 individuals for 10 generations. Both 

scenarios 2 and 3 use the default mutation and crossover rates: 0.1 and 0.9. Scenario 4 is similar 

to scenario 2, but with mutation and crossover rates equal to 0.5. Having a total of 250 individ-

uals involved in each scenario makes scenarios comparable.  

4.3.1.1. Breast cancer 

Each of the four scenarios (Table 4.1) was trained 30 times on randomly selected 90% of the 

breast cancer dataset data and tested on the rest 10%. Training score is spread next to 1.00 in 

all scenarios (Figure 4.2), and it is equal to 1.00 in 10, 13, 16, and 14 of 30 cases in scenarios 

1, 2, 3, and 4, respectively. The narrowing distribution and higher mean  ▲ in Figure 4.2) and 

median signify a positive effect of the growing number of generations (from none in scenario 

1 to 10 in scenario 3) on the training score. Training scores in scenarios 2 and 4 are very similar 

(p=0.858), which means that the difference in mutation and crossover rates (0.9 and 0.1 in sce-

nario 1, 0.5 and 0.5 in scenario 2) does not have a significant impact on the training score in the 

Figure 4.2 Breast cancer training and testing accuracy distributions for 

each testing scenario (n=30). 
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current test case. Train accuracy scores in scenarios 1 and 3 are significantly different (Mann-

Whitney U test p-value is 0.01), despite any other scenario pairs whose p-values vary from 

0.118 (scenario 2 vs 3) to 0.858 (scenario 2 vs 4). 

Test accuracy scores vary from 0.9123 (scenarios 1, 2 and 4) and 0.9298 (scenario 3) 

to 1.0, with medians equal to 0.9649 (scenarios 1, 3 and 4) and 0.9737 (scenario 2). Scenario 1 

had the most pipelines that scored 100% when tested, i.e., 8 cases, compared to 4 in scenarios 

2 and 4, and 2 in scenario 3.  

Table 4.4 Breast cancer test accuracy mean, standard deviation and Mann-Whitney U p-

values. 

 S 
Scenario 1 

Pop 250 Gen 0 

Scenario 2 

Pop 50 Gen 5 

Scenario 3 

Pop 25 Gen 10 

Scenario 4 

Pop 50 Gen 5* 

Accuracy mean (n=30) 0.9673 ±0.0264 0.9690 ±0.0219 0.9684 ±0.0192 0.9673 ±0.0224 

p-value 

H0: S = S1 - 0.832 0.934 0.964 

H0: S = S2 0.832 - 0.841 0.747 

H0: S = S3 0.934 0.841 - 0.884 

H0: S = S4 0.964 0.747 0.884 - 

Mean test accuracy is the highest (0.969) in scenario 2. However, Mann-Whitney U 

test results show no significant difference between any scenarios. Table 4.4 shows test accuracy 

means for each scenario and Mann-Whitney U test p-values for each pair of different scenarios. 

Neither of the scenarios has a mean accuracy higher than a baseline result of 0.973; however, 

almost half (46.7%) of the results surpass the baseline: 43.3%, 50%, 46.7%, and 46.7% cases 

in scenarios 1 to 4, respectively.  

TPOT is trained on 90% of the Breast cancer dataset, i.e., 512 instances. Each pipeline 

is evaluated in a 5-fold CV during the TPOT optimization process. Therefore, the CV score is 

the average of 5 accuracy test results. The best-in-population CV score value is tracked for each 

Figure 4.3 Best internal CV score distribution by generation 

for three scenarios. Breast cancer dataset. 
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generation.  Each scenario is run 30 times, which results in 30 values for each generation. In-

formation on the best internal CV score distribution is illustrated in Figure 4.3. As scenarios 

differ in the number of generations (0, 5, and 10 for scenarios 1, 2, and 3, respectively), last 

generation values are extended until Generation 10, which allows us to compare distributions 

of the scenarios. In scenario 1, initialization CV score values are copied over generations 1-10; 

in scenario 2, 5th generation CV score values are copied over generations 6-10. The shaded area 

in Figure 4.3 is a 95% confidence interval. 

As expected, the number of individuals in the population positively correlates with the 

best CV score in generation 1: initialization of 250 individuals (scenario 1) having the highest 

result and 25 individuals (scenario 3) having the lowest. It takes about 3 generations for scenario 

2 results to reach the level of scenario 1, about 6 generations for scenario 3 to reach the level of 

scenario 1 and 8 generations to reach the level of scenario 2. Scenario 1 has an average CV 

score of 0.9736. Scenario 2 started with an average CV score of 0.9716 in generation 1 and 

improved to 0.9767 in generation 5 (0.5% improvement). In scenario 3, the CV score improved 

by 1% by the 10th generation: from 0.9687 to 0.9785. According to Mann-Whitney U tests, CV 

score distributions are significantly different (5% significance level) in generation 1: p-values 

are 0.043 for Scenario 1 vs 2, 0.043 for Scenario 2 vs 3, and less than 0.001 for Scenario 1 vs 

3. CV score distributions are also significantly different (α=5%) in generation 10: p-values 

0.002 for scenario 1 vs 2, 0.044 for scenario 2 vs 3 and less than 0.001 for scenario 1 vs 3. 

Running TPOT 120 times in total resulted in 118 unique pipelines. Two pipelines with 

Logistic Regression resulted twice each. One of the pipelines used Min Max Scaler for pre-

processing, and inverse regularization strength (hyperparameter C) equal to 20 (Pipeline 4.1), 

and the other one uses Max Absolute Scaler and C equal to 15 (Pipeline 4.2). Pipeline 4.1 

appeared both times under scenario 1, but Pipeline 4.2 appeared in scenarios 1 and 2.  

Regardless of a variety of classifiers and pre-processors, many pipelines differ with 

just one or several hyperparameters. If hyperparameters are disregarded, there are only 69 

unique combinations of classifiers, pre-processors, and selectors, top of which are Gradient 

Boosting classifier without pre-processing (19 pipelines) and Linear SVC with Min Max Scaler 

applied on the dataset (7 cases). 

In most of the cases (82 out of 120 pipelines), one classifier was used in the pipeline, 

but in several cases, two (34/120 cases) or even three classifiers (4/120 cases). In four cases, 

 LogisticRegression(MinMaxScaler(input_matrix), C=20.0, dual=False, penalty=l2) (4.1) 

 LogisticRegression(MaxAbsScaler(input_matrix), C=15.0, dual=False, penalty=l2) (4.2) 
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the same classifier was used twice. 42%  of the pipelines (i.e., 50/120 cases) do not use any of 

the 14 different pre-processing algorithms, but in most cases, pre-processors are used at least 

once: one pre-processor in 58 cases, two in 11 cases, and three once. In one pipeline, two same 

preprocessors were used. The vast majority (110/120 cases or 92%) of pipelines do not involve 

any of the five selection algorithms; it is only used in 10 pipelines: once in 8 pipelines and twice 

in 2. Four resulting pipelines combined two data inputs: twice raw input data was combined 

with pre-processed data, once a combination consisted of pre-processed data and data with a 

selector applied, and once a combination of two raw data inputs was used. The average pipeline 

size is 2.175, and almost half (63 cases) of the pipelines are size 2. An equal number of pipelines 

are either of a size 1 or 3 (24 cases each). A few individuals are of a greater size: six are of size 

4, and three are of size 5. 

TPOT optimal pipeline uses Gradient Boosting Classifier as a root classifier in most 

of the cases of all scenarios (from 10/30 cases in Scenario 1 to 16/30 in Scenario 3, 51/120 in 

total). Other classifiers in all scenarios are the Extra Trees Classifier and Stochastic Gradient 

Descent (SGD) Classifier; however, they appear much less frequently (14/120 and 6/120 total 

cases, respectively). Linear Support Vector Classification (Linear SVC) is the second most 

popular classifier in all scenarios but Scenario 3 where it does not appear at all. Figure 4.4 

shows all classifier popularity by scenario. 

 

The variance of test scores in scenario 3 is the lowest (Figure 4.5), which could indicate 

a convergence of the classifier models. Each of the algorithms is not expected to result in sig-

nificantly different test accuracy if they were the result of the evolution of more than ten gen-

erations. However, most classifiers have fewer than ten observations, which is not enough to 

make a confident conclusion.  

Figure 4.4 Number of times classifiers appear in the root of TPOT optimal pipelines for the 

breast cancer dataset. 
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Almost half of the results exceed the baseline accuracy of 0.973; however, the distri-

bution across classifiers varies—64% (7/11) of Logistic Regression, 53% (9/17) of Linear SVC, 

43% of (22/51) Gradient Boosting Classifier and (6/14) Extra Trees Classifier results. Figure 

4.5 summarizes classifier performance considering the baseline value by scenarios. 

 

4.3.1.2. Waveform 

Randomly selected 4500 waveform dataset instances (90% of the dataset) were used to find an 

optimal TPOT pipeline, and the remaining 500 instances were used to test it. The process was 

repeated 30 times, and the resulting accuracy distributions are presented in Figure 4.6. Training 

accuracies vary from 0.868 (scenario 3) to 1.0 (scenario 2) and are positively skewed with me-

dians ranging from 0.8756 (scenario 3) to 0.8857 (scenario    and means  ▲ in Figure 4.6) 

within 0.8850 (scenario 1) - 0.9067 (scenario 2) range. Scenario 2 training results are higher 

and are significantly different from scenario 1 & 3 results (Mann-Whitney U test p-values 0.016 

and 0.022, respectively). The difference between all other scenario pairs is not significant (5% 

significance level): p-values range from 0.105 in case scenario 2 vs scenario 4 to 0.988 in case 

scenario 1 vs scenario 3.  

Figure 4.6 Waveform training and testing accuracy distributions for each 

testing scenario (n=30). 

Figure 4.5 Test score distribution for each classifier of TPOT optimal pipelines for the breast 

cancer dataset. 
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Scenario 3 has the highest mean test accuracy (0.8695), but it is not significantly dif-

ferent from any other scenario test results. According to the Shapiro-Wilk test, test accuracy 

distributions are normal; therefore, the T-test is used. It shows that there is no significant dif-

ference between any scenario pairs. Table 4.5 shows test accuracy means for each scenario and 

T-test p-values for each pair of different scenarios.  

Table 4.5 Waveform test accuracy mean ±standard deviation and T-test p-values. 

 S 
Scenario 1 

Pop 250 Gen 0 

Scenario 2 

Pop 50 Gen 5 

Scenario 3 

Pop 25 Gen 10 

Scenario 4 

Pop 50 Gen 5* 

Accuracy mean (n=30) 0.8675 ±0.0177 0.8675 ±0.0174 0.8695 ±0.0179 0.8672 ±0.0148 

p-value 

H0: S = S1 - 1.000 0.654 0.950 

H0: S = S2 1.000 - 0.652 0.949 

H0: S = S3 0.654 0.652 - 0.584 

H0: S = S4 0.950 0.949 0.584 - 

 

Figure 4.7 illustrates the distribution of average accuracy results of the 5-fold CV per-

formed during the TPOT optimization process. Results are shown for three scenarios and are 

split by generation. As scenarios differ in the number of generations, the last available genera-

tion values are extended until Generation 10. The shaded area in Figure 4.7 is a 95% confidence 

interval. 

The number of individuals in the population positively correlates with the best CV 

score in generation 1: 250 individuals and 0.8698 mean accuracy, 50 individuals and 0.8682 

mean accuracy, 25 individuals and 0.8661 mean accuracy in scenarios 1 to 3, respectively. Ac-

curacy distributions in generation one are not significantly different between scenario 1 and 2 

(Mann-Whitney U test p-value=0.107) and is significantly different between scenarios 1 and 3 

(p-value<0.001) and scenarios 2 and 3 (p-value=0.031). It takes about 3 generations for scenario 

2 results to reach the level of scenario 1, about 6 generations for scenario 3 to reach the level of 

Figure 4.7 Best internal CV score distribution by generation 

for three scenarios. Waveform dataset. 
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scenario 1 and 9 generations to reach the level of scenario 2. Scenario 2 scores improved by 

about 0.28% from an average of 0.8682 to 0.8706. Scenario 3 results improved by about 0.58% 

from 0.8661 to 0.8711. According to Mann-Whitney U tests, final results are not significantly 

different at a significance level of 5%, but scenarios 1 and 3 are significantly different at a 

significance level of 10% (p-value=0.055). 

Running TPOT 120 times in total resulted in 106 unique pipelines. Pipelines 4.3-4.6 

appear 11, 3, 2, and 2 times, respectively. If hyperparameters are disregarded, 61 unique com-

binations of classifiers, pre-processors, and selectors exist. Top pipelines use a Logistic Regres-

sion classifier without any pre-processors or selectors (14 cases), Extra Trees Classifier with 

PCA (14 cases), and Linear SVC (12 cases).  

 LogisticRegression(input_matrix, C=0.001, dual=False, penalty=l2)  (4.3) 

 LinearSVC(input_matrix, C=1.0, dual=False, loss=squared_hinge, penalty=l2, tol=0.01) (4.4) 

 LogisticRegression(input_matrix, C=0.01, dual=False, penalty=l2)  (4.5) 

 LogisticRegression(CombineDFs(input_matrix, input_matrix), C=0.001, dual=False, penalty=l2) (4.6) 

Although most of the pipelines use one classifier (83 out of 120 cases), 32 use two, 

and 5 use three classifiers. In 8 cases, the same classifier was used twice in the same pipeline. 

Most of the pipelines use either one or none of the pre-processors or selectors: 80 without pre-

processing, 81 without feature selection, and 52 without both. In the rest 40 cases, a preproces-

sor is used: once in 38 cases and twice in 2 cases. Similarly, one selector is used in 38 cases, 

and two selectors once. Six pipelines use a combination of two copies of the dataset as an input: 

in five cases, two raw datasets are combined; in one case, a raw dataset is combined with a pre-

processed one. The average pipeline size is 2.083. Just 26 of the resulting pipelines are of the 

size one. The majority of the pipelines are of size two: 65 cases. In 22 cases, pipelines have 

three operators. Just seven individuals have a larger size of 4. 

 

Waveform TPOT optimal pipelines use nine different classifiers as root classifiers. 

Still, in the vast majority (82%) of cases, either Linear SVC (36/120 cases), Logistic Regression 

(36/120), or Extra Trees Classifier (26/120) are used. All three top classifiers and XGB 

Figure 4.8 Number of times classifiers appear in the root of TPOT optimal pipelines for the 

Waveform dataset. 
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Classifiers are used at least once in each scenario. Decision Tree Classifier and Gaussian NB 

are used only once. The best pipeline classifier used by scenarios is summarized in Figure 4.8. 

 

According to the Shapiro-Wilk test, accuracy distributions for pipelines with Linear 

SVC, Logistic Regression, or Extra Trees Classifier look Gaussian. T-test shows that Linear 

SVC (mean accuracy 0.8620) and Logistic Regression (mean accuracy 0.8713) model accura-

cies have significantly different distributions (p-value 0.028). Still, Extra Trees Classifier (mean 

accuracy 0.8674) is somewhat similar to both Linear SVC (p-value=0.213) and Logistic Re-

gression (p-value=0.351). Linear SVC is significantly outperformed by Logistic Regression and 

Extra Trees Classifier in Scenario 2, although in other cases, those three classifiers have similar 

accuracy distribution (Figure 4.9). 

4.3.1.3. Bioavailability 

Bioavailability is a regression problem with 359 instances, 90% of which (or 323 instances) are 

randomly selected 30 times to find and train an optimal pipeline. Pipelines are tested on the 

remaining 36 instances. The distribution of negative root mean squared errors (RMSE) is sum-

marized in Figure 4.10. Train scores range from -24.8272 (scenario 4) to -3.5877 (scenario 3), 

with means between -18.7462 (scenario 4) and -17.1990 (scenario 3) and test medians between 

-18.8193 (scenario 4) and -17.7607 (scenario 3). The difference between different scenario test 

results is not significant: the smallest T-test p-value is between scenarios 3 and 4 and is equal 

to 0.184. Test results range between -33.9780 (scenario 2) and -21.5612 (scenario 4), with sce-

nario score medians between -28.2991 (scenario 1) and -27.4905 (scenario 3).  

Figure 4.9 Test score distribution for each classifier of TPOT optimal pipelines for the 

Waveform dataset. 
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The highest negative RMSE was achieved under scenario 3; however, it is not signif-

icantly different from any other results. Scores within each scenario are normally distributed. 

As shown in Table 4.6, none of the hypotheses about scenario result similarity was rejected at 

a 5% significance level. 

Table 4.6 Bioavailability test RMSE mean ±standard deviation and T-test p-values. 

 S 
Scenario 1 

Pop 250 Gen 0 

Scenario 2 

Pop 50 Gen 5 

Scenario 3 

Pop 25 Gen 10 

Scenario 4 

Pop 50 Gen 5* 

RMSE mean (n=30) -28.378 ±2.645 -28.647 ±2.551 -27.453 ±3.100 -27.731 ±3.251 

p-value 

H0: S = S1 - 0.690 0.219 0.402 

H0: S = S2 0.690 - 0.109 0.230 

H0: S = S3 0.219 0.109 - 0.735 

H0: S = S4 0.402 0.230 0.735 - 

The distribution of average negative RMSE results of 5-fold CV performed during the 

TPOT optimisation process and split by generation is shown in Figure 4.11. As scenarios differ 

in the number of generations, the last available generation values are extended until Generation 

10. The shaded area in Figure 4.11 is a 95% confidence interval. 

As expected, the number of initialised individuals positively correlates with the best 

CV score in generation 1: mean scores -27.3415, -27.4464, and -27.8801 in scenarios 1 to 3 

with 250, 50, and 25 individuals, respectively. According to Mann-Whitney U, Test score dis-

tributions are not significantly different between scenarios 1 and 2 in generation one (p-value 

0.387). However, the CV scores of scenario 3 are significantly different from the results of 

scenarios 1 and 2 (p-values 0.002 and 0.016). It takes about three generations for scenario 2 

results to reach the level of scenario 1. Still, the average score of Scenario 3 does not reach the 

level of scenarios 1 and 2 during ten generations of evolution. Scenario 2 scores improved by 

about 0.57% from an average of -27.4464 to -27.2913. Scenario 3 improved by about 1.4% 

from an average of -27.8801 to -27.4951. According to Mann-Whitney U tests, final results are 

not significantly different at a significance level of 10%. 

Figure 4.10 Bioavailability training and testing negative root mean 

squared error distributions for each testing scenario (n=30). 
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Running TPOT 120 times in total resulted in all 120 unique pipelines. However, in 

terms of operator combinations, there are 40 unique pipelines. The most common operator com-

bination is the Extra Trees regressor with no pre-processing and no selection, which exists in 

40 different versions thanks to various hyperparameter combinations. The second most com-

mon is the Random Forest regressor without pre-processing or selection, which has 25 different 

hyperparameter combinations. 

Like other test cases, pipelines might have one or more regressors and none or more 

pre-processors and selectors. The use of the only regressor is the most typical and accounts for 

97 pipelines, 59 of which are Extra Trees and 38 Random Forests. In 3 cases, the same regressor 

was used twice within a pipeline. In 20 out of 120 cases, the combination of two regressors is 

used; combinations of three and four are uncommon and appear 2 and 1 times, respectively. 

Most of the regression pipelines (95 out of 120) use unprocessed data as an input; in 20 cases, 

the data was pre-processed once, and in 5 cases, twice. The selector was used in just ten or 

about 8% of cases. In 4 cases, input data is a combination of two copies of the dataset, and in 

all cases, it is a combination of raw (unprocessed) data. All operations combined, most of the 

resulting pipelines for the Bioavailability problem have the size of 1, which means that 65 of 

the pipelines (or 54.2%) only have one regressor run on the data as it is. A large portion (i.e., 

41 cases or 34%) of the pipelines have a size of 2; however, just a few have a size of 3 and 4 

(12 and 2 pipelines, respectively). One of the largest pipelines has four regressors; the other 

consists of 3 regressors and an operator that combines two copies of the dataset. 

All but one optimal TPOT pipelines use either Extra Trees or Random Forest as a root 

regressor. Extra Tree regressor is used in 77 out of 120 (or 64%) pipelines, Random Forest in 

42 (35%), and Gradient Boosting regressor in one (Figure 4.12). Extra Trees are used more 

Figure 4.11 Best internal CV score distribution by generation 

for three scenarios. Bioavailability dataset. 
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frequently than Random Forest in the case of scenario 1, but in the rest of the scenarios, regres-

sors are used more. Scenarios 2 and 4, in which pipelines were evolved for the same number of 

generations, have the same regressor distributions: 18 Extra Trees and 12 Random Forests. 

Moreover, the performance of those regressors is not significantly different: T-test p-values are 

0.748 for Extra Trees score distributions in scenarios 2 and 4 and 0.170 for Random Forest. 

 

Despite minor differences in test negative RMSE distributions, Extra Trees and Ran-

dom Forest perform the same when both the same regressors are compared within different 

scenarios, and different regressors are compared within the same scenario (Figure 4.13). 

 

4.3.1.4. Concrete 

 Concrete is a regression problem with 1028 observations, 90% of which (or 925 observations) 

are randomly selected 30 times to find and train an optimal pipeline. Pipelines are tested on the 

remaining 103 observations. The distribution of negative root mean squared errors (RMSE) are 

summarized in Figure 4.14. Train scores range from -3.7188 (scenario 4) to -0.6387 (scenario 

3), with means between -2.0699 (scenario 4) and -1.7671 (scenario 3) and test medians between 

Figure 4.12 Number of times regressors appear in the root of TPOT optimal pipelines for the 

bioavailability dataset. 

Figure 4.13 Test score distribution for each regressor of TPOT optimal pipelines for the 

bioavailability dataset. 

Figure 4.14 Concrete training and testing negative root mean squared 

error distributions for each testing scenario (n=30). 
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-2.0713 (scenario 1) and -1.6644 (scenario 3). Test results range between -5.9963 (scenario 4) 

and -2.7511 (scenario 3), with scenario score medians between -4.2890 (scenario 4) and -4.1218 

(scenario 3). Within all scenarios, a significant difference exists only between the 3rd and 4th 

(Mann-Whitney U test p-value 0.026). 

The highest average negative RMSE was achieved under scenario 1. However, it is 

not significantly different from any other results. Scores within each scenario are normally dis-

tributed. As shown in Table 4.7, none of the hypotheses about scenario result similarity was 

rejected at a 5% significance level. 

Table 4.7 Concrete test RMSE mean ±standard deviation and T-test p-values. 

 S 
Scenario 1 

Pop 250 Gen 0 

Scenario 2 

Pop 50 Gen 5 

Scenario 3 

Pop 25 Gen 10 

Scenario 4 

Pop 50 Gen 5* 

Accuracy mean (n=30) -4.076 ±0.607 -4.226 ±0.808 -4.299 ±0.716 -4.399 ±0.783 

p-value 

H0: S = S1 - 0.420 0.198 0.080 

H0: S = S2 0.420 - 0.710 0.404 

H0: S = S3 0.198 0.710 - 0.612 

H0: S = S4 0.080 0.404 0.612 - 

 

Figure 4.15 illustrates the best internal 5-fold CV score distribution by generation. 

First-generation values of scenario 1 and 5th-generation values of scenario 2 are copied over 

further generations, enabling distribution comparison of the scenarios. The shaded area in 

Figure 4.15 is a 95% confidence interval. 

 

First-generation CV scores predictably correlate with the number of individuals in the 

population in each scenario: Scenarios 1 to 3 have mean scores of -4.5501, -4.8011, and -

5.0441. Score distributions in generation one are significantly different between scenarios 1 and 

2 (Mann Whitney U test p-value 0.002), 1 and 3 (p-value < 0.001). In generation 1, CV scores 

Figure 4.15 Best internal CV score distribution by generation 

for three scenarios. Concrete dataset. 
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are different for scenarios 2 and 3 only with a significance level of 10%: the p-value is 0.085. 

It takes about four generations for scenario 2 results to reach the level of scenario 1, about 6 

generations for scenario 3 results to reach the level of scenario 1, and about 7 to reach the level 

of scenario 2. Scenario 2 results increased by 6.8% and reached the value of -4.4942 in gener-

ation 5; scenario 3 results improved by 14.3% and reached the level of -4.4140 in generation 

10. The final CV scores are similar for scenarios 1 and 2, 2 and 3, but scenario 3 results are 

significantly higher than scenario 1 (U test p-value 0.013).  

Running TPOT 120 times in total resulted in all 120 unique pipelines with 46 different 

operator combinations and a variety of hyperparameters, which make all pipelines unique. Ex-

treme Gradient Boosting (XGB) regressor without pre-processing is the most common solution, 

appearing with 45 different hyperparameter combinations. Gradient Boosting regressor without 

pre-processing is another common solution for the concrete problem. It accounts for 14 unique 

solutions. A typical solution (i.e., 74 cases) consists of one regressor, which does not use any 

pre-processing or feature selection in 60 instances and uses either one in 14 cases. Oddly, the 

same regressor was used twice within a pipeline in 7 cases. Two regressors are used in 39 cases 

and three in 6 cases. Once four regressors are used. The dataset is pre-processed in 21 out of 

120 pipelines: once in 20 cases and twice in 1 case. Selectors rarely appear in the final pipeline 

– only in 5 cases out of 120. A combination of two dataset copies was used as a regressor input 

in 5 pipelines: combinations of two raw dataset copies, raw and pre-processed datasets, two 

different regression outputs, regression output with a raw dataset, and regression output with a 

pre-processed dataset. The average pipeline size is 1.717. The resulting pipelines are mostly 

small: 59 pipelines are of a size one and 42 of a size two. In 14 cases, pipelines have three 

operators. Just five individuals have a larger size. 

Optimal solution pipelines use nine regressors at the root to solve a concrete problem: 

4 to 6 regressors per scenario (Figure 4.16). In most cases—scenario-wise and in total—Ex-

treme Gradient Boosting (XGB) is the most popular solution (73 out of 120 cases or 60.8% in 

Figure 4.16 Number of times regressors appear in the root of TPOT optimal pipelines 

for the concrete dataset. 
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total). Gradient Boosting is the second most popular regressor (26 of 120 or 21.7%). The rest 

of the regressors appear up to 5 times and never in all four scenarios. Figure 4.16 shows all 

regressors by scenario. 

Figure 4.17 shows no specific pattern in regressor performance by scenario. The only 

significant difference is between XGB performances in scenarios 1 and 4 (T-test p-value 0.034). 

Other regressors have too few observations to be comparable.  

 

4.3.1.5. Summary 

The first experiment compares the performances of the TPOT-optimized pipelines under four 

scenarios: under the first scenario, the best pipeline is selected from the initialized one; under 

the other scenarios, pipelines first evolved for 5 and 10 generations.  Although training scores 

of evolved pipelines (scenarios 2-4) are higher than those initialized (scenario 1) in classifica-

tion cases, there is no significant difference in the testing scores. Nevertheless, scenario 3 re-

sulted in the highest score for two of four test cases, scenarios 1 and 2 in one test case each. 

Table 4.8 summarises the mean testing scores for each test case: mean accuracy for breast can-

cer and waveform test cases and negative RMSE for bioavailability and concrete test cases.  

Table 4.8 Summary of the first experiment results: mean accuracy/negative RMSE and stand-

ard deviation by scenario. 

Test case 
Scenario 1 

Pop 250 Gen 0 

Scenario 2 

Pop 50 Gen 5 

Scenario 3 

Pop 25 Gen 10 

Scenario 4 

Pop 50 Gen 5* 

Breast cancer 0.9673 ±0.0264 0.9690 ±0.0219 0.9684 ±0.0192 0.9673 ±0.0224 

Waveform 0.8675 ±0.0177 0.8675 ±0.0174 0.8695 ±0.0179 0.8672 ±0.0148 

Bioavailability -28.378 ±2.645 -28.647 ±2.5510 -27.453 ±3.1000 -27.731 ±3.2510 

Concrete -4.076 ±0.6070 -4.226 ±0.8080 -4.299 ±0.7160 -4.399 ±0.7830 

Three scenario internal CV scores are compared by generation in three parts. The first 

and the second parts show which scenarios have significantly different score distributions after 

evolving the first and the last generations. In scenario 1, pipelines were not evolved; therefore, 

Figure 4.17 Test score distribution for each regressor of TPOT optimal pipelines for the 

concrete dataset. 
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its only score distribution is compared with different generation results of scenarios 2 and 3. In  

Table 4.9, significantly different results at a 5% significance level are denoted with mathemat-

ical operator signs: < and >. Significant difference at a significance level of 10% is indicated as 

≲. The approximate equality sign (≈) means no significant difference. The last part of the 

analysis shows when (and if) previously lower-performing scenario reaches the level of 

the better-performing scenarios. Table 4.9 shows at which generation a pair of scenarios in-

tersect. 

Initialized pipelines outperform evolved pipelines in generation 1 due to the larger size 

of the population. Although the second scenario reaches the level of the first one in generation 

3 (4 in the concrete case), the final generation (here: 5) results exceed initialized scores only in 

one of four test cases. The third scenario reaches the level of scenario 1 in generation 6 and has 

significantly better final results in 3 of 4 cases.  

Table 4.9 Summary of internal CV score comparison by generation. 

Test Case First generation Last generation Intersection 

Scenarios 1&2 2&3 1&3 1&2 2&3 1&3 1&2 2&3 1&3 

Breast cancer > > > < < < 3 8 6 

Waveform ≈ > > ≈ ≈ ≲ 3 9 6 

Bioavailability ≈ > > ≈ ≈ ≈ 3 - - 

Concrete > ≈ > ≈ ≈ < 4 7 6 

The resulting pipelines are analyzed to understand their construction better. Pipelines 

have more than one classifier or regressor in about a third of the cases. Classification problem 

solutions apply preprocessors more often and generally seem to have larger pipelines. As wave-

form data includes meaningless variables, solutions include selectors untypically often. Table 

4.10 summarizes the TPOT-optimized pipeline size and composition by a test case. The table 

shows the number of pipelines where a certain number of classifiers, regressors, preprocessors, 

selectors and combiners appear. For example, there is one pipeline with four regressors in bio-

availability and concrete cases. 

Table 4.10 Number of pipelines when a certain number of operators is used. 

Case Class./Reg. Preprocessors Selectors Com. Size 

 1 2 3 4 0 1 2 3 0 1 2 1 1 2 3 4 5 

BC 82 34 4 0 50 58 11 1 110 8 2 4 24 63 24 6 3 

WF 83 32 5 0 80 38 2 0 81 38 1 6 26 65 22 7 0 

BIO 97 20 2 1 95 20 5 0 110 10 0 4 65 41 12 2 0 

CON 74 39 6 1 99 20 1 0 115 5 0 5 59 42 14 4 1 
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All regression solutions are unique, and a few classification solutions appear multiple 

times. If hyperparameters are disregarded, about half of classification and a third of regression 

pipelines have unique combinations of pipeline operators. 

4.3.2. Operator effectiveness 

Scenario 4 is specifically created to test the performance of the genetic operators while TPOT 

finds an optimal pipeline by evolving 50 individuals over five generations. Mutation and cross-

over rates are changed to 50% each, which allows generating enough observation of both oper-

ators. That is also the main difference between scenario 4 and scenario 2, which uses the default 

rate values (90% for mutation and 10% for crossover). Like in the other scenarios, the TPOT 

algorithm is run 30 times and produces 30 pipelines. The performance of those pipelines is 

discussed and analysed in chapter 4.3.1 Initialization vs evolution. 

As the population size in each generation is 50, each generation of individuals is ex-

posed to 50 genetic operations, which can be a mutation or a crossover with the same probabil-

ity, summing up to 250 operations per iteration or 7,500 operations per test case. TPOT library 

code manipulations enabled tracking input and output of each operation: pipeline or individual 

selected to perform an operation on (parent individual with the highest fitness (score only) in 

case of crossover), pipeline after the operation (first offspring in case of crossover), and fitness 

values before and after the operation. As discussed previously, fitness value consists of the 

score—accuracy (for classification problems) or negative MSE (for regression problems)—and 

the size of the pipeline (i.e., number of pipeline operators). The type of genetic operation per-

formed (crossover or mutation), iteration, and generation numbers are also tracked. 

Data collected on each operation allows calculating its performance. Operation is con-

sidered successful if the score of the output pipeline is higher than the score of the pipeline after 

the genetic operation. Comparing pipelines before and after the operation allows identifying at 

what level the change was performed: 0 or root level if the final (i.e., the one that outputs the 

result) classifier or regressor is changed; the maximal level depends on the depth of the pipeline. 

Pipeline comparison before and after mutation showed whether pipeline operation was added, 

removed, or changed and what was the type of the added/removed/changed operator: classi-

fier/regressors, selector, preprocessor, hyperparameter, or a “combiner” that combines multiple 

copies of the input data. 

Instances with invalid values due to computation time-out are removed from the anal-

ysis. The final number of operations for each test case is summarized in Table 4.11. 
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Table 4.11 Number of operations by the test case. 

Each operation can be analysed in terms of (1) the nature of the operation: types of 

crossovers and mutation, (2) its locality: which level of the pipeline changes appear; and (3) its 

impact on the size of the pipeline.  

4.3.2.1. Breast cancer 

As discussed in the previous chapter, Breast cancer is an easy problem, and TPOT achieves 

high accuracy with 250 individuals. The mean test score for scenario 4 is 0.9673. Internal scores 

of selected individuals in generation 1 vary from 0.4004 (0.01 quantile) to 0.9824 (maximum), 

with median and mean scores equal to 0.9297 and 0.8801. The scores of the individuals gener-

ated in generation 5 range between 0.6247 (0.01 quantile) and 0.9844, with median and mean 

equal to 0.9610 and 0.9498. 

The vast majority of all selected individuals are of size 1 (46.7%) or 2 (44.9%), and 

just a few reach the size of up to six. In generation 1, all the individuals before the operation 

were of size 1 or 2, but the number decreased to 83.5% by generation 5 (Figure 4.18). Larger 

pipelines developed over generations. The only individual of size 6 was selected in generation 

5. Further evolution could lead to some increase in the sizes of selected individuals but to a 

limited extent as fitness score is punished for larger sizes. 

 

Each of the 30 iterations involved about 250 operations which are roughly equally split 

into crossovers and mutations because of the same probability. Mutations tend to have a better 

chance of improving the accuracy of an individual (see Figure 4.19). On average, 29% of indi-

viduals have a higher score after the mutation than before. That improvement score varies from 

Test case 
Number of 

operations 

Number of success-

ful operations 

Number of 

crossovers 

Number of  

mutations 

Breast cancer 7481 1729 (23.1%) 3756 (50.2%) 3725 (49.8%) 

Waveform 7472 1846 (24.7%) 3703 (49.6%) 3769 (50.4%) 

Bioavailability 7483 1928 (25.8%) 3798 (50.8%) 3685 (49.2%) 

Concrete 7483 2220 (29.7%) 3727 (49.8%) 3756 (50.2%) 

Figure 4.18 Selected individual size distribution by generation. Breast cancer.  
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16.8% to 37.1% in different iterations. Crossover, however, results in score improvements in 

9.3% to 24.8% of cases, i.e., 17.4% on average. 

 

Only one-quarter of all chosen pipelines improve their performance after genetic op-

erations, which also means that most operations lower fitness values. Thus, all generations' 

median scores after the operation are lower than before (Figure 4.20). A pool of selected indi-

viduals consists of an average of 29 unique pipelines, which in other cases can be as small as 

23 and as large as 36. However, pipelines after an operation are all unique in most cases (107 

of 150), averaging the number of unique pipelines to 49.6. Selection of the best portion from 

the pool of the previous generation and its offspring ensures gradual fitness improvement that 

slows down as scores approach the maximum value of 1.0. (Figure 4.20). 

 

Mutation 
High scores are harder to improve. So, when pipelines give high scores with just a few individ-

uals involved in their evolution, it is expected that the highest chance of score improvement is 

in the early stages of evolution, and chances diminish with generations. It is perfectly illustrated 

in Figure 4.21: the improvement rate for mutation is decreasing over generations from a mean 

improvement of 37% in generation 1 to 21% in generation 5. 

Figure 4.19 Amount and performance of operations by genetic operators. Breast cancer. 

Figure 4.20 Distribution of median accuracies by the generation before and after 

genetic operation. Breast cancer. 
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Mutation can appear in 3 different ways: change, add, and remove one node in the 

pipeline tree, resulting in possible pipeline change by a maximum of one unit. As can be seen 

from Figure 4.22, the majority, i.e., 1817 (49%) mutation operations, did not influence the size 

of the pipeline. The pipeline after mutation grew in 1603 or 43% cases which is much more 

than diminished cases: 306 or 8% mutations. It is largely because almost half of the chosen 

individuals have only one pipeline operator. Pipelines that increased as a result of the mutation 

have, on average, the highest improvement rate, which ranges between 16.98% and 47.62%, 

with a mean equal to 29.34%. Nevertheless, the same and decreased size pipeline performances 

are not significantly different from the top results and have an average rate of 28.80% and 

26.17%, respectively. 

 

All (but several exceptions) mutations that change a pipeline operator do not influence 

the size of an individual, additive mutations increase it by one, and subtractive mutation reduces 

it by one. Exceptions are operations that involve a pipeline element that combines two inputs 

(later: combiner), which is not counted as a pipeline operator in calculations of the size of the 

individual. Those exceptions account for 46 added, 12 removed, five switched to, and three 

switched from combiners. That explains the slight difference between pipeline size increase 

charts (Figure 4.22) and mutation type charts (Figure 4.23). Mean improvement rates for add-

ing, changing, and removing mutations are 29.59%, 28.66%, and 25.51%, respectively. Alt-

hough additive mutation performs the best and subtractive the worst, the difference between all 

three performances is not statistically significant. 

Figure 4.21 Amount and performance of mutations by pipeline generation.  Breast cancer. 

Figure 4.22 Amount and performance of mutations by pipeline size increase. Breast cancer. 
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Pre-processor and classifier are the most added pipeline components, amounting to 

82.74% of all additive mutations (Figure 4.24). Adding a classifier contributes the most to an 

individual’s performance—its average improvement rate is 36.83%, significantly higher than 

the selector’s   . 5% and the preprocessor’s 21.62%. 

 

Pipeline operators change in 14 ways, but Figure 4.25 shows only five with more than 

20 observations. The full version of the chart can be seen in Appendix 2. Three fourth (or 1317) 

of all change mutations are the change in hyperparameter value, which also accounts for a third 

of all mutations. Hyperparameter adjustment improves the accuracy in 30.76% of cases on av-

erage. Switch of classifiers is the second most common change, which amounts to 343 opera-

tions or 19% of change mutations. Its average improvement rate is 22.22%. The rest of the 

changes do not have enough observations to conclude their effectiveness. 

 

Removing mutation is the least frequent type of mutation. Its most common objects 

are the classifier and pre-processor (Figure 4.26), like in the case of additive mutation. Remov-

ing an extra classifier leads to fitness improvement in 26.8% of cases, which is greater than 

removing a pre-processor (25.2%). The difference, however, is not significant. 

Figure 4.23 Amount and performance of mutation operations by type. Breast cancer. 

Figure 4.24 Amount and performance of mutation operations by the added object. Breast 

cancer. 

Figure 4.25 Amount and performance of mutation operations by the changed object (short).  

Breast cancer. 
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Change of the root classifier is the only change possible on level 0. It improves the 

performance of an individual in 22.53% of cases on average. Although root classifier changes 

in pipelines of any depth, it is most common in the pipelines of depth 1 (215 of 316 cases) 

because of the fewer mutation options small pipelines can have. Most of the changes happen 

on level 1 (Figure 4.27) because that is where root classifier hyperparameters reside, which is 

known as one of the most frequently changed parts of the pipeline. It is also where all the addi-

tions happen in the pipelines of depth 1, as well as all removals and most of the additions and 

changes in pipelines with depth 2.  

 

Crossover 
Unlike mutation, the performance of crossover operations does not follow any pattern (Figure 

4.28). Average improvement rates for crossover vary from 15% in generation 2 to 21% in gen-

eration 3. Crossover performance in generation 3 is significantly different from the ones in 

generation 1 (t-test p=0.044), 2 (p=0.007) and 4 (p=0.045). 

 

While mutation can result in maximum pipeline change by one unit, crossover impact 

on the pipeline size reaches up to 3 units difference in either direction (Figure 4.29). 

Figure 4.26 Amount and performance of mutation operations by the removed object. Breast 

cancer. 

Figure 4.27 Amount and performance of mutation operations by the level of operation. 

Breast cancer 

Figure 4.28 Amount and performance of crossover operations by generation. Breast cancer. 
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Nevertheless, most operations did not change the size of the pipeline. The number of pipeline 

operators stayed the same in 4275 or 57% of total cases and 2458 (65%) crossover operations. 

 

Most (72.02%) of the crossovers happened on a leaf node level (Figure 4.30), which 

is only possible for hyperparameter nodes. It is the only option for small (i.e., of size 1) pipe-

lines, which amount to almost half of the population. Mean improvement rates for branch and 

leaf crossovers are 18.16% and 18.92%, respectively, and are not significantly different. In 215 

cases (or 5.7%), the type of crossovers cannot be identified because either: individuals (before 

and after a crossover) are equal or have no common pipeline operators. 

 

As can be observed from Figure 4.31, inheriting the root classifier from the fittest par-

ent (alpha) is more common and leads to fitter offspring than from the other parent (beta). Using 

the root from the alpha parent amounts to 59.32% of crossovers and leads to a 21.77% average 

improvement rate, which is significantly higher than the 12.99% of beta.  

 

Figure 4.29 Amount and performance of crossover operations by pipeline size increase. 

Breast cancer. 

Figure 4.30 Amount and performance of crossover operations by crossover type.  

Breast cancer. 

Figure 4.31 Amount and performance of crossover operations by crossover base.  

Breast cancer. 
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Branch crossovers take a bigger share (27.78%) of alpha-based operations compared 

to beta-based (16.53%). Branch crossovers perform significantly worse than leaf crossovers in 

the case of alpha-base operations but insignificantly better in the case of beta-based (Figure 

4.32). Crossovers that change only hyperparameters are significantly more effective when the 

root classifiers are inherited from the fittest parent: 22.54% vs 12.90% mean improvement rates. 

Both observations correlate with the idea that the higher the share of the fittest parent is ob-

served in the offspring, the better the latter's performance. 

 

In the case of crossover, a level of operation means the edge on which the fittest parent 

was split to produce offspring. Crossovers with zero operational level mean that, presumably 

full parent tree was copied to the offspring. As expected, most operations happened in level 1 

(Figure 4.33), where base classifier hyperparameters reside. The difference in performance im-

pact of first and second-level crossovers is not significant. 

 

4.3.2.2. Waveform 

Test accuracy achieved in scenario 4 is 0.8672 on average. Internal scores of selected individ-

uals in generation 1 vary from 0.3338 (0.01 quantile) to 0.8711 (maximum), with median and 

mean scores equal to 0.8711 and 0.7840. The scores of the individuals generated in generation 

5 range between 0.3439 (0.01 quantile) and 0.8736, with median and mean equal to 0.8593 and 

0.8447.  

Figure 4.32 Amount and performance of crossover operations by crossover base and type.  

Breast cancer. 

Figure 4.33 Amount and performance of crossover operations by the level of operation. 

Breast cancer. 
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The vast majority of all selected individuals are of size 1 (50.16%) or 2 (42.72%), and 

just a few reach the size of up to 7. In generation 1, all the individuals before the operation were 

of a size 1 or 2, but its number decreased to 85.6% by generation 5—larger pipelines developed 

over generations. Individuals with 6 and 7 pipeline operators are generated in generation 4 and 

thus are selected only in generation 5 and are just 3 cases.  

 

Each of the 30 iterations involved about 250 operations which are roughly equally split 

into crossovers and mutations because of the same probability. Mutations tend to have a better 

chance of improving the accuracy of an individual. On average, 31.15% of individuals have a 

higher score after the mutation than before it. That improvement score varies from 23.53% to 

40.16% in different iterations. Crossover, however, results in score improvements in 10.62% to 

28.57% of cases, i.e., 18.21% on average. 

 

Only one quarter (24.4%) of all chosen pipelines improve their performance after ge-

netic operations, which also means that most operations lower fitness values. Thus, all genera-

tions' median scores after the operation are lower than before. A pool of selected individuals 

consists of an average of 29.5 unique pipelines, which in other cases can be as small as 21 and 

as large as 37. However, pipelines after an operation are all unique in most cases (95 out of 

150), averaging the number of unique pipelines to 49.4. Selection of the best portion from the 

pool of the previous generation and its offspring ensures gradual fitness improvement that slows 

down as scores approach the maximum value of 1.0 (Figure 4.36).  

Figure 4.34 Selected individual size distribution by generation. Waveform. 

Figure 4.35 Amount and performance of operations by genetic operators. Waveform 
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Mutation 
The improvement rate for mutation is decreasing over generations from a mean improvement 

of 42.31% in generation 1 to 20.93% in generation 5 (Figure 4.37). Mutation performance in 

generations 1 & 2, 3 & 4,  are not significantly different (t-test p1&2=0.189, p3&4=0.896). Sig-

nificant drops in mutation performances happen after generation 2 and generation 4. 

 

Mutation can appear in 3 different ways: change, add, and remove one node in the 

pipeline tree, resulting in possible pipeline change by a maximum of one unit. As seen from 

Figure 4.38, the majority, i.e., 1862 (49.4%) mutation operations, did not influence the pipeline 

size. The pipeline after mutation grew in 1621 or 43% cases, which is much more than in the 

case of diminished pipelines: 283 or 7.6% mutations. It is largely because almost half of the 

chosen individuals have only one pipeline operator. Mutations that decrease pipeline size seem 

to have the highest performance (35.95% average improvements rate) but might have too few 

observations to make a confident conclusion. Improvement rates of mutations that do not 

change the size of the pipelines range between 22.22% and 45.90% and average 32.82%, which 

is significantly higher than the performance of the mutations that increase pipeline size (t-test 

p-value is 0.022). The latter varies from 14.29% to 41.18% in different iterations and has a 

mean improvement rate of 28.19%. 

Figure 4.36 Distribution of median accuracies by the generation before and after 

genetic operation. Waveform. 

Figure 4.37 Amount and performance of mutations by pipeline generation. Waveform. 
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All (but several exceptions) mutations that change a pipeline operator do not influence 

the size of an individual, additive mutations increase it by one, and subtractive mutation reduces 

it by one. Exceptions are operations that involve a pipeline element that combines two inputs 

(later: combiner), which is not counted as a pipeline operator in calculations of the size of the 

individual. Those exceptions account for 54 added, 12 removed, two switched to, and five 

switched from combiners. That explains the slight difference between pipeline size increase 

charts (Figure 4.38) and mutation type charts (Figure 4.39). Mean improvement rates for add-

ing, changing, and removing mutations are 28.69%, 32.84%, and 36.65%, respectively. Like in 

the case of size increase, the changing mutation is significantly different from the additive ( 

p=0.019). 

 

Pre-processor and classifier are the most added pipeline components, amounting to 

83.17% of all additive mutations (Figure 4.40). Adding a classifier contributes more to an indi-

vidual’s performance—its average improvement rate is 32.6%, which is significantly higher 

than the preprocessor’s 20.9% (p-value<0.001). Adding a selector result on average in the high-

est 42.3% improvement rate, however, might lack observations to make confident conclusions. 

 

Figure 4.38 Amount and performance of mutations by pipeline size increase. Waveform. 

Figure 4.39 Amount and performance of mutation operations by type. Waveform. 

Figure 4.40 Amount and performance of mutation operations by the added object. Waveform. 
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Pipeline operators change in 13 different ways, but Figure 4.41 shows only three with 

more than 20 observations. The full version of the chart can be seen in Appendix 3. 1380  (or 

76.5%) of all change mutations are the change in hyperparameter value, which also accounts 

for 36.6% of all mutations. Hyperparameter adjustment improves the accuracy in 34.5% of 

cases on average. Switch of classifiers is the second most common change, which amounts to 

338 operations or 18.7% of change mutations. Its average improvement rate is 26.1%. The rest 

of the changes do not have enough observations to conclude their effectiveness. 

 

Removing mutation is the least frequent type of mutation. Its most common objects 

are the classifier and pre-processor (Figure 4.42), like in the case of additive mutation. Remov-

ing an extra classifier leads to fitness improvement in 46.11% of cases, which is significantly 

greater than removing a pre-processor (30.71%).  

 

Change of the root classifier is the only change possible on level 0. It improves the 

performance of an individual in 25.98% of cases on average. Although root classifier changes 

in pipelines of any depth, it is most common in depth 1 (229 of 321 cases) because of the fewer 

mutation options small pipelines can have. Most of the changes happen on level 1 (Figure 4.43) 

because that is where root classifier hyperparameters reside, which is known as one of the most 

frequently changed parts of the pipeline. It is also where all the additions happen in the pipelines 

of depth 1, as well as all removals and most of the additions and changes in pipelines with depth 

2. 

Figure 4.41 Amount and performance of mutation operations by the changed object (short). 

Waveform. 

Figure 4.42 Amount and performance of mutation operations by the removed object. 

Waveform. 
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Crossover 
The improvement rate for crossover is slightly decreasing over generations, from a mean im-

provement of 21.10% in generation 1 to 14.96% in generation 5. It takes three generations for 

crossover performance to decrease significantly (t-test p-value1&4=0.007, p-value2&5=0.015).  

 

While mutation can result in maximum pipeline change by one unit, crossover impact 

on the pipeline size reaches up to 3 units to the positive and 4 to the negative direction (Figure 

4.45). Nevertheless, most operations did not change the size of the pipeline. The number of 

pipeline operators stayed the same in 4367, 58.44% of total cases, and 2505 (66.46%) crossover 

operations. 

 

Figure 4.43 Amount and performance of mutation operations by the level of operation. 

Waveform. 

Figure 4.44 Amount and performance of crossover operations by generation. Waveform. 

Figure 4.45 Amount and performance of crossover operations by pipeline size increase. 

Waveform. 
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Most (71.4%) of the crossovers happened on a leaf node level (Figure 4.46), which is 

only possible for hyperparameter nodes. It is the only option for small (i.e., of size 1) pipelines, 

which amount to almost half of the population. Mean improvement rates for branch and leaf 

crossovers are 17.94% and 19.59%, respectively, and are not significantly different. In 217 

cases (or 5.9%%), the type of crossovers cannot be identified because either: individuals (before 

and after a crossover) are equal or have no common pipeline operators. 

 

As can be observed from Figure 4.47, inheriting the root classifier from the fittest par-

ent (alpha) is more common and leads to fitter offspring than from the other parent (beta). Using 

the root from the alpha parent amounts to 61.22% of crossovers and leads to a 21.71% average 

improvement rate, which is significantly higher than the 15.18% improvement rate of beta.  

 

Branch crossovers take a bigger share (28.1%) of alpha-based operations than beta-

based (16.9%). Branch crossovers perform significantly worse than leaf crossovers in the case 

of alpha-base operations (p=0.002) but insignificantly better in the case of beta-based (p=0.7) 

(Figure 4.48). Crossovers that change only hyperparameters are significantly more effective 

when the root classifiers are inherited from the fittest parent: 23.28% vs 13.5% mean improve-

ment rates. Both observations correlate with the idea that the higher the share of the fittest parent 

is observed in the offspring, the better the latter's performance. 

Figure 4.46 Amount and performance of crossover operations by crossover type. Waveform. 

Figure 4.47 Amount and performance of crossover operations by crossover base. Waveform. 
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In the case of crossover, a level of operation means the edge on which the fittest parent 

was split to produce offspring. Crossovers with zero operational level mean that, presumably 

full parent tree was copied to the offspring. As expected, most operations happened in level 1 

(Figure 4.49), where base classifier hyperparameters reside. The difference in performance im-

pact of first and second-level crossovers is not significant (p=0.576). 

 

4.3.2.3. Bioavailability 

Test negative RMSE achieved in scenario 4 is -27.731 on average. Internal scores of selected 

individuals in generation 1 vary from -2.17·1023 (0.01 quantile) to -724.15 (maximum), with 

median and mean scores equal to -908.29 and -1.56·1036. The scores of the individuals gener-

ated in generation 5 range between -1507.29 (0.01 quantile) and -713.76 (max), with median 

and mean equal to -780.34 and -1.11·1036.  

The vast majority of all selected individuals are of a size 1 (50.11%) or 2 (42.78%) 

and reach a size of up to 4. In generation 1, all the individuals before the operation were of a 

size 1 or 2. Still, its total number decreases to 91.6% by generation 5 due to the drop in the 

number of pipelines of size 2. The number of one-operator pipelines is, on the contrary, increas-

ing over generations. Although pipelines of size five are getting generated by crossovers and 

Figure 4.48 Amount and performance of crossover operations by crossover base and type. 

Waveform. 

Figure 4.49 Amount and performance of crossover operations by the level of operation. 

Waveform. 
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mutations since generation 2, they are never selected, and the largest size of the individuals 

remains equal to 4.  

 

Each of the 30 iterations involved about 250 operations which are roughly equally split 

into crossovers and mutations because of the same probability. Mutations tend to have a better 

chance of improving the accuracy of an individual. On average, 30.86% of individuals have a 

higher score after the mutation than before it (Figure 4.51). That improvement score varies from 

21.26% to 38.97% in different iterations. Crossover, however, results in score improvements in 

12.90% to 27.83% of cases, i.e., 20.79% on average. 

 

Only one quarter (25.76%) of all chosen pipelines improve their performance after 

genetic operations, which also means that most operations lower fitness values. Thus, all gen-

erations' median scores after the operation are lower than before. A pool of selected individuals 

consists of an average of 29.5 unique pipelines, which in other cases can be as small as 22 and 

as large as 37. However, pipelines after an operation are all unique in most cases (101 of 150), 

Figure 4.50 Selected individual size distribution by generation. Bioavailability. 

Figure 4.51 Amount and performance of operations by genetic operators. Bioavailability. 

Figure 4.52 Distribution of median accuracies by the generation before and after 

genetic operation. Waveform. 
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averaging the number of unique pipelines to 49.4. Selection of the best portion from the pool 

of the previous generation and its offspring ensures gradual fitness improvement that slows 

down as scores approach the maximum value of 0 (Figure 4.52).  

Mutation 
The improvement rate for mutation is decreasing over generations from a mean improvement 

of 43.84% in generation 1 to 23.41% in generation 5 (Figure 4.53). The drop in the operator 

performance is sharper until generation 3 and less distinguished between generations 3 and 5. 

Mutation performance in generations 1&2 and 2&3 are significantly different at 0.05 signifi-

cance level, and 3&5 are significantly different at 0.1 significance level (p=0.065). 

 

Mutation can appear in 3 different ways: change, add, and remove one node in the 

pipeline tree, resulting in possible pipeline change by a maximum of one unit. As seen from 

Figure 4.54, the majority, i.e., 1870 (50.75%) mutation operations, did not influence the pipe-

line size. The pipeline after mutation grew to 1566 or 42.50% cases which is much more than 

diminished cases: 249 or 6.75% mutations. It is largely because almost half of the chosen indi-

viduals have only one pipeline operator. Size-increasing mutation improvement rate range be-

tween 11.54% and 42.86%, with a mean equal to 27.50%, which is significantly lower than the 

performance of size-unchanging mutation, which ranges from 19.70% to 43.55% and averages 

31.79%. The mean improvement rate of size-decreasing mutations is 45.04% (and ranges from 

0 to 1 in different iterations). Its performance seems the highest, but 249 observations might be 

too few to have a confident conclusion. 

 

Figure 4.53 Amount and performance of mutations by generation. Bioavailability. 

Figure 4.54 Amount and performance of mutations by pipeline size increase. Bioavailability. 
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All (but several exceptions) mutations that change a pipeline operator do not influence 

the size of an individual, additive mutations increase it by one, and subtractive mutation reduces 

it by one. Exceptions are operations that involve a pipeline element that combines two inputs 

(later: combiner), which is not counted as a pipeline operator in calculations of the size of the 

individual. Those exceptions account for 76 added, 11 removed, three switched to, and seven 

switched from combiners. That explains the slight difference between pipeline size increase 

charts (Figure 4.54) and mutation type charts (Figure 4.55). Mean improvement rates for add-

ing, changing, and removing mutations are 27.69%, 31.67%, and 45.12%, respectively. Like in 

the case of size increase, all mutation types are significantly different in their performance. 

 

Pre-processor and classifier are the most added pipeline components, amounting to 

86.79% of all additive mutations (Figure 4.56). Adding a selector, however, contributes the 

most to an individual’s performance—its average improvement rate is 36.75%, but it might 

have too few observations to make a confident conclusion. Performances of adding a prepro-

cessor and a regressor are not significantly different, and their average improvement rates are 

equal to 25.81% and 27.0%, respectively. 

 

Pipeline operators change in 13 different ways, but Figure 4.57 shows only three with 

more than 20 observations. The full version of the chart can be seen in Appendix 4. 1254  (or 

73%) of all change mutations are the change in hyperparameter value, which accounts for a 

third of all mutations. Hyperparameter adjustment improves the accuracy in 34.94% of cases 

on average. Switch of regressors is the second most common change, which amounts to 435 

Figure 4.55 Amount and performance of mutation operations by type. Bioavailability. 

Figure 4.56 Amount and performance of mutation operations by the added object. 

Bioavailability. 
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operations or 25% of change mutations. Its average improvement rate is 25.3%. The rest of the 

changes do not have enough observations to conclude their effectiveness. 

 

Removing mutation is the least frequent type of mutation. Its most common objects 

are the pre-processor and regressor (Figure 4.58), like in the case of additive mutation. Remov-

ing extra regressor leads to fitness improvement in 49.41% of cases, which is greater than re-

moving the pre-processor (40.12%). The difference, however, is not significant, and there might 

be too few observations to make a confident conclusion. 

 

Change of the root classifier is the only change possible on level 0. It improves the 

performance of an individual in 24.83% of cases on average. Although root classifier changes 

in pipelines of any depth, it is most common in the pipelines of depth 1 (329 of 427 cases) 

because of the fewer mutation options small pipelines can have. As Figure 4.59 shows, most of 

the changes happen on level 1 (2717 of 3683 cases) because that is where root classifier hy-

perparameters reside, which is known as one of the most frequently changed parts of the pipe-

line. It is also where all the additions happen in the pipelines of depth 1, as well as all removals 

and most of the additions and changes in pipelines with depth 2. 

Figure 4.57 Amount and performance of mutation operations by the changed object (short). 

Bioavailability. 

Figure 4.58 Amount and performance of mutation operations by the removed object. 

Bioavailability. 
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Crossover 
Figure 4.60 shows that the crossover operations' performance does not follow any pattern. Av-

erage improvement rates for crossover vary from 24.63% in generation 3 to 17.18% in genera-

tion 5. Crossover performances in generations 1&3, 2&4, and 2&5 are not significant. The 

largest performance drop happens after generation 1. The other decrease in performance is less 

steep and takes two generations to become significant. 

 

While mutation can result in maximum pipeline change by one unit, crossover impact 

on the pipeline size reaches up to 3 units difference in either direction (Figure 4.61). Neverthe-

less, most operations did not change the size of the pipeline. The number of pipeline operators 

stayed the same in 4485 or 59.94% of total cases and 2615 (69.02%) crossover operations. Its 

Figure 4.59 Amount and performance of mutation operations by the level of operation. 

Bioavailability. 

Figure 4.60 Amount and performance of crossover operations by generation. Bioavailability. 

Figure 4.61 Amount and performance of crossover operations by pipeline size increase. 

Bioavailability. 
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average improvement rate is 21.5%, which is significantly higher than crossovers that increase 

the size by 1 but not significantly different from the performance of crossovers that decrease 

the size by 1. Other cases have too few observations to make confident conclusions. 

Most (72%) of the crossovers happened on a leaf node level (Figure 4.62), which is 

only possible for hyperparameter nodes. It is the only option for small (i.e., of size 1) pipelines, 

which amount to almost half of the population. Mean improvement rates for branch and leaf 

crossovers are 20.67% and 22.56%, respectively, and are not significantly different (p=0.291). 

In 229 cases (or 6%), the type of crossovers cannot be identified because either both individuals 

(before and after a crossover) are equal or have no common pipeline operators. 

 

As can be observed from Figure 4.63, inheriting the root classifier from the fittest par-

ent (alpha) is more common and leads to fitter offspring than from the other parent (beta). Using 

the root from the alpha parent amounts to 64.3% of crossovers and leads to a 24.56% average 

improvement rate, which is significantly higher than the 16.75% of beta.  

 

Branch crossovers take a bigger share (27.4%) of alpha-based operations than beta-

based (14.46%). Branch crossovers perform significantly  α=0.   worse than leaf crossovers in 

the case of alpha-base operations (p=0.061) and significantly  α=0.   better in the case of beta-

based (p=0.097) (Figure 4.64). Crossovers that change only hyperparameters are significantly 

more effective when the root classifiers are inherited from the fittest parent: 25.66% vs 16.95% 

mean improvement rates. Both observations correlate with the idea that the higher the share of 

the fittest parent is observed in the offspring, the better the latter's performance. 

Figure 4.62 Amount and performance of crossover operations by crossover type. 

Bioavailability. 

Figure 4.63 Amount and performance of crossover operations by crossover base. 

Bioavailability. 
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In the case of crossover, a level of operation means the edge on which the fittest parent 

was split to produce offspring. Crossovers with zero operational level mean that, presumably 

full parent tree was copied to the offspring. As expected, most operations happened in level 1 

(Figure 4.64), where base classifier hyperparameters reside. The difference in performance im-

pact of first and second-level crossovers is not significant (p=0.819). 

 

4.3.2.4. Concrete 

Test negative RMSE achieved in scenario 4 is -4.399 on average. Internal scores of selected 

individuals in generation 1 vary from -5.08·1029 (0.01 quantile) to -18.10 (maximum), with 

median and mean scores equal to -86.54 and -3.12·1033. The scores of the individuals generated 

in generation 5 range between -282.3 (0.01 quantile) and -17.57, with median and mean equal 

to -30.21 and -9.48·1032.  

The vast majority of all selected individuals are of size 1 (42.78%) or 2 (50.11%) and 

reach a size of up to 4 (Figure 4.66). In generation 1, all the individuals before the operation 

were of size 1 or 2, but its number decreased to 81.6% by generation 5. The number of two-

operator individuals decreased to a larger extent than that of one-operator individuals. By gen-

eration 5, they take the same share of the population (on average). Larger pipelines (sizes 5 and 

6) have been developed since generation 3 but were never selected for further mutations or 

Figure 4.64 Amount and performance of crossover operations by crossover base and type. 

Bioavailability. 

Figure 4.65 Amount and performance of crossover operations by the level of operation. 

Bioavailability. 
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crossover (as parent 1). Size 4 remains the largest since generation 3 and amounts to 34 obser-

vations in generation 5.  

 

Each of the 30 iterations involved about 250 operations which are roughly equally split 

into crossovers and mutations because of the same probability. Mutations tend to have a better 

chance of improving the accuracy of an individual. On average, 36.26% of individuals have a 

higher score after the mutation than before it (Figure 4.67). That improvement score varies from 

25.0% to 46.03% in different iterations. Crossover, however, results in score improvements in 

14.42% to 31.67% of cases, i.e., 23.04% on average. 

 

Only one-quarter of all chosen pipelines improve their performance after genetic op-

erations, which also means that most operations lower fitness values. Thus, all generations' 

median scores after the operation are lower than before. A pool of selected individuals consists 

of an average of 29.3 unique pipelines, which in other cases can be as small as 21 and as large 

as 35. However, pipelines after an operation are all unique in most cases (102 of 150), averaging 

Figure 4.66 Selected individual size distribution by generation. Concrete. 

Figure 4.67 Amount and performance of operations by genetic operators. Concrete. 

Figure 4.68 Distribution of median accuracies by the generation before and after 

genetic operation. Concrete. 
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the number of unique pipelines to 49.5. Selection of the best portion from the pool of the pre-

vious generation and its offspring ensures gradual fitness improvement that slows down as 

scores approach the maximum value of 0 (Figure 4.68).  

Mutation 
The improvement rate for mutation is decreasing over generations from a mean improvement 

of 44.29% in generation 1 to 31.23% in generation 5 (Figure 4.69). Average improvement rates 

for mutation in generations 1&2, 2&3, 3&4, 4&5 are not significantly different (t-test p-values 

0.176, 0.089, 0.309, 0.783), but performance between 1&3 and 2&4 are significantly different. 

So, the decrease in performance after generation 3 is negligible.  

 

Mutation can appear in 3 different ways: change, add, and remove one node in the 

pipeline tree, resulting in possible pipeline change by a maximum of one unit. As seen from 

Figure 4.70, the majority, i.e., 1780 (47.39%) mutation operations, did not influence the pipe-

line size. The pipeline after mutation grew to 1655 or 44.06% cases which is much more than 

diminished cases: 321 or 8.55% mutations. It is largely because almost half of the chosen indi-

viduals have only one pipeline operator. Pipelines that have increased as a result of the mutation 

have, on average, the highest improvement rate, which ranges between 25.0% and 58.0%, with 

a mean equal to 40.3%. However, same and decreased size mutation performances are signifi-

cantly lower than size-increasing mutation but are not significantly different compared to each 

other and have average rates of 33.2% and 30.9%, respectively. 

 

All (but several exceptions) mutations that change a pipeline operator do not influence 

the size of an individual, additive mutations increase it by one, and subtractive mutation reduces 

Figure 4.69 Amount and performance of mutations by generation. Concrete. 

Figure 4.70 Amount and performance of mutations by pipeline size increase. Concrete. 
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it by one. Exceptions are operations that involve a pipeline element that combines two inputs 

(later: combiner), which is not counted as a pipeline operator in calculations of the size of the 

individual. Those exceptions account for 57 added, eight removed, eight switched to, and two 

switched from combiners. That explains the slight difference between pipeline size increase 

charts (Figure 4.70) and mutation type charts (Figure 4.71). Mean improvement rates for add-

ing, changing, and removing mutations are 40.33%, 33.14%, and 29.57%, respectively. Addi-

tive mutation performs significantly better than subtractive and changing. However, the differ-

ence between the performances of the two later is not statistically significant. 

  

Pre-processor and regressor are the most added pipeline components, amounting to 

86.2% of all additive mutations (Figure 4.72). Adding a regressor, however, contributes the 

most to an individual’s performance—its average improvement rate is 63.1%, which is signifi-

cantly higher than the selector’s average of 18.17% and the preprocessor’s 25.66%. 

 

Pipeline operators change in 15 unique ways, but Figure 4.73 shows only three with at 

least 20 observations. The full version of the chart can be seen in Appendix 5. 1254  (or 73%) 

of all change mutations are the change in hyperparameter value, which accounts for a third of 

all mutations. Hyperparameter adjustment improves the accuracy in 34.98% of cases on aver-

age. Switch of regressors is the second most common change, which amounts to 371 operations 

or 21.5% of change mutations. Its average improvement rate is 27.89%. The rest of the changes 

do not have enough observations to conclude their effectiveness. 

Figure 4.71 Amount and performance of mutation operations by type. Concrete. 

Figure 4.72 Amount and performance of mutation operations by the added object. Concrete. 
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Removing mutation is the least frequent type of mutation. Its most common objects 

are the regressor and pre-processor (Figure 4.74), like in the case of additive mutation. Remov-

ing extra regressor leads to fitness improvement in 19.42% of cases, which is less than removing 

the pre-processor (50.42%). Although the difference is significant, both cases might lack ob-

servations to make confident conclusions. 

 

Change of the root classifier is the only change possible on level 0. It improves the 

performance of an individual in 27.62% of cases on average. Although root classifier changes 

in pipelines of any depth, it is most common in depth 1 (234 of 348 cases) because of the fewer 

mutation options small pipelines can have. Most of the changes happen on level 1 (Figure 4.75) 

because that is where root classifier hyperparameters reside, which is known as one of the most 

frequently changed parts of the pipeline. It is also where all the additions happen in the pipelines 

of depth 1, as well as all removals and most of the additions and changes in pipelines with depth 

2. 

Crossover 

Figure 4.73 Amount and performance of mutation operations by the changed object (short). 

Concrete. 

Figure 4.74 Amount and performance of mutation operations by the removed object. 

Concrete. 

Figure 4.75 Amount and performance of mutation operations by the level of operation. 

Concrete. 
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On average, the crossover improvement rate is 20.95% in generation 1 (Figure 4.76). It in-

creases during two generations and reaches an average of 24.83% in generation 3. It is followed 

by a two-generation-long decrease in performance, ending in an average of 21.30%. However, 

none of those changes is statistically significant. The T-test p-value for the improvement rate 

distributions in the most diverse generations, i.e., 1 and 3, is 0.103. 

 

While mutation can result in maximum pipeline change by one unit, crossover impact 

on the pipeline size reaches up to 3 units difference in either direction (Figure 4.77). Neverthe-

less, most operations did not change the size of the pipeline. The number of pipeline operators 

stayed the same in 4315 or 57.66% of total cases and 2535 (68.02%) crossover operations. 

 

Most (71.7%) of the crossovers happened on a leaf node level (Figure 4.78), which is 

only possible for hyperparameter nodes. It is the only option for small (i.e., of size 1) pipelines, 

which amount to almost half of the population. Mean improvement rates for branch and leaf 

crossovers are 25.67% and 24.12%, respectively, and are not significantly different. In 192 

cases (or 5.15%), the type of crossovers cannot be identified because either both individuals 

(before and after a crossover) are equal or have no common pipeline operators. 

Figure 4.76 Amount and performance of crossover operations by generation. Concrete. 

Figure 4.77 Amount and performance of crossover operations by pipeline size increase. 

Concrete. 
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As can be observed from Figure 4.79, inheriting the root classifier from the fittest par-

ent (alpha) is more common and leads to fitter offspring than from the other parent (beta). Using 

the root from the alpha parent amounts to 61.6% of crossovers and leads to a 28.92% average 

improvement rate, which is significantly higher than the 15.57% of beta.  

 

Branch crossovers take a bigger share (25.5%) of alpha-based operations compared to 

beta-based (22.42%). Branch and leaf crossover performances are not significantly different in 

either alpha- or beta-based operations (Figure 4.80). Crossovers that change only hyperparam-

eters are significantly more effective when the root classifiers are inherited from the fittest par-

ent: 29.62% vs 13.89% mean improvement rates. Both observations correlate with the idea that 

the higher the share of the fittest parent is observed in the offspring, the better the latter's per-

formance. 

 

In the case of crossover, a level of operation means the edge on which the fittest parent 

was split to produce offspring. Crossovers with zero operational level mean that, presumably 

full parent tree was copied to the offspring. As expected, most operations happened in level 1 

(Figure 4.81), where base classifier hyperparameters reside. Performance in second-level 

Figure 4.78 Amount and performance of crossover operations by crossover type. Concrete. 

Figure 4.79 Amount and performance of crossover operations by crossover base. Concrete. 

Figure 4.80 Amount and performance of crossover operations by crossover base and type. 

Concrete. 
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crossovers averages 28.77% and is significantly higher than the performance of the first-level 

crossovers, which means the improvement rate is 22.77%. Other levels have too few observa-

tions to make a confident conclusion. 

 

4.4. RESULTS AND DISCUSSION 

The first experiment aims to analyse the performance and construction of resulting pipelines 

which solve two classification problems (Breast cancer and Waveform) and two regression 

problems (Bioavailability and Concrete). Each test case is solved using four sets of TPOT set-

tings or scenarios. Under scenario 1, the population of 250 individuals is initialized; under sce-

narios 2 and 4, the population of 50 individuals is evolved for five generations; under scenario 

3, the population of 25 individuals is evolved for ten generations. Scenarios 2 and 4 differ in 

crossover and mutation rates, which are default (10:90) in scenario 2 and equal (50:50) in sce-

nario 4. All test cases are split into training (90%) and test (10%) sets. Each experiment is run 

30 times, so every test case has 120 independent solutions, which analysis is summarized below. 

No significant difference exists between test scores of initializations and scores of evo-

lutions in any of the four scenarios. Training scores of initializations, however, are significantly 

lower in the case of classification problems: Breast cancer and Waveform. 

Generation 1 internal CV score (scenarios 2 and 3) results significantly differ from the 

results of the population initialized in scenario 1. Only in breast cancer and concrete cases is 

the difference between initialized (scenario 1) and evolved 50 individuals (scenario 2). In cases 

of Waveform and Bioavailability, the significant difference appears only between scenarios 1 

and 3 (25 individuals evolved). 

The relationship between internal CV scores of initialized and fully evolved scenarios 

varies with test cases. Breast cancer case has the most distinct results: all three scenarios have 

significantly different average CV score distributions. In the case of Concrete, initialized scores 

are significantly lower than 25 individuals evolved during ten generations (scenario 3) only. 

Figure 4.81 Amount and performance of crossover operations by the level of operation. 

Concrete. 
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The same is for the Waveform, but with a lower significance level: α=0. . No significant dif-

ference is observed in the final results in the case of Bioavailability. Scenario 2 CV scores of 

Bioavailability reach the level of scenario 1 in generation 3 and barely grow since then. Scenario 

3 scores of Bioavailability do not reach the level of scenario 1 during 10 generations and end 

up having the lowest average result. 

Running TPOT on regression pipelines resulted in all unique pipelines (i.e., 120). 

However, in the case of classification problems, the output is sometimes repetitive. So, the 

Breast cancer problem has 118 unique solutions, and the Waveform problem has 106. However, 

when hyperparameters are disregarded, and only combinations of pipeline operators (e.g., clas-

sifiers, selectors) are taken into consideration, the picture is different. Over half of the solutions 

are operation-wise unique in the case of classification problems: 69 unique operation combina-

tions the Breast cancer and 61 for the Waveform problem. Regression problems, however, have 

about a third of the solution operation-wise unique: 40 for the Bioavailability and 46 for the 

Concrete problem. The number of operation-wise unique pipelines is the lowest in scenario 1 

and the highest in scenario 3. The number is similar in scenarios 2 and 4; both lay between the 

values for scenarios 1 and 3. Breast cancer unique solutions vary from 16 to 27, Waveform 

from 17 to 25, Bioavailability from 11 to 20 and Concrete from 11 to 17.  

Regression problem solutions also tend to be shorter than classification problem solu-

tions. Bioavailability and Concrete case solutions consist of just one operator in about half of 

the cases: 65 in the case of Bioavailability and 59 in the case of Concrete. Another third of the 

regression pipelines are of a size 2. Classification problem solutions, however, are of the size 2 

in over half of the cases: 63 in the case of Breast cancer and 65 in the case of the Waveform. 

The number of one and three-operator solutions is almost equal for classification problems: 24 

and 24 for Breast cancer and 26 and 22 for Waveform. 

The bigger size of classification solutions also means a heavier use of preprocessors 

and selectors. The selector is typically the least frequently used pipeline operator and appears 

up to 10 out of 120 times in all but the Waveform solutions. Just half of the Waveform dataset 

attributes are meaningful, which justifies the untypically frequent use of selectors: 39 cases. 

Preprocessing is common in both classification solutions. While Waveform solutions include 

preprocessors in a third of the cases, most Breast cancer solutions have at least one preproces-

sor; in 12 cases, it is included more than once.  

The second experiment analyses the statistics and performance of genetic operators 

(mutation and crossover) used in scenario 4. The experiment was performed on the same four 

cases: two classification and two regression problems. Mutation and classification are set to be 
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performed with equal probability. The main operator performance indicator is whether the pipe-

line's fitness after a genetic operation is better than before. In the case of crossover, resulting 

pipeline fitness is compared with the fittest parent. The results are summarized below. 

Initialized population always consist of pipelines of a size 1 or 2. Its share decreases 

to up to 81.6% by generation 5 (Concrete case). The share decrease is the smallest in the case 

of Bioavailability. Unlike other test cases, where both size 1 and size 2 shares decrease over 

generations giving ground to larger pipelines, the number of one-operator solutions for Bioa-

vailability is growing and reaching 57.8% by generation 5 (before operations). While classifi-

cation solutions grow in size up to 6 in the case of Breast cancer and 7 in the case of the Wave-

form, selected pipelines for regression problems do not exceed the size of 4.  

Mutation and crossover are performed with equal probability, but the mutation pipe-

line improvement rate is significantly higher in all test cases. Crossover results are always com-

pared with the parent with the highest fitness value, likely contributing to lower improvement 

rates. In the Breast cancer case, mutation and crossover improvement rates are the lowest com-

pared to other cases: 29.0% and 17.4%. In the case of Concrete, they are the highest: 36.3% and 

23.0%. The waveform has rates higher than Breast cancer: 31.2% and 18.2%. Bioavailability 

has them lower than Concrete: 30.9% and 20.8%. 

In all cases, improvement rates of mutation are decreasing over generations. The closer 

the pipeline result is to the perfect score, the lower are chances of improving the score via 

mutation. The most common types of mutation are adding a new pipeline element (e.g., classi-

fier or preprocessor) and changing an existing pipeline element (e.g., changing one classifier to 

another or preprocessor to selector) or hyperparameter value. Mutations that remove pipeline 

elements account for less than 10% of all mutations, which can be partly explained by the fact 

that almost half of all selected pipelines have only one pipeline operator, which cannot be re-

moved. The difference between additive and changing mutations can be observed in three test 

cases: change mutations perform better in the case of Waveform and Bioavailability and worse 

in the case of Concrete. Mean improvement rates for additive mutations vary from 27.7% (Bi-

oavailability) to 40.3% (Concrete); rates for changing mutations vary between 28.7% (Breast 

cancer) and 33.1% (Concrete). Preprocessor, classifier/regressor, selector, and combiner are 

added to the pipeline approximately in the following proportions: 45%, 40%, 10%, and 5%. 

Although preprocessors are added the most, their improvement rates are just about 21% in the 

case of classifications and about 26% in the case of regression problems, which are often sig-

nificantly lower than for other added operators. Only in the case of Bioavailability performance 

of adding different operators has no significant difference. As expected, adding a selector is the 
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most impactful (42.3%) additive mutation of the Waveform case. Breast cancer solutions ben-

efited the most from adding another classifier (36.8%) and Concrete from adding a regressor 

(63.1%). Change mutations have 13 to 15 different variations depending on the case, but most 

of them have less than 20 observations. Hyperparameter switch accounts for most change mu-

tations (about 73%) and a third of all mutations. Another frequently changed operator is classi-

fier/regressor, which amounts to 21% of change mutations. In all cases, change in hyperparam-

eters has a higher improvement rate, which averages vary between 30.8% (Breast cancer) and 

35.0% (Concrete). Switch of classifiers benefits 22.2% and 26.1% of pipelines in Breast cancer 

and Waveform cases, respectively. Switch of regressors improves 25.3% and 27.9% cases of 

Bioavailability and Concrete. Like in the case of adding, preprocessor and classifier/regressor 

are the most typical removed operators. The variability of improvement rates of removing mu-

tations is too high due to a small number of observations. 

Unlike mutations, crossovers do not have a common pattern in performance change 

over generations. Crossovers also have a bigger impact on the pipeline size, which can be up to 

3 units increase or decrease. Regardless of the test case, the most typical outcome is no change 

in size, largely due to the popularity of crossovers that change only hyperparameters. Crossover 

analysis is based on differences between the fittest (or alpha) parent pipeline and the first child 

pipeline. In most (approx. 62%) cases, a child pipeline inherits the root classifier/regressor from 

the observed (alpha) parent, in approximately 33% of cases, from the beta parent. In about 5% 

of cases, a parent cannot be identified (because either both pipelines are equal or have no com-

mon pipeline operators. Inheriting root classifier/regressor from the alpha parent benefits off-

spring more frequently than from beta. Alpha improvement rates vary from 21.7% (Waveform) 

to 28.9% (Concrete); beta improves the score in 13.0% (Breast cancer) to 16.8% (Bioavailabil-

ity) of the cases. When the root is taken from one parent, the branch is taken from the other. 

When a branch consists of one unit, which can be only a hyperparameter, it is called a leaf. 

Inheriting leaves is the most common type of crossover and takes a share of about 72% in all 

test cases. When analysed separately, leave crossover does not perform significantly differently 

from branch crossover. Performances of both vary from about 18% (as in Breast cancer) to 25% 

(as in Concrete). Leaf crossovers have a significantly higher improvement rate than branch 

crossovers when the root is inherited from the alpha parent in both classification cases and 

Bioavailability (but with a lower significance level). Leaf crossovers perform worse than branch 

crossovers when the root is from the beta parent  with α=0.   in Waveform and Bioavailability 

cases. It appears that the bigger share of the fittest parent is inherited, the better the fitness of 

the offspring. 
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For both mutations and crossovers, most of the changes happen on level 1 because that 

is where hyperparameters of the root classifiers and regressors reside, which are known as one 

of the most frequently changed parts of the pipeline. It is also where all the additions happen in 

the pipelines of depth 1 and where all removals and most of the additions and changes in pipe-

lines with depth 2 occur. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

AutoML makes ML accessible to non-experts and reduces the time spent on iterative ML tasks 

like model selection and hyperparameter tuning. Thereby it helps to satisfy the increasing de-

mand for ML specialists. During the last eight years, multiple AutoML tools have been devel-

oped, TPOT being one of the first. TPOT is an optimization tool that relies on genetic program-

ming to help users identify the best pipeline. Unlike many other AutoML frameworks, which 

can find only the best models, TPOT discovers the best pipelines composed of feature selectors, 

preprocessors, and ML/DL models. TPOT is still under development and lacks a thorough anal-

ysis of its operation and effectiveness. 

This thesis aims to democratize the knowledge about the TPOT and uncover what is 

happening under the hood. First, it covers the concept of genetic programming, the foundational 

concept of the TPOT framework. Then the processes behind TPOT are described in detail. A 

large part of this thesis is an overview of TPOT-optimized pipeline construction and a descrip-

tion of how pipelines change after crossovers and mutations. 

The experiments were run 30 times each on four test cases: two classification datasets 

and two regression datasets. First, the performance of evolved pipelines was compared with the 

best of 250 initialized pipelines. Besides judging effectiveness based on test scores, internal 

scores were analysed by generation. Second, extracted data on each operation enabled studying 

the effect of mutation and crossover on the pipelines and their performance. 

The framework source code reveals that, unlike many other genetic programming al-

gorithms, TPOT selects individuals for mutation and crossover randomly and applies the selec-

tion algorithm to create a new population only after a new set of offspring is created and com-

bined with the old population. TPOT uses the multi-objective selection algorithm NSGA-II, a 

one-point crossover and a mutation approach that uniformly selects between adding, removing 

and replacing pipeline operators. Moreover, TPOT exists in multiple pre-defined configura-

tions, which can extend the search space with the operators not available in the default mode: 

neural networks algorithms, GPU-based models, multifactor dimensionality reduction and re-

lief-based feature selection algorithms. 

One of the key findings of the research is that evolved pipelines do not perform sig-

nificantly differently from initialized. Nevertheless, pipelines evolved for 10 generations, some-

what outperformed other scenarios in two of four cases and evolved for 5 generations in one 

test case. More observations are obtained from the second experiment. Mutations lead to pipe-

line improvement more often than crossovers. However, comparing crossover offspring with 
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the first parent or the parents’ average performance could lead to a higher improvement rate. 

Mutation improvement rates decrease over generations, which might imply that mutation ef-

fectiveness correlates with initial pipeline performance. The effectiveness of different mutation 

types is test case sensitive, which might speak in favour of TPOT’s ability to adapt to the given 

problem. About a third of all mutations is a hyperparameter swap which, by the way, improves 

pipelines in about a third of the cases. All initialized pipelines consist of a maximum of two 

operators. So, most of the mutations and crossovers happen on level 1 because after evolving 

for five generations, about 40% of the pipelines are still of size one. Inheriting root classifier/re-

gressor from the fittest parent benefits offspring more frequently. Inheriting a subtree from the 

fittest parent is more beneficial than inheriting a terminal value. The opposite is true in the case 

of heritage from the beta parent. Interestingly, TPOT’s flexibility in pipeline creation can result 

in nonorthodox combinations of several, sometimes identic, classifiers or regressors within one 

pipeline. 

Current research has been performed using the default configuration, but the results 

with other predefined and custom configurations are likely to differ. As TPOT operator effec-

tiveness seems to vary with test cases, it is recommended to repeat the experiments with new 

data. A similar study could be performed on more complex problems using more individuals. 

Longer pipeline evolution could result in a wider range of pipeline sizes, making it more inter-

esting to compare with relatively shorter initialized pipelines. When repeating the analysis, it is 

advised to extract data for both parents. That would facilitate the analysis of crossovers. 

TPOT developers could consider adjustable mutation and crossover ratios based on 

their previous performance.  
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7. APPENDICES 

Appendix 1 

Example of TPOT generated python code for a classification problem 

import numpy as np 

import pandas as pd 

from sklearn.feature_selection import SelectPercentile, f_classif 

from sklearn.model_selection import train_test_split 

from sklearn.neural_network import MLPClassifier 

from sklearn.pipeline import make_pipeline 

from sklearn.preprocessing import MaxAbsScaler 

from tpot.export_utils import set_param_recursive 

 

# NOTE: Make sure that the outcome column is labelled 'target' in the data file 

tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', 

dtype=np.float64) 

features = tpot_data.drop('target', axis=1) 

training_features, testing_features, training_target, testing_target = \ 

            train_test_split(features, tpot_data['target'], random_state=42) 

 

# Average CV score on the training set was: 0.976497948016416 

exported_pipeline = make_pipeline( 

    SelectPercentile(score_func=f_classif, percentile=78), 

    MaxAbsScaler(), 

    MLPClassifier(alpha=0.0001, learning_rate_init=0.01) 

) 

# Fix random state for all the steps in the exported pipeline 

set_param_recursive(exported_pipeline.steps, 'random_state', 42) 

 

exported_pipeline.fit(training_features, training_target) 

results = exported_pipeline.predict(testing_features) 
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Appendix 2 

Amount and performance of mutation operations by the changed object (full 

version). Breast cancer. 

 

 

Appendix 3 

Amount and performance of mutation operations by the changed object (full 

version). Waveform. 
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Appendix 4 

Amount and performance of mutation operations by the changed object (full 

version). Bioavailability. 

 

 

Appendix 5 

Amount and performance of mutation operations by the changed object (full 

version). Concrete. 
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