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The vibroacoustic interaction in mallet percussion 
instruments: modelling and experiments

1. Introduction

Mallet percussion instruments (e.g. marimba, vibra-
phone, xylophone, etc.) are made of various tuned bars 
that vibrate and radiate sound at their natural frequencies 

of vibration. The tuning process involves cutting on the 
underside of the bars such that their frequencies become 
harmonically aligned (multiple integers of the fundamental 
frequency). Recent years have seen a number of studies 
[1] [2] [3] [4] using optimization methods to find undercut 
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Resumen

En algunos instrumentos de percusión de mazo, como 
vibráfonos y marimbas, se colocan resonadores acústicos 
debajo de las barras afinadas para mejorar la radiación 
acústica. Aunque se utiliza mucho en instrumentos comer-
ciales, la interacción vibro-acústica entre las barras afina-
das y sus resonadores no se ha estudiado de forma ex-
haustiva, y los intentos de modelado anteriores suelen 
descuidar aspectos importantes de la dinámica de acopla-
miento. Este trabajo se basa en un estudio previo, donde 
se presentó un modelo mínimo para el acoplamiento entre 
un único modo de barra y un único modo de resonador. 
Aquí, los mismos principios de modelado se aplican a un 
sistema compuesto por una barra 1-D y un resonador 
acústico cilíndrico, llevando a un modelo simplificado que 
incluye la dinámica de acoplamiento entre varios modos 
de barra y varios modos acústicos de resonador. La diná-
mica del modelo se explora a través de simulaciones en el 
dominio temporal y análisis de valores propios, revelando 
una serie de características interesantes, por ejemplo: el 
papel de la relación de coeficientes de amortiguamiento 
entre un modo de barra y un modo de resonador, la colo-
cación del resonador a longo de la barra, así como su 
proximidad a la barra. Además, se presentan resultados 
experimentales para validar el modelo y demostrar su ca-
pacidad para emular instrumentos reales, tanto cualitativa 
como cuantitativamente.

Abstract

In some mallet percussion instruments, such as vibra-
phones and marimbas, tubular acoustic resonators are 
placed beneath the tuned bars to enhance sound radia-
tion. Although widely used in commercial instruments, the 
vibroacoustic interaction between the tuned bars and their 
resonators has not been studied extensively, and previous 
modelling attempts regularly neglect important aspects of 
the coupling dynamics. This work develops on a previous 
study, where a minimal model for the coupling between a 
single bar mode and a single resonator mode was pre-
sented. Here, the same modelling principles are applied to 
a system composed of a 1-D beam and a 1-D cylindrical 
acoustic resonator, leading to a lumped-parameter model 
including the coupling dynamics between several bar 
modes and several resonator acoustic modes. The dynam-
ics of the lumped-parameter model are explored through 
time-domain simulations and eigenvalue analysis, reveling 
a number of interesting (and rarely mentioned) features, for 
example: the role of the ratio of damping coefficients be-
tween a bar mode and a resonator mode, the placement 
of the resonator along the bar’s length as well as its prox-
imity to the bar, etc. Additionally, experimental results are 
presented to validate the model and demonstrate its ca-
pacity to emulate real instruments, both qualitative and 
quantitatively.

Palabras clave: interacción barra-resonador, 
acoplamiento vibroacústico, modelado simplificado, 
validación experimental.

Keywords: bar-resonator interaction, vibroacoustic 
coupling, simplified modelling, experimental validation.



revista de acústica  |  Vol. 53  |  N.os 3 y 414 ][

The vibroacoustic interaction in mallet percussion instruments: modelling and experiments

geometries that lead to the tuning of multiple bar modes 
to a set of predefined targets. Moreover, some studies 
considered the concomitant tuning of non-vertical-bend-
ing modes (torsional, lateral) with vertical-bending modes 
[5] [6].

In some instruments, resonator pipes are used to en-
hance sound radiation. Early experimental reports by 
Bork [7] have demonstrated that when the fundamental 
frequency of the acoustic resonator is aligned with that of 
a bar mode, the two (mechano-acoustic) elements expe-
rience a vibro-acoustic coupling, which generally leads to 
an increase of sound radiation. On the other hand, the 
increased sound radiation is often accompanied by a 
proportional decrease of the bar decay time.

Despite the advances on the design optimization of 
the individual elements (bars and resonators), the nature 
of the vibro-acoustic coupling between the two has not 
been studied extensively. To the authors knowledge, the 
only work dealing with the two-way coupling is that re-
cently published by Rucz et al. [8]. Here, the authors use 
3-D finite element models to describe the vibroacoustic 
coupling between cylindrical resonators and bars and, in 
general, their numerical results are in agreement with ex-
periments, expressing both the increase in sound radia-
tion and the decrease of bar decay time. However, ap-
proaches using 3-D models entail large computational 
costs and are less practical for parametric studies. In this 
context, simplified modelling approaches may be useful 
in underlining the main parameters influencing the instru-
ments’ behavior.

In recent work by the authors [9] [10], a simplified 
model for the vibro-acoustic interaction was developed. 
To this end, a single bar mode was represented by a 
disk-shaped damped oscillator, and the acoustics of a 
cylindrical resonator (of the same radius) were described 
in a modal framework. The vibro-acoustic transfer func-
tion between the two elements was calculated via a 2-D 
axisymmetric finite element model, whose numerical re-
sults were then fitted to dimensionless analytical expres-
sions. Finally, the interaction between a single bar mode 
and a single resonator mode was reduced to a system of 
two coupled oscillators. Despite its simplicity, the model 
was able to reproduce the dynamical behavior common-
ly observed in experimental reports.

In this work we develop on the previous modelling 
efforts, now including the interaction between multiple 
bar and resonator modes. Subsequently, several experi-
mental investigations are carried out to validate various 
aspects of the proposed model, and assess its capacity 
to describe the dynamics of real instruments, both quali-
tatively and quantitatively.

2. Model description
We consider the coupling dynamics between a free-

free vibrating beam and a cylindrical acoustic waveguide, 
as illustrated in Figure 1. The resonator is closed at the 
bottom and open (unflanged) at the top. The beam has 
length LB and its width is equivalent to the resonator di-
ameter (2a). The resonator is located at a distance xe 
along the beam length and its open termination is located 
at a distance d below the bar.

2.1. Dynamics of the uncoupled bar

The linear dynamics of a beam with free-free boundary 
conditions are described in a modal framework, that is

 
mn !!α n (t )+ 2mnζ nω n !α n (t )+mnω n

2α n (t ) = 0  (1)

for n = 1, 2 ... N, where mn, ζ n, ω n and α n (t ) are the modal 
masses, damping ratios, natural frequencies and partici-
pation factors of the beam modes, respectively, and the 
beam vertical displacement Y (x,t ) is given by the sum of 
the modal contributions

 Y (x,t ) = ψ n (x )α n (t )
n

N

∑  (2)

where ψ n(x ) are the beam mode shapes.

2.2. Acoustics of the uncoupled resonator

The acoustic wave equation in terms of particle dis-
placement w(y,t ) is given by the following partial differen-
tial equation

 ρS
1
c2

∂2w(y,t )
∂t2

–
∂2w(y,t )
∂y2

⎛
⎝⎜

⎞
⎠⎟
= 0  (3)

Figure 1. Illustrative diagram of the considered model.
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where ρ  is the fluid density at rest, c is the speed of 
sound and S is the cross-sectional area of the pipe. At 
the closed end y = 0, there is no displacement and the 
boundary condition is w(0,t ) = 0, while at the open end 
y = LR, we impose a radiation impedance ZR such that 
the pressure p(LR,t ) and fluid velocity u(LR,t ) obey the 
following relation, in the Laplace domain,

 ZR (s) =
p(LR,s)
u(LR,s)

= ρc(s2RR + sXR )  (4)

where s is the complex Laplace variable; RR and XR are 
associated to the acoustic resistance and reactance, re-
spectively. In terms of particle displacement, the bound-
ary condition at the open-end y = LR is written as

 
− w(y,s)dy∫

y=LR

w(LR,s)
= c(sRR + XR )  (5)

Replacing the two boundary conditions into the wave 
equation (3) eventually leads to the pipe’s characteristic 
equation

 coth
sL
c

⎛
⎝⎜

⎞
⎠⎟ + s

2RR + sXR = 0  (6)

whose solutions sr are the complex eigenvalues of the 
uncoupled resonator. Solutions can be found numerically 
to obtain the real and imaginary parts of the eigenvalues 
sr = ar + jbr , from which the undamped natural frequen-
cies ω r and damping ratios ζ r  of each acoustic mode r  
can be obtained. Then, we can develop the particle dis-
placement w(y,t ) in terms of the (real) acoustics modes 
φr (y ) as

 w(y,t ) = φr (y )γ r

r=1

R

∑ (t ), where φr (y ) = sin
ω r

c
y⎛

⎝⎜
⎞
⎠⎟  (7)

Substitution of (7) into the wave equation (3) and pro-
ceding with the typical Galerkin projection leads to a sys-
tem where, in general, orthogonality does not strikly hold. 
However, it can be shown that for pipes that are not un-
reasonably wide a L < 0.1( ), the contributions of off-diag-
onal terms are small and the following (orthogonal) ap-
proximation is suitable

 φn (x )φm (x )dx ≈
L+ ΔL

2
for m = n

0 for m ≠ n

⎧

⎨
⎪

⎩
⎪0

L

∫  (8)

where ΔL is the length correction term (ΔL = XRc ). Fi-
nally, using (8), eventually leads to a set of (linearly inde-
pendent) modal equations describing the resonator 
acoustics

 mr !!γ r (t )+ 2ζ rmrω r !γ r (t )+mrω r
2γ r (t ) = 0  (9)

for r = 1,2...R, where the inertial modal coefficients mr  are 
given by mr ! ρS(L+ ΔL) 2.

2.3. Vibroacoustic interaction

A difficult aspect in modelling the interaction between 
a vibrating bar and its acoustic resonator is associated 
with the three-dimensional effects of the acoustic radia-
tion that couple the two elements. Here, we simplify the 
geometry of the problem by assuming that only a particu-
lar region in the beam surface will have a meaningful vi-
bro-acoustic interaction with the resonator. Namely, we 
consider the circular area on the beam that is located 
directly above the open end of the resonator, as illus-
trated in Figure 2.

The vibro-acoustic coupling is defined by the interac-
tion between the motion of disk (beam) and the acoustics 
at the open end of the resonator. On this point, we re-
mind the reader of the principle of vibro-acoustical reci-
procity [11] [12]. In our problem, this principle can be ar-
ranged in the form of a dimensionless transfer function H

 H(ω ) = Fr (xe,ω )
p(LR,ω )S

=
!Qb (LR,ω )
!!Y (xe,ω )

 (10)

where !Qb (LR,ω ) is an acoustic volume acceleration in-
duced on the resonator open-end by the beam-disk mo-
tion and, similarly, Fr (xe,ω ) is the net force induced on the 
beam-disk by the acoustic radiation from the open-end 
of the resonator. In a recent work [9] [10] this transfer 
function was numerically calculated via a 2-D axisymmet-
ric finite element model considering the interaction be-
tween two parallel circular surfaces of the same radius a
, for various separation distances d a. It was found that, 
in the low-frequency range (ka <1), the transfer function 
H (ka, d a) can be approximated by a simple constant 
gain filter, dependent solely on the dimensionless dis-

Figure 2. Illustration of the portion of the beam considered in the 
vibro-acoustic interaction.
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tance d /a. The numerical results were fitted to a polyno-
mial function of the following form

 H (d a) = 1+ δ p
d
a

⎛
⎝⎜

⎞
⎠⎟
p

p=1

P

∑⎛

⎝
⎜

⎞

⎠
⎟

−1

 (11)

considering various orders P. A 5th-order polynomial was 
deemed sufficient for an accurate description of the cal-
culate transfer function, leading to the fitted coefficients 
δ p = 2.78, −1.03, 3.34, −1.15, 0.13[ ]. Notice that, when 
d→ 0⇒ H→1 and when d→∞⇒ H→ 0, as expected. 
Finally, with the knowledge of H(d a), the force Fr (xe,t ) 
and the acoustic excitation !Qb (LR,t ) can be used as forc-
ing terms in the equations of the beam (1) and of the 
resonator (9), respectively.

2.4. Coupled system

Given the vibro-acoustic transfer function (11), the 
force load on the beam-disk induced by the resonator is 
then given by

 Fr (x,t ) = −δ (x − xe )ρSH (d a) !!γ r (t )ϕ r (LR )
r=1

R

∑  (12)

where the auxiliary function (associated with the resona-
tor mode shapes in terms of pressure) is

 ϕ r (y ) = φr (y )dy =∫ −
c
ω r

⎛
⎝⎜

⎞
⎠⎟
cos

ω r

c
y⎛

⎝⎜
⎞
⎠⎟  (13)

Projection unto the beam modal basis ψ n (x ) will yield 
the modal forces Fn (t ) applied on each beam mode which 
eventually lead to the beam modal equations

 

mn !!α n (t )+ 2mnω nζ n !α n (t )+mnω n
2α n (t ) = ...

...ρSH (d a)ψ n(xe ) ϕ r (LR ) !!γ r (t )
r=1

R

∑  (14)

Similarly, the volume acceleration induced on the res-
onator by the beam-disk motion is given by

 !Qsr (LR,t ) = SH (d a) !!Y (xe,t )  (15)

which can be used as a forcing term in the (inhomogene-
ous) wave equation. Following the appropriate Galerkin 
projection unto the acoustic modal basis, the resonator 
modal equations are

mr !!γ r (t )+ 2mrω rζ r !γ r (t )+mrω r
2γ r (t) = ...

... − ρSH (d a)ϕ r (LR ) ψ n(xe ) !!α n (t )
n=1

N

∑  (16)

The final coupled system is then described by a series 
of N  (mechanical) oscillators inertially coupled to R  
(acoustic) oscillators

 

Mn Πn,r

Πr,n Mr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

!!α n

!!γ r

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+

Cn 0
0 Cr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

!α n

!γ r

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
...

...+
Kn 0
0 Kr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α n

γ r

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0

0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 (17)

where the modal sub-matrices Mb, Cb, Kb, Mr, Cr and Kr , 
are diagonal and define the modal parameters of the 
beam and resonator, i.e.

 

diag(Mn ) = mn ; diag(Mr ) = mr

diag(Cn ) = 2ζ nmnω n ; diag(Cr ) = 2ζ rmrω r

diag(Kn ) = mnω n
2 ; diag(Kr ) = mrω r

2

 (18)

while the elements in the inertial coupling matrix are given by

 Πn,r = ρSH (d a)ϕ r (LR )ψ n(xe )  (19)

2.5. Energy balance

The kinetic and potential modal energies in each 
beam mode are given by

 Tn (t ) =
mn

2
!α n

2(t ) ; Un (t ) =
mnω n

2

2
α n

2(t )  (20)

Similarly, the acoustic kinetic and potential modal en-
ergies in each resonator mode are

 Tr (t ) =
mr

2
!γ r

2(t ) ; Ur (t ) =
mrω r

2

2
γ r

2(t )  (21)

The amount of energy dissipated by each beam 
mode, via internal losses, is given by

 Dn (t ) = 2ζ nmnω n !α n
2(τ )

0

t

∫ dτ  (22)

while the amount of energy dissipated by each resonator 
mode, through acoustic radiation, is given by

 Dr (t ) = 2ζ rmrω r !γ r
2(τ )

0

t

∫ dτ  (23)

The energy conserved in a given (coupled) modal-pair 
nr is given by

 EC,nr (t ) = Un (t )+Tn (t )+Ur (t )+Tr (t )  (24)

Additionally, we define a “modal radiation efficiency” 
κ nr, representing the percentage of energy in the modal-
pair nr  nr that is dissipated through acoustic radiation by 
a resonator mode

 κ nr =
Dr (t→∞)
ET ,nr

×100%  (25)

where ET ,nr is the total energy in the modal pair. We also 
define the decay time of the coupled modal-pair T60,nr  as
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 T60,nr ⇒
EC,nr (T60,nr )
EC,nr (0)

= 0.001 (26)

3. Experimental validation

To assess the validity of the proposed vibro-acoustic 
model, an experimental apparatus was set-up in an an-
echoic chamber. The aim was to evaluate the behavior of 
the coupled-system, both qualitatively and quantitatively, 
in terms of the most pertinent design parameters: tuning 
ratio ω r ω n, the bar-resonator distance d  and the reso-
nator placement along the bar length xe.

As illustrated in Figure 3, the set-up was made of a 
suspended beam placed over a cylindrical pipe of varia-
ble length. The pipe inner radius was a = 25 mm, and it 
was composed of two parts joint by a threaded junction, 
which allowed for a precise variation of its overall length 
440mm ≤ LR ≤ 530mm( ). The acoustic response of the 

pipe was measured by an electret microphone placed at 
the bottom end. The used aluminum beam was suspend-
ed by elastic strings on a tri-pod mount, which allowed 
the control of the bar-resonator distance d. The bar 
length was LB = 350mm and its width equal to the tube 

diameter 2a. The beam was undercut (based on [6]) such 
that its first four vertical-bending modes are tuned in a 
ratio (1:3:5:7) and its flat surface was faced down to en-
sure the distance d was constant along the beam length. 
The beam was given an impulsive excitation with a small 
impact hammer (Brüel & Kjær – Type 8203) striking at one 
end (x ≈ LB ), while its motion was measured at the other 
end (x ≈ 0) using a laser vibrometer (Polytech – PDV100).

3.1. Experimental modal identification

Since the aim was to experimentally validate the pro-
posed model, the first step was the modal identification 
of the bar and resonator modes, such that identified 
modal parameters could be used in the model for com-
parison. The first four vertical-bending modes of the bar 
and the first four resonator acoustics modes were identi-
fied, for several tube lengths LR. The identified modal pa-
rameters are shown in Table 1.

The parameters of the resonator are shown in ranges, 
corresponding to the variations in resonator length. Ad-
ditionally, Figure 4 shows the profile of the undercut bar 
as well as the first four mode shapes ψ n(x). The consid-
ered modal masses mn, mr( ) and mode shapes 
ψ n(x ),φr (y )( ) were taken from models as these param-

eters are not particularly easy to measure experimentally 
and small quantitative differences compared to the mod-
elled values are not expected to change results signifi-
cantly.

Figure 3. Diagram of the experimental set-up for the study of 
the vibroacoustic interaction.

Figure 4. Profile of the undercut bar (top) and considered modes 
shapes ψ n (x ) .

Table 1. Modal parameters for the first four bar and resonator modes.

Bar Resonator

n, r
n 2

(Hz)
n

(%)
mn

(kg)
r 2

(Hz)

r

(%)

mr

(g)

1 168.7 0.042 0.045 173.7 ± 12.5 0.73 ± 0.04 0.61± 0.04

2 505.1 0.024 0.031 507.6 ± 32.8 0.77 ± 0.04 0.61± 0.04

3 847.7 0.022 0.024 845.1 ± 56.8 0.83 ± 0.06 0.61± 0.04

4 1186 0.009 0.037 1205.9 ± 78.6 0.94 ± 0.08 0.61± 0.04
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3.2.  Effect of tuning ratio and beam-resonator distance

In the first set of measurements, the aim was to meas-
ure the decay time T60,nr  and “radiation efficiency” κ nr of 
different modal pairs as a function of the tuning ratio 
ω r ω n. The resonator was maintained centered with the 
bar xe = LB 2, and measurements were taken for a 
sweep o f  d iscrete  tube lengths such that 
0.95 ≤ω r ω n ≤1.05. Since the bar frequencies are tuned 
to a ratio close to that of the resonator (1:3:5:7), this pro-
cedure allowed for the measurement of all four modal-
pair couplings at the same time. Additionally, in order to 
quantitatively validate the proposed vibro-acoustic trans-
fer function H(d a), this procedure was repeated for three 
bar-resonator distances d = 10 20 40[ ] mm. Results 
for the coupling in first and third modal pairs are shown 
in Figure 5. Note that with xe = LB 2, the coupling of the 
second and fourth bar modes is bound to be weak since 
ψ 2(xe ) =ψ 4 (xe ) = 0 . For these modal pairs, results 
showed no significant variation of the time decay T nr60,  
compared to the uncoupled case, and resonator dissipa-
tion Knr was negligible (Knr < 0.5%, for all ω r ω n ). Results 
in Figure 5 demonstrate that, qualitatively, the model is 
able to predict the observed behavior, with the typical 
decrease in decay time being accompanied by a propor-
tional increase in resonator damping. Moreover, the de-
crease in coupling strength when the bar is placed further 
away (larger d a) is also captured by the model. How-
ever, quantitatively, the model seems to underestimate 
the coupling strength in all cases: the decrease in time 

decays T60,nr  and increase in resonator damping Knr  is 
always larger in the experimental results. This difference 
can potentially be attributed to the fact that our vibro-
acoustic coupling is based on the disk geometric simpli-
fication, whereby in reality, other regions of the beam will 
also couple with the resonator acoustics.

3.3. Effect of resonator placement

In this second series of experiments, the distance was 
fixed at d a = 0.4, and the resonator length was fixed such 
that ω r ω n ≈1, for each modal-pair. Then, a series of meas-
urements were performed for a sweep of discrete resonator 
placements in the region 0.5 ≤ xe LB ≤1. Due to bar sym-
metry, only half the domain was mapped. Results for the 
decay time T60,nr and resonator dissipation Knr are shown in 
Figure 6. In general, modelling results agree well with the 
observed behavior, where we see a significant decrease in 
the coupling strength when the resonator is placed below 
a nodal line of the bar mode ψ n(xe ) = 0( ) (see Figure 4). We 
also note a slight difference in the shapes of the T60,nr  and 
Knr curves, likely due to small differences between the con-
sidered and actual mode shapes of the beam. Finally, we 
notice large differences when the resonator is placed near 
the tip of the bar 0.95 ≤ xe LB ≤1, in all cases. This devia-
tion is expected since, in these scenarios, the bar does not 
cover the resonator termination completely (for example, 
when xe LB = 1, the bar only covers half the resonator 
open-end). Here, the disk-assumption naturally leads to an 
overestimation of the coupling strength.

Figure 5. Variation of the decay time T60,nr (s ) and resonator dissipation Knr (%) as a function of the 
tuning ratio ω r ω n, for three different bar-resonator distances d = 10 20 40[ ] mm.
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4. Conclusions

In this paper we have developed a vibro-acoustic mo-
del describing the coupling dynamics between a vibrating 
beam and an acoustic resonator, as found in mallet per-
cussion instruments like the marimba or the vibraphone. 
The bar is modelled as a free-free beam and the resona-
tor as a cylindrical pipe, both in a modal framework. The 
vibro-acoustic coupling of the two elements was pursued 
assuming that only the circular region on the bar just abo-
ve the resonator will interact with the resonator. The vi-
bro-acoustic transfer function between two parallel disks 
was used, as developed and validated in a previous work 
[10]. The proposed formulation led to a simple multi-mo-
dal model describing a set of mechanical oscillators 
(beam modes) inertially coupled to a set of acoustic os-
cillators (resonator modes).

Experiments were carried out to validate various as-
pects of the proposed model: (1) the tuning ratio ω r ω n, 
(2) bar-resonator distance d and (3) resonator placement 
along the bar length xe. Despite some minor quantitative 
deviations, the vibro-acoustic model was positively vali-
dated by experiments, showing the often-encountered 
compromise between a decrease of decay time and an 
increase of acoustic radiation. Additionally, experiments 

showed that the coupling strength will be severely in-
fluence by the bar mode shape at the location where the 
resonator is placed ψ n(xe ), i.e. a resonator will not couple 
with a particular bar mode if it placed directly under a 
nodal line.

The simplicity of the developed lumped-parameter 
formulation allows for an intuitive understanding of the 
physical phenomena occurring in real instruments and 
underlines the main parameters affecting its dynamics. 
This can be a valuable contribution to the design and 
optimization of modern instruments, especially in the ad-
vent of instruments where multiple bar modes are tuned 
to multiple resonator modes, leading to increased sound 
radiation at several frequencies.
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Figure 6. Variation of the decay time T60,nr (s ) and resonator dissipation Knr (%) as a function of the resonator placement xe , for all four 
modal-pairs. The distance was fixed at d a = 0.4  and the tuning ratio ω r ω n !1. The solid lines and circles show the modelling and 

experimental results, respectively. The vertical dotted lines indicate the location of the nodal points in the bar modes.
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