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Abstract. The Black Scabbardfish is a deep-water fish species that lives
at depths greater than 700m. In Portugal mainland, this is an impor-
tant commercial resource which is exploited by longliners that operate
at specific fishing grounds located at the coast. The monitoring of the
population status mainly relies on the fishery data as no independent
scientific surveys take place. The present work focus on modelling the
spatial distribution of the BSF species relative biomass. Georeferenced
data given by the location of the fishing hauls and the corresponding
catches are available for a set of different vessels that belong to the long-
line fishing fleet. A classical geostatistical approach was applied to fit a
variogram and evaluate the isotropy of the data. Then, different regres-
sion models with fixed, structured and unstructured random effects were
fitted under a Bayesian framework, considering the Stochastic Partial
Differential Equation (SPDE) methodology under the Integrated Nested
Laplace Approximation (INLA), addressing some practical implementa-
tion issues. The models with spatial effects seemed to perform better,
although some practical constraints related to the considered covariates
hindered the choice.
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1 Introduction

Expand knowledge about biodiversity and species abundance is an important
scientific challenge. One way of obtaining information about fish assemblages,
e.g. depth and geographical distributions of species, their density, diversity and
effect of fishing, is through research surveys as they provide fishery independent
information. For the last 20/30 years, most surveys in Western European waters
focused on the study of fishery resources that lived at the continental shelf or
upper slope [3]. For monitoring populations of deep-water species, however, the
surveys are scarce.

In Portugal, the spatial distribution and abundance of Black Scabbardfish
(BSF), which is an important commercial fishery for the country, is mostly un-
known. BSF is a deep-water fish species that lives at depths greater than 700m [6]
and, therefore, the monitoring of the population status mainly relies on fishery
data as no independent scientific surveys take place [14]. In Portugal mainland,
it is exploited by longliners that operate at specific fishing grounds along the
coast [2].

The distribution of a given species in a particular region as well as the corre-
sponding patterns occur in space. In order to study the natural structure and to
understand the functional processes behind them, identifying the relevant spatial
dimension at which these all occur is required. Usually, the biological and envi-
ronmental phenomena can be monitored and measured only at a limited number
of spatial locations, even if it is defined continuously over a region. Due to that,
geostatistical models focus on inferring a continuous spatial process based on
data observed at a finite number of locations, which means that the process
which determines the data-locations and the process modelled are stochastically
independent.

Although some aspects of the spatio-temporal modelling of species distribu-
tion has been discussed, for example in [12], the inclusion of a spatial tendency
has not been considered before for the BSF species. Therefore, the present work
focus on modelling the spatial distribution of the BSF species relative biomass
along the Portuguese coast. Georeferenced data given by the location of the fish-
ing hauls and the corresponding catches are available for a set of different vessels
that belong to the longline fishing fleet.

A preliminary geostatistical analysis was performed using geoR [4] and the
study of the isotropy of the data was performed with spTest [18]. RGeostats
[13] was also used to reassure that the fitted variogram was the optimal.

Modelling was considered under a Bayesian framework due to its flexibil-
ity and because the uncertainty in the model parameters is taken into account.
Although extensively used for Bayesian inference, Markov Chain Monte Carlo
methods (MCMC) have some computational issues in this context. When dealing
with spatial models they may be extremely slow or unfeasible [1]. An alternative
method is the Integrated Nested Laplace Approximations approach (INLA) pro-
posed by [16], which is a deterministic algorithm rather than simulation based
such as MCMC. Since these methods have proven to provide accuracy and fast
results, they were used, mainly through the package R-INLA.



INLA is particularly suited for geostatistical models where it is assumed
that a continuous spatial surface underlies the observations, which is very well
captured through the Stochastic Partial Differential Equation (SPDE) method
proposed by [8]. This methodology represents a continuous Gaussian Field (GF)
using a discretely indexed Gaussian Markov Random Field (GMRF), considering
a SPDE whose solution is a GF with a Matérn covariance

Cov(ξi, ξj) =
σ2

Γ (λ)2λ−1
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8λ

r
‖si − sj‖

)λ
Kλ

(√
8λ

r
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)
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where ‖si − sj‖ is the Euclidean distance between two locations si, sj ∈ R2,
σ2 is the marginal variance, r is the range and Kλ denotes the modified Bessel
function of the second kind and order λ > 0; see [1]. Although the solution is
a Markov indexed random field when −1 ≤ λ ≤ 1, for R-INLA only λ = 1 was
fully tested; see [7].

In spite of its flexibility, the SPDE approach with INLA has also some issues.
For instance, the smoothness parameter λ is fixed at 1, which is somehow restric-
tive for model fit. There are also some concerns regarding the parameterisation of
the range parameter. While in conventional geostatistic applications, the range
is the point where the correlation reaches 0.05, in R-INLA, the range is the point
where the correlation is 0.01. Moreover, this parameter in R-INLA is related to

a scale parameter κ through the following equality r =

√
8λ

κ
. Therefore, special

attention has to be given when comparing results from different geostatistical
packages, such as geoR or RGeostats. The main fault concerns the choice of
the prioris for the hyperparameters of the models and, consequently, good model
specifications. In fact, the use of the default priors resulted in a poor fit of the
models.

This paper is organised as follows: in Section 2 the data are described, in
Section 3 the models are detailed, results are presented in Section 4 and discussed
in Section 5.

2 Data

The data for this study were provided by the Instituto Português do Mar e
da Atmosfera (IPMA) and correspond to the BSF catches (in Kg) by fishing
haul of the longline fishing fleet, in the fishing grounds of the South zone of
Portugal, from 2009 to 2013. The data were divided into two semesters, with
semester 1 including the months from March to August and semester 2 from
September to February of the following year. Moreover, since the BSF catches
are quite higher during the months corresponding to the second semester, the
analysis has considered only these semesters. The data also include the location
of each fishing haul, Figure 1, the corresponding vessel identification and the
depth (DEPTH) out of the locations where the fish was captured. Later, the
vessels were grouped into three levels according to their tonnage (PRT) that
relates to the cargo capacity.
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Fig. 1: Locations of the BSF catches.

The left panel of Figure 2 displays the sample distribution of the BSF catches. In
order to meet the Gaussian assumption required by the traditional geostatistical
methods, a Box-Cox transformation of the catches with λ = 1/2 was used (right
panel of Figure 2):

BSF* = 2
√

BSF− 2. (2)

The Kolmogorov-Smirnov test for normality of BSF* accepted this hypothesis,
resulting in a p-value of 0.486.

Fig. 2: Sample distribution of BSF catches in the original scale (left) and with
the Box-Cox (λ = 1/2) transformation (right).



If data are isotropic, such that the dependence between sampling locations only
relies on the corresponding distance and not on orientation, it greatly simplifies
geostatistical models. This has been tested using the non-parametric test pro-
posed by [11] in the R-package spTest [18]. The test is for the null hypothesis
which is isotropy, i.e.,

H0 : Aγ(·) = 0,

where A =

[
1 −1 0 0
0 0 1 −1

]
is a full rank matrix [9] and γ(·) is the semivariogram

evaluated at any two spatial lags. First, one has to choose the lags Λ at which
anisotropy must be tested. Although this is a subjective choice, it is recom-
mended to choose short lags and to contast points of orthogonal lags. Therefore,
Λ = {h1 = (2, 0),h2 = (0, 2),h3 = (1, 1),h4 = (−1, 1)} was considered since
the directions of the variogram estimates start to differ approximately at 4 km,
as can be seen in Figure 3.
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Fig. 3: Variograms at directions 0◦ (black), 45◦ (red), 90◦ (green) and 135◦ (blue).

The test statistic is given by

TS = b2n(AĜn)T (AΣ̂AT )−1(AĜn), (3)

where b2n is a normalising constant, Gn is a vector of the true values of the
semivariogram at the chosen lags, Ĝn is the vector of the point estimates of the
semivariogram at the chosen lags, Σ is the asymptotic variance covariance matrix
of Ĝn and Σ̂ its estimate. The p-value can be obtained from the asymptotic χ2

distribution with degrees of freedom given by the row rank of A. A grid based
block bootstrap approach is applied to estimate Σ. This methodology creates a
spatial permutation of sampling locations’ blocks [19]. Therefore it is required to
choose the window or block size, which can lead to different conclusions as the



performance of the test is sensitive to these choices. Moreover, for an irregularly
shaped sampling domain, as it is the case, incomplete blocks may complicate
the subsampling procedure. Following the recomendations in [18,19], blocks with
dimensions 8.342× 15.200 were chosen and a p-value of 0.960 was obtained, i.e.,
the isotropy hypothesis was not rejected.

3 Models

Let observations BSF ∗
i , i = 1, · · · , n, be modelled as

BSF ∗
i ∼ N(ηi, σ

2
e), (4)

where n is the total number of fishing hauls, σ2
e is the nugget effect and ηi is

the response mean. Several linear models were considered to fit the data and
variables tonnage (PRT) and depth (DEPTH) were taken as fixed or random
effects. The inclusion of a spatial tendency was done through the SPDE approach
presented before where an approximated latent GF ξ(s) has a Matérn covariance
function as defined in (1). The eleven models considered are presented below and
summarised in Table 1.

1. Tonnage is taken as categorical, i.e.,

ηi = β0 +

M∑
m=2

βmPRTmi, (5)

where M is the number of groups of PRT.
2. Tonnage is a random effect with a sum to zero constraint, i.e.,

ηi(m) = β0 + µm and

M∑
m=1

µm = 0. (6)

3. Depth is taken as a fixed effect, i.e.,

ηi = β0 + γDEPTHi (7)

4. Tonnage and depth are fixed effects, i.e.,

ηi = β0 +

M∑
m=2

βmPRTmi + γDEPTHi (8)

5. Depth is taken as a fixed effect whereas tonnage is a random effect with a
sum to zero constraint, i.e.,

ηi(m) = β0 + µm + γDEPTHi and

M∑
m=1

µm = 0 (9)



6. An approximated latent GF ξ(s) with Matérn covariance function is in-
cluded, i.e.,

ηi = β0 +

G∑
g=1

Aig ξ̃g, (10)

where {ξ̃g} are zero mean Gaussian distributed weights and Aig is the value
ϕg(si) of the g-th deterministic basis function evaluated in si; Aig is also the

generic element of the sparse n × G matrix A that maps the GMRF ξ̃(s)
from the G triangulation vertices of a mesh to the n observation locations;
see [1].

7. Tonnage is categorical and ξ(s) is an approximated latent GF, i.e.,

ηi = β0 +

M∑
m=2

βmPRTmi +

G∑
g=1

Ãig ξ̃i. (11)

8. Tonnage is taken as random effect, with a sum to zero constraint, and ξ(s)
is an approximated latent GF, i.e.,

ηi(m) = β0 + µm +

G∑
g=1

Aig ξ̃g and

M∑
m=1

µm = 0. (12)

9. Depth is a fixed effect and ξ(s) is an approximated latent GF, i.e.,

ηi = β0 + γDEPTHi +

G∑
g=1

Aig ξ̃g. (13)

10. Tonnage and depth are fixed effects and ξ(s) is an approximated latent GF,
i.e.,

ηi = β0 +

M∑
m=2

βmPRTmi + γDEPTHi +

G∑
g=1

Ãig ξ̃i. (14)

11. Tonnage is taken as random effect with a sum to zero constraint, depth is a
fixed effect and ξ(s) is an approximated latent GF, i.e.,

ηi(m) = β0 + µm + γDEPTHi +

G∑
g=1

Aig ξ̃g and

M∑
m=1

µm = 0. (15)



Table 1: Linear models considered to fit the BSF∗ data

Model

Variables

PRT DEPTH
ξ(s)

Fixed Effect Random Effect Fixed Effect

1 X
2 X
3 X
4 X X
5 X X
6 X
7 X X
8 X X
9 X X
10 X X X
11 X X X

3.1 Choice of Prior Distributions

The analysis started by considering the default priors of R-INLA, i.e.,
βm, γ ∼ N(0, 0.001−1) and τe = 1/σ2

e , τPRT ∼ Gamma(1, 0.00005). However,
an extremely high precision for the random effect, τPRT, was estimated. This in-
dicated that this parameter is very sensitive to the choice of the prior since that
huge variations on the posterior mean were obtained considering different priors.
Following [5], slightly more informative priors on the precision τPRT were used.
However, different priors were considered for this parameter and, in order for the
model to converge properly, that is for the INLA algorithm to be able to find
the correct posterior mode for the Laplace approximation, the values for the cor-
rected standard deviation for the hyperparameters, which appear in the verbose
mode of the model in R-INLA, have to be near the value 1 (between 0.5 and 1.5)
[15]. Therefore, for models 2 and 8 (Eqs. (6) and (9), respectively), a truncated
normal prior with precision 0.1 was chosen. As for models 8 and 11 (Eqs. (12) and
(15), respectively), a Gamma with parameters 0.5 and 0.5×Var(residualsModel6)
was assumed. For the spatial parameters, the Penalised Complexity Priors (PC
Priors) introduced by [17] were used. These priors are a way to overcome the
problem of overfitting and intend to penalise the deviation from a base model,
where r =∞ and σ2 = 0, by shrinking towards it. Moreover, they do not depend
on the spatial design neither change if data are made available at new locations.
The PC prior for the range was defined according to some aspects, such as the
histogram and the median of the distance between the coordinates of the obser-
vations, which was approximately 49km [20], and the practical range obtained in
the Matérn variogram, which was approximately 20km. Therefore, and in order
to obtain a proper convergence of the model, P [r < 30] = 0.2 was considered the
PC prior for the range. In respect of the PC prior for the marginal standard de-



viation, P [σ > 10] = 0.01 was applied taking into account the variance obtained
in the fitted variogram, which was approximately 127.3 (

√
127.3 ≈ 11).

3.2 Mesh Construction

The SPDE approach for spatial modelling relies on a finite element method to
approximate a GF by a GMRF, which is computationally feasible. This approx-
imation lies on a triangulation of the spatial domain through a mesh in which
basis functions are defined for the method. The construction of the mesh is then
an important point of the process. It has to be fine enough and computationally
feasible, thus some considerations have to be taken into account. For instance,
the triangles in the inner domain have to be as regular as possible and extremily
small triangles must be avoided. For these motives, the maximum allowed trian-
gle edge length in the inner domain was 1/3 of the range of the study area and
five times more for the outer extension. Moreover, the minimum allowed distance
between points was 1/5 of the triangle edge length of the inner extension [20].
The resulting mesh is represented in Figure 4.

Fig. 4: Mesh considered for the spatial random effects.

4 Results

The preliminary analysis was done in geoR, which does not provide a function
to find the optimal variogram. In fact, the choice has to be done by eye. A way
to overcome this issue is to resort to RGeostats package, which has a function
to determine the optimal variogram. In this case, the optimal variogram for the
data obtained was a combination of a Cubic and Spherical covariance families.
However, in order to be able to compare the results with the analysis undertaken
in R-INLA, the smoothness parameter had to be fixed in 1 and the covariance
family had to be Matérn. Yet, when comparing the optimal variogram with the
Matérn variogram with the parameter fixed in 1, these were very similar, differing



Table 2: Covariance parameters

Variogram Total Sill Nugget Effect Covariance Family Range Sill

Optimal 283.409 132.262
Cubic 4.605 51.406

Spherical 26.175 99.741

Matérn 284.419 157.116 Matérn 20.433 127.303

mainly in the nugget effect and in the cubic part of the optimal variogram, as
can been seen in Table 2 and in Figure 5.
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Fig. 5: Variogram comparison.

The described models in Section 3 were fitted in R-INLA and the Deviance
Information Criterion (DIC) and the Watanabe-Akaike Information Criterion
(WAIC) were used as comparison measures. Results summarised in Table 3.

The values for the criteria measures DIC and WAIC for Models 7 (Eq. (11)),
8 (Eq. (12)), 10 (Eq. (14)) and 11 (Eq. (15)) are very similar. Despite that, the
model with spatial effect and the variable tonnage as a random effect (Model 8
Eq. (12)) has the lowest values and, therefore, seems to be the best model to fit
the data. Furthermore, the variable depth proved to be not relevant considering
a 95% credible interval for its effect.



Table 3: Model estimates

Model r range σ st. dev τe = 1/σ2
e τPRT DIC WAIC

1. FE PRT – – 0.005 – 6032.13 6032.32

2. RE PRT – – 0.005 0.026 6032.21 6032.40

3. FE Depth – – 0.003 – 6273.95 6273.94

4. FE PRT & Depth – – 0.005 – 6032.80 6032.98

5. FE Depth + RE PRT – – 0.005 0.026 6032.87 6033.04

6. SE 38.656 14.448 0.006 – 5891.80 5896.87

7. SE + FE PRT 32.359 11.530 0.006 – 5867.31 5871.71

8. SE + RE PRT 31.513 11.522 0.006 0.001 5867.21 5871.66

9. SE + FE Depth 38.046 14.621 0.006 – 5892.85 5897.94

10. SE + FE PRT & Depth 30.390 11.515 0.006 – 5867.57 5872.28

11. SE + FE Depth + RE PRT 30.145 11.834 0.006 0.001 5867.82 5872.28

FE - Fixed Effect; RE - Random Effect; SE - Spatial Effect

Finally, predictions for the latent field were computed and the plots with the
posterior mean are shown bellow:
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Fig. 6: Estimated posterior latent field for each spatial model and observation
data (Box.BSF).



5 Discussion

This work is a first step in modelling the BSF fishery along the Portuguese
coast. The spatial nature of the data was perceived and modelled but, being
these fishery data, it is most likely that they suffer from preferentiability of
sampling locations, reflecting the fishermen preferences. Incorporating this in
analysis is the next step of this study.

A few problems arose while adjusting some models and, although they have
been addressed in the best way possible, the results presented should be seen
with caution. One of the problems concerns the construction of the mesh and
how to define the arguments of the function inla.mesh.2d(). This is a prob-
lem because, if the mesh is not fine enough, the boundary extension is not big
enough or the triangles are not as regular as possible in shape and size, re-
sults may not be accurate. On the contrary, the more precise is the mesh, the
more computational effort is required. Another issue is related to the model
with spatial effect and a categorical variable. In order to map the latent field,
the function inla.stack() is used. However, to the best of our knowledge,
inla.stack() does not support categorical variables. Several attempts were
performed to overcome this problem. First, the categorical variable was incor-
porated directly in the model and no intercept was defined, which implied that
the first level works as the intercept. Then, a design matrix with dummy vari-
ables was created. The latter approach was the selected one as it produced the
best results. Also, there was a problem concerning the priors. The variable PRT,
either as a categorical variable or taken as a random effect, was found to be
highly sensitive to the choice of the priori, both in terms of values obtained for
the posterior mean and in terms of obtaining a proper convergence of the model.
Furthermore, regarding the PC Priors, little variations on the initial values for
the range and/or standard deviation caused large variations on the values of the
posterior means for those parameters. In fact, when checking the verbose, it was
especially difficult to find correct posteriors for the precision of the random ef-
fect, for the standard deviation and for the range hyperparameters. These must
be better addressed in the future as this is a work in progress. Finally, only linear
models were considered. Inspecting the plots of the residuals against the fitted
values, the observed relation given by a non-parametric smoother did not justify
fitting non-linear models [10] to these data.
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14. Natário, I., Figueiredo, I., Lućılia Carvalho, M.: A state space model ap-
proach for modelling the population dynamics of black scabbardfish in
portuguese mainland waters. Dynamics, Games and Science pp. 499–512
(2015). https://doi.org/10.1007/978-3-319-16118-1 26, http://dx.doi.org/10.

1007/978-3-319-16118-1_26

15. Rue, H.v.: R-inla discussion group, http://www.r-inla.org

https://doi.org/10.1002/9781118950203
https://doi.org/10.1007/s11160-008-9089-7
https://doi.org/10.1007/978-0-387-48536-2
https://people.bath.ac.uk/jjf23/inla/
https://doi.org/10.3989/scimar.2009.73s2011
https://doi.org/10.1201/9780429031892
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1016/j.jspi.2004.06.058
https://doi.org/10.1007/s10651-020-00441-9
https://doi.org/10.1007/s10651-020-00441-9
http://dx.doi.org/10.1007/s10651-020-00441-9
https://doi.org/10.1016/j.jspi.2011.11.013
https://doi.org/10.1007/s00477-018-1548-7
http://dx.doi.org/10.1007/s00477-018-1548-7
http://dx.doi.org/10.1007/s00477-018-1548-7
http://cg.ensmp.fr/rgeostats
https://doi.org/10.1007/978-3-319-16118-1$_$26
http://dx.doi.org/10.1007/978-3-319-16118-1_26
http://dx.doi.org/10.1007/978-3-319-16118-1_26
http://www.r-inla.org


16. Rue, H.v., Martino, S., Chopin, N.: Approximate Bayesian inference for latent
Gaussian models by using integrated nested Laplace approximations. J. R. Stat.
Soc. Ser. B Stat. Methodol. 71(2), 319–392 (2009). https://doi.org/10.1111/j.1467-
9868.2008.00700.x

17. Simpson, D., Rue, H.v., Riebler, A., Martins, T.G., Sø rbye, S.H.: Penalising model
component complexity: a principled, practical approach to constructing priors.
Statist. Sci. 32(1), 1–28 (2017). https://doi.org/10.1214/16-STS576

18. Weller, Z.: sptest: An r package implementing nonparametric tests of isotropy.
Journal of Statistical Software 83 (2015). https://doi.org/10.18637/jss.v083.i04

19. Weller, Z.D., Hoeting, J.A.: A review of nonparametric hypothesis tests of
isotropy properties in spatial data. Statistical Science 31(3), 305–324 (2016).
https://doi.org/10.1214/16-STS547

20. Zuur, A.F., Ieno, E.N., Saveliev, A.A.: Begginer’s Guide to Spatial, Temporal and
Spatio-Temporal Ecological Data Analysis with R-INLA. Highland Statistics, LTD,
Newburgh, UK (2017)

https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1214/16-STS576
https://doi.org/10.18637/jss.v083.i04
https://doi.org/10.1214/16-STS547

	Spatial Modelling of Black Scabbardfish Fishery off the Portuguese Coast

