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Abstract—The radio access in Internet-of-Things (IoT) net-
works requires minimizing the energy consumption while
achieving the capacity requirements especially for high den-
sity deployment. The Multi-Packet Reception (MPR) systems
can potentially increase the capacity of devices due to the
capability of decoding multiple transmitted packets at the
receiver. However, the aggregate interference in such scenarios
can lead to unfair distribution of the resources and eventually
waste of energy. Therefore, this work provides an analyti-
cal characterization of the trade-off between capacity and
energy consumption while regulating the channel access of
multiple transmitters to a single-MPR receiver. The theoretical
modeling considers different densities of spatially distributed
nodes and their channel propagation conditions, in addition
to different capture sensitivity thresholds at the receiver. The
model is validated through simulation and it is shown to be an
effective tool to identify the optimal channel access probability
that maximizes the capacity per energy consumption.

Keywords—Internet-of-Thing (IoT), Multi-packet Reception
(MPR), Energy Efficiency, Performance Analysis.

I. INTRODUCTION

WITH the tremendous development of Internet-of-Things
(IoT), tens of thousands of IoT devices are expected to
access the network for data transmission. It is agreed that
new specific radio access protocols are required to support
the deployment of high-density IoT networks [1]. The radio
access in IoT networks necessitates new features mainly
minimizing the energy consumption while maintaining mas-
sive connectivity support of devices. In such scenarios, the
devices, e.g., sensors, smart cities, etc, have very relaxed
requirements on capacity and spend the vast majority of
their lifetime in idle mode as most of the IoT applications
only require the infrequent transmission of short packets.

This has motivated several research studies and stan-
dardization initiatives in supporting a massive number of
radio-connected devices. Low-power wide-area network
(LPWAN) is a wireless wide area network technology
designed specifically for high-density devices with low-
bandwidth and battery consumption limits to operate at
low bit rates over long ranges. Traditional cellular network
operators have offered commercial LPWAN technologies
in licensed bands, e.g., LTE enhancements for machine-
type communications (eMTC), extended coverage GSM
(EC-GSM), and Narrowband IoT (NB-IoT) [2]. On the
other hand, proprietary LPWAN technologies, e.g., Sigfox,
LoRa, and Ingenu, have acquired interest due to the lower

operational costs in nonlicensed bands and the deployment
flexibility [3], [4].

In highly dense IoT networks, the adopted medium access
control (MAC) techniques and connection management play
a crucial role in optimizing the network parameters. The
coordination is exacerbated in case of high dense scenar-
ios where the ongoing transmission interferes with other
transmissions, leading eventually to packet loss that could
be handled by appropriate retransmission mechanisms at the
expense of waste of resources and more power consumption
[5]. Consequently, unconventional MAC solutions were
adopted in the so-called IoT [6], where nodes can operate in
energy-constrained scenarios, i.e., up to 10 years of battery
life for around 50 000 nodes per square kilometer.

Recent progress on physical-layer (PHY) communica-
tion technologies allows unprecedented throughput gains
through the simultaneous reception of multiple packets
including multi-user multiple input multiple output (MU-
MIMO) and technologies, such as LoRa, a.k.a. multi-packet
reception (MPR) [7]. Usually, the MAC policies of MPR are
designed based on the optimal number of transmitters that
maximize the capacity of the PHY-layer without considering
the energy consumption constraint. Therefore, this work
provides analytical modeling of the trade-off between the
capacity and energy consumption based on a distributed
MAC scheme considering different access probabilities of
multiple transmitters to a single-MPR receiver.

The energy consumption for energy-limited wireless sen-
sors and ad hoc networks has been studied in [8]. The
authors have defined the maximum total number of bits
that the network can deliver per Joule of energy. The work
in [9] has considered the capacity and energy efficiency of
training-based communication assuming imperfect channel
estimation due to randomness in channel conditions. The
authors in [10] have developed a model capturing the
effect of PHY layer parameters to analyze energy-efficient
communications. In ultra-dense Networks (UDNs), there
has also been a growing effort on optimizing the energy
consumption [11]–[15]. The authors in [11] have discussed
various approaches to handle energy efficiency problems
in UDNs, ranging from deployment to optimization. In
[12], the authors have derived the ergodic capacity of the
uplink UDN. The analyses in [13], [14] have considered
the coverage probability and throughput of downlink UDNs



under saturated traffic assumption. A novel cross-layer
analytical model to capture the unsaturated traffic of UDN
in the presence of quality of service (QoS) requirements has
been proposed in [15].

For sake of providing a more realistic and representative
practical network scenario, the proposed analysis of capac-
ity and power consumption trade-off considers stochastic
modeling for the spatial distribution of the communicating
nodes besides the fading propagation channels. The pro-
posed modeling is based on a distributed MAC scheme
considering different access probabilities of multiple trans-
mitters to a single-MPR receiver. The importance of this
work comes from the capability of regulating the access of
concurrent transmissions while trading-off capacity for en-
ergy efficiency based on the user requirements and network
scenarios.

We use the following notations in the paper: P[X = x]
is the probability of a random variable (RV) X . fX(.) and
FX(.) represent the probability density function (PDF) and
the cumulative density function (CDF), respectively. E[X]
denote the expectation. The moment generating function
(MGF) of the RV X is represented by ΦX . Gamma(k, θ) is
the Gama distribution where k and θ represent the shape and
scale parameters, respectively. The Gamma function and the
incomplete gamma function are given by Γ(x) and Γ(p, x),
respectively. 2F1(a, b; c; z) is the Gauss Hypergeometric
function.

II. SYSTEM MODEL AND ASSUMPTIONS

A. Network Model

The network scenario is shown in Fig. 1 where we model
the locations of communicating nodes by independent ho-
mogeneous Poisson point processes (PPPs) in R2. The
homogeneous PPP has shown high accuracy in modeling
the position of the nodes in both static and mobile scenarios
[16], [17]. Given that N is a RV representing the number
of nodes located within an area |A|, the probability that
P[N(|A|) = n] is given by

P[N(|A|) = n] =
(λ|A|τ)n

n!
e−λ|A|τ , (1)

where λ is a constant representing the density of the nodes
per unit area (nodes/m2) and τ represents the channel access
probability depending on the adopted MAC protocol and/or
policies. We condition on a reference receiving node, Rxo,
at the center of a Cartesian space being communicating
with an i-th transmitting node Txi, which results in a
homogeneous PPP with the corresponding density [18].
Therefore, the aggregate interference is attributed to the
nodes bounded by the inner raduis RI and the outer radius
RO in the area A = π(R2

O −R2
I).

B. Communication Model

We attribute the variations in the envelope of the received
signal power to both large-scale fading and small-scale
fading, given as follows

P r
i = P t

i hir
−α
i , (2)
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Fig. 1. Network model scenario.

where P t
i represents the power of the transmitted signal by

the i-th node, hi denotes the fading channel gain between
the i-th node and the reference receiver, ri > 1 is the
distance to Rxo from the i-th node, and α > 2 is the
propagation loss coefficient. We highlight that hi and ri
represent instant values of the RVs Hi and Ri, respectively.

C. Channel model

We adopt the Gamma distribution to approximate the
power of the fading channel, i.e., Hi ∼ Gamma(k, θ).
The Gamma distribution can effectively approximate the
stochastic power fading when there is no line-of-sight (LoS)
as in the Rayleigh fading channel or the LoS link as in
the Rician fading channel [19]. Particularly, the fading
power of a Rayleigh channel is drawn from the exponential
distribution with mean 1

µ , which can be then represented
by the Gamma distribution as follows

HRay
i ∼ Gamma(k = 1, θ =

1

µ
). (3)

Furthermore, the Rician fading channel can be described
through the parameters K and Ω where K represents the
ratio between the LoS power component and the non-LoS
power components, and Ω denotes the total power from both
components. Consequently, the received signal amplitude
is described by the Rician distribution with parameters
ν2 = KΩ

1+K and σ2 = Ω
2(1+K) . The value of K in decibels

is KdB = 10 log10 (K). For X ∼ Rice(ν, σ), then,(
X
σ

)2 ∼ χ2
(
m = 2, β = ν

σ

)
is a non-central Chi-squared

distribution where m and β are the degrees of freedom and
non-centrality parameter, respectively. Thereafter, moment
matching is used to approximate HRice

i for a Gamma
distribution as follows

HRice
i ∼ Gamma

(
k =

(ν2 + 2σ2)2

4σ2(ν2 + σ2)
, θ =

4σ2(ν2 + σ2)

(ν2 + 2σ2)2

)
,

(4)
The homogeneity of the nodes’ distribution over A =

π(R2
O −R2

I) leads to

fRi
(r) =

2r

((R2
O −R2

I))
, RI < r < RO. (5)



Consequently, the PDF of Li = R−α
i is found as follows

fLi(l) = − 2l
−2
α −1

α(R2
O −R2

I)
, R−α

O < l < R−α
I . (6)

D. MPR Capture Condition
We denote the received SINR at node Rxo by γi, given

as follows
γi =

P r
i,o

Y
, (7)

where P r
i,o = P t

i hi,or
−α
i,o is the intended received power at

the reference node due to the transmission of Txi node.
Y = I + σ2

N where I =
∑N

i=1,i∈I P r
i represents the

aggregate interference power generated by the other nodes
when a signal is to be decoded from a corresponding
transmitter given that P r

i ’s are independent and identically
distributed (i.i.d.) RVs. The noise power is defined as
σ2
N (dBm) = −174 + 10 log10(BW) + F , where σ2

N =

10σ
2
N (dBm)/10, F represents the noise figure, BW denotes

the utilized bandwidth, and 174 dBm/Hz is the reference
noise level at room temperature.

The performance of the MPR receiver is usually mea-
sured by the capture condition (γi > b) [20] where b is
the capture threshold that specifies the receiver’s sensitivity.
The condition b > 1 represents Single-Packet Reception
(SPR) receivers, while b < 1 represents MPR receivers
adopting CDMA [21]. Consequently, the successfully MPR
reception is conditioned on the SINR greater than the
capture condition as follows

PSucc(b) = P[γi > b] = 1− Fγi(b). (8)

III. COMPUTATION ON PSucc

A. Characterization on P r
i,o

The distribution of the RV P r
i,o is described by the scalar

P t
i and the RVs Hi,o and Li,o. Given that X follows a

Gamma distribution, then, cX ∼ Gamma(k, cθ), c > 0,
yielding

fHi(h) =
hk−1e−

h
ϑ

ϑkΓ(k)
, (9)

where Hi = P t
iHi and ϑ = P t

i θ. Assuming that Hi and Li

are independent RVs, the product distribution can then be
used to obtain the PDF of P r

i,o as follows

fP r
i,o
(x) =

∫ ∞

−∞

1

|l|
fHi

(x/l)fLi
(l)dl, (10)

which can be solved by substituting fHi(x/l) by (9) and
fLi

(l) by (6), yielding to

fP r
i,o
(x) =

∫ R−α
I

R−α
O

− 1

|l|
(x/l)k−1e

−ls
ϑ

Γ(k)ϑk

2l
−2
α −1

α(R2
O −R2

I)
dl.

(11)

By solving the integral in (11) we obtain

fP r
i,o
(x) =

(
Γ

[
k +

2

α
,
Rα

Ix

ϑ

]
− Γ

[
k +

2

α
,
Rα

Ox

ϑ

])
× 2x− 2+α

α ϑ
2
α

α(R2
O −R2

I)Γ(k)
.

(12)

Therefore, the moment generation function (MGF) of P r
i,o,

defined as ΦP r
i,o
(s) = E[esP

r
i,o ] is given by

ΦP r
i,o
(s) =

R2
Oϱ1(R

−α
O sϑ)−R2

Iϱ1(R
−α
I sϑ)

R2
O −R2

I
, (13)

where ϱ1(x) = 2F1(k,
−2
α , −2+α

α , x).

B. Characterization of I

In this section, we characterize the aggregate interference
I . The RV I is merely the summation of N independent
RVs, i.e., (I = P r

1 + P r
2 + ...+ P r

N ) where N has already
defined in (1).

Since P r
i ’s are assumed to be independent, then for n

active interferers, we get

ΦI|n(s) =
(
ΦP r

i
(s)

)n
. (14)

The distribution of I can be then expressed as follows

fI(j) =

∞∑
n=0

fI(j|N = n)P[N = n]. (15)

Departing from (14), the MFG of I , ΦI(s), can be obtained
as follows

ΦI(s) =

∞∑
n=0

P [N = n]ΦI|n(s). (16)

Using (1) and (14), the MGF of I is derived as follows

ΦI(s) =

∞∑
n=0

(
λ|A|τΦP r

i
(s)

)n
n!

e−λ|A|τ = e
λ|A|τ(ΦPr

i
(s)−1)

.

(17)

The MGF obtained in (17) can be used to find the
x-th moment of I , i.e., E[Ix] = dx

dsxΦI(s)|s=0. For the
approximation of Y , the simulated aggregate interference
is compared with different known distributions to identify
the best distribution that fits the sample data. The test results
show that the Gamma distribution can effectively approx-
imate the aggregate interference Y which is aligned with
simulation results demonstrated in Section IV. Furthermore,
the results in [22] emphasize this observation where the
Gamma distribution shows high accuracy in approximating
the aggregate interference in channel fading conditions.

Thus, we use the Gamma distribution for the approxima-
tion of the RV Y as follows

fY (y) =
ykeq−1e

−y
θeq

θ
keq
eq Γ(keq)

, for y > 0, (18)

where

keq =
E[Y ]

2

E[Y 2]− E[Y ]
2 , and θeq =

E[Y 2]− E[Y ]
2

E[Y ]
,

(19)
are shape and scale parameters, respectively, with E[Y ] =
E[I] + σ2

N , E[Y 2] = E[I2] + 2σ2
NE[I] + (σ2

N )2, and E[I]
and E[I2] are given in (20a) and (20b), respectively.



E[I] =
2AkR−α

I R−α
O

(
Rα

IR
2
O −R2

IR
α
O
)
ϑλτ

(R2
I −R2

O) (−2 + α)
(20a)

E[I2] =
Akϑλτ

(R2
I −R2

O)
2

(
(1 + k)(RIRO)

−2α
(
R2

I −R2
O
) (

R2α
I R2

O −R2
IR

2α
O
)

−1 + α
+

4Ak
(
R2−α

I −R2−α
O

)2
λτ

(−2 + α)2

)
(20b)

C. Computation of PSucc

Departing from (8) and given that P r
i,o and Y are inde-

pendent RVs, PSucc can be solved as follows

PSucc(b) = 1−
∫ b

0

∫ ∞

0

yfP r
i,o
(yz)fY (y)dydz. (21)

Substituting P r
i,o and Y by (12) and (18), respectively,

yields to a closed-form expression given by (22), where
ϱ2(x) = 2F1(keq, k + keq, 1 + keq, x), and ϱ3(x) =

2F1(k + keq, keq − 2
α , 1 + keq − 2

α , x).

D. Average Number of Success transmissions

Given that the N nodes are spatially i.i.d., then, the
expected number of successfully captured packets at node
Rxo can be approximated as follows

ERX(b) ≃ E[N ]PSucc(b) = λAτPSucc(b). (23)

E. Capacity and Energy Consumption

We define energy consumption as the amount of success-
fully transmitted power in a unit of time, given as follows

ECon = E[N ]P t
i t = λAτP t

i t. (24)

The network capacity is defined in terms of ERX , which
represents the average rate successfully received for a
specific capture condition, b, i.e., C = ERXBWlog2(1+b).
Therefore, the capacity per energy consumption can be
formulated as follows

CCon =
C

EConBW
≃ PSucc(b)log2(1 + b)

P t
i t

. (25)

IV. PERFORMANCE ANALYSIS

The simulation is based on the comparison between the
theoretical derivations and the Monte Carlo simulations.
The theoretical results were generated using the expressions
derived in III-D and III-E. The simulation results were
obtained by averaging 106 realizations of the stochastic
process generated in MATLAB according to the parameters
listed in Table I and Table II.

TABLE I
NETWORK PARAMETERS.

Symbol Value Symbol Value
RI 1 m RO 5 m
λ {3, 5, 15} nodes/m2 b {0.3, 0.4, 0.5}

TABLE II
CHANNEL PARAMETERS.

Symbol Value Symbol Value
µ 1 α 4
P t
i 1 Watt BW 1 Hz

σ2
N 0 t 1 s

The theoretical and simulated results for the number
of successfully received transmissions, ERX , versus the
receiver capture threshold, b, are depicted in Fig. 2 consid-
ering different access probabilities τ = {0.8, 0.9, 1.0}. A
comparison between the simulated data and the theoretical
derivations indicates the high accuracy of the proposed
approximation. The parameter b determines the receiver’s
capability on sensing the ongoing transmissions. Therefore,
the results clearly show that ERX is decreased by increasing
the capture condition b. Moreover, the results indicate an
increase in ERX when adopting higher τ values which can
be attributed due to the higher number of granted nodes to
access the channel.

Fig. 3 plots the capacity per energy consumption CCon

versus the access probability τ for different capture condi-
tions, b, and network densities, λ. As can be seen, for each
scenario there is an optimal number of simultaneous trans-
missions determined by a specific τ value that maximizes
the capacity per energy consumption. The results indicate
that the increase in τ is beneficial up to an optimal value.
After that, the performance degrades with the increase of
τ , which can be justified due to the increase in the in-
terference when considering more concurrent transmissions
and due to the increase in energy consumption. This also
highlights the importance of the channel access mechanism
in optimizing the network performance by deciding on the

PSucc(b) =1− (RIRO)
−keqα(bθeq)

−keqϑkeq

(R2
I −R2

O)

(
R2

IR
keqα
O

(
bRα

Iθeq
ϑ

)keq

−R
keqα
I R2

O

(
bRα

Oθeq
ϑ

)keq

+
1

(−2 + keqα)

1

Γ[k]Γ[1 + keq]
Γ[k + keq]

(
−R2

IR
keqα
O (−2 + keqα)ϱ2

(
−

R−α
I ϑ

bθeq

)
+ keqR

2
IR

keqα
O αϱ3

(
−

R−α
I ϑ

bθeq

)
+

R
keqα
I R2

O

(
(−2 + keqα)ϱ2

(
−

R−α
O ϑ

bθeq

)
− keqαϱ2

(
−

R−α
O ϑ

bθeq

))))
(22)



optimal number of concurrent transmissions that an MPR
receiver can handle depending on its capture threshold
value. Moreover, the results indicate that the optimal τ
needed to maximize the performance is decreased when
adopting a higher network density scenario, i.e., τ ≃ 0.05
for λ = 15 and τ ≃ 0.25 for λ = 3. The results highlight
that the optimal access probability is determined by the
imposed interference that is a function of the node’s density
and the receiver capture probability.
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Fig. 2. Number of successfully received transmissions versus capture
threshold considering different access probabilities for λ = 5.
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Fig. 3. Capacity per energy consumption versus access probability
considering different capture thresholds and transmitter densities.

V. CONCLUSIONS

In this paper, we have characterized the energy efficiency
and capacity trade-off considering different access proba-
bilities of distributed transmitters to a single-MPR receiver.
The simulated results validate the analytical derivations and
highlight the importance of channel access in optimizing the
capacity per energy consumption depending on the network
density and the receiver capture condition.

The analysis of the trade-off between the capacity and
energy efficiency indicates that there is always an optimal
point of operation in terms of the achieved capacity-energy
efficiency pair. This indicates that future radio networks and
techniques should be designed very carefully to consider
more efficient solutions from the energy point of view not
only due to societal reasons but also due to the increased
operational costs to the network operators.
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