
Citation: Azevedo, D.; Rodrigues,

A.M.; Canhão, H.; Carvalho, A.M.;

Souto, A. Zgli: A Pipeline for

Clustering by Compression with

Application to Patient Stratification

in Spondyloarthritis. Sensors 2023, 23,

1219. https://doi.org/10.3390/

s23031219

Academic Editor: Bhanu

Prakash Kn

Received: 19 November 2022

Revised: 13 January 2023

Accepted: 17 January 2023

Published: 20 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Zgli: A Pipeline for Clustering by Compression with
Application to Patient Stratification in Spondyloarthritis
Diogo Azevedo 1,†, Ana Maria Rodrigues 2,3 , Helena Canhão 2,3 , Alexandra M. Carvalho 4,5,6

and André Souto 1,4,∗,†

1 LASIGE, Departamento de Informática da Faculdade de Ciências, Universidade de Lisboa,
1749-016 Lisboa, Portugal

2 EpiDoC Unit, The Chronic Diseases Research Centre, NOVA Medical School, NOVA University of Lisbon,
1169-056 Lisboa, Portugal

3 Comprehensive Health Research Center, NOVA Medical School, NOVA University of Lisbon,
1150-082 Lisboa, Portugal

4 Instituto de Telecomunicações, 1049-001 Lisboa, Portugal
5 Department of Electrical and Computer Engineering, Instituto Superior Técnico, Universidade de Lisboa,

1049-001 Lisboa, Portugal
6 Lisbon Unit for Learning and Intelligent Systems, 1049-001 Lisboa, Portugal
* Correspondence: ansouto@fc.ul.pt
† These authors contributed equally to this work.

Abstract: The normalized compression distance (NCD) is a similarity measure between a pair of finite
objects based on compression. Clustering methods usually use distances (e.g., Euclidean distance,
Manhattan distance) to measure the similarity between objects. The NCD is yet another distance
with particular characteristics that can be used to build the starting distance matrix for methods such
as hierarchical clustering or K-medoids. In this work, we propose Zgli, a novel Python module that
enables the user to compute the NCD between files inside a given folder. Inspired by the CompLearn
Linux command line tool, this module iterates on it by providing new text file compressors, a new
compression-by-column option for tabular data, such as CSV files, and an encoder for small files made
up of categorical data. Our results demonstrate that compression by column can yield better results
than previous methods in the literature when clustering tabular data. Additionally, the categorical
encoder shows that it can augment categorical data, allowing the use of the NCD for new data types.
One of the advantages is that using this new feature does not require knowledge or context of the
data. Furthermore, the fact that the new proposed module is written in Python, one of the most
popular programming languages for machine learning, potentiates its use by developers to tackle
problems with a new approach based on compression. This pipeline was tested in clinical data and
proved a promising computational strategy by providing patient stratification via clusters aiding in
precision medicine.

Keywords: clustering by compression; normalized compression distance; Kolmogorov complexity;
CompLearn; Zgli; clustering techniques

1. Introduction

Cluster analysis is a chief pattern recognition technique [1]. It is characterized by
using resemblance or dissemblance measures between the objects to be identified. The
pattern recognition aspect of clustering has been extensively used in healthcare over the
years [2]. Clustering algorithms can find patterns across patients that are difficult for
medical practitioners [3]. This approach has enabled many solutions for problems in
diseases like Amyotrophic Lateral Sclerosis [4], Alzheimer’s disease, Parkinson’s Disease [5],
rheumatic diseases [6], and cancer [7], to name a few.

Patient stratification by clustering them into groups allows us to identify which
patients will benefit from what interventions before their condition worsens, being a

Sensors 2023, 23, 1219. https://doi.org/10.3390/s23031219 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031219
https://doi.org/10.3390/s23031219
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2046-8017
https://orcid.org/0000-0003-1894-4870
https://orcid.org/0000-0001-6607-7711
https://orcid.org/0000-0001-8792-959X
https://doi.org/10.3390/s23031219
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031219?type=check_update&version=1

Sensors 2023, 23, 1219 2 of 18

leading step to precision medicine. Several stratification methods have successfully been
applied in biomedical research and assisted the treatment process [8,9]. Because of the
heterogeneity and complexity of medical data, it is very challenging to integrate them and
use them in the practical clinic. There are two significant challenges: combining multiple
data sources leads to complex problems, and the disparity of different data types causes a
critical problem in machine learning for biomedical data.

Clustering can find patterns by grouping individuals based on similarity, and multiple
types of distances can express this similarity. The most commonly used distances for
these methods are geometric ones, such as the Euclidean distance, Manhattan distance,
Minkowski distance, and Hamming distance [10]. This paper will focus on the normalized
compression distance (NCD), a distance based on algorithmic information theory [11].

The NCD is a less explored way of computing the similarity between objects compared
to other popular distances, such as Euclidean and Manhattan distances. Nevertheless, NCD
has shown potential to be a sound approach in different fields of application, especially
when dealing with a dataset comprised of multiple files. In music [11], NCD was able to
cluster music data by different degrees of granularity, beginning in genre and narrowing
it down to the author. Moreover, in computer science [12,13], the authors showed that
cataloging network traffic and a computer virus is possible. It also has applications in
computer security since, for example, one can break multi-party computations based
on [14]. In biology, NCD was used to classify mitochondrial genome phylogeny [15]. In
literature [16], NCD was able to recognize the similarity of languages. In medicine [17],
NCD was used to cluster medical data, particularly fetal heart rate. In [18], the NCD was
able to group different types of files very well, even when applied to data with high noise
levels. Furthermore, in recent studies [19,20], the NCD was used to group similar RNA
sequences of different viruses to find a plausible origin of SARS-CoV-2.

In this work, we propose Zgli [21], a new Python tool developed to enable users
to cluster by compressing any given set of files and many different types of data. The
choice of Python stands from it being one of the most popular programming languages
in the computer science field [22]. Indeed, it is leading the pack in the machine learning
community, being chosen by 57% of data scientists and machine learning developers using
it and 33% prioritizing it for development [23].

The Zgli tool augments the current state-of-the-art tool for clustering by compression—
the Complearn [11] tool. It iterates over some of the features already available in Complearn
and simplifies the process of integrating a clustering by compression approach with the
current most used tools for clustering and data science.

In this paper, we will present the new features implemented in the proposed Zgli tool
that improves over Complearn, providing replicable test cases of these features in action.
Additionally, we show a use case where we applied the Zgli framework to a real-world
dataset comprised of clinical data and verified that it competes with standard clustering
techniques. In particular, in the Zgli tool, we add a feature that is able to perform the NCD
distance with compression by columns, and a new encoder for categorical data.

Finally, it is essential to note that all the documentation necessary to use Zgli is
available in Section 4, accompanied by a quick start tutorial for the tool and shortcuts for
the source code published on GitHub to any developer who wishes to edit it.

The rest of the document is organized as follows. In Section 2, we present the ba-
sic notions and background necessary to understand the topics discussed in this paper.
Section 3 describes the Complearn tool and gives an overview of its features. Section 4
describes the Zgli in detail, particularly looking into its two main classes, Folder and
Encoder. Section 5 presents the tests and the results achieved using the module’s new
features. Finally, Section 7 outlines the conclusions attained in this work and discusses
some possible topics for future work.

Sensors 2023, 23, 1219 3 of 18

2. Background

In this section, we look at the background concerning two essential subjects to under-
stand all the remaining sections in this paper. The first one is dedicated to the understanding
of the basic concepts leading to NCD, namely Kolmogorov complexity and normalized
information distance. The second is the quartet method employed by the Complearn tool to
build clusters from a distance matrix. We refer the reader to the book of Li and Vitányi [24]
for a complete and comprehensive introduction to the themes related to algorithmic infor-
mation theory.

2.1. Kolmogorov Complexity

The Kolmogorov complexity (K) is a concept from algorithmic information theory and
can be described as a measure of information in a string. The Kolmogorov complexity of an
object is the length of the shortest program in a predetermined syntax (i.e., Turing Machine,
Python, Java, Lisp) that, when run, produces that same object as output. So K(x) is the
length of the most compressed program describing x:

K(x) = min
p
{|p| : U(p) = x}, (1)

where U is any universal (Turing) machine.
As an example that illustrates this concept, consider the following strings:

s1: ‘’ggggggggggggggggg” with size = 17;
s2: ‘’LATQvgkCQaNwEadqO” with size = 17.

Although they have the same size, when compared in algorithmic terms, the infor-
mation needed to describe the two strings, one can use the following programs p1 and p2
describing s1 and s2, respectively:

p1: ‘’return ’g’ * 17” with K(s1) ≈ 4;
p2: ‘’return ’LATQvgkCQaNwEadqO’” with K(s2) ≈ 17.

Notice that the number of times ’g’ occurs in s1 describes the information in s1 is
repeated. Therefore, the algorithmic information needed to describe s1—described by
K(s1)—is much shorter than writing the entire string. On the other hand, there are no
“patterns” that one can use to express more succinctly the string s2. Therefore, K(s2) is
nearly maximally, i.e., approximately equal to the size of s2. It is well known that the
Kolmogorov complexity is not computable, i.e., given a string x, determining K(x) cannot
be determined by any automated machine. The alternative is to use approximations based
on the size of the outcome of regular computational compressors like Winzip.

The following subsection explains how to use the (computable version of) Kolmogorov
complexity to compare two strings.

2.2. Normalized Compression Distance

The normalized compression distance (NCD) measures the similarity between two
objects, but to understand it, we first need to look at the concept of information distance
and its normalized version. The information distance (ID) represents the distance between
two objects x and y by the shortest program, which transforms x into y and vice-versa,
given by:

ID(x, y) = max{K(x|y), K(y|x)}. (2)

The information distance gives us the absolute distance between two objects, inde-
pendently of the size of the objects. To avoid being influenced by the size of the objects, to
measure the similarity between objects, we must first normalize this distance to obtain the
relative distances between objects. For example, the ID can tell us that two strings differ by
17 bits, but does not consider whether this difference is between two objects of size 50 or 500.

Sensors 2023, 23, 1219 4 of 18

For this reason, the information distance is divided by the size of the largest description of
the two strings, resulting in the normalized information distance (NID) described as:

NID(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)} . (3)

With the NID, one can measure the similarity between any string and, in particular,
between any computer file. However, since this distance is calculated based on the repre-
sentation of each object with the least Kolmogorov complexity, and this notion, in turn, is
not computable, this measure is also not computable.

Two key ingredients are necessary to make the above information distance easy to
implement in real computers. One is the manipulation of the expression to approximate
max{K(x|y), K(y|x)} by K(xy)−min{K(x), K(y)}, where xy is the concatenation of x with
y, using a Kolmogorov complexity version of symmetry of information. The second one
is to use real-world compressors Z (e.g., gzip, bzlib, zlib) to approximate K, i.e., to use the
output size of the real-world compressor to represent the Kolmogorov size of compressed
objects. Having this in mind, the NID was rewritten to apply in the real world to the
normalized compression distance (NCD) [25]:

NCD(x, y) =
Z(xy)−min{Z(x), Z(y)}

max{Z(x), Z(y)} . (4)

In practice, the NCD distance is calculated by first appending both files together and
compressing them. Then, both files are compressed individually, taking the difference
between the appended compressed file size and the most petite individual compressed file
size. Finally, this difference is normalized by dividing it by the size of the most extensive
individual compressed file. Since we are using compressors Z to approximate K of each
object, it is clear that the better the Z is, the more accurate the NCD results will be.

2.3. The Quartet Method

So, the implementations of the quartet method described below use greedy algorithms
to have an approximation to it. We describe the quartet method as, from our collection of
n elements, we consider each group of four items. Therefore, the total number of groups
is (n

4). A tree is then built from each group {u, v, w, x}, and each internal node has three
neighbors, implying that the tree comprises two subtrees with two leaves each. Let this
tree be called a quartet. There are three possible dispositions for a quartet: uv|wx, uw|vx,
and ux|vw, where each pair of letters represents the leaves connected to the same internal
node as shown in Figure 1.

u v

w x

u w

v x

u x

w v

Figure 1. All possible position of quartets of four nodes.

The cost of each quartet is then defined by the sum of distances between each pair of
neighbors: Cuv|wx = d(u, v) + d(w, x). We say that a tree T is consistent with {u, v, w, x}
if and only if the path from u to v does not cross the path from w to x for any given T
and any collection of four leaf labels {u, v, w, x}. The tree representing our data can then

Sensors 2023, 23, 1219 5 of 18

be considered composed of this smaller quartet tree. Finally, the sum of the costs of all
consistent quartets is the cost of the entire tree.

The authors of [16] go even further and implement a score S to measure how well any
given tree represents the pairwise distance matrix. The score of a tree T of N leaves is
computed as S(T) = (M−CT)/(M−m), a normalization of the cost of the tree T. The real
value of the cost of a tree is given by CT = ∑u,v,w,x⊂N{Cuv|wx : T is consistent with uv|wx},
i.e., it is the sum of the costs of all its consistent quartet topologies and the values m and
M correspond to the best (minimal) cost m(u, v, w, x) = min{Cuv|wx, Cuw|vx, Cux|vw}, and a
worst (maximal) cost M(u, v, w, x) = max{Cuv|wx, Cuw|vx, Cux|vw}, respectively. The higher
the score, the lower the cost of the tree.

The problem of finding the best tree to represent the distance of the data is known to
be NP-complete. Therefore, a method based on randomization and hill-climbing is used to
find an approximation to the optimal tree. The search method starts by creating a random
tree T1 with n− 2 internal nodes and n leaf nodes (2n− 2 nodes total). The score S(T1) is
then calculated, and since it is the first score calculated, it denotes the best-known score
up until that moment. A second tree T2 is then created by mutating T1 in three possible
ways: (1) a leaf swap, choosing two leaf nodes randomly, and swapping them; (2) a subtree
swap, choosing at random two internal nodes and swapping the subtrees rooted on them;
and (3) a subtree transfer, choosing a random tree at random, detaching and reattaching
it in another place, maintaining similarity invariants. After T2 is created, we calculate its
score S(T2). If S(T2) > S(T1), then we keep the tree T2; otherwise, we keep T1 and repeat
the process with a different configuration and choice. Finally, the search algorithm halts if
it reaches a tree T with a score S(T) = 1 or if no better trees are being found in a reasonable
amount of time.

3. Complearn

Complearn [26] is a Linux command line tool that enables its users to perform “clus-
tering by compression” straightforward and intuitively by providing all the resources
necessary for distance matrix computation, cluster production, and visualization.

The tool is divided into two main command names, ncd, for computations of the
Normalized Compression Distance and maketree, for binary tree generation from a given
distance matrix based on hill-climbing algorithms, as described above.

The NCD command name offers the possibility to select between different compression
methods among bzlib, zlib, and blocksort, and multiple input options described below:

• File Mode—takes, as an argument, a filename whose contents will be compressed.
• String Literal Mode—takes, as an argument, a string whose contents will be com-

pressed. By default, each string literal is separated by white space. If a string contains
literals with white space, that is surrounded with double quotes.

• Plain List Mode—takes, as an argument, a filename, which contains a list of filenames
to be individually compressed. A line break separates each filename.

• Term List Mode—takes, as an argument, a filename whose contents are a list of string
literals to be individually compressed. A line break separates each string character.

• Directory Mode—takes, as an argument, the name of a directory whose file contents
will be used to compute the distance matrix.

The outputs from the ncd commands, if we so choose, can then be used as input for
the maketree command. This command takes a distance matrix as input, computes an
approximation of a possible best-fitting unrooted binary tree, and outputs a “treefile.dot”
that can be visualized using the GraphViz tool [27] with the only two restrictions being that
the matrix must be square and be of a size at least 4× 4. Internally, the maketree method
generates and represents its structure using the quartet method explained in Section 2.3.

4. Zgli

As mentioned as work objectives in Section 1, Zgli [21] is the tool we propose to
perform clustering by compression using Python. It was developed in Python to ease its

Sensors 2023, 23, 1219 6 of 18

integration with other well-established data science utilities and enable more developers to
use an NCD approach to their problems. This tool is divided into two main classes:

• Folder—this class performs operations inside a folder containing the files intended for
compression and clustering.

• Encoder—this class was designed to perform all the operations regarding the tabular
encoding of data.

In the subsequent subsections, we present the Folder and Encoder classes, explaining
their purpose and main features. We will not explain in full detail all the functions for each
of these classes, skipping over some details like function parameters, and some examples
of use. For a detailed description of all the functions, code, usage, and a quick start guide,
we refer the reader to the Zgli website [21].

4.1. Folder

Four separated functions compose the Folder class, three of which provide the user
with access to relevant information about the files and one of which enables the user to
generate a distance matrix that encompasses all the NCDs between the files in the folder.

The first three functions are get_file_names, get_file_lengths, and get_file_sizes, where
length denotes the text file’s character count and size denotes the amount of memory it
uses to be locally stored.

The final function in this class is distance_matrix function. Its purpose is to compute
the NCD between all files inside the folder and give suitable compression approaches for
specific characteristics the data may present.

Starting with compression options, Zgli has gzip, lzma, and raw compression options
in addition to the pre-existing zlib and bzlib compressors already inbuilt in Complearn. The
option raw means that the files were analyzed with the trivial compressor, i.e., with the
identity. Therefore, with this option, the original file sizes are used in the computation of
the NCD distance matrix.

The option to compress a file per column was the second feature we added to this
function. This function will calculate the file size as the sum of the compressed sizes of all
the columns inside the text file, if such a tabular structure exists. The user must provide the
column delimiter (e.g., commas in CSV files).

Additionally, the user can perform weighted compression by column, where the
compressed size of each column is multiplied by the weight provided, allowing the user to
manipulate column importance on the final compressed file size.

The compression size CbC of the file using the option of compression by column of a
file x given in tabular format with n columns is given as follows:

CbC(x) =
n

∑
i=1

wi · Z(xi) (5)

where wi ∈ [0, 1] is the given weight to each column i and Z is again the used compressor.
It is easy to verify that the weighted compression by columns respects the properties

required to be classified as a normalized compression distance.

4.2. Encoder

The Encoder class has three different functions that allow the user to encode small
tabular data into larger sequences, with the idea that the text file compressors are then
capable of analyzing and compressing. This class was idealized due to the necessity to solve
the problem that appears when compressing small text files using (almost optimal) state-of-
the-art compression algorithms. Small files, even if entirely different, when compressed,
will yield very similar compressed sizes, making the algorithm underlying the NCD unable
to depict the differences between them correctly.

With the three encoding functions, categorize_cols, standardize_categorical_cols, and
encode_df, provided in this class, the user can create a pipeline and encode the smaller data

Sensors 2023, 23, 1219 7 of 18

that is usually present inside the cells of tabular data, and still be able to use the clustering
by compression approach to the data. In the following paragraphs, we discuss in detail
an example of the use of this class. We use data taken from the iris plant dataset from the
UCI Repository of Machine Learning Databases and Domain Theories [28]. The dataset
contains three classes of 50 instances each, where each class refers to a type of iris plant.
For this example, we will consider only 5 of the 150 instances, as shown in Table 1.

Table 1. Raw tabular data example extracted from iris plant dataset [28].

Feature1 Feature2 Feature3 Feature4

5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
7.0 3.2 4.7 1.4
6.4 3.2 4.5 1.5
6.3 3.3 6.0 2.5 0.2

After loading the data, we encode all the columns comprised of continuous variables
using the categorize_cols function. This function receives as an argument the number of
categories to divide the column into, and outputs the table with each column having
continuous values now assigned to category. Table 2 illustrates the use of this function
when applied to the data present in Table 1, where we can see that every continuous value
in first table is now represented by a range of values i.e., a category.

Table 2. Categorized data obtained after applying categorize_cols to the raw data example extracted
from the iris data set presented in Table 1.

Feature1 Feature2 Feature3 Feature4

(4.296, 5.2] (3.2, 3.8] (0.994, 2.475] (0.0976, 0.7]
(4.296, 5.2] (2.6, 3.2] (0.994, 2.475] (0.0976, 0.7]

(6.1, 7.0] (2.6, 3.2] (3.95, 5.425] (1.3, 1.9]
(6.1, 7.0] (2.6, 3.2] (3.95, 5.425] (1.3, 1.9]
(6.1, 7.0] (3.2, 3.8] (5.425, 6.9] (1.9, 2.5]

After using the categorize_cols function, all the data in our dataset should be categor-
ical. All that is left to do before encoding is to make sure all columns have a standard
representation that we can pass to the final encode_df. To accomplish this, we developed the
standardize_categorical_cols, that maps every unique instance in a column to an ordinal se-
quence. This way we guarantee that every categorical column has the same representation
format, even if there were categorical columns in the data other than the ones generated
by the categorize_cols. Table 3 shows how data from Table 2 would look after using the
standardize_categorical_cols.

Table 3. Standardized data obtained after applying the standardize_categorical_cols to Table 2.

Feature1 Feature2 Feature3 Feature4

0 2 0 0
0 1 0 0
2 1 2 2
2 1 2 2
2 2 3 3

Finally, with all data categorized and standardized, we can encode the features into
patterned sequences using the encode_df function. Table 4 shows the final encoded version
of our iris dataset slice.

Sensors 2023, 23, 1219 8 of 18

Table 4. Encoded data obtained after applying encode_df to the standardized data of Table 3.

Feature1 Feature2 Feature3 Feature4

000000000000 012012012012 000000000000 000000000000
000000000000 010101010101 000000000000 000000000000
012012012012 010101010101 012012012012 012012012012
012012012012 010101010101 012012012012 012012012012
012012012012 012012012012 012301230123 012301230123

The classes’ representations are created during the final and most significant encoding
stage. Note that this task requires that the representations be so that compressors can
detect differences between the classes while keeping a consistent distance between data of
different classes.

To better understand how the encode_df function converts the data into categories,
consider the following example, where we follow the categorization of a row from a
dataset where the data was already categorized using categorize_cols and standardized
using standardize_categorical_cols, similar to the data shown in Table 3:

• Row—0,1,0,2;
• ASCII string—0123456789abcdefg (...);
• Hop—1.

where the ASCII string is a string composed of 94 different ASCII characters, and the Hop is
a user-defined parameter that determines how many characters should be jumped between
different categories. The purpose of the Hop parameter will be clearer in due course at the
end of the example.

The row is divided into classes 0, 1, and 2. This means that the encoding function will
need to generate three distinct patterns to represent each one of these classes. All these
patterns must have varying levels of complexity so that different compressed sizes are
obtained. This variation in complexity must also be consistent across classes, so that feature
importance remains generally constant. The solution proposed by encode_df for all of these
issues is to encode the classes as follows:

• 0—000000;
• 1—010101;
• 2—012012.

Every class is represented by a slice of the main ASCII string, with the size of this slice
increasing by one (hop = 1) for each new class. For class 0, the slice is ’0’; for class 1, the
slice is ’01’; for class 2, the slice is ’012’. If the value of the Hop parameter were equal to
two, the size of this slice would increase by two for each new class, and the final encoding
results would be:

• 0—000000000000000;
• 1—012012012012012;
• 2—012340123401234.

where class 0 uses slice ’0’; class 1 uses slice ’012’; and class 2 uses slice ’01234’.
Additionally, an important aspect that one can observe in the previous example is

that the size of the pattern string that represents each class grows proportionally with the
number of classes and hop size. As previously stated, the typical behavior of a standard
state-of-the-art compressor is for larger strings to generate larger compressed sizes. For this
reason, all classes must have the same size strings representing them, so the differences
between them rely on their complexity rather than their size. If we want all the strings to
be of the same length, we must consider the Hop parameter and the number of classes the
function must represent. Therefore, the size formula is given by:

size = lcm(hop, hop× 2, · · · , hop× n) (6)

Sensors 2023, 23, 1219 9 of 18

where n is the number of column classes with the most classes in the data frame, and lcm
is the least common multiple among all the numbers given as parameters. Furthermore,
to ensure all the columns are represented in the same manner, this function ensures to
distribute class’s representations between all the columns in the best way possible. For
example, consider two columns X, taking the class values 0, 1 and 2, and Y, taking only the
binary class values 0 and 1. Assume also that X is the column with the most classes in the
dataset. A possible representation of its values, in the case with the initial hop of 2, could
be the following:

• 0—000000000000000;
• 1—012012012012012;
• 2—012340123401234.

To ensure that the binary values of column Y have the same impact on the compression
sizes as the values of column X, the function encodes the two values of column Y as:

• 0—000000000000000;
• 1—012340123401234.

I.e., with the two values being represented with the same pattern as the two most distant
values in the column X. This function considers the difference between class 0 and class 2
in column X to be the same as the difference between class 0 and class 1 in column Y, so it
represents them in the same way. When this is not possible, the function rounds the class
representation to the closest existing one in the column with the most features inside the
data frame. When the approximation is tied, the value is rounded downwards.

5. Validation Tests

In this section, we investigate the new features implemented in the Zgli module.
We design validation tests to understand whether the results obtained with new features
perform better when compared with the previous features available in Complearn. These
tests aim to verify if the Zgli tool enhances the state-of-the-art tools for clustering by
compression in any manner other than to be added as a practical module for Python,
especially integrated into packages for machine learning and data mining.

The main relevant research questions that these tests answer are:

Question 1: Is it possible to improve the clustering by compression results of tabular data
with the new compression by column option?

Question 2: Is it possible to enhance the standard results for clustering (using the Euclidean
distance, for example) for clustering categorical data using the Zgli encoder and the NCD?

5.1. Question 1—Improving Clustering Results Using Compressing by Columns

To answer the first research question, we have used a dataset created by David
Guarin et al. and available at the UCI repository [29]. The dataset contains informa-
tion of basketball participants performing different actions. An accelerometer (x,y,z) and
a gyroscope (R, phi, delta) located on the player’s right arm were used to collect the data
of movements. Four distinct users were requested to carry out several basketball moves:
dribble, hold, pass, pickup, and shoot.

To circumvent the problem of the files being differentiated due to their different size,
a separate dataset was built from the raw one (after the headers were removed) in which
each file had the same number of lines. To have a reasonable number of line representatives,
the same number of lines per file was accomplished by looping the smaller files and
repeating them line by line until all the smaller files were the same size as the largest
one—see Figure 2. Note that in this case, we are, on the one hand, not influencing the
results dramatically, as the movements are expected to be repetitive. From the Kolmogorov
complexity point of view, the information is the same as the smallest information in the
initial pattern. Furthermore, in fact, to validate this method’s results, it was essential to
observe that files will be clustered together based on their compressed size. Although not
always, with state-of-the-art compressors, files with larger original sizes tend to have larger

Sensors 2023, 23, 1219 10 of 18

compressed sizes, and files with smaller original sizes tend to have smaller compressed
sizes. Therefore, to have a term of comparison, we examine clusters formed using the actual
file sizes, so we can later compare them to clusters generated using file compressors and
see their impact on the groups created.

Figure 2. Looped rows example.

After looping all the necessary files in the 80-file dataset, we sampled 15 files (3 files
per basketball move) just so the binary trees resulting from the clustering performed could
be better visualized for the sake of explanation. Figure 3 shows the binary tree generated
when using the uncompressed file sizes, and it clearly shows that the method is not able to
correctly group the actions based on the raw size alone.

Figure 3. Binary tree generated using Zgli on the raw sizes of the Basketball data [29]. It can be seen
that the shootings are the only type of data that is clustered together. Furthermore, the rest of the
data is clustered linearly.

Now when looking at the results in Table 5 we can see that for both the raw dataset
and the looped dataset where all files are of the same length, the tree scores (as defined
in Section 3) are higher when the clusters are obtained using the compression by column
option. Note that with a three-column dataset, the results improved approximately 2% for
all the compressors considered in the tests.

Sensors 2023, 23, 1219 11 of 18

Table 5. Comparison of tree scores obtained using two types of datasets: raw and looped dataset,
with and without the option of compression by column being active. The compressors used are the
ones inbuilt into the original Complearn tool [16].

Compressor Dataset Compress by
Column Option Tree Scores

bzlib raw Disabled 0.968793
bzlib raw Enabled 0.982927
bzlib looped Disabled 0.968793
bzlib looped Enabled 0.982227
zlib raw Disabled 0.979618
zlib raw Enabled 0.991362
zlib looped Disabled 0.979618
zlib looped Enabled 0.991362

lzma raw Disabled 0.996360
lzma raw Enabled 0.991362
lzma looped Disabled 0.976434
lzma looped Enabled 0.996360

The improvement of the results can also be seen in the binary tree image generated for
the compressed by column option presented in Figure 4. When compared with Figure 5, for
example the latter does not cluster properly dribbles and pickups, i.e., it does not correctly
separate them by grouping them all in one branch of the tree, while in Figure 5, these two
actions are now in distinct branches.

Figure 4. Binary tree generated using the looped data and bzlib without compression by column over
the Basketball data set [29].

Sensors 2023, 23, 1219 12 of 18

Figure 5. Binary tree generated using the looped data and bzlib with compression by column over
the Basketball data set [29].

5.2. Question 2—Improving Results by Using Zgli Encoder

In this research question, we aim to see to which degree the encoder defined in Zgli
enables the usage of an NCD approach to a problem comprised of small files that usually
yield very similar compressed sizes. To answer this research question, we will use the
iris dataset [28]. This dataset is composed of 3 classes of 50 instances each, where each
class refers to a type of iris plant. One class is linearly separable from the other 2; the
latter are not linearly separable from each other. We generated six different datasets from
this original dataset, where a single file represents every row. We have files without any
encoding for the original dataset, and for the remaining five, we have files encoded with
the Zgli encoder using hop values from one to five.

The results in Table 6 show the accuracy scores of agglomerative clustering models
generated with the distance matrices outputted by Zgli for each of these six datasets. We
can observe the highlighted values in the table and verify that for each of the models, with
the exception of the ones generated using the lzma compression algorithm, the Zgli encoder
improved model results by at least 13% over using the results obtained using the original
files without any encoding.

Table 6’s overall low accuracy scores shows the clustering by compression’s limitations
when working with small files. Even so, the patterns generated by the hop encoding enable
clustering by compression to produce a few outlier models with more respectable scores.
For this reason, the hop encoder enhances the potential that pattern-generating algorithms
can have when used as a step for clustering by compression. The exploration of such
algorithms can lead to better models if more synergistic algorithms are found.

Finally, albeit briefly, the test findings in Table 6 highlight some intriguing qualities
about available compressor possibilities and potential compressor choices. First, we observe
that bzlib performed best with encoded sequences and generated a noticeably superior
model when using encoded files as opposed to non-encoded data. When examining the
best model created using the encoded files, Zlib also saw an increase in accuracy score,
though not to the same level as the previous option. lzma was the only method that did
not experience improvements in accuracy scores when employing encoded files. These

Sensors 2023, 23, 1219 13 of 18

factors lead us to believe that bzlib and zlib are probably more suitable for the zgli encoder
module and agglomerative clustering than the lzma compression technique.

Table 6. Accuracy scores of Agglomerative clustering models generated using NCD distance matrices.
The boldface scores show the best score of each model. Agg Ave Acc—Accuracy of agglomera-
tive clustering using average linkage; Agg Com Acc—Accuracy of agglomerative clustering using
complete linkage; and Agg Sin Acc—Accuracy of agglomerative clustering using single linkage.

Compressor Hop Agg Ave Acc Agg Com Acc Agg Sin Acc

bzlib 1 0.133 0.333 0.200
bzlib 2 0.533 0.200 0.400
bzlib 3 0.733 0.333 0.733
bzlib 4 0.733 0.067 0.200
bzlib 5 0.400 0.133 0.400
bzlib normal 0.000 0.133 0.400
lzma 1 0.333 0.067 0.333
lzma 2 0.400 0.600 0.333
lzma 3 0.067 0.133 0.400
lzma 4 0.533 0.267 0.200
lzma 5 0.533 0.067 0.133
lzma normal 0.600 0.400 0.400
zlib 1 0.600 0.267 0.200
zlib 2 0.067 0.133 0.467
zlib 3 0.400 0.133 0.267
zlib 4 0.200 0.133 0.400
zlib 5 0.400 0.133 0.467
zlib normal 0.467 0.200 0.333

6. Clinical Use Case

Ankylosing spondylitis [30] (AS) is an autoimmune inflammatory condition belonging
to the spondyloarthropathy category of rheumatic diseases. Its main early symptoms are
back pain and early morning stiffness, and when left unchecked, these pains can extend to
the whole spine and sacroiliac joints, with severe cases ending with the total fusion between
the joints and bone structures in these areas. Most patients are young workers, and AS can
result in significant socioeconomic hardship because patients must take time off work and,
in severe situations, may have to quit their job.

With the advent of electronic medical records, the collected data provide insightful
knowledge toward developing automatic decision helpers. In this use case, we gener-
ate clustering models using our Zgli tool to perform pattern mining on the Reuma.pt
dataset [31] comprising clinical data from Portuguese patients with AS, and compare the
results obtained with standard clustering approaches.

The patients’ data in this dataset are described with typical characteristics such as age
and gender, but also include disease-specific features such as Bath Ankylosing Spondylitis
Disease Activity Index (BASDAI) [32] and the more recent Ankylosing Spondylitis Disease
Activity Score (ASDAS) [33], which correspond to indices that describe the disease’s activity
and the level of impact it has on the patient. We refer the reader to [8] for a more detailed
description of the data and the description of each disease index activity.

For this particular disease, doctors can prescribe four main biological treatments to
AS patients: Etanercept, Infliximab, Golimumab, and Adalimumab. The ultimate goal of
this dataset and the new techniques we have applied here is to find which treatment is the
best for each patient based on his describing features. In this work, we analyzed treatment
instances of patients with high or very high disease activity since these treatments aim
to reduce this activity to low or inactive levels. For this reason, we only use treatment
instances where the patient has a starting ASDAS of at least 2.1, as this is the accepted
threshold for high disease activity [34]. Furthermore, we define treatment success and
failure based on the ASAS-EULAR recommendations [35], with decreases of at least 1.1 on

Sensors 2023, 23, 1219 14 of 18

the starting ASDAS after 12 weeks being considered as successes and decreases lower than
1.1 being considered failures.

Now, we built a pipeline to analyze each dataset to find patterns between patients and
treatments. This pipeline has Adalimumab, Etanercept, Golimumab, and Infliximab as starting
points. We use zlib and bzlib as compression options, with lzma being left out based on the
results from Section 5.2, with the added benefit of saving on the computational time it took
to compress all the files using this algorithm. We then perform feature selection for each
dataset using the Maximum Relevance Minimum Redundancy (MRMR) algorithm [36]. After
obtaining the 10 best features for each dataset, we generate models starting by using the first
two features with the best MRMR score, and appending the next best feature to the set until all
the features were used to generate models. For each subset of features (2 best features, 3 best
features, and so on until 10 best features), we also went over different numbers of clusters, from
2 to 10. Furthermore, for each pair of features and number of clusters, we used Hierarchical
Clustering (with complete, average, and single distance) and K-medoids to generate 4 different
models. Finally, when doing clustering by compression, we used the 2 fastest compression
algorithms, zlib and bzlib, with both standard compression and compression by column. This
means that for each dataset, we generate 1620 different models:

9(f eature sets)× 9(clusters)× 4(models)× 5(types o f clustering) = 1620

with feature sets being 9 because we went from a feature set of size 2 up to a feature set of
size 10, clusters being 9 because we went from 2 clusters up to 10 clusters, models being
4 because we used hierarchical clustering with 3 different distances and K-medoids, and
types of clustering being 5 because we used bzlib and zlib with standard compression and
compression by column, and normal clustering.

These models were evaluated using three different scores: the silhouette score, v-
measure, and adjusted random score [37–39]. The best-performing models for each of the
scores were then analyzed, and finally, two main patterns between clusters and treatment
were identified.

To evaluate the performance of the clustering by compression using Zgli when com-
pared with standard clustering techniques, we produced tables with the top 10 models
for each score. For clarity purposes, we will only look at the Golimumab results, show in
Tables 7–9.

Table 7. Silhouette scores of the best five clustering by compression and the best five standard
compression models for the Golimumab dataset. N/A means that no compressor was applied.

Score Clusters Features Compressor Model

0.588178 8 2 N/A HC complete
0.583808 8 2 N/A HC average
0.56795 2 3 bzlib by column HC average
0.56795 2 3 bzlib by column K-medoids
0.56795 2 3 bzlib by column HC complete
0.56795 2 3 bzlib by column HC single
0.505713 8 4 bzlib by column HC complete
0.475152 8 4 N/A HC complete
0.446612 7 4 N/A HC average
0.441733 6 4 N/A HC single

Sensors 2023, 23, 1219 15 of 18

Table 8. V-measures of the best five clustering by compression and the best five standard compression
models for the Golimumab dataset. N/A means that no compressor was applied.

Score Clusters Features Compressor Model

0.588178 8 2 N/A HC complete
0.505713 8 4 bzlib by column HC complete
0.502198 8 4 bzlib by column HC single
0.475152 8 4 N/A HC complete
0.450261 8 5 bzlib by column HC complete
0.446612 7 4 N/A HC average
0.425628 8 5 N/A HC complete
0.390852 3 3 bzlib by column K-medoids
0.390682 8 5 bzlib by column HC single
0.386077 8 5 N/A HC average

Table 9. Adjusted random scores of the best five clustering by compression and the best five standard
compression models for the Golimumab dataset. N/A means that no compressor was applied.

Score Clusters Features Compressor Model

0.446612 7 4 N/A HC complete
0.441733 6 4 N/A HC single
0.432458 8 4 N/A HC average
0.412846 3 3 bzlib by column HC complete
0.407364 7 5 N/A HC complete
0.390852 3 3 bzlib by column K-medoids
0.390682 8 5 bzlib by column HC single
0.386953 5 5 N/A HC average
0.374891 3 5 bzlib by column HC complete
0.308163 3 3 zlib by column HC average

When analyzing the results, we see firstly that, when looking into clustering by com-
pression in isolation, models with the highest values across all scores use the compression
by column option, leading us to believe that this new feature is a good addition to the ones
already present in Complearn.

Secondly, comparing clustering by compression approaches with conventional cluster-
ing approaches, the latter consistently beats the former when examining the scores alone.
Despite this, clustering by compression demonstrated the ability to create models with
competing outcomes while utilizing fewer clusters, indicating that the models required less
population separation to produce comparable outcomes.

These clusters offered a new perspective on our clinical data and confirmed the
general pattern that the patients could be neatly divided into two to four groups, with the
categories being determined by the patient’s gender and initial ASDAS levels. The major
difference between conventional and compression models was that the population was
further divided into the different subsets of initial ASDAS values.

Patterns from both clustering approaches were extracted by looking at the feature
distribution of the clusters of the best models. These clusters showed that treatment
response failed mainly when ASDAS values were close to low disease activity (2.1 to
2.7 threshold) and were successful when ASDAS values were high to very high disease
activity values (3.1 upwards). Treatment response in the interval from 2.7 to 3.1 was
less predictable. Still, gender showed to be correlated to this response, with Infliximab,
Golimumab, and Etanercept treatments having a higher success rate for male patients and
a higher failure rate for female patients. The Adalimumab treatment was the sole exception
to this rule, having similar success rates for both male and female patients.

Sensors 2023, 23, 1219 16 of 18

7. Conclusions

The Zgli module proved to be more than simply a port of a similar tool into Python.
All the new features implemented into the module are added value to the Complearn tool
for users who intend to use clustering by compression as an approach to their problems.
The method of compression by column had shown to be a way to improve clustering
by compression results when dealing with tabular data, and the feature encoder enabled
the technique to be employed with files that would otherwise yield compressed sizes
differences to be too small to be used with this approach. Additionally, the tool is available
in Python, making it easier to integrate clustering by compression with other popular
machine-learning tools.

The Zgli tool also shows potential for its usage in the mining of data for significant
patterns in real world problems such as those present in Reuma.pt. The resulting patterns
from AS patients show that the Infliximab, Golimumab, and Etanercept treatments have
a higher success rate for male patients and a higher failure rate for female patients, with
the Adalimumab treatment being the only exception, with similar success rates for both
male and female patients. We could also see a direct relation between initial ASDAS and
our target variable where patients with higher ASDAS values had higher success rates and
vice-versa. This use case ultimately showed that clustering by compression can compete
with standard clustering and that the treatment choice for AS could follow a logic found in
the patterns uncovered from patients’ data.

Author Contributions: D.A. developed the Zgli website, constructed its Python implementation,
run the experiments, made the validation and formal analysis, and generated the final results and
manuscript. A.M.R. and H.C. provided the data from Reuma.pt. A.M.C. supervised the research and
generated the final results and manuscript. A.S. designed and conceived the study, supervised the
research, made the validation and formal analysis, generated the final results and manuscript, and
contributed to the implementation of the Zgli. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors acknowledge Fundação para a Ciência e Tecnologia, LASIGE Research Unit,
ref. UIDB/00408/2020 and ref. UIDP/00408/2020 and Instituto de Telecomunicações Research Unit,
ref. UIDB/50008/2020, and UIDP/50008/2020. The authors also acknowledge the Project PREDICT
(PTDC/CCI-CIF/29877/2017), funded by Fundo Europeu de Desenvolvimento Regional (FEDER),
through Programa Operacional Regional LISBOA (LISBOA2020), and by national funds, through
Fundacção para a Ciência e Tecnologia (FCT), and projects MATISSE (DSAIPA/DS/0026/2019),
MONET (PTDC/CCI-BIO/4180/2020) and SmartGlauco (PTDC/CTM-REF/2679/2020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Reuma.pt was approved by the National Data Protection Board
(Comissão Nacional de Proteção de Dados – CNPD, Portugal) and by the Ethics Committee of Centro
Hospitalar Lisboa Norte (CHLN) - Hospital de Santa Maria (HSM), Lisbon, Portugal. Patients signed
Reuma.pt’s informed and written consent.

Data Availability Statement: The Iris and Basketball sets used in this paper can be obtained from
the following link: https://archive.ics.uci.edu/ml/datasets/iris and https://archive.ics.uci.edu/ml/
datasets/Basketball+dataset accessed on 18 January 2023, respectively. Data from Reuma.pt are not
publicly available.

Conflicts of Interest: Not applicable.

References
1. Xu, D.; Tian, Y. A Comprehensive Survey of Clustering Algorithms. Ann. Data Sci. 2015, 2, 165–193. [CrossRef]
2. Saxena, A.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.P.; Tiwari, A.; Er, M.J.; Ding, W.; Lin, C.T. A review of clustering techniques

and developments. Neurocomputing 2017, 267, 664–681. [CrossRef]
3. Henriques, R.; Madeira, S.C. FleBiC: Learning classifiers from high-dimensional biomedical data using discriminative biclusters

with non-constant patterns. Pattern Recognit. 2021, 115, 107900. [CrossRef]

https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/Basketball+dataset
https://archive.ics.uci.edu/ml/datasets/Basketball+dataset
http://doi.org/10.1007/s40745-015-0040-1
http://dx.doi.org/10.1016/j.neucom.2017.06.053
http://dx.doi.org/10.1016/j.patcog.2021.107900

Sensors 2023, 23, 1219 17 of 18

4. Soares, D.F.; Henriques, R.; Gromicho, M.; de Carvalho, M.; Madeira, S.C. Learning prognostic models using a mixture of
biclustering and triclustering: Predicting the need for non-Invasive ventilation in Amyotrophic Lateral Sclerosis. J. Biomed. Inform.
2022, 134, 104172. [CrossRef] [PubMed]

5. Hendricks, R.M.; Khasawneh, M.T. A Systematic Review of Parkinson’s Disease Cluster Analysis Research. Aging Dis. 2021,
12, 1567–1586. [CrossRef] [PubMed]

6. Molano-González, N.; Rojas, M.; Monsalve, D.M.; Pacheco, Y.; Acosta-Ampudia, Y.; Rodríguez, Y.; Rodríguez-Jimenez, M.;
Ramírez-Santana, C.; Anaya, J.M. Cluster analysis of autoimmune rheumatic diseases based on autoantibodies. New insights for
polyautoimmunity. J. Autoimmun. 2019, 98, 24–32. [CrossRef]

7. de Souto, M.C.; Costa, I.G.; de Araujo, D.S.; Ludermir, T.B.; Schliep, A. Clustering cancer gene expression data: A comparative
study. BMC Bioinform. 2008, 9, 497. [CrossRef]

8. Barata, C.; Rodrigues, A.M.; Canhão, H.; Vinga, S.; Carvalho, A. Predicting Biologic Therapy Outcome of Patients With
Spondyloarthritis: Joint Models for Longitudinal and Survival Analysis. JMIR Med. Inform. 2021, 9, e26823. [CrossRef]

9. Rama, K.; Canhão, H.; Carvalho, A.; Vinga, S. AliClu—Temporal sequence alignment for clustering longitudinal clinical data.
BMC Med. Inform. Decis. Mak. 2019, 19, 289. [CrossRef]

10. Gunopulos, D. Cluster and Distance Measure. In Encyclopedia of Database Systems; Liu, L.; Ozsu, M.T., Eds.; Springer US: New
York, NY, USA, 2009; pp. 374–375. [CrossRef]

11. Cilibrasi, R.; Vitanyi, P.; Wolf, R. Algorithmic clustering of music. In Proceedings of Fourth International Conference on Web
Delivering of Music, 2004, EDELMUSIC 2004, IEEE, Barcelona, Spain, 4–14 September 2004; pp. 110–117. [CrossRef]

12. Wehner, S. Analyzing Worms and Network Traffic Using Compression. J. Comput. Secur. 2007, 15, 303–320. [CrossRef]
13. Souto, A. Traffic analysis based on compression. In Proceedings of the Conferência sobre Redes de Computadores CRC 15, Évora,

Portugal, July 2015; pp. 1–7.
14. Resende, J.S.; Sousa, P.R.; Martins, R.; Antunes, L. Breaking MPC implementations through compression. Int. J. Inf. Secur. 2019,

18, 505–518. [CrossRef]
15. Li, M.; Badger, J.; Chen, X.; Kwong, S.; Kearney, P.; Zhang, H. An information-based sequence distance and its application to

whole mitochondrial genome phylogeny. Bioinformatics 2001, 17, 149–154. [CrossRef] [PubMed]
16. Cilibrasi, R.; Vitányi, P. Clustering by compression. IEEE Trans. Inf. Theory 2005, 51, 1523–1545. [CrossRef]
17. Santos, C.; Bernardes, J.; Vitanyi, P.; Antunes, L. Clustering Fetal Heart Rate Tracings by Compression. In Proceedings of the

Computer-Based Medical Systems, 2006, CBMS 2006, 19th IEEE International Symposium on Computer-Based Medical Systems
(CBMS’06), Salt Lake City, UT, USA, 22–23 June 2006; pp. 685–690. [CrossRef]

18. Cebrian, M.; Alfonseca, M.; Ortega, A. The Normalized Compression Distance Is Resistant to Noise. IEEE Trans. Inf. Theory 2007,
53, 1895–1900. [CrossRef]

19. Cilibrasi, R.; Vitányi, P. Phylogeny of the COVID-19 Virus SARS-CoV-2 by Compression. Entropy 2022, 24, 439. [CrossRef]
[PubMed]

20. Machado, J.A.T.; Rocha-Neves, J.M.; Andrade, J.P. Computational analysis of the SARS-CoV-2 and other viruses based on the
Kolmogorov’s complexity and Shannon’s information theories. Nonlinear Dyn 2020, 101, 1731–1750. [CrossRef]

21. Azevedo, D.; Souto, A. Import Zgli a Clustering Technique. 2022. Available online: https://zgly-92273.web.app/ (accessed on
25 October 2022).

22. TIOBE Software BV. Tiobe Index. Available online: https://www.tiobe.com/tiobe-index/ (accessed on 25 October 2022).
23. Developer Nation. What Is the Best Programming Language for Machine Learning? 2019. Available online: https://towardsdatascience.

com/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7 (accessed on 25 October 2022).
24. Li, M.; Vitányi, P. An Introduction to Kolmogorov Complexity and Its Applications, 4th ed.; Springer-Verlag New York, Inc.: Secaucus,

NJ, USA, 2019.
25. Li, M.; Chen, X.; Li, X.; Ma, B.; Vitanyi, P. The similarity metric. IEEE Trans. Inf. Theory 2004, 50, 3250–3264. [CrossRef]
26. Cilibrasi, R.; Cruz, A.; Rooij, S. CompLearn, 2008. Available online: https://complearn.org/ (accessed on 18 January 2023).
27. Ellson, J.; Gansner, E.; Hu, Y.; North, S.; Jacobsson, M.; Fernandez, M.; Hansen, M.; Alexiev, V.; Bilgin, A.; Caldwell, D.; et al.

Graphviz. Available online: https://graphviz.org/ (accessed on 18 January 2023). 2021.
28. Dua, D.; Graff, C. Iris Dataset, UCI Machine Learning Repository. 2017. Available online: http://archive.ics.uci.edu/ml

(accessed on 18 January 2023).
29. Guarin, D.; Gloria, J.; Naranjo, L. Basketball Dataset, UCI Machine Learning Repository. 2019. Available online: https:

//archive.ics.uci.edu/ml/datasets/Basketball+dataset (accessed on 18 January 2023).
30. Mahmood, F.; Helliwell, P. Ankylosing Spondylitis: A review. EMJ Rheumatol. 2017, 2, 134–139. .

10.33590/emjrheumatol. [CrossRef]
31. Canhão, H.; Faustino, A.; Martins, F.; Fonseca, J.E.; Rheumatic Diseases Portuguese Register Board Coordination, Portuguese

Society of Rheumatology. Reuma.pt - the rheumatic diseases portuguese register. Acta Reumatol. Port 2011, 36, 45–56.
32. Calin, A.; Garrett, S.; Whitelock, H.; Kennedy, L.G.; O’Hea, J.; Mallone, P.; Jenkinson, T. A new approach to defining functional

ability in ankylosing spondylitis: The development of the Bath Ankylosing Spondylitis Functional Index. Class. Pap. Rheumatol.
1994, 21, 2281–2285. [CrossRef]

33. Machado, P.M.; Landewé, R.; van der Heijde, D. Ankylosing Spondylitis Disease Activity Score (ASDAS): 2018 update of the
nomenclature for disease activity states. Ann. Rheum. Dis. 2018, 77, 1539–1540. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jbi.2022.104172
http://www.ncbi.nlm.nih.gov/pubmed/36055638
http://dx.doi.org/10.14336/AD.2021.0519
http://www.ncbi.nlm.nih.gov/pubmed/34631208
http://dx.doi.org/10.1016/j.jaut.2018.11.002
http://dx.doi.org/10.1186/1471-2105-9-497
http://dx.doi.org/10.2196/26823
http://dx.doi.org/10.1186/s12911-019-1013-7
http://dx.doi.org/10.1007/978-0-387-39940-9_618
http://dx.doi.org/10.1109/WDM.2004.1358107
http://dx.doi.org/10.3233/JCS-2007-15301
http://dx.doi.org/10.1007/s10207-018-0424-2
http://dx.doi.org/10.1093/bioinformatics/17.2.149
http://www.ncbi.nlm.nih.gov/pubmed/11238070
http://dx.doi.org/10.1109/TIT.2005.844059
http://dx.doi.org/10.1109/CBMS.2006.68
http://dx.doi.org/10.1109/TIT.2007.894669
http://dx.doi.org/10.3390/e24040439
http://www.ncbi.nlm.nih.gov/pubmed/35455102
http://dx.doi.org/10.1007/s11071-020-05771-8
https://zgly-92273.web.app/
https://www.tiobe.com/tiobe-index/
https://towardsdatascience.com/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7
https://towardsdatascience.com/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7
http://dx.doi.org/10.1109/TIT.2004.838101
https://complearn.org/
https://graphviz.org/
http://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/datasets/Basketball+dataset
https://archive.ics.uci.edu/ml/datasets/Basketball+dataset
http://dx.doi.org/10.33590/emj/10314487
http://dx.doi.org/10.3109/9780203214237-70
http://dx.doi.org/10.1136/annrheumdis-2018-213184
http://www.ncbi.nlm.nih.gov/pubmed/29453216

Sensors 2023, 23, 1219 18 of 18

34. Machado, P.; Landewe, R.; Lie, E.; Kvien, T.K.; Braun, J.; Baker, D.; van der Heijde, D. Ankylosing spondylitis disease activity
score (ASDAS): Defining cut-off values for disease activity states and improvement scores. Ann. Rheum. Dis. 2010, 70, 47–53.
[CrossRef] [PubMed]

35. Ramiro, S.; Nikiphorou, E.; Sepriano, A.; Ortolan, A.; Webers, C.; Baraliakos, X.; Landewé, R.B.; Van den Bosch, F.E.; Boteva, B.;
Bremander, A.; et al. Asas-EULAR recommendations for the management of Axial Spondyloarthritis: 2022 update. Ann. Rheum.
Dis. 2022, 82, 19–34. [CrossRef]

36. Ding, C.; Peng, H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 2005,
3, 185–205. [CrossRef] [PubMed]

37. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,
20, 53–65. [CrossRef]

38. Rosenberg, A.; Hirschberg, J. V-measure: A conditional entropy-based external cluster evaluation measure. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), Prague, Czech Republic, 28–30 June 2007; pp. 410–420.

39. 2.3. Clustering. Available online: https://scikit-learn.org/stable/modules/clustering.html#rand-index (accessed on 18
November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1136/ard.2010.138594
http://www.ncbi.nlm.nih.gov/pubmed/21068095
http://dx.doi.org/10.1136/ard-2022-223296
http://dx.doi.org/10.1142/S0219720005001004
http://www.ncbi.nlm.nih.gov/pubmed/15852500
http://dx.doi.org/10.1016/0377-0427(87)90125-7
https://scikit-learn.org/stable/modules/clustering.html#rand-index

	Introduction
	Background
	Kolmogorov Complexity
	Normalized Compression Distance
	The Quartet Method

	Complearn
	Zgli
	Folder
	Encoder

	Validation Tests
	Question 1—Improving Clustering Results Using Compressing by Columns
	Question 2—Improving Results by Using Zgli Encoder

	Clinical Use Case
	Conclusions
	References

