
MMAA
Mestrado em Métodos Analíticos Avançados
Master Program in Advanced Analytics

NOVA Information Management School
Instituto Superior de Estatística e Gestão da Informação
Universidade Nova de Lisboa

EVOLVING DECISION RULESWITH
GEOMETRIC SEMANTIC GENETIC
PROGRAMMING

Diogo Miguel Galveia de Oliveira Rasteiro

Dissertation presented as partial requirement for
obtaining the Master’s degree in Data Science and
Advanced Analytics, with a specialization in Data
Science

NOVA Information Management School
Instituto Superior de Estatística e Gestão de Informação

Universidade NOVA de Lisboa

EVOLVING DECISION RULESWITH GEOMETRIC
SEMANTIC GENETIC PROGRAMMING

by

Diogo Miguel Galveia de Oliveira Rasteiro

Dissertation presented as partial requirement for obtaining the
Master’s degree in Data Science and Advanced Analytics, with a

specialization in Data Science

Adviser: Leonardo Vanneschi

November, 2022

Evolving Decision Rules with Geometric Semantic Genetic Programming

Copyright © Diogo Miguel Galveia de Oliveira Rasteiro, NOVA Information Manage-
ment School, NOVA University Lisbon.
The NOVA Information Management School and the NOVA University Lisbon have
the right, perpetual and without geographical boundaries, to file and publish this
dissertation through printed copies reproduced on paper or on digital form, or by any
other means known or that may be invented, and to disseminate through scientific
repositories and admit its copying and distribution for non-commercial, educational
or research purposes, as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.10.5) [29].

https://github.com/joaomlourenco/novathesis

Acknowledgements

I would like to thank my supervisor, professor Leonardo Vanneschi, for not only lending
me his great knowledge in his field of study, but also for all the kindness, patience,
understanding and availability during the writing of this thesis. I would also like to
thank the institution of NOVA IMS, for being my home away from home for over 5
years. Its staff, both teaching and non-teaching, as well as its students, have all helped
me through my educational journey and provided me with so many great moments.

I would also like to give a special acknowledge to my family who has done its best
to help me succeed for the entirety of my life and, in particular, my parents who have
supported and loved me for so long, and helped me become who I am today.

Finally, I want to thank my friends, who have all supported me both inside and
outside of school, directly or indirectly, in one way or the other.

v

“Study without desire spoils the memory, and it
retains nothing that it takes in.” (Leonardo da Vinci)

Abstract

Due to the ever increasing amount of data available in today’s world, a variety of
methods to harness this information are continuously being created, refined and
utilized, drawing inspiration from a multitude of sources. Relevant to this work are
Supervised Learning techniques, that attempt to discover the relationship between the
characteristics of data and a certain feature, to uncover the function that maps input
to output. Among these, Genetic Programming (GP) attempts to replicate the concept
of evolution as defined by Charles Darwin, mimicking natural selection and genetic
operators to generate and improve a population of solutions for a given prediction
problem.

Among the possible variants of GP, Geometric Semantic Genetic Programming
(GSGP) stands out, due to its focus on the meaning of each individual it creates, rather
than their structure. It achieves by imagining an hypothetical and perfect model, and
evaluating the performance of others by measuring how much their behaviour differ
from it, and uses a set of genetic operators that have a specific effect on the individual’s
semantics (i.e., its predictions for training data), with the goal of reaching ever closer
to the so called perfect specimen.

This thesis conceptualizes and evaluates the performance of a GSGP implementation
made specifically to deal with multi-class classification problems, using tree-based
individuals that are composed by a set of rules to allow the categorization of data. This
is achieved through the careful translation of GSGP’s theoretical foundation, first into
algorithms and then into an actual code library, able to tackle problems of this domain.
The results demonstrate that the implementation works successfully and respects the
properties of the the original technique, allowing us to obtain excellent results on
training data, although performance on unseen data is a slightly worse than that of
other state-of-the-art algorithms.

Keywords: Genetic Programming, Geometric Semantic Genetic Programming, Ma-
chine Learning, Decision Trees

ix

Devido à crescente quantidade de dados do mundo de hoje, uma variedade de métodos
para utilizar esta informação é continuamente criada, melhorada e utilizado, com
inspiração de diversas fontes. Com particular relevância para este trabalho são técnicas
de Supervised Learning, que visam descobrir a relação entre as características dos
dados e um traço específico destes, de modo a encontrar uma função que consiga
mapear os inputs aos outputs. Entre estas, Programação Genética (PG) tenta recriar o
conceito de evolução como definido por Charles Darwin, imitando a seleção natural e
operadores genéticos para gerar e melhorar uma população de soluções para um dado
problema preditivo.

Entre as possíveis variantes de PG, Programação Genética em Geometria Semântica
(PGGS) é notável, pois coloca o seu foco no significado de cada indivíduo que cria,
em vez da sua estrutura. Realiza isto ao imaginar um modelo hipotético e perfeito,
e avaliar as capacidades dos outros medindo o quão diferente o seu comportamento
difere deste, e utiliza um conjunto de operadores genéticos com um efeito específico
na semântica de um indíviduo (i.e., as suas previsões para dados de treino), visando
chegar cada vez mais perto ao tão chamado espécime perfeito.

Esta tese conceptualiza e avalia o desempenho de uma implementação de PGGS
feita especificamente para lidar com problemas de classificação multi-classe, utilizando
indivíduos baseados em árvores compostos por uma série de regras que permitem a
categorização de dados. Isto é feito através de uma tradução cuidadosa da base teórica
de PGGS, primeiro para algoritmos e depois para uma biblioteca de código, capaz de
enfrentar problemas deste domínio. Os resultados demonstram que a implementação
funciona corretamente e respeita as propriedades da técnica original, permitindo que
obtivéssemos resultados excelentes nos dados de treino, embora o desempenho em
dados não vistos seja ligeiramente abaixo de outros algoritmos de última geração.

Palavras-chave: Programação Genética, Programação Genética em Geometria Semân-
tica, Aprendizagem Automática, Árvores de Decisão

xi

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

2 Theoretical Background 3
2.1 Machine Learning . 3

2.1.1 Supervised Learning . 3
2.2 Optimization Problems . 4

2.2.1 Genetic Programming . 4
2.2.2 Geometric Semantic Genetic Programming 5

3 Implementation 11
3.1 The Individual class . 11
3.2 The GSGP class . 15

4 Experimental Study 17
4.1 Datasets . 17
4.2 Experimental Settings . 18

4.2.1 Running Time . 19
4.2.2 Example Run . 19
4.2.3 Parameter Analysis . 19
4.2.4 Performance across multiple problems 20

4.3 Results . 21
4.3.1 Running time . 21
4.3.2 Example Run . 23
4.3.3 Parameter Analysis . 24
4.3.4 Performance across multiple problems 28

5 Conclusions 31

xiii

Bibliography 33

xiv

List of Figures

2.1 An example of a tree-like computer program 5

3.1 An example of a simple decision tree . 12

4.1 Time spent per generation, in seconds, averaged over 30 runs on the Parkin-
sons dataset, for both with and without storing predictions. 21

4.2 Time spent per generation, in seconds, averaged over 30 runs on the Parkin-
sons dataset, for the method of storing predictions. 22

4.3 Accuracy on Training and Test sets, over 100 generations, averaged over 30
runs on the Parkinsons dataset. 23

4.4 Accuracy on Training and Test sets, over 100 generations, for a single run on
the Parkinsons dataset. 24

4.5 Change of average test accuracy over 100 generations, for different crossover
probabilities and population size of 100, on the Parkinsons dataset. 25

4.6 Change of average test accuracy over 100 generations, for different crossover
probabilities and population size of 300, on the Parkinsons dataset. 25

4.7 Change of average test accuracy over 100 generations, for different crossover
probabilities and population size of 500, on the Parkinsons dataset. 25

4.8 Change of average test accuracy over 100 generations, for population sizes
of 100, 300 and 500, using a crossover rate of 50% 27

xv

List of Tables

4.1 Description of the datasets used . 18
4.2 Parameters for the running time test . 19
4.3 Parameters for the multiple dataset test 20
4.4 Average running time (in seconds) and standard deviation of both ap-

proaches. 22
4.5 Test accuracy by population size and crossover probability, averaged over

30 runs . 24
4.6 Highest accuracy per configuration, averaged over 30 runs 27
4.7 Accuracy of a normal Decision Tree compared to GSGP, averaged over 30

runs, and respective standard deviation 28
4.8 p-values (0 to 1) of the Wilcoxon signed rank test for each problem . . . 29

xvii

xix

1

Introduction

This work presents the design, implementation and testing of a variation to semantic-
based Genetic Programming (GP) using geometric operators, focused on evolving
decision rules for classification problems with any number of different labels for the
output variable. The main objective is to create geometric semantic operators that
respect the rules established for problems in the "computer program" domain as
defined in [32].

Despite being a recent technique, Geometric Semantic Genetic Programming (GSGP)
has already shown very promising results [43], being capable ofoutperforming standard
implementations of GP. GP uses methods inspired by Darwin’s Theory of Evolution to
evolve programs or functions aimed to resolve a particular problem. GSGP is a variant
of traditional GP that uses specific operators to establish a uni-modal fitness landscape
and grant the means to traverse it, thus generally allowing better performance (a more
detailed explanation can be found in Chapter 2). However, so far, this investigation
and its results have mostly been confined to realm of regression problems. In the
initial article that proposed GSGP [32], geometric semantic operators for evolving
classification rules are presented, but were not the main focus of the research in the
following years. Furthermore, this initial implementation possesses a major drawback:
the size of the generated models steadily increases during the evolution, thus making
it very inefficient in regards to running time. A more efficient implementation of GSGP
was later proposed and implemented by [10], which allows the models to be trained in
linear time (meaning that each generation should take, on average, the same amount
of time). Although this does not reduce the size of the models themselves, it allows the
training algorithm to be executed in a much more efficient manner, enabling a more
thorough experimentation. However, currently, this implementation only encapsulates
regression problems, not classification.

One successful attempt at expanding this efficient GSGP implementation to classifi-
cation problems was performed in [3]. This approach consists of using the standard
GSGP tree models used for regression (this type of model basically represent mathe-
matical expressions), but with an additional logistic activation function to constrain

1

CHAPTER 1. INTRODUCTION

their output into a [0, 1] interval, which allows the usage of a threshold (such as, for
instance, 0.5) where all values above it are classified as 1, and the rest 0. This allows
those types of models to be applied to binary classification, but with the caveat of being
unable to solve problems with more than two class labels. Additionally, a variant built
specifically for multi-label classification could utilize classification rules, which would
result in models with higher readability and interpretability. The work detailed here
attempts to create from scratch an implementation made to work with classification
problems, creating trees that are not based on arithmetic operations but rather decision
rules to allow each evolved model to classify any input data presented.

This document presents an investigation on how to apply GSGP to multi-class
classification, aiming to establish the initial properties and rules of GSGP defined by
[32], while drawing inspiration from [10] to reduce the temporal complexity of the
algorithm to linear levels. This task could be summarized by the following steps:

1. Translate the definition of the geometric semantic operators for classifiers given
in [32] into pseudo-code. This also involves defining a more concrete structure
for the classifiers themselves.

2. Translate that pseudo-code and classifier structure into actual code. The language
to be used is Python.

3. Ensure that the running time of this implementation remains constant during the
whole evolution.

4. Perform experiments to evaluate the properties of the algorithm and to assess its
classification performance, comparing with other state-of-the-art classifiers.

Each of these steps will be discussed more thoroughly in the continuation of this
document. Chapter 2 provides a theoretical background to this work, explaining the
basic concepts related to developing a GSGP implementation for classification problems,
using relevant literature as a foundation. Chapter 3 discusses how the theories and
concepts presented in the previous chapter can be translated into a functioning code
library, as well as explaining the decisions that must be made and the justification
behind them. In Chapter 4, we define some experimental settings upon which the
implementation developed in Chapter 3 can be tested, and analyze the results. Finally,
Chapter 5 provides an overview of the entire document, draws conclusions and suggests
future work.

2

2

Theoretical Background

The first purpose of this chapter is to review the theoretical concepts that this work is
based on, and will be used as the foundation for the continuation of the work. The
second purpose is to present previous and related work, and how it influenced and
inspired the design and development of a GSGP library built for classification problems.

2.1 Machine Learning

Machine Learning algorithms can be defined as those that allow a computer to re-
peatedly perform a task and, through this repetition, improve at it, thus allowing the
machine to "learn". A more formal definition would be:

“A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance a tasks in T, as measured by
P, improves with experience E.” [31]

In a more practicalmanner, we can consider these to be computerprograms designed
to perform a certain task, for which there is a metric to assess its performance. A
Machine Learning algorithm would then have this program be executed a certain
number of iterations (or generations), each time adjusting its behavior (by, for example,
changing the structure or parameters of the original program), in an attempt to improve
performance.

2.1.1 Supervised Learning

Supervised Learning is a specific area of Machine Learning, where we possess several
vectors of data for which we are trying to predict a certain output variable. By feeding
into an algorithm both the features of the data and the label or value we desire, the
program attempts to "decipher" the function that associates input to output, and
therefore be able to make accurate predictions for data whose output it is unaware of
[37]. In more formal terms, this area requires data in the form of 𝑁 sets of vectors
with the format (𝑥1 , 𝑥2 , ..., 𝑥𝑛), with each being attributed a 𝑦, which corresponds to
the value or label that will be predicted.

3

CHAPTER 2. THEORETICAL BACKGROUND

We can further categorize Supervised Learning into two types of problems: Re-
gression problems where the the target is a continuous variable, and Classification
problems where the target is a discrete label. Due to the nature of this work, more
emphasis will be placed on the latter. The labels themselves represent various cate-
gories to which each input may belong to. One important note is that, unlike regression,
numeric value between classes is unimportant: a label of 1 is equally distant to a label
of 2 as a label of 7.

2.2 Optimization Problems

An Optimization Problems is the task of, given a a set of finite "solutions", each of which
can be measured in quality, finding the optimal one (or a reasonable approximation of
it) [1]. An instance of an optimization problem can be defined as a pair (𝑆, 𝑓), where
𝑆 is the finite set of all possible solutions, and 𝑓 is a function that maps each solution
to a value contained in R, that denotes its quality. This is typically referred to as the
fitness function, and the goal of optimization is to find the solution that either maximizes
it or minimizes it(depending on the type of problem). A traditional example of an
optimization problem is the so-called "Travelling Salesman Problem" [2].

There are many methods to solve optimization problems, some of which employ
Machine Learning techniques [39] [26], while others use more traditional methods [14].
Within the scope of this document, there is one that is particularly relevant, Genetic
Programming (GP).

2.2.1 Genetic Programming

As defined by JR Koza and R Poli, GP is a "domain-independent method that genetically
breeds a population of computer programs to solve a problem" [24]. Through creating
an initial generation of programs (or individuals), choosing a portion according to the
fitness, and using operators inspired by the biological mutation and crossover to build
a new generation, the algorithm simulates the evolution of species with the aim of, at
the end of its execution, obtaining a program with much higher fitness than the initial
ones, utilizing principles based on Charles Darwin’s theory of evolution [17].

Although the logic is quite simple, the key to GP lies in how the evolutionary
concepts are translated into computational terms:

• The individuals are the computer programs evolved in order to better perform
a certain task. Although they are, in essence, just code instructions, the way
they are represented is important, as it defined how they are handled by the GP
algorithm. The most popular way of representation, originally proposed by NL
Cramer in [16], is a tree-like structure. An example can be found in 2.1.

4

2.2. OPTIMIZATION PROBLEMS

• Selection is, as discussed previously, based on fitness, although not as simple as
simply picking 𝑁 individuals with the best quality. GP implementations use
algorithms that return a certain amount of candidate solutions. Typically, they
can select all individuals based on a certain probability (defined by their fitness),
thus prioritizing "stronger" solutions while still maintaining the possibility of
selecting "bad" ones, in an effort to promote diversity.

• The crossover and mutation operators take as input programs provided by the
selection operator, and output new programs that are similar, but different, as a
way to "explore" the solution space. Crossover uses two parents to create a new
individual, similar to both, while mutation simply slightly alters an existing one.

Figure 2.1: An example of a tree-like computer program

As stated above, GP can be used to create individuals to perform a specific task,
such as Supervised Learning. Indeed, the programs developed through this method
can be functions for a specific Regression or Classification problem, and have produced
excellent results in the past [23].

There are many different configurations and variations to Genetic Programming,
as over the years, many techniques have been conceived and tested. One that will be
specifically analyzed here is Geometric Semantic Genetic Programming (GSGP).

2.2.2 Geometric Semantic Genetic Programming

GSGP, is a more recent implementation of GP, and was originally proposed by Moraglio
et al in [32]. It was specifically designed to solve Supervised Learning problems. As the
name implies, it differs from the normal version by being both geometric and semantic.

The semantics of a GP individual, as the word implies, refers to the meaning that
it holds, and to how it is interpreted. Typically, in GP, the genetic operators work only
on the syntax (i.e., its structure) of a solution, as the operators change the shape of
each individual without caring for how their semantics changes. The semantics of

5

CHAPTER 2. THEORETICAL BACKGROUND

an individual, given a Supervised Learning problem with 𝑁 cases of input data, is a
vector of size 𝑁 , with shape 𝑦1 , 𝑦2 , ..., 𝑦𝑛 , where each 𝑦𝑖 , is that specific individual’s
prediction for a specific input. As each solution can now be represented by a vector in
an 𝑁-dimensional semantic space, it becomes possible to conceptualize the existence
of a certain computer program whose semantics perfectly match the real outputs for
each data point (in other words, it perfectly predicts the correct value for all of the
dataset). Its syntax or structure is not known, but any individuals that the algorithm
creates can have their distance to this hypothetical global optimum measured. On
a regression problem, this is the Euclidean distance, while classification problems
utilize the Hamming distance. Through the lens of an optimization problem, the
individuals present within the semantic space can be considered the search space,
while the distance to the perfect individual becomes the fitness. As the objective is to
find a computer program as close to it as possible, the task becomes to minimize the
fitness, and the perfect individual itself becomes the global minimum, with a fitness
of 0. By utilizing geometric operators to traverse this space, in a way that for every
solution there exists a neighbor with a better fitness, it is possible to induce a unimodal
fitness landscape (meaning there is no local optima, as no solution is better than all
its neighbors except for the global optimum) [25]. A detailed description of this type
of problem, called CONO (Continuous Optimization with Notorious Optimum), as
well as of the relationship between crossover and mutation operators and the fitness
landscape of optimization problems, can be found in [41].

As geometric operators have the property of, when being applied in a problem with
no local optima, guaranteeing that in each generation, crossover can create a solution
better than the worst of the parents, and mutation always has the possibility of creating
an individual with better fitness than the parent. In their paper [32], introduces the
concept of geometric semantic operators, GP operators for crossover and mutation that
guarantee these properties for the semantic space. The usage of genetic operators that
pay attention to the semantics of the population is a an idea that has already been tested
by multiple researchers, such as [6], [21], and [27], and has displayed great results in
the domain of regression problems [11] [13] [12].

For the purposes of this work, only the operators regarding classification problems
will be explained. For problems where the output is a label, semantic geometic crossover
is defined as below, with 𝐼𝑆𝑛 being the input symbols of data that can be used by the
model to make a prediction, while 𝑂𝑆 are the possible output symbols of the program.
An isolated definition of the general structure of the offspring created by crossover is
specified in Algorithm 1.

Given two parent programs 𝑇1, 𝑇2 : 𝐼𝑆𝑛 −→ 𝑂𝑆, the recombination SGXP returns
the offspring program T3 = IF CONDR THEN T1 ELSE T2 where CONDR is a
random program whose output is interpreted as a logical value.

6

2.2. OPTIMIZATION PROBLEMS

Moraglio et al [32]

Algorithm 1 Semantic Geometric Crossover
Require: two parents, T1 and T2

if CONDR then
𝑇3← 𝑇1

else
𝑇3← 𝑇2

end if

In other words, given two classifiers, T1 and T2, T3 is a result of geometric semantic
crossover if, depending on a certain condition that varies depending on the input data,
it always returns the value of either T1 or T2.

Meanwhile, mutation is defined as the following, with Algorithm 2 representing
the structure of a model created by mutation.

Given a parent program T, the mutation SGMP returns the offspring program TM
= IF CONDR THEN OUTR ELSE T where CONDR is a condition which is true
only for a single random setting of all input parameters, and OUTR is a random
output symbol.

Moraglio et al [32]

Algorithm 2 Semantic Geometric Mutation
Require: a parent T and a random output symbol OUTR

if CONDR then
𝑇𝑀 ← OUTR

else
𝑇𝑀 ← 𝑇

end if

Note that "true only for a single random setting of all input parameters" means that,
out of all the data points available, CONDR should be true for only one of them, and
false for the rest. This implies that the evaluation of CONDR will depend on the input
variables, and must be tuned so that it evaluates to true on only one specific case.

Thus, any operators that respect the properties outlined above can be considered
geometric semantic operators.

Even though GSGP has shown very promising results for regression problems so
far, it is haunted by one major drawback. As can be inferred by the above definitions,
any program that is the result of one of the aforementioned operators contains a copy
of its parent or parents, plus some other genetic material. For example, in the case of

7

CHAPTER 2. THEORETICAL BACKGROUND

crossover, after evaluation the CONDR, the output will be one of the parents. Since the
parents are programs themselves, they will almost certainly involve evaluating other
conditions. And as the evolution progresses, the size of the individuals continues to
increase, causing the running time to very soon become unmanageable [33]. The same
problem is present in the regression and boolean variations of the geometric semantic
operators, that were also presented in the original work by Moraglio and colleagues
[32].

The original proposed solution to this problem is to attempt, at each generation,
an automatic simplification of the individuals, to create simpler programs with the
same semantics. However, a more efficient approach is explored in [10] and [42]. The
issue is at that each generation of GSGP individuals contains a copy of their parents.
Whenever an individual is executed (presented with an input in order to extract the
predicted output), we are also executing their entire lineage of ancestors. A method to
solve this issue is inspired by the following question: if the previous generations have
already been executed and evaluated, why must they be executed again? Castelli et al
[10] suggest, after evaluating each individual, to store all predictions it makes (in other
words, its semantics) in a table. Afterwards, whenever one of its descendants needs to
perform the evaluation corresponding to its ancestor, it can rely on this table to know
the result, and therefore avoid perform the calculations again.

In more detail given an individual of a generation 𝑖, for its fitness to calculated, it
must perform a prediction on all of the inputs in the training dataset. Any descendants
will be tested on the same data, and, since the original program is a part of them,
it would be, once again, evaluated on inputs it has already seen. But since these
calculations have already been performed previously, they do not need to be performed
again. Thus, to improve the running time problem of GSGP, it is possible to simply
store each individual’s evaluation for each input (i.e., its semantics), and allow any
individuals to access them for their own evaluation.

In more formal terms, for every individual 𝑇 that is generated during a GSGP run,
the predicted output 𝑦 for each input 𝑥 will be stored in a table. As the definition of
geometric semantic crossover states, the offspring program always returns the output
symbol of one parent. If both parents have their evaluations stored in the prediction
table, the necessary computations to perform a fitness evaluation is to evaluate the
CONDR, and then look up the necessary value in the prediction table. For mutation the
same applies: after evaluating CONDR, the next step is to either check the prediction
table or return the predetermined OUTR. Thus, with the exception of the initial
generation (that will only have trees with only two leaves and one root node, which are
not inefficient to run), all individuals can have their fitness evaluated with a number of
operations that remains constant across generations, therefore solving the problem.

This method allows the GSGP algorithm to train much faster than the original
implementation, as demonstrated in [41]. Of course, one may notice that the size of
the trees themselves is unchanged, which means that for any new data, the entire

8

2.2. OPTIMIZATION PROBLEMS

program must be reconstructed. While this is still problematic, it should be noted that
the largest inefficiency came from the training process itself, where each generation
required hundreds of individuals to be evaluated. Comparatively speaking, executing
just the final tree selected by the algorithm does not take that long. Furthermore, once
this final model is generated, it can always be subjected to a more thorough process of
simplification, to reduce its size, if the user desires.

This efficient implementation was originally only implemented in GSGP for re-
gression type problems. The aim of this project is to take the proposed geometric
semantic operators for classification problems, apply them to a GP algorithm, while
simultaneously using the concept of a prediction table to ensure the running time
between generations remains constant.

9

3

Implementation

This chapter describes how the theoretical concepts of the previous one can be converted
to an actual working program, and the decisions that must be taken. The steps described
here were performed in a Python implementation, with the intent of creating a GSGP
library for solving classification problems.

The main objectives of this library are to completely respect the definitions and rules
of GP with geometric semantic operators, ensure an efficient running time, and allow
the any user to utilize it to tackle supervised learning problems. This implementation
assumes that the data is in a pandas DataFrame object [30]. This particular data structure
is very helpful for manipulating information in general, but possesses one key feature
that is crucial for this work: each row of data is automatically assigned a row ID, which
will be very useful later on.

3.1 The Individual class

The first step, and the core of the GP algorithm, is the Individual class. No matter
the problem at hand, the logic of a genetic algorithm is always similar, and it is in
the representation of the solution and the fitness function that they differ. In GSGP,
individuals are represented as trees. In the regression implementation [10], the various
input features of the dataset are the leaves (the ending nodes), while the other nodes
are mathematical operations (such as addition, subtraction, etc...). By working up the
tree, performing the calculations, only a single value should remain, this being the
output of the tree for a particular input. For obvious reasons, this approach does not
work well for classification. Since the output must be one out of a set of pre-determined
labels, a structure that can output any real number is not ideal. One way to address
this, would be to constrain the output with an activation function, as performed in
[3], but this only works for binary classification problems, where there are only two
possible output labels. In a setting with more classes and no class topology, such an
approach is not suitable.

The structure proposed here is instead almost identical to a classical decision tree

11

CHAPTER 3. IMPLEMENTATION

[36] [22]. As can be deduced from the geometric semantic operators’ definitions, an
individual created by them must be composed by a condition (the CONDR), which
when evaluated will redirect to either of the sub-trees (when the individual is a product
of crossover) or either a sub-tree or a label (if it is a product of mutation). This can
be perfectly represented by a binary tree structure where the leaf nodes are labels
(the output of the tree) and the remaining nodes are all binary conditions. In this
representation, only the root node would be "original" to a new individual: any branch
of this tree that is not merely a leaf would be a sub-tree that corresponds to a previous
tree of the population. This means, when implementing the prediction table, evaluating
the fitness of an individual only requires, per row of input data, to resolve the root
condition and then check the chosen branches result in the prediction tree, or return
the label if it is a leaf. An example of this tree is in figure 3.1, which corresponds to the
classification program described in algorithm 3.

Figure 3.1: An example of a simple decision tree

Algorithm 3 An example of a classification program
if 𝑥1 > 5 then

if 𝑥2 < 3 then
𝑦 ← 1

else
𝑦 ← 2

end if
else

𝑦 ← 1
end if

In programming terms, this translates to each Individual object having two at-
tributes: a true branch and a false branch (the names come from which one is chosen
depending on the condition’s logic value). Each of these branches can be either another
Individual, in which case Python stores a reference to the object as the attribute itself,

12

3.1. THE INDIVIDUAL CLASS

or a label, if it is a leaf node. The CONDR itself, however, will be a bit more complex.
A condition is essentially composed of three things: the feature that we select, the
relational operator, and the value we compare it to. The first one can be simply resolved
by randomly selecting a label from the population and storing it as an attribute, but
the other two require some thought.

The question is: when should the CONDR be true and when should it be false?
Or rather, how often should it be one or the other? To answer this, let us reflect on
what crossover and mutation are used for in the context of GP and GSGP. Crossover is
typically used for exploration of the search space, as it can perform large alterations to
an individual. Meanwhile, mutation is used for smaller steps as it performs changes
on a smaller scale. In GSGP, the geometric properties of the crossover mean that it
generates a new solution that is in the middle of the two parents, in regards to the
semantic space, while mutation generates one near the parent. Thus, in crossover,
the condition should be true for approximately half the population, therefore having
around 50% of the coordinates of the semantic vector from one parent, and the rest for
the other. Mutation should change a very small amount of coordinates, typically even
only one at once.

Translating this to code, the challenge is to build a condition that is true, on average,
half of the time for a random input sample. The approach selected for this study is to,
for every feature the training data has, generate the deciles for that particular variable
and store them in a table. Then, whenever a new individual is generated, one of these
deciles is randomly selected. By then using greater than or lesser than as a relational
operation, the result is a condition that is randomly true on average for 50% of the
population, changing from 10% to 90% (in increments of 10) of the semantic vector.
Thus, the CONDR will encapsulate that logic, leaving the act of evaluating an input to
look like algorithm 4.

Algorithm 4 Pseudo-code for the logical condition
if CONDR then

Correct Branch← True Branch
else

Correct Branch← False Branch
end if

Where CONDR is the logical result of a comparison between the chosen feature
and the chosen population statistic. Then, based on the logical value, the branch to
follow is chosen. During training, once the correct branch is identified, the program
simply needs to fetch the correct label by looking at the prediction table.

This logic will be used both for any offspring created by crossover, as well as the
initial population. This initial population will be trees of depth 1, where both branches
are simply randomly chosen labels.

For mutation, where it is better to change only a very small part of the semantics,

13

CHAPTER 3. IMPLEMENTATION

the overall logic is the same, but the operator and the statistics used will be different.
Instead of generating the deciles, the program generates a number of quantiles, such
as 100 or 1000, or even equal to the number of data points in the training set (in which
case they are simply every value of that feature). The logical operation will instead
be used to test if the input lies in between that quantile and the one after it. Using
for example 100 quantiles, picking quantile 50 will lead to the program checking if
the input it receives lies between quantile 50 (excluding) and quantile 51 (including).
Since quantiles represent equal length divisions of the population, only 1% of the
population could fulfill this requirement. Thus, this condition will only hold true for
that percentage, and only that part of the semantics will change. In the case where the
number of quantiles is equal to the size of the population, this means that only one
row of the training set will evaluate true.

The original table proposed [10] [41], is simply a large table where for each tuple
composed by an individual and an input data leads to the prediction made. This
implementation decides on a slightly different, and simpler approach. Instead, when a
member of the class Individual is created, an attribute called prediction_table is created
as an empty dictionary. Since dictionaries store information as key-value pairs, they
can be used to store all predictions for a certain individual. As mentioned previously,
DataFrame objects store row IDs for each data point they have (thus the input_data.name),
and these IDs can be used as the keys, while the predicted label becomes the value.
When the fitness is calculated, the predicted label for all the training data will be stored
in this dictionary. And since any descendants of this individual will have a reference
to it in their structure, they can access its prediction table, as shown in Algorithm 5

Algorithm 5 Code for predicting the label of an input
Require: Correct Branch chosen

if There is a stored prediction then
Retrieve it from the branch’s prediction table
Store the result in the current individual’s prediction table
Return prediction

else
Recursively execute this algorithm for the Correct Branch
Store the result in the current individual’s prediction table
Return prediction

end if

In this snippet, after picking the correct branch, the code will try to, using the
prediction of the correct branch, to access its prediction table and fetch the result from
there. If it fails to do, it means that this specific input was not seen by its parent (as
should happen when testing on unseen data), thus it must recursively evaluate the
input. In both cases, the result will be stored in the original’s prediction table. One
important factor is also the initial check to see if the chosen branch is another Individual
or simply a label (or leaf node). If the program is at a leaf, there is no prediction table

14

3.2. THE GSGP CLASS

to check and the label is simply returned.
Another important function that the Individual class possesses is get_semantics. This

method accesses a tree’s prediction table, exports the information within and converts
it to a list. This allows the program to quickly obtain any individual’s semantic vector.

The next step, once an individual can form predictions on input data efficiently, is to
use this to calculate the fitness. As stated before, when applying GSGP to classification
problems, the fitness metric should be the Hamming distance to a model with perfect
semantics. In other words, it can also be considered to be the number of data points
incorrectly classified. Since the functionality to form a prediction has been defined,
calculating fitness is simply applying this to the entire DataFrame of training data and
comparing the results to the real values.

After forming the predictions, they are compared to the real labels, stored in
the variable answers. The value_counts function from the pandas library is then used
to calculate how many match the correct values or not. The number of incorrect
predictions (where the logical comparison evaluated to False) are then exported. For
display purposes, the accuracy is also calculated. This is not used for the fitness
function, but is useful to gauge an individual’s performance, as it is easier to interpret
compared to the number of errors.

Whenever an individual is created, the fitness is calculated at the end of its initial-
ization, and is stored as an attribute so that it can be easily accessed.

3.2 The GSGP class

Both the logic of a GP algorithm, as well as the functionalities a Supervised Learning
library should have, are implemented in this class. It handles the receiving of data
to start the training process, creates a new population of GSGP trees which it evolves
over a number of generations, and allows the exporting of data related to the training
process, as well as the final reconstructed model of the algorithm.

To start, as a new object of this class is initialized, it must receive training data (as a
DataFrame), the true labels of this data, the set of all possible labels for the problem
at hand, and a dictionary that contains parameters relevant to the operation of an
evolutionary algorithm, such as the number of generations, the size of the population
and the probabilities for mutation or crossover, among others.

Given a population size of 𝑁 , this class will create that number of individuals for an
initial population. As described by the previous section, these trees are generated with
a crossover-type condition as the root, and two random labels as leaf nodes. However,
in an attempt to improve the diversity of the initial population and therefore the results
of the algorithm, a check on their semantics is performed. Essentially, before any
individual is inserted into the population (with the exception of the first one), their
semantic vector is reviewed. If there is already any individual in the population with the
exact same semantics, the duplicate will not be allowed to be inserted. This promotes a

15

CHAPTER 3. IMPLEMENTATION

larger diversity of semantics in the population and makes it easier to explore the search
space. To prevent the algorithm from getting stuck, if it is detected that it has failed to
insert an individual for 𝑁 attempts in a row, it will simply allow all individuals to be
inserted regardless.

This diversity check is also performed in each generation when new individuals
are created and inserted into the population. While it may cause a slight increase in
running time, the benefit it brings to population diversity is worth the cost [5] [7].

After the initial population is created, the standard algorithm of GP is executed,
according to the following pseudo-code in Algorithm 6

Algorithm 6 Evolving a population
Create an initial population
for 𝑖 = 0 to Number of Generations do

Create a new, empty, population.
Insert the previous best Individual into the new population
repeat

Select parents
Create new Individuals using crossover or mutation
Insert them into the new population

until Population is filled
Population← new population
Identify the most fit Individual, the champion
Calculate important statistics

end for
Export the stored results and the champion

The selection algorithm used was tournament selection [9], with a tournament size
of 2. The reason for this choice is that it is, overall, a solid selection operator for GP [44].

Additionally, the algorithm allows the insertion of another DataFrame to be used
for testing purposes. If this input parameter is passed, at the end of each generation,
the best individual in the population will have its accuracy checked on the validation
set and this score will be exported later. This evaluation is not used for training or
influencing the evolution process in any way.

16

4

Experimental Study

For the purpose of analyzing how GSGP for classification performs in scenarios with
real word-data, four evaluations were conducted, with the intent of observing and
analyzing the algorithm’s different properties from several perspectives:

1. An analysis of the program’s running time, in order to see how the time spent
across generations varies, to guarantee the implementation correctly utilizes the
concept of a prediction table to make time per generation constant.

2. A simple test with a set of default parameters on a single dataset, to confirm the
algorithm’s learning capabilities and gauge its performance on both training and
test data.

3. An attempt at tuning the parameters of the algorithm in order to experiment with
different parameter configurations, on a single dataset, to see how GSGP behaves
when tuned to a single problem.

4. A test run of the algorithm in 8 different datasets. These runs were executed with
a set of "default" parameters to observe how a basic configuration can be expected
to perform. These results were then compared to those of a traditional Decision
Tree.

This chapter is then divided into three sections: the first is designed to introduce the
datasets that are involved in the experiments, the second to detail the settings in which
the experiments themselves were conducted, and the third to present and interpret the
results.

4.1 Datasets

For this study, 7 datasets were used. All of them were imported with the pandas library
into a DataFrame object, from their original text files. All 7 represent classification
problems, where all of the input features are numeric and the target variable is a label
with a set number of values.

17

CHAPTER 4. EXPERIMENTAL STUDY

Dataset Columns Rows Labels
parkinsons [28] 23 195 2
ionosphere [38] 33 351 2
mcd3 [4] 7 322 3
breast-cancer-wisconsin [8] 9 699 2
pima-indians-diabetes [40] 9 768 2
sonarall [19] 61 208 2
yeast [20] 9 1484 10

Table 4.1: Description of the datasets used

A synthetic description of the main characteristics of the datasets is reported in
Table 4.1, where, for each problem, the amount of columns, rows and output labels is
stated.

Some of these are medical classification problems where the objective is to detect
the presence of a certain disease on a person based on data collected from them, while
others are more general classification problems. Regardless, this group presents a good
mix of problems with different characteristics that allow an in-depth analysis of the
algorithms to be tested.

4.2 Experimental Settings

In this section, the specific configurations and parameters used for the experiments,
with the intent of making the process by which the results are obtained transparent.

For all four types of experiment previously introduced, all results presented are the
average of 30 runs (unless otherwise declared). This serves to guarantee a measure of
stability as the randomness involved in this algorithm’s execution can disturb results.
Thus, averaging over a larger amount of runs allows the data obtained to be closer to
the statistically expected value [18].

For both the second, third and fourth experiments, each data was split according to
scikit-learn’s train_test_split function, with 70% to be used for the training process with
the GSGP algorithm, and the remainder 30% to act as a test set to gauge performance
on unseen data. The proportion of different labels within each set was maintained, and
the split was performed with a random seed equal to 1.

All tests were conducted in a Jupyter Notebook environment, by importing the
GSGP library documented in this work, creating a GSGP object, as documented in
the previous chapter, passing it the correct dataset and starting the evolution process.
At the end of training, the best model present in the last generation can be extracted
and used as a normal Supervised Learning tool. In this chapter, when referring to the
accuracy of a run, this refers to the accuracy of this one, the individual with the best
training accuracy in the last generation, when predicting the unseen data.

18

4.2. EXPERIMENTAL SETTINGS

4.2.1 Running Time

This experimentaims to evaluate whether the use ofa table to store each tree’s prediction,
and usage of that storage to allow said tree’s descendants to more quickly perform their
own evaluations of the input data results in an increase in the algorithm’s efficiency in
regards to its running time.

To evaluate this, a test will be conducted where, for the dataset and parameters,
two different runs will be performed. The first will be a normal execution where the
prediction table will be used as detailed previously in this work. In the second, it will
be disabled and each tree, when evaluating an input to predict a label, will be forced
to execute its entire structure. As the main focus is on how the running time evolves
over generations, and not in the absolute values, a small population size and number
of generations will be used to speed up testing.

Testing will be conducted on the Parkinsons dataset, with the parameters specified
on Table 4.2.

Parameter Value
Population Size 10
Number of Generations 50
Mutation Rate 98%

Table 4.2: Parameters for the running time test

4.2.2 Example Run

For this scenario, a simple configuration of 100 generations, with 100 individuals each
and 2% crossover rate was considered. The main objective is to analyze the algorithm’s
learning capabilities, which, despite changing with different parameters, should be
apparent with a set of "default" ones. The low crossover probability is inspired by
previous results that demonstrate how, in the case of GSGP for regression, it gives a
better performance [43].

The metrics to be considered are the accuracy on both data the GSGP algorithm
trained on, and the 30% portion of the dataset that went unseen during the evolution
process. It should be noted that the focus of the analysis is not on how high the accuracy
is, but rather how it differs across the learning process and between the sets of data
considered.

4.2.3 Parameter Analysis

The purpose of this evaluation is to attempt to understand how GSGP’s performance
changes as different values are used for its parameters. Thus multiple runs with
different configurations will be analyzed. The main objects of study will be the different
probabilities for crossoverand mutation, as well as variation in the size of the population.

19

CHAPTER 4. EXPERIMENTAL STUDY

The number of generations will not be altered much, as data is available on a per
generation basis.

Due to time limitations, an exhaustive parameter search would not be practical. As
such, the different experiments will be done through manual adjustments. Although
this is counter intuitive to finding the best possible performance, it allows a better insight
into how different configurations of parameters influence the algorithm’s performance.
The dataset to be used for this analysis will be Parkinsons, and the main metric to gauge
performance will be accuracy, as before.

Three different values of population size (100, 300 and 500) were tested for the given
problem, and for each five probabilities for crossover were considered (0.2%, 2%, 10%,
20% and 50%). In theory, a higher number of individuals created per generation should
improve accuracy, thus the goal is simply to observe if this happen and how large the
increase is. On the other hand, crossover rate greatly impacts how the algorithm’s
evolution occurs, and seeing how a wide spectrum of values affects result can provide
interesting insights.

The number of generations considered is always 100. This is done to reduce the
time taken to perform the test runs. Data is presented from generation 1 to 100, with the
accuracy at each presented being for the validation portion, averaged over 30 different
runs.

4.2.4 Performance across multiple problems

The next test involves gauging the performance of GSGP across different datasets,
compared to a standard Supervised Learning model. The objective is not to discover
the optimal parameters for each type of problem, but rather how the algorithm performs
across different domains with the same set of parameters, and how the characteristics
of the data can affect performance. For this reason, the parameters to be used, found in
Table 4.3, are intended as a set of "default" options, not necessarily the best. They were
not influenced by the results of the previous experiment.

Parameter Value
Population Size 100
Number of Generations 100
Mutation Rate 98%

Table 4.3: Parameters for the multiple dataset test

One important observation is that, typically, increasing population size tends to
improve the performance of the algorithm itself, at the cost of increasing the running
time. Given that this test involves running 30 times for 8 different problems, using one
hundred individuals in a population was decided as a reasonable compromise between
performance and efficiency. The effects of higher populations will be observed in the
third test.

20

4.3. RESULTS

As a way to measure how "good" the results are, another algorithm was used to
establish a "baseline" to which we can compare GSGP. Since the former essentially
evolves decision trees, the classifier chosen for comparison was a DecisionTreeClassifier
from the scikit-learn library [34]. Since both this version of GSGP and Scikit-Learn’s
algorithm are just different manners of evolving decision trees, comparing them would
be apt. Furthermore, Decision Trees are one of the most veteran algorithms for solving
classification problems, thus they present a solid reference to which this implementation
can be compared to. Although this algorithm is more deterministic, thirty different
runs were still performed, using a different seed for the random parts of the classifier’s
creation, which in particular affects the amount of features taken into consideration at
each split of the tree.

The metric to be used for evaluating performance is accuracy, the percentage of
labels correctly predicted, as this is a solid metric for a dataset-agnostic approach.

4.3 Results

4.3.1 Running time

As can be observed from Figure 4.1, when the algorithm is forced to calculate the
entire tree manually, there is a noticeable increase in time as generations go by. This is
consistent with the previous findings [32] [41], as the decision trees’ depth increases
linearly with the number of generations.

Figure 4.1: Time spent per generation, in seconds, averaged over 30 runs on the
Parkinsons dataset, for both with and without storing predictions.

On the other hand, when a table to store predictions is used, the predicted outcome
would be that the running time between generations would remain constant (as the

21

CHAPTER 4. EXPERIMENTAL STUDY

number of operations that is performed remains the same). This is supported by the
results, as by storing predictions to be accessed later, the algorithm can spend the
same amount of time in each iteration. Figure 4.2 represents a close up version of the
configuration with stored predictions, displaying the near constant running time. Here,
it is possible to observe how, although there are some very small variations in running
time, it remains nearly the same.

Another important insight is that, even in the very first generation where the trees
only have a depth of 2 (the initial population has trees with depth 1, the ones created by
the first iteration of evolution have depth 2), there is a noticeable difference in running
time. Even evaluating one more condition in a tree leads to a noticeable increase in
running time. This may also be explained by the fact that evaluating manually also
requires the evaluate function to be called again recursively, which does have an impact
on running time. Meanwhile, using a prediction table involves a lot less operations
under the hood.

Figure 4.2: Time spent per generation, in seconds, averaged over 30 runs on the
Parkinsons dataset, for the method of storing predictions.

In Table 4.4, the average time spent per generation and its standard deviation for
both approaches are presented. As can be inferred, using a prediction table results in a
much lower average running time. Furthermore, given the tendency for the running
time to increase as generations go on, in regards to the manual evaluation approach,
the average time will increase as the maximum number of generation will increase.

Average Standard Deviation
With storing predictions 0.0225 0.0008
Without storing predictions 0.7304 0.2868

Table 4.4: Average running time (in seconds) and standard deviation of both approaches.

22

4.3. RESULTS

Finally, conducting a Wilcoxon signed-rank test [15] [35], to exclude the null hypoth-
esis that both approaches have the same distribution, results in a p-value of 7.557×10−10.
Such a low p-value allows us to conclude that using a dictionary to store the predictions
of past individuals is an improvement over manually executing every tree, in terms of
running time.

4.3.2 Example Run

In Figure 4.3, the accuracy of each generation’s best model, on both training and test
data, is presented. As can be inferred from the plot, GSGP does indeed respect the
theoretical properties stated previously, as it is shown to continuously improve on the
training data. However, the performance on the test set is not as great, as the accuracy
is shown to have a slight decline over the course of the algorithm’s evolution. This
indicates that although the models created are adept at learning the decision rules for
the data they were trained on, these rules tend to overfit training data..

Figure 4.3: Accuracy on Training and Test sets, over 100 generations, averaged over 30
runs on the Parkinsons dataset.

Figure 4.4 shows the behavior on one of the 30 runs used to average the previous
results. Although this data alone is not statistically significant enough to draw con-
clusions, it may shed some light on the behavior of the algorithm. Compared to the
previous plot, the variation in accuracy is a lot less "smooth", but it is still possible to
observe the algorithm’s ability to adapt to the training data. On the other hand, the
test data, instead of showing a slightly decreasing trend, displays random jumps, both
upwards and downwards, with an overall tendency to decrease. This may indicate
that the models indeed have poor generalization power, as the increase in training
performance results in a random alteration to test performance.

23

CHAPTER 4. EXPERIMENTAL STUDY

Figure 4.4: Accuracy on Training and Test sets, over 100 generations, for a single run
on the Parkinsons dataset.

4.3.3 Parameter Analysis

Before analyzing the results, there is one value that should be taken into account for
this analysis. According to Table 4.7, on the Parkinsons dataset, a standard Decision Tree
has an average test accuracy of 85,14%. While exploring how different configurations
affect the final model’s performance, it is important to notice if any of these can surpass
the baseline established.

100 300 500
0.2% 75.99 75.82 77.06
2% 77.68 77.74 77.63
10% 78.25 79.77 80.06
20% 78.81 82.49 81.98
50% 81.58 84.12 84.07

Table 4.5: Test accuracy by population size and crossover probability, averaged over 30
runs

Table 4.5 contains the result of the final model outputted by the algorithm, for
each combination of crossover rate and population size. As can be seen from the data,
there seems to be an increase in accuracy as the population size increases, which is to
expected. However, the more interesting insight seems to be in regards to the crossover
rate. Typically, in GSGP, the best results are obtained by using relatively low crossover
rates, compared to a high mutation rate. However, for our version of GSGP, results show
that, for this specific problem, a higher rate of crossover seems to result in noticeably
better results.

Figures 4.5, 4.6 and 4.7 show, respectively and for the Parkinsons dataset, how the

24

4.3. RESULTS

Figure 4.5: Change of average test accuracy over 100 generations, for different crossover
probabilities and population size of 100, on the Parkinsons dataset.

Figure 4.6: Change of average test accuracy over 100 generations, for different crossover
probabilities and population size of 300, on the Parkinsons dataset.

Figure 4.7: Change of average test accuracy over 100 generations, for different crossover
probabilities and population size of 500, on the Parkinsons dataset.

25

CHAPTER 4. EXPERIMENTAL STUDY

test accuracy of each generation’s best model evolved, on average, for population sizes
of 100, 300 and 500, for different crossover rates. One detail that can be immediately
noticed is how the general pattern of growth is the same on all 3 graphs. This suggests
that population size has little impact on how the population evolves, outside of simply
increasing accuracy due to the higher number of models produced.

Based on the data from Table 4.5 and the previous Figures, it is clear that higher
crossover rates perform better than lower ones. In fact, as the algorithm reaches higher
numbers of generations, using lower crossover rates seems to cause the accuracy in the
test set to decrease, which suggests overfitting. Particularly interesting is that, when
using a population size of 100, the test accuracy continues to decrease until the end for
four out of five tested crossover probabilities. For a size of 300 and 500, this only occurs
for two of them, while the rest remain constant. This happens because, during training,
the algorithm manages to find a global optimum. In other words, it finds a model
perfectly capable of predicting the training set. Due to this, no further improvements
are made and test accuracy remains constant. While the properties of the algorithm
ensure that, given an infinite number of generations, it will always, eventually, find the
global optimum, it would seem that higher population sizes and crossover rates help
find it sooner. And due to the lower complexity of the models in earlier generations,
this results in less over-fitting and thus, it gives a higher test score.

One possible explanation for the reason why crossover rate seems to improve the
performance so much is related to the technique used to create the initial population.
Since the initial trees are very simple, they tend to form very poor classifiers by
themselves. Therefore, it can be hypothesized that the algorithm begins in "under-
performing" areas of the search space. Relying on mutation means that the steps taken
in exploring this space are small, and therefore it is difficult to reach better performing
zones. A higher rate of crossover means that the evolution process can make much
larger jumps, thus allowing it to reach greater models faster. This may also tie in with
the poor performance on the test set, discussed in the previous subsection. As the
initial models are very poor, and the training process is very focused on the data it can
see, performance on unseen data does not rise as it should, when compared to more
standard Machine Learning methods.

Since it can be established that a crossover probability of 50% produces better
results, it can be interesting to see how the three different population sizes behave
when compared to each other. Figure 4.8 shows this. Looking at the graph, it becomes
apparent that all 3 configurations have a very similar evolution process: an unsteady
increase followed by a decrease, until eventual stagnation. The only difference is that
higher population sizes produce accuracy values slightly higher. Of note is that using
either 300 or 500 individuals per generation does not result in a great difference at this
crossover rate. This could suggest an upper limit in how much a higher population
size can help improve results.

Finally, it is worth pointing out that, due to the detected overfitting, the performance

26

4.3. RESULTS

Figure 4.8: Change of average test accuracy over 100 generations, for population sizes
of 100, 300 and 500, using a crossover rate of 50%

of the final model generated by the algorithm is not always the best at evaluating the
test set. Table 4.6 displays the same configurations as Table 4.7, but the accuracy listed
is not that of the final model. Instead, it is, from each generation’s best model, the
one with the highest score on the test set, the "peaks" of the previous graphs. In other
words, this theoretically represents the performance of the algorithm in case a method
to detect over-fitting and stop training was to be implemented. The results in this table
are noticeably a few percent higher than their counterparts, demonstrating how much
potential the algorithm has. In particular, two of the results outperform the baseline
Decision Tree’s.

100 300 500
0% 83.84 83.28 83.16
2% 83.62 83.05 83.33
10% 83.50 83.90 84.41
20% 84.24 85.03 84.75
50% 84.12 85.37 86.78

Table 4.6: Highest accuracy per configuration, averaged over 30 runs

It should once again be stated that these findings were obtained based on experi-
mentation on a single problem, and may not necessarily translate to others. Thus, in
order to make more conclusive remarks about the performance of our version of GSGP,
further testing on different and more various problems is encouraged.

27

CHAPTER 4. EXPERIMENTAL STUDY

4.3.4 Performance across multiple problems

Table 4.7 contains, for each dataset used, the average accuracy of scikit_learn’s Decision
Tree (referred to as DT) with default parameters, over 30 runs with different random
states, versus the scores of GSGP for classification. For GSGP, the accuracy values are
those of the best model existing in the population in the final generation. This accuracy
is in regards to the 30% of the data that was not used for training, and is thus unseen
to both algorithms. Furthermore, it is important to keep in mind that the criteria for
choosing the best individual of a generation is their performance on predicting training
data, which does not necessarily translate to being the most fit at predicting unseen
data.

Dataset Avg(%) DT Std Dev DT Avg(%) GSGP Std Dev GSGP
parkinsons 85,14 1,79 77,80 5,01
ionosphere 87,23 2,09 80,35 3,89
mcd3 89,35 1,00 78,49 5,20
breast-cancer-wisconsin 92,95 0,54 92,89 1,23
pima-indians-diabetes 72,16 1,26 72,67 1,87
sonarall 64,44 3,39 59,52 6,81
yeast 49,16 0,78 38,00 2,63

Table 4.7: Accuracy of a normal Decision Tree compared to GSGP, averaged over 30
runs, and respective standard deviation

Based on the average accuracy registered by the GSGP algorithm, it becomes clear
that it is capable of creating good classifiers, as on most datasets it attains what can be
considered a "decent" accuracy. However, the accuracy of those models is almost always
a bit below that of DT. Thus, our version of GSGP is slightly outperformed by a baseline
Supervised Learning method. Of note is that the difference between accuracy in the
different problems is not always the same: on some, like breast-cancer-wisconsin and
pima-indians-diabetes the performance is very close, while others have a more moderate
difference, like Parkinsons and ionosphere. There are even some cases, like yeast where
the difference is very large. This can indicate that this specific implementation of GSGP
tends to have a more problem-dependent performance than usual.

Another interesting insight is thatGSGP always presents a higherstandarddeviation
in the accuracies, meaning that, between different runs, there is a larger variation
between the accuracy of the final model returned by the algorithm.

To further analyze the difference in performance between both models, a Wilcoxon
test was conducted for each problem. For each dataset, the 30 accuracy values corre-
sponding to the 30 models created by each algorithm were compared, to see if there is
a statistical evidence that they do not have the same distribution. Results are presented
in table 4.8

For most problems, there is no statistical evidence that GSGP performs the same

28

4.3. RESULTS

Dataset p-value
parkinsons 0,0000062
ionosphere 0,0000031
mcd3 0,0000025
breast-cancer-wisconsin 0,6806658
pima-indians-diabetes 0,2015798
sonarall 0,0016527
yeast 0,0000017

Table 4.8: p-values (0 to 1) of the Wilcoxon signed rank test for each problem

as DT and, with regards to the parameters used, is worse at predicting. For the breast-
cancer-wisconsin and pima-indians-diabetes problems, there is statistical evidence that
both algorithms perform at a similar level.

One aspect worth noticing, is that GSGP performed noticeably worse in the yeast
problem. This dataset is, according to table 4.1, the one with the highest amount of
possible output labels (10). This may indicate that GSGP tends to perform worse in
classification problems with a higher amount of possible outcomes, although there
is not enough data to reach a solid conclusion. Further research into this topic is
warranted.

Finally, it is worth noting that, as a new algorithm, there is not much data in regards
to how GSGP’s performance alters with different parameters. There may be a different
set of parameters, or even some slight modifications to the underlying function of the
algorithm, that can cause a noticeable increase in performance across all problems.

29

5

Conclusions

The aim of this thesis was to conceptualize, develop, test and evaluate an algorithm to
evolve decision rules for multi-class classification problems based on Genetic Program-
ming (GP) using geometric semantic operators. This implementation should, in order
to mitigate the greatest flaw of Geometric Semantic Genetic Programming (GSGP), be
capable of storing any predictions made by its population, so that future generations
can access them to reduce the computational efforts involved in evaluating training
data. The library developed fulfills all of these conditions, generating individuals with
a tree-like structures, where each leaf is a label and all other notes are conditional
statements. The algorithm further utilizes statistical quantiles to selectively target
certain percentages of the problem dataset with these conditional statements, allowing
for precise changes to the "semantics" (meaning, the vector that contains each model’s
predictions for each input) of individuals.

In terms of performance, the library successfully meets the expected standards. The
training process occurs with a constant running time during the evolution, demonstrat-
ing that the storage and access of past predictions works correctly. It can also generate
capable classifiers fit to the data provided. Given enough time, these classifiers can
learn how to correctly predict all data they are trained on, which indicates the correct
implementation of geometric semantic operators. When evaluating their performance
on unseen data, they are still capable of displaying adequate performance. However,
it is worth pointing out that this algorithm is outperformed by some state-of-the-art
classifiers, such as Decision Trees. Additionally, there seems to be greater variation in
GSGP’s output, as not only do they exhibit greater variance between different runs with
the same parameters, but also display a larger difference in performance between the
various problems studied in this work. Another issue, one that plagues many Machine
Learning algorithms, is that of overfitting. While the implementation is capable of,
given a sufficient number of generations, perfectly learn how to predict the training
set, this does not necessarily translate into a good performance on unseen data. Thus,
implementing methods to limit overfitting could result in a noticeable increase in
performance.

31

CHAPTER 5. CONCLUSIONS

Overall, this implementation of GSGP for classification fulfills the necessary condi-
tions outlined by the theoretical work, but its real world performance is not as impressive
as the regression implementations of GSGP. Thus, further research into this topic is
recommended. A more complete exploration of this field is heavily recommended,
as GSGP forms a very promising algorithm for building predictors, and it currently
lacks an implementation that can display its strengths when it comes to multi-class
classification problems. One particularly important priority should be to find a way to
boost the classifiers’ performance on unseen data. Some examples of how this could
be achieved are further parameter tuning, different GP functionalities, adjustments to
the structure of the individuals and the geometric semantic operators and conditions
for early stopping, among others. Another factor that could have a massive impact on
performance is the initialization technique.

32

Bibliography

[1] E. Aarts and J. Korst. Simulated annealing and Boltzmann machines: a stochastic
approach to combinatorial optimization and neural computing. John Wiley & Sons,
Inc., 1989 (cit. on p. 4).

[2] D. L. Applegate et al. “The traveling salesman problem”. In: The Traveling
Salesman Problem. Princeton university press, 2011 (cit. on p. 4).

[3] I. Bakurov et al. “A novel binary classification approach based on geometric
semantic genetic programming”. In: Swarm and Evolutionary Computation 69
(2022), p. 101028 (cit. on pp. 1, 11).

[4] J. E. S. P. Batista. “Studying elements ofgenetic programming for multiclass
classification”. PhD thesis. 2018 (cit. on p. 18).

[5] L. Beadle and C. G. Johnson. “Semantic analysis of program initialisation in
genetic programming”. In: Genetic Programming and Evolvable Machines 10.3
(2009), pp. 307–337 (cit. on p. 16).

[6] L. Beadle and C. G. Johnson. “Semantically driven crossover in genetic program-
ming”. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress
on Computational Intelligence). IEEE. 2008, pp. 111–116 (cit. on p. 6).

[7] L. Beadle and C. G. Johnson. “Semantically driven mutation in genetic pro-
gramming”. In: 2009 IEEE Congress on Evolutionary Computation. IEEE. 2009,
pp. 1336–1342 (cit. on p. 16).

[8] K. P. Bennett and O. L. Mangasarian. “Robust linear programming discrimination
of two linearly inseparable sets”. In: Optimization methods and software 1.1 (1992),
pp. 23–34 (cit. on p. 18).

[9] T. Blickle. “Tournament selection”. In: Evolutionary computation 1 (2000), pp. 181–
186 (cit. on p. 16).

[10] M. Castelli, S. Silva, and L. Vanneschi. “A C++ framework for geometric semantic
genetic programming”. In: Genetic Programming and Evolvable Machines 16.1
(2015), pp. 73–81 (cit. on pp. 1, 2, 8, 11, 14).

33

BIBLIOGRAPHY

[11] M. Castelli, L. Vanneschi, and M. De Felice. “Forecasting short-term electricity
consumption using a semantics-based genetic programming framework: The
South Italy case”. In: Energy Economics 47 (2015), pp. 37–41 (cit. on p. 6).

[12] M. Castelli, L. Vanneschi, and S. Silva. “Prediction of the unified Parkinson’s
disease rating scale assessment using a genetic programming system with ge-
ometric semantic genetic operators”. In: Expert Systems with Applications 41.10
(2014), pp. 4608–4616 (cit. on p. 6).

[13] M. Castelli et al. “Semantic genetic programming for fast and accurate data
knowledge discovery”. In: Swarm and Evolutionary Computation 26 (2016), pp. 1–7
(cit. on p. 6).

[14] L. Collatz and W. Wetterling. Optimization problems. Vol. 17. Springer Science &
Business Media, 2012 (cit. on p. 4).

[15] W. J. Conover. Practical nonparametric statistics. Vol. 350. john wiley & sons, 1999
(cit. on p. 23).

[16] N. L. Cramer. “A representation for the adaptive generation of simple sequential
programs”. In: Proceedings of the first international conference on genetic algorithms.
1985, pp. 183–187 (cit. on p. 4).

[17] C. Darwin. On the origin of species, 1859. Routledge, 2004 (cit. on p. 4).

[18] F. M. Dekking et al. A Modern Introduction to Probability and Statistics: Understand-
ing why and how. Vol. 488. Springer, 2005 (cit. on p. 18).

[19] R. P. Gorman and T. J. Sejnowski. “Analysis of hidden units in a layered network
trained to classify sonar targets”. In: Neural networks 1.1 (1988), pp. 75–89 (cit. on
p. 18).

[20] P. Horton and K. Nakai. “A probabilistic classification system for predicting the
cellular localization sites of proteins.” In: Ismb. Vol. 4. 1996, pp. 109–115 (cit. on
p. 18).

[21] D. Jackson. “Phenotypic diversity in initial genetic programming populations”.
In: European Conference on Genetic Programming. Springer. 2010, pp. 98–109 (cit. on
p. 6).

[22] C. KingsfordandS. L. Salzberg. “Whatare decision trees?” In: Nature biotechnology
26.9 (2008), pp. 1011–1013 (cit. on p. 12).

[23] J. R. Koza. “Human-competitive results produced by genetic programming”. In:
Genetic programming and evolvable machines 11.3 (2010), pp. 251–284 (cit. on p. 5).

[24] J. R. Koza and R. Poli. “Genetic programming”. In: Search methodologies. Springer,
2005, pp. 127–164 (cit. on p. 4).

[25] K. Krawiec and P. Lichocki. “Approximating geometric crossover in semantic
space”. In: Proceedings of the 11th Annual conference on Genetic and evolutionary
computation. 2009, pp. 987–994 (cit. on p. 6).

34

BIBLIOGRAPHY

[26] P. Larranaga et al. “Genetic algorithms for the travelling salesman problem: A
review of representations and operators”. In: Artificial intelligence review 13.2
(1999), pp. 129–170 (cit. on p. 4).

[27] P. Liskowski et al. “Comparison of semantic-aware selection methods in genetic
programming”. In: Proceedings of the Companion Publication of the 2015 Annual
Conference on Genetic and Evolutionary Computation. 2015, pp. 1301–1307 (cit. on
p. 6).

[28] M. Little et al. “Suitability of dysphonia measurements for telemonitoring of
Parkinson’s disease”. In: Nature Precedings (2008), pp. 1–1 (cit. on p. 18).

[29] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University
Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/
master/template.pdf (cit. on p. iii).

[30] W. McKinney et al. “pandas: a foundational Python library for data analysis
and statistics”. In: Python for high performance and scientific computing 14.9 (2011),
pp. 1–9 (cit. on p. 11).

[31] T. M. Mitchell and T. M. Mitchell. Machine learning. Vol. 1. 9. McGraw-hill New
York, 1997 (cit. on p. 3).

[32] A. Moraglio, K. Krawiec, and C. G. Johnson. “Geometric semantic genetic
programming”. In: International Conference on Parallel Problem Solving from Nature.
Springer. 2012, pp. 21–31 (cit. on pp. 1, 2, 5–8, 21).

[33] A. Moraglio, A. Mambrini, and L. Manzoni. “Runtime analysis of mutation-based
geometric semantic genetic programming on boolean functions”. In: Proceedings
of the twelfth workshop on Foundations of genetic algorithms XII. 2013, pp. 119–132
(cit. on p. 8).

[34] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on p. 21).

[35] J. W. Pratt. “Remarks on zeros and ties in the Wilcoxon signed rank procedures”.
In: Journal of the American Statistical Association 54.287 (1959), pp. 655–667 (cit. on
p. 23).

[36] J. R. Quinlan. “Learning decision tree classifiers”. In: ACM Computing Surveys
(CSUR) 28.1 (1996), pp. 71–72 (cit. on p. 12).

[37] S. J. Russell and P. Norvig. “Artificial Intelligence: A Modern Approach”. In:
(1995) (cit. on p. 3).

[38] V. G. Sigillito et al. “Classification of radar returns from the ionosphere using
neural networks”. In: Johns Hopkins APL Technical Digest 10.3 (1989), pp. 262–266
(cit. on p. 18).

[39] S. Sivanandam and S. Deepa. “Genetic algorithm optimization problems”. In:
Introduction to genetic algorithms. Springer, 2008, pp. 165–209 (cit. on p. 4).

35

https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

BIBLIOGRAPHY

[40] J. W. Smith et al. “Using the ADAP learning algorithm to forecast the onset of
diabetes mellitus”. In: Proceedings of the annual symposium on computer application
in medical care. American Medical Informatics Association. 1988, p. 261 (cit. on
p. 18).

[41] L. Vanneschi. “An introduction to geometric semantic genetic programming”.
In: NEO 2015. Springer, 2017, pp. 3–42 (cit. on pp. 6, 8, 14, 21).

[42] L. Vanneschi et al. “A new implementation of geometric semantic GP and its
application to problems in pharmacokinetics”. In: European Conference on Genetic
Programming. Springer. 2013, pp. 205–216 (cit. on p. 8).

[43] L. Vanneschi et al. “Geometric semantic genetic programming for real life
applications”. In: Genetic programming theory and practice xi. Springer, 2014,
pp. 191–209 (cit. on pp. 1, 19).

[44] J. Yang and C. K. Soh. “Structural optimization by genetic algorithms with
tournament selection”. In: Journal of computing in civil engineering 11.3 (1997),
pp. 195–200 (cit. on p. 16).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.10.5) [1]. 12cc90221730b8ba41bb3b1f8b517acd

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf(cit. on p. 36).

36

https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

Di
og
o
M
ig
ue
lG
al
ve
ia
de
O
liv
ei
ra
Ra
st
ei
ro

Ev
ol
vi
ng
De
ci
si
on
Ru
le
s
w
ith
G
eo
m
et
ric
Se
m
an
tic
G
en
et
ic
Pr
og
ra
m
m
in
g

M
AA

20
22

	Front Matter
	Cover
	Front Page
	Copyright
	Acknowledgements
	Quote
	Abstract
	
	Contents
	List of Figures
	List of Tables

	1 Introduction
	2 Theoretical Background
	2.1 Machine Learning
	2.1.1 Supervised Learning

	2.2 Optimization Problems
	2.2.1 Genetic Programming
	2.2.2 Geometric Semantic Genetic Programming

	3 Implementation
	3.1 The Individual class
	3.2 The GSGP class

	4 Experimental Study
	4.1 Datasets
	4.2 Experimental Settings
	4.2.1 Running Time
	4.2.2 Example Run
	4.2.3 Parameter Analysis
	4.2.4 Performance across multiple problems

	4.3 Results
	4.3.1 Running time
	4.3.2 Example Run
	4.3.3 Parameter Analysis
	4.3.4 Performance across multiple problems

	5 Conclusions
	Bibliography
	Back Matter
	Back Cover
	Spine

