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ABSTRACT 

Insurance companies are faced with a constantly changing world, in a daily basis. There are a number 

of known risks that are quantifiable, alongside with many more that remain unknown or difficult to 

measure. It is only natural that the pricing of such risks must evolve side by side with the state-of-the-

art technology that is available. In the late years there has been a rise in the number of studies that 

conclude on the better fitting of models based on machine learning technology, when it comes to 

estimate the prices charged by insurance companies in order to hedge the risks they endure. This 

project work aims to provide a refreshment of the pricing methods applied by a given insurance 

company operating in Portugal, by developing GLM-based frequency and severity modelling on a 

subset of the motor portfolio of the company, backed up by a machine learning model: Gradient 

Boosting. In doing so, there is an expectation of improvement of the accuracy of the model, providing 

better fitting estimates that could translate into a fairer tariff for both the insurance company and its 

clients. In fact, it was concluded that the Gradient Boosting approach outputted the lowest total 

deviance associated with the frequency model. In terms of severity, it was the GLM that produced to 

the lowest value. With the development of this project, there is now an open path in my company for 

the inclusion of machine learning methods on the development of insurance tariffs, being here proven 

that with little required input, this approach can in fact lead to very good results and thereby add value 

to the classic methodology. 
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RESUMO 

As companhias de seguros deparam-se diariamente com um mundo em constante mudança. Diversos 

riscos são conhecidos e quantificáveis, mas muitos outros permanecem desconhecidos ou são difíceis 

de mensurar. É só natural que o pricing destes riscos evolua lado a lado com a tecnologia mais recente. 

Nos últimos anos tem havido um acréscimo do número de estudos que chegam à conclusão de que os 

modelos baseados em tecnologia de machine learning devolvem melhores resultados no que toca à 

estimação dos prémios a cobrar pelas companhias, por forma a cobrir os riscos que seguram. Este 

trabalho de projeto tem como objetivo a apresentação de uma nova visão dos métodos de pricing 

aplicados por uma dada seguradora a atuar em Portugal, ao desenvolver os modelos de frequência e 

severidade numa amostra do portfólio automóvel, através das metodologias de Modelos Lineares 

Generalizados e de Gradient Boosting. É expectável uma melhoria na precisão dos modelos, que 

resulta em estimativas mais corretas que se traduzem numa tarifa mais justa, não só para a seguradora 

como para o cliente. De facto, foi concluído que o modelo de frequência pela abordagem de Gradient 

Boosting retornou o desvio total mais baixo. Em termos de severidade, foi a abordagem de Modelos 

Lineares Generalizados que chegou ao desvio mais baixo. Com o desenvolvimento deste projeto, há 

agora uma porta aberta na companhia para a implementação de modelos de machine learning no 

desenvolvimento das tarifas, ficando aqui provado que com pouco input, esta abordagem pode se 

facto levar a bons resultados e assim adicionar valor à metodologia clássica. 
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1. INTRODUCTION 

When it comes to the estimation of tariffs and the definition of pricing structures, Generalized Linear 

Models (GLM) are the most widely used tool by insurers. However, there have been developed several 

Machine Learning (ML) models in the past decade, that might threaten the position of the GLM as the 

most suitable model to be used by insurance companies. 

Although research in the actuarial field is mainly focused in GLM, there has been registered a rise in 

published papers that have studied the implementation of ML models in non-life insurance, many of 

which conclude that this new approach can lead to faster outputs, with a higher predictive value. 

One of the reasons behind the lack of employment of machine learning methods lies behind the fact 

that these models are harder to interpretate, when compared to the classical models, like GLM. 

Despite this fact and acknowledging that ML models are in fact an important tool for actuaries, the 

Institute and Faculty of Actuaries has decided in 2019 to include ML related questions in their exams, 

with the purpose of ensuring that the curriculum stays relevant and up to date, reflecting the skills 

required for an actuary in a constantly changing world (Hetherington, 2020). 

 

1.1. MOTIVATION 

This project comes as a refreshment of the current pricing methods applied by a Portuguese insurance 

company, that has agreed to provide a subset of data on a third-party liability motor portfolio. The 

pricing team applies the classical GLM (through the use of the EMBLEM software, by Willis Towers 

Watson) in order to obtain the best fit of the prices adequate to each risk profile.  

It is believed that in order to be able to provide a pure premium that is a direct consequence of the 

risk that the policy imposes, the models applied should be the ones that provide the best estimations 

possible. Even though GLM has a solid worldwide approval, it is crucial that insurance companies keep 

up with the state-of-the-art findings, having proof that these are effective. It is in this line-of-thought 

that the non-life actuaries of the company believe that this project could add value to their current 

methodology, that does not include any type of machine learning techniques or back-testing. 

 

1.2. OBJETIVES 

The main objective of this project is to propose a refreshed new view of the current tariff applied to 

the third-party liability motor coverage of a Portuguese insurance company, by predicting the claim 

frequency and severity. 

A GLM will also be developed, to be used as a benchmark. This model will be built upon the 

assumptions made by the pricing team in the past, facilitating the pre-processing of the variables to 

be chosen as part of the model. This will ease the expected workflow, allowing for an extra analysis of 

the machine learning model in study. 
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The main research question underlying this project is: can ML models improve the accuracy of the 

current severity and frequency models that are being implemented in this insurance company?  

Supported by the available literature, it is believed that the main research question could be true, 

whose veracity will be investigated throughout this project. Considering that event, the model that will 

be developed would have the power to be fastest, better fitting and more efficient than the 

benchmark.  

This project will allow the company to be up to date with the new findings in the frequency and severity 

prediction modelling, as it is it is very important that the prices that are practiced are fairly linked to 

the risk that the client imposes. The relevance of this work can be considered high, as it brings a new 

light into what is presently being done. It is of special importance because the company has never 

backtested its present model against a ML approach. As so, it presents as a great synergy among the 

two parts, by allowing the consolidation of knowledge acquired during this master and an innovation 

opportunity for the company to stay ahead of its competitors. 

 

1.3. STRUCTURE 

This paper will be structured as follows: 

Chapter 1 is an introductory Chapter and Chapter 2 exhibits the literature review, presenting the 

current state-of-the-art of the applications of machine learning in the actuarial field.  

Chapter 3 describes the methodology applied throughout this project, namely the theory behind the 

concepts of severity and frequency and the models to be applied: Generalized Linear Model and 

Gradient Boosting. On Chapter 4, it is included a descriptive and exploratory statistics of the data, 

which allows for a better understanding of the dataset that is being studied. 

Chapter 5 presents the fitting of the distributions and the frequency and severity models, according to 

the GLM and GBM approaches. There is also a comparison between the models previously obtained, 

through the analysis of the significant variables, the total deviance and the residuals. 

Lastly, Chapter 6 presents the conclusion and final remarks of this project, followed by Chapter 7 that 

states the limitations that were encountered throughout the development of this project, as well as 

recommendations for future works. 
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2. LITERATURE REVIEW 

The basis of insurance pricing lies on one simple assumption: in order to best price the risk, there must 

be an accurate prediction of the future losses. This literature review summarizes the evolution of 

analytical models used to price non-life policies, from the current state-of-the-art to the most recent 

breakthrough findings in this field. 

 One of the first analytical models developed to be used as a tool to predict the desired response 

variables was introduced in 1972, the famous Generalized Linear Model (Nelder & Wedderburn, 1972). 

This model generalizes a linear regression by allowing a non-linear relationship among the predictive 

variables and the response via a link function. It is based on this model that worldwide insurance 

companies predict the claim severity and frequency associated with their portfolio of policies. The 

reason for this global application lies on the fact that the GLM can be very robust and easy to interpret, 

as the predictors’ value can be directly depicted from the model output, making this model an easy 

and valuable tool to explain to the stakeholders the rationale behind the pricing of such policy. 

With the beginning of the 21st century, there has been an increase of data available to the companies, 

followed by a natural desire of the researchers to employ this data in the most efficient way possible. 

With this, came the development of artificial intelligence and machine learning, namely in the actuarial 

field. The fact that these models can be harder to interpretate (when compared to the GLM) has led 

to a discouragement to apply them in real-life situations, with only a few papers being published in the 

2000s, such as the work developed by Smith et al. (2000) that applies data mining models, specifically 

decision trees and neural networks, to uncover the customer retention and claim patterns. However, 

as some recent events have emerged, like the usage of bigdata, especially telematics data and datasets 

composed of numerous images, and the evolution of the computer’s GPUs (Lecun et al., 2015) the 

popularity of ML has spiked.  

Over the last five years, there has been registered an exponential growth of the global Artificial 

intelligence/ML market, which is expected to keep growing in the five years that follow, with a special 

magnitude in North America, surpassing 5 billion US$ as of the present year prediction, expecting 

around 27 billion US$ of value in 2026 (Malhotra & Sharma, 2018). In a survey conducted in 2020 by 

Willis Tower Watson, 26% of American insurers claim to use ML and AI to build risk models for decision 

making and 22% to reduce required manual input, values that have doubled when compared to the 

previous two years. Around 60% of the companies inquired have shown the wish to implement these 

capabilities by 2021 (Willis Tower Watson, 2020). 

There are several recent articles that study the application of tree-based models, such as the works 

developed by Quan & Valdez (2018) that compared the usage of univariate and multivariate response 

variables when predicting frequency in several non-auto coverages, utilizing the CART, random forest 

and Gradient Boosting models. Based on a Swedish home insurance portfolio, there have also been 

developed tree-based models to predict frequency, such as simple decision trees, random forest and 

Gradient Boosting, with the overall conclusion that the latest two outperform the first, which is natural, 

given the growing increase in complexity between these models (Tober, 2020). 

When predicting the claim frequency in auto insurance, a study has shown that among several tree-

based models, XGBoost has a better accuracy in terms of normalized Gini than other models (Fauzan 
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& Murfi, 2018). With the same goal of predicting claim occurrence, and with the differentiating factor 

of utilizing telematics data, an article published by Pesantez-Narvaez et al. (2019) has shown evidence 

that XGBoost requires more to match the predictive performance of the logistic regression, only 

increasing the predictive performance slightly. There were also difficulties in interpretating the 

coefficients.  

With the objective of developing a full tariff plan for a Belgian TPL motor cover, there have been 

compared the performance of simple regression trees, random forest and boosted trees, using the 

GLM as a benchmark. It was reached the conclusion that boosted trees have the capability of 

outperforming the classical model (Henckaerts et al., 2020). With a similar approach, Noll et al. (2018) 

predicted claim frequency of a French motor TPL dataset, using regression trees, Gradient Boosting 

and neural networks, again using GLM as a term of comparison. The authors concluded that Gradient 

Boosting and neural networks outperformed the GLM, but also stated that the development of the 

benchmark model could have been improved. In the same year Su & Bai, (2020) predicted the 

frequency and severity for the TPL motor cover, combining the stochastic gradient boost and a profile 

likelihood approach to estimate the parameters of the distributions. This work differs by introducing a 

dependence between claim frequency and claim average cost, using the claim frequency as a predictor 

in the regression model for the severity. It was concluded that dependent models have a better 

performance, being superior to other state-of-the-art models. 

There are also studies that focus on other covers with great exposure, such as collision. In 2021 it was 

published a study that developed frequency prediction on a Swiss motor portfolio, using GLM and GAM 

as reference models and two random forest models, one for claim severity and other for the log-

transformed claim severity. The usage of the log-normal transformation of severity did not lead to any 

performance gains when the random forest was applied, however it was still the favorite choice for 

explaining the right-skewed claims. Globally, GAM has a better performance (Staudt & Wagner, 2021). 

Another studied application of ML models in non-life insurance is the ability to compare the online 

information provided by several direct insurers. Grize et al. (2020) collected data from 20 competitors’ 

websites, using web-crawlers, in order to obtain a dynamic pricing system for online motor vehicle 

liability insurance. This work used a commercial product that contained a very large number (over 50) 

of standard ML algorithms.  

Even though ML models are not the standard of the industry to be used as a base to predict frequency 

and severity, one could always take a more secure approach and use ML as a way to facilitate the 

choice of the variables to be employed in the classical GLM. Extreme gradient boost has been utilized 

to detect the interaction between the variables and LASSO and Ridge to select the variables to be used 

in the model (Zhifeng, 2020). 

Artificial intelligence can have a great impact in the insurance field, as the results of several papers 

enlighten that there can be cost efficiency and new revenue streams, transitioning the insurance 

business model from loss compensation to loss prediction and prevention (Eling et al. (2021). Despite 

the new studies that have been developed, the insurance sector is still behind in the global artificial 

intelligence movements. 

It should be noted that this project will not study the application of AI in insurance pricing, instead 

focusing on the development of a ML model based on a conventional motor dataset. 
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3. METHODOLOGY 

To best understand how to answer the main question of this dissertation, that is if machine learning 

methods can provide an accuracy improvement of the coefficients used to obtain the tariff structure, 

the methodology section overviews the fundamental theory behind the main topics discussed: the 

basic principles of insurance and pricing, the generalized linear model and the Gradient Boosting 

model. There is also conferred a descriptive and exploratory analysis of the dataset in study, which 

allows for a better interpretation of the characteristics of the MTPL cover portfolio. 

 

3.1. INSURANCE FUNDAMENTALS 

This section presents a global view of the insurance pricing industry and the core principles applied on 

this field. 

 

3.1.1. Basic Principles of Insurance Pricing 

The underlying assumption behind insurance contracts lies on the trade of protection against an 

uncertain risk of future financial loss for a fair and adequate premium.  

Under the insurance policy coverages, the insured person can require a compensation for the suffered 

losses, by filing a claim. In the event of an accident, assuming the possibility of quantifying and 

measuring the losses, the insurance company is obligated to issue a compensation, according to the 

terms of the contract agreed by both parties.  

The premium practiced by the insurance company must reflect the most significative risk factors 

represented by the portfolio of policies. The balance in the insurance pricing system lies in the 

premium practiced, which must be adjusted to each type of risk. It should be the closest possible to 

the predicted number of incurred losses for each risk profile, making it fair, but also consider the 

rentability of the insurance company, making it profitable. It is due to the importance of the premium 

to be charged to the customers that insurance companies take special precaution in developing the 

most accurate models that can lead to the tariff structure to be applied. 

 In Portugal, the MTPL cover has been compulsory since 1980, following the emission of the decree 

law No. 408/79, series 1 of 1979-09-25. This cover ensures that losses suffered by third parties, are 

covered in the event of a claim. In case the responsible of the accident does not have an active 

insurance contract, the interests of the injured parties are still protected. The minimum insurance 

capitals are reviewed every five years and the latest update was released in March 2022, with effects 

in June of the same year. The capital is composed of 6 450 000 € minimum for personal injuries and 1 

300 000 € for material damage, summing up a total of 7 750 000 € (Circular n.o 2/2022, de 15 de Março, 

2022). Given the mandatory nature of this cover, it is only natural that it represents the largest portion 

of the gross earned premium of most non-life insurance companies, highlighting the importance of the 

accuracy of the tariff structure to be applied. 
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3.1.2. Premium Estimation 

The premium that is charged to the policyholder is usually decomposed in three components: Pure 

Premium, representing the expected value of the losses associated to the risk in question; Security 

Margin, established to hedge against randomness and variance of the risk; Other charges, related to 

the management of the policy and taxes. 

Considering each policy in the portfolio, the total cost of the claims, S, is given by the following 

expression: 

 

𝑆 =  ∑ 𝑋𝑖

𝑁

𝑖=1

 (3.1) 

 

where N represents the number of claims filed (in a one-year period) and 𝑋𝑖   represents the cost of 

the ith claim, for i=1, …, N. 

Assuming that the number of claims per year (frequency) and correspondent cost (severity) are 

independent, the expected value of the total cost is: 

 

 

𝐸[𝑆] = 𝐸 [∑ 𝑋𝑖

𝑁

𝑖=1

] = 𝐸 [𝐸 [∑ 𝑋𝑖

𝑁

𝑖=1

]|  𝑁 = 𝑛] = 𝐸[𝑁]𝐸[𝑋] (3.2) 

 

The pure premium can also be translated into: 

 
𝑃𝑃 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ×  𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 (3.3) 

It is commonly known and accepted that the charging of the pure premium alone would be 

inappropriate. According to ruin theory, studied by Filip Lundberg, the pure premium alone is 

insufficient because in the long run the ruin is known to be inevitable, regardless of the existence of 

initial reserves (Gudmundarson et al., 2021). 

The last step to obtain the pure premium with a loading is the choice of the premium principle to be 

applied in order to obtain the final value. 

 

Expected Value Principle 

The premium is an increasing linear function of α, the safety security loading. It is equal to the pure 

premium when 𝛼 = 0. 
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𝑃 =  (1 +  𝛼) 𝐸[𝑆],    𝛼 ≥ 0 (3.4) 

 

Variance Principle 

 
𝑃 =  𝐸[𝑆] + 𝛼 𝑉𝑎𝑟[𝑆],    𝛼 ≥ 0 (3.5) 

Overcomes the fragility of the previous principle, by taking into consideration the fluctuations of S. 

Here, the premium depends not only on the expected value but also the variance of the losses. 

 

Standard Deviation Principle 

 
𝑃 =  𝐸[𝑆] + 𝛼 √𝑉𝑎𝑟[𝑆],    𝛼 ≥ 0 (3.6) 

This last principle takes into account the expected value of the losses alongside with the standard 

deviation. The premium given by (3.4) is an increasing linear function of α. 

 

 

3.1.3. Frequency 

One of the factors that influences the premium of a policy is the frequency, which represents the 

expected number of claims per exposure time, usually one year. Exposure is a measure used to 

evaluate the risk present in a given portfolio held by the insurance company.  

Given its count nature, the number of claims filled by the policyholder can sometimes follow a Poisson 

distribution. 

A discrete random variable N is said to follow a Poisson distribution with parameters 𝜆 ∈ ℝ+ and 𝑥 ∈

ℕ0, with the correspondent probability mass function: 

 
𝑓(𝑥, 𝜆) = 𝛲(𝑁 = 𝑥) = 𝑒−𝜆

𝜆𝑥

𝑥!
 (3.7) 

where 𝐸[𝑋] = 𝑉𝑎𝑟[𝑋] = 𝜆. 

The claims 𝑁1, …  , 𝑁𝑛  are identified as a family of independent distributed variables, with the same 

parameter 𝜆 for each claim. Thanks to this assumption, the problem is reduced to the estimation of 

this same parameter. 

Having this into consideration, the Poisson distribution is considered very adequate to model counting 

exercises in which the probability of success is reduced, very much like the number of claims. 
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Other very common distribution applied when modelling the number of claims is the Negative 

Binomial. It is usually the case when the variance is above average, a phenomenon known as over-

dispersion, making it less compatible with the Poisson distribution assumptions.  

 

3.1.4. Severity 

The average cost of a claim is commonly known as severity. Given the nature of this variable, it is 

common to test the fitting of the Gamma distribution to estimate it.  

Considering Y a continuous variable, it is said to follow a Gamma distribution with shape parameter 

𝛼 > 0 and scale parameter 𝜃 > 0 and its probability density function is defined as follows: 

 

 

𝑓(𝑥) =
(

𝑦𝛼
𝜃 )

𝛼

𝑦 𝛤(𝛼)
𝑒−𝑦

𝛼
𝜃 ,     𝑦 ∈ ℝ+ (3.8) 

 

With 𝐸[𝑌] = 𝜃 and 𝑉[𝑌] =
𝜃2

𝛼
. 

Because this distribution is right skewed and allows for large values in the right tail, it is most of the 

times suited as a good fit for the distribution of the cost of the claims.  

Different alternatives to model the individual claims could be the Lognormal, Pareto or Weibull 

distributions, among others. 

 

3.1.5. A Priori Tariff Structure 

The explanatory variables used as rating factors represent a priori measurable information regarding 

the policyholder. Meaning that this information is collected prior to any claim taking place, being solely 

based upon certain measurable characteristics, such as the brand of the vehicle or the age of the driver. 

Therefore, it is impossible to collect information regarding the driving behaviour of the policyholders, 

as it does not have a measurable or visible nature.  

 

 

3.2. GENERALIZED LINEAR MODELS 

3.2.1. Introduction 

Developed and introduced by Nelder and Weddenburn in 1972, the GLM are the current state-of-the-

art when it comes to the modelling and explanation of claim frequency and severity. This type of model 

is a generalization of the multiple linear regression model and is usually applied in situations where 
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there is the aim of modelling the relation between the variables and their influence on each other. 

According to this methodology, the response variable is distributed following a distribution belonging 

to the exponential family, for example a Gamma or Negative Binomial. Distributions of the exponential 

family are well suited to model real life problems, namely motor claims. 

 

3.2.2. GLM Definition 

The classical regression model, GLM, establishes and studies the relation between the response or 

dependent variable, Y, which follows a certain probability function 𝑓(𝑥) and the explanatory or 

independent variables, 𝑋1, 𝑋2, … 𝑋𝑛  existent in a sample of n observations. It can be stated that the 

linear regression models follow this given structure: 

 

 
𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1  + 𝛽2𝑋𝑖2 +  … +  𝛽𝑛𝑋𝑖𝑛  + 𝜀𝑖 ,      𝑖 = 1, … , 𝑛 (3.9) 

 

with 𝜀𝑖 representing the normally distributed vector of random errors. 

By assuming that the distribution of the variable in study is a member of the exponential family of 

distributions, there can be stated several advantages when comparing to the linear regression, such 

as the possibility of the response variable following other distributions other than the Normal and the 

ability to overpass the linear structural form 𝒀 = 𝑿𝛽 + 𝜀, achieving a model in which the goal is to 

model a transformation of the average value ℎ(𝑿𝛽), and the presence of heteroscedasticity. 

The GLM is essentially composed of three elements: a random component, a systematic component 

(the linear predictor) and a link function. 

 

Random Component 

Specifies the probability distribution of the response variable Y, which must follow a distribution 

belonging to the exponential family (e.g. Gamma, Poisson, Negative Binomial, etc.). 

 

Systematic Component 

The explanatory independent variables are related to the response variable as follows: 

 

 
𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1  +  … +  𝛽𝑛𝑋𝑖𝑛   ,      𝑖 = 1, … , 𝑛   (3.10) 
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These variables can be re-written as a linear combination, also known as linear predictor, 𝜂𝑖: 

 

 
𝜂𝑖 = ∑ 𝑥𝑖𝑗𝛽𝑗  =  𝑿𝑖

𝑇

𝑛

𝑗=0

𝜷   ,    𝑖 = 1, … , 𝑛 (3.11) 

 

With 𝑿𝑖 as the matrix of the explanatory variables and 𝜷 the correspondent model coefficients. 

 

Link Function 

This component establishes a non-linear relation between the linear predictor 𝜂𝑖 and the expected 

value of the response variable, 𝐸[𝑌𝑖] =  𝜇𝑖 . The link function, which is monotonous and differentiable, 

is defined as follows: 

 

 
𝑔(𝜇𝑖) =  𝜂𝑖 ,    𝑖 = 1, … , 𝑛 (3.12) 

 

Its inverse function is given by: 

 
𝜇𝑖 =  𝑔−1(𝜂𝑖) (3.13) 

 

3.2.3. The Exponential Family 

The exponential family comprises many of the well-known probability distributions. This following 

Section is based upon the works developed by Choi (2017).  

A random variable Y is said to follow a distribution belonging to the exponential family of distributions 

(in natural or canonical form) if its density function is of the following structure: 

 

 
𝑃𝜃(𝑦) =  𝑒𝑥𝑝 [

𝜃 𝑇(𝑦) − 𝐴(𝜃)

𝜙
+ 𝐶(𝑦, 𝜙)]   , 𝑦 ≥ 0 𝑎𝑛𝑑 𝜃, 𝜙 > 0 (3.14) 
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where: 

▪ 𝜃 = (𝜃1, . . . , 𝜃𝑘 ) ∈ ℝ𝑘 is the canonical (natural) parameter, related to the expected value of 

Y; 

▪ 𝜙 is the dispersion parameter, sometimes introduced to control the shape of 𝑃𝜃(𝑦) and is 

usually known; 

▪ 𝑇(𝑦) is a map, 𝐴(𝜃) is the log partition (cumulant) function and 𝐶(𝑦, 𝜙) is the element 

independent from the canonic parameter. 

Following the structure above, it is stated that 𝐸[𝑌] = 𝜇 = 𝐴′(𝜃) and 𝑉[𝑌] = 𝐴′′(𝜃)𝜙. 

The next two assumptions are always taken into consideration when it comes to the study of the 

exponential family of distributions: 

▪ When 𝑃𝜃(𝑦)  is said to be a probability density function, it is assumed to be continuous as a 

function of y, meaning there is no singularity in the probability measure 𝑃𝜃(𝑦)). 

▪ When 𝑃𝜃(𝑦)  is said to be a probability mass function, it exists a range of discrete values of 

𝑃𝜃(𝑦) that are the same for all θ and all y. 

In the event of 𝑃𝜃(𝑦)  satisfying either of the conditions, it is said to be regular. 

 

3.2.4. Model Estimation and Fitting 

As explained by Piet de Jong and Gillian Z. Heller (2008) constructing a GLM, based upon a response 

variable Y, can be achieved following six steps: 

 

1. Choose a response distribution 𝑓(𝑦) and 𝐴(𝜃). The response distribution must be chosen 

accordingly to the problem and data in hands. 

2. Choose a link function 𝑔(𝜇), as represented on (3.12). 

3. Choose the explanatory variables x in terms of which 𝑔(𝜇) is to be modelled. 

4. Collect several observations 𝑦1, … , 𝑦𝑛on the dependent variable and correspondent 

𝑥11, … , 𝑥1𝑛 on the independent variables. This sample is assumed as a random sample from 

the entire population. 

5. Fit the model by estimating 𝜷 and, if unknown, 𝜙. The fitting is performed using a statistical 

software such as SAS, R or EMBLEM. 

6. Considering the estimations of 𝜷, generate predictions (or fitted values) of y for different 

combinations of x while at the same time examine the performance of the model, by analysing 

the residuals, as well as other diagnosis tools. The estimates values of 𝛽 are also very useful to 

determine whether a given explanatory variable x is important or not in determining 𝜇. 
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3.2.4.1. Parameter Estimation 

The part of the process of developing a generalized linear model that holds the most interest is the 

estimation of the regression parameters 𝜷, as shown on equation (3.10). These parameters are 

obtained by maximizing the log-likelihood function (de Jong & Heller, 2008). Because in the scope of 

the GLM these equations do not have an analytical solution, it is common practice to apply numeric 

methods to obtain a solution (Guerreiro, 2016). 

Having this problem into consideration, Nelder & Wedderburn (1972) developed an algorithm to reach 

a solution for these equations, known as Iterative Weighted Least Squares Estimation, based upon the 

Fisher scoring method. There is also a good explanation of this method in Chen & Shao (1993). 

The maximum likelihood estimation is settled upon choosing the parameter estimates which maximize 

the likelihood of observing the sample y1, … , yn . Each of the 𝑦𝑖 has probability function 𝑓(𝑦𝑖), which 

therefore depends of 𝜃 and 𝜙 if applicable. Considering that the 𝑦𝑖 are independent, their joint 

probability function is as follows: 

 

 
𝑓(𝑦, 𝜃, 𝜙) = ∏ 𝑓(𝑦𝑖 , 𝜃, 𝜙)

𝑛

𝑖=1

 (3.15) 

 

The log-likelihood can be obtained as the logarithm of the likelihood function: 

 

 
𝑙(𝜃, 𝜙) ≡ ∑ 𝑙𝑛 𝑓(𝑦𝑖 , 𝜃, 𝜙)

𝑛

𝑖=1

 (3.16) 

 

It is equivalent to say that the parameters 𝜃 and 𝜙 can also be obtained by maximizing the log-

likelihood function. It is preferred to maximize the later instead of the likelihood because it is easier to 

work analytically (de Jong & Heller, 2008). 

 

3.2.4.2. Complex Components 

The EMBLEM and R softwares enable the possibility of capturing special characteristics in the model, 

such as the orthogonal polynomials and the interactions between independent variables, that 

otherwise would be hard to manage. 
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Orthogonal Polynomials 

Belonging to the class of polynomials, orthogonal polynomials obey to an orthogonality relation, such 

as any two different polynomials in the sequence are orthogonal to each other under a certain inner 

product. According to equation (3.10) given the linear predictor structure, each explanatory variable 

has a beta assigned to it. Regardless of that, there is often a trend with curvature when comparing the 

observed values versus explanatory variable, which indicates that it would be best to fit a polynomial. 

Considering 𝑝 the order of the polynomial, the polynomial component can be expressed as: 

 

 

∑ 𝛽𝑖𝑝𝑥𝑖
𝑝

𝑝

𝑛=1

 (3.17) 

 

Despite not being linear in terms of the explanatory variable, this component is linear in terms of beta, 

meaning it can be estimated using the same algorithm as the linear predictor. The new coefficients to 

be estimated are then coefficients of the transformed variate powers of order 𝑡, 𝑃𝑡(𝑥𝑖), assuming the 

underlying relation associated with orthogonality: 

 

 
∑ 𝑃𝑟(𝑥𝑖)𝑃𝑠(𝑥𝑖) = 0, 𝑟 ≠ 𝑠,       𝑟, 𝑠 ∈ 1, 2, … , 𝑝

𝑛

𝑖=1

 (3.18) 

 

Meaning the orthogonal polynomial predictor of variable 𝑥𝑖 can be estimated as: 

 

 
𝜂𝑥𝑖

=  𝛼0 + 𝛼1𝑃1(𝑥𝑖) + ⋯ +  𝛼𝑝𝑃𝑝(𝑥𝑖) (3.19) 

 

There are not any problems of correlation after the orthogonal transformation is applied, but the order 

𝑡 of the polynomial should not be too high, to avoid overfitting and simplify the model (Zhifeng, 2020). 

 

Interactions 

An interaction takes place when an independent variable has a different effect on the outcome 

depending on the values of other independent variable. 

The simplest interaction is the two-way interaction, taking two variables into account. There could be 

three scenarios: 
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1. Two numerical continuous variables: The interaction consists in the product of the variables, 

adding one more coefficient to be estimated, the interaction term: 

 

 
𝜂 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 (3.20) 

 

This equation can be reformulated as: 

 

 
𝜂 = 𝛽0 + 𝛽1𝑥1 + (𝛽2 + 𝛽12𝑥1)𝑥2 (3.21) 

 

The interpretation of the interaction is clear: the relative increase (decrease) with respect to 

each unit of 𝑥2 is translated as (𝛽2 + 𝛽12𝑥1). 

2. Two categorical variables: Variable 1 has 𝑛1 levels and variable 2 has 𝑛2 levels. For each 

variable, the base level is separated from the rest, which are grouped together, resulting in 

two levels each. This results in the addition of (𝑛1 − 1) (𝑛2 − 1) factors in the original linear 

predictor.  

3. One numerical and one categorical: Assuming the categorical variable has n levels, this will 

add (𝑛 − 1) new coefficients to the model. 

 

3.2.4.3. Model Selection 

The aim of this step is to obtain a model with the minimum amount of variables, each and every one 

necessary to better explain the response variable Y, by approximating the predicted curve to the 

observed curve, avoiding over and under fitting. In the beginning there is usually a large number of 

variables available to choose from, and this process can be quite difficult.  

While using the EMBLEM software, the go-to procedure of variable selection is forward stepwise: 

Initially, the only parameter considered in the model is µ, the average value of all 𝑦𝑖 observations. The 

variables are added to the model sequentially, usually starting with those that were considered 

significant in previous models developed by the company. There are two measures used to assess if a 

variable should be included in the model or not: the deviance and the Likelihood Ratio test. 

When facing the possibility of adding a new variable, we are in the presence of two nested models: 

the model which includes the variable is a sub model of the initial one. The difference between both 

models’ deviance, assuming that they have 𝑝1 and  𝑝2 parameters each, should asymptotically follow 

a Chi-Square distribution: 
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Δ 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = −2 ∑ 𝑙𝑜𝑔𝑙𝑖𝑘(𝑦𝑖 , 𝜂𝑖𝑝2

) − (−2 ∑ 𝑙𝑜𝑔𝑙𝑖𝑘(𝑦𝑖 , 𝜂𝑖𝑝1
)

𝑛

𝑖=1

)

𝑛

𝑖=1

 ∼  𝒳(𝑝1−𝑝2)
2  (3.22) 

 

The chi-square p-value is interpreted as the probability of a random variable that is chi-squared 

distributed with 𝑝1 − 𝑝2 degrees of freedom being greater than the difference of deviance between 

the nested models. If the p-value is lower than the significance level, then the model with 𝑝2 

parameters is significantly better than the model with less parameters, meaning that the new variable 

should be included in the model. Otherwise, the initial model should remain as it was, because the 

variable does not add value to the model in question. 

Another important tool to choose a model amongst a variety of models is the Akaike Information 

Criterion, applied when the models are not nested. It was developed by Hirotsugu Akaike in 1971. It is 

a criterion that measures the balance between the quality of fitting and the amount of parameters 

included in the model in study. When comparing the AIC between several models, it serves as a 

measure of the loss in information when choosing a certain model over another.  

This method is based upon the log-likelihood function 𝑙𝑜𝑔𝑙𝑖𝑘(𝛽), rewarding the quality of the fitting, 

alongside with a correction element associated with the amount of parameters in the model, p, which 

penalizes models with a higher number of variables. In summary, it is the deviance plus 2 times the 

number of parameters. It is given by: 

 

 
𝐴𝐼𝐶 = −2𝑙𝑜𝑔𝑙𝑖𝑘(𝛽) + 2𝑝 (3.23) 

 

The best model is the one with the lowest AIC. 

 

3.2.4.4. Quality of Fitting 

This step comes after the choice of the variables of which the coefficients are the most significant, that 

is, after finding the model that best fits the data. Afterwards, it is necessary to evaluate the quality of 

that fitting. This evaluation is proceeded through the analysis of the deviance and residuals. 

 

Residuals 

Residuals are a measure used to evaluate the choice of a certain response distribution and to outlier 

values. The residuals are defined as: 

 𝑒�̂� =  𝑦𝑖 − 𝜇�̂� (3.24) 
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representing the difference between the observed value 𝑦𝑖 and the fitted value 𝑦�̂�. These residuals can 

be evaluated in a number of ways, the most frequently used being the Deviance residuals, described 

bellow. 

▪ Deviance Residuals 

The deviance residuals are obtained as the direction of the difference between each fitted and 

observed value: 

 
𝑟𝐷 =  𝑠𝑖𝑔𝑛(𝑦𝑖 − 𝜇�̂�)√𝑑𝑖 (3.25) 

where 𝑑𝑖 =  2 𝑦𝑖 𝑙𝑜𝑔 (
𝑦𝑖

𝜇�̂�
) − (𝑦𝑖 − 𝜇�̂�). 

This measure is often chosen, because it can be preferable to other types of residuals in the 

diagnosis of GLM, such as Person’s residuals, or even response residuals or working residuals, 

depending on the data that is being modelled. 

 

 

 

3.3. GRADIENT BOOSTING 

3.3.1. Introduction 

Gradient Boosting originated from the idea if whether or not a weak learner, defined as one whose 

performance is at least slightly better than random chance, could be modified (through the calculation 

of a form of residuals) to achieve a better value. 

Introduced by Friedman (2001) Gradient Boosting is formally defined as an ensemble model of decision 

trees, in which multiple weak models are aggregated into a more powerful predictor. 

A decision tree is a supervised learning approach that is used to solve classification and regression 

problems, also known as regression tree, when the latter is addressed. This method was first 

developed and published by Breiman et al. (1984). It is built on a tree structure, where the internal 

nodes are the data variables, the branches the decision rules and the two nodes the binary output. 

One of those nodes represents a decision node used for decision-making and the other one is a leaf 

node, representing the outcome of those decisions. This type of model is usually outperformed by 

more complex algorithms, although decision trees can be used as a combination in ensemble 

algorithms, such as Gradient Boosting (Hanafy & Ming, 2021). Figure 3.1 below represents the 

structure of a simple decision tree. 



 
17 

 

 

 

 

 

 

 

 

 

As a part of this ensemble model, each tree improves the current model fit, thereby using information 

from previously developed trees. 

 

3.3.2. Modelling Steps 

In previous Sections of this paper, it has been stated that the problem at hands can be translated into 

finding a function 𝑓(𝑥) to predict a response variable y from a set of variables x, in order to minimize 

a certain loss function 𝐿(𝑓(𝑥), 𝑦). This also applies in the GBM, of which minimization process relies 

on the iterative tuning of parameters, making it a gradient descending algorithm. 

In boosting, 𝑓(𝑥) is estimated by the following sum: 

 

 

𝑓(𝑥) = ∑ 𝛽𝑚ℎ(𝑥, 𝑎𝑚)

𝑀

𝑚=0

 
(3.26) 

 

where ℎ(𝑥, 𝑎𝑚) are simple functions known as base or weak learners. Both 𝑎 and β are fitted to the 

training data in a step-wise manner, starting with an initial guess 𝑓0̂(𝑥) and then, for each m, obtaining 

the following elements: 

 

Figure 3.1 - Structure of a simple decision tree. A: Root node. B: Sub-Tree 

Source: Example adapted from Henckaerts, R., Côté, M. P., Antonio, K., & Verbelen, R. (2020). 
Boosting Insights in Insurance Tariff Plans with Tree-Based Machine Learning Methods. North 

American Actuarial Journal, 1–31 
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(𝛽𝑚 , 𝒂𝑚) =  𝑎𝑟𝑔𝑚𝑖𝑛

𝛽,𝛼
∑ 𝐿 (𝑦𝑖 , 𝑓𝑚−1(𝒙𝑖) + 𝛽  ℎ(𝒙𝒊, 𝒂))

𝑁

𝑖=0

 

𝑓𝑚(𝒙) = 𝑓𝑚−1(𝒙) + 𝛽𝑚  ℎ(𝒙, 𝒂𝑚) 

(3.27) 

 

Equation (3.26) is approximately solved by GBM through a two-step process: 

 

1. Fit ℎ(𝒙, 𝒂) by minimizing the following least-squares sum: 

 

 

𝒂𝑚 =  𝑎𝑟𝑔𝑚𝑖𝑛
𝛼,𝜌

∑[�̃�𝑖𝑚 − 𝜌ℎ(𝒙𝑖 , 𝒂)]2

𝑁

𝑖=0

 (3.28) 

in which, 

 

�̃�𝑖𝑚 = − [
𝜕𝐿 (𝑦𝑖 , 𝑓(𝒙𝑖))

𝜕𝑓(𝒙𝒊)
] 

𝑓(𝒙) = 𝑓𝑚−1(𝒙) 

(3.29) 

 

with each interaction, the pseudo-residuals �̃�𝑖𝑚 for observation i in iteration m are used to assess the 

regions of the predictor space for which the model does not have a good performance, and therefore 

improve the fit in a direction of better overall performance. This approach is known as stepwise 

gradient descent and ensures that a lower loss is obtain at the following iteration until convergence. 

 

2. Calculate 𝛽𝑚: 

 

𝛽𝑚 =  𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

∑ 𝐿 (𝑦𝑖 , 𝑓𝑚−1(𝑥𝑖) + 𝛽 ℎ(𝒙𝒊, 𝒂𝑚))

𝑁

𝑖=0

 (3.30) 

Considering that the base learners ℎ(. , . ) are decision trees, the parameters 𝑎𝑚 are the splitting 

variables and splitting points that define the tree. This means that the base learner is of the following 

form: 

 

ℎ(𝑥𝑖 , {𝑅𝑙𝑚}1
𝐿) = ∑ 𝑦𝑙𝑚

𝐿

𝑙=1

𝕀(𝒙 ∈ 𝑅𝑙𝑚) (3.31) 

 

where 𝑦𝑙𝑚 is the mean of �̃�𝑖𝑚 on the region 𝑅𝑙𝑚. 
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Because the value of the base learners ℎ(. , . ) is constant for each region of the tree, 𝛽 ℎ(𝒙𝒊, 𝒂𝑚) could 

be simplified to 𝛾, calculated as the constant that has to be added to the previous model fit to minimize 

the loss function. Meaning that (3.30) can be re-written as: 

 

 

𝛾𝑙𝑚 =  𝑎𝑟𝑔𝑚𝑖𝑛
𝛾

∑ 𝐿(𝑦𝑖 , 𝑓𝑚−1(𝑥𝑖) + 𝛾)

𝑁

𝑖=0

 (3.32) 

 

where 𝛾 minimizes (3.30) over that region. Having the previous into consideration, the current 

approximation 𝑓(𝑥)𝑚−1 is updated for each region 𝑅𝑙𝑚, using 𝛾𝑙𝑚: 

 

 
𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + 𝜆𝛾𝑙𝑚𝕀(𝒙 ∈ 𝑅𝑙𝑚)   ,   0 < 𝜆 ≤ 1 (3.33) 

 

Considering 𝜆 the learning rate (also known as shrinking parameter) that determines the learning pace 

of the algorithm, by shrinking updates for 𝒙 ∈ 𝑅𝑙𝑚. A lower value of 𝜆 outputs a better performance, 

reducing overfitting, but also increases the computational power required, because more trees are 

necessary to converge to a good solution. Usually, 𝜆 is fixed at the lowest value possible within the 

computational restraints (Henckaerts et al., 2020). 

As the previous steps emphasize, GBM follows the same approach as GLM, minimizing a given loss 

function. This loss function could be the Poisson deviance (3.34) or Gamma deviance (3.35), according 

to the variable in study. 

 

 

𝐷(𝑦, �̂�) = 2 ∑ [𝑦𝑖 𝑙𝑜𝑔 (
𝑦𝑖

�̂�𝑖𝑣𝑖
) − (𝑦𝑖 − �̂�𝑖𝑣𝑖)]

𝑏

𝑖=1

 (3.34) 

 

𝐷(𝑦, �̂�) = 2 ∑ 𝑤𝑖 [𝑙𝑜𝑔 (
𝑦𝑖

�̂�𝑖
) −

𝑦𝑖 − �̂�𝑖

�̂�𝑖
]

𝑏

𝑖=1

 (3.35) 

 

3.3.3. Tuning Approach 

Machine learning usually relies on training data to construct a model, validation data to tune the 

parameters to be applied and test data to evaluate the out-of-sample performance of such model. 

A fundamental part of successfully training a tree-based model is to control model complexity, 

maintaining a good balance between bias and variance which ultimately leads to a high prediction 

accuracy. One important concept that should always be taken into consideration is the bias-variance 



 
20 

 

trade off: A large tree has low bias and high variance, whereas a small tree has high bias but low 

variance. Assuming pole examples, if there is a tree so deep that every input data has a corresponding 

terminal node, every data point in the training set would be well classified and the model would have 

a low bias. However, if this model is to be used to predict the response of new and unseen data inputs, 

the results would not be accurate, resulting in a very high variance, meaning that the tree is overfitted 

for the training set. By shortening the tree, there would be an increase in the bias, meaning that the 

model would have a higher prediction uncertainty, but a decrease on the variance.  

In order to ensure that the GBM outputs the best and most accurate results, and therefore handling 

the bias-variance tradeoff, it is necessary to estimate the several parameters that compose this model. 

It can be achieved by applying the methodologies presented in the following two sections. 

 

3.3.3.1. Cross Validation 

Cross validation, commonly known as k-fold CV, is a resampling method that divides the training data 

into k random groups (or folds) of approximate same size, mutually exclusive and stratified, in order 

to assure that the resulting subsets’ response variables follow a similar distribution (Hastie et al., 2008).  

The given machine learning model is then fit on k-1 folds and the last fold is used to assess the model 

performance. This process is repeated k times, and each time a different fold is used as the validation 

set. This method outcomes k estimates of the generalization error, which are then averaged in order 

to obtain an approximation of the error that is to be expected in unseen data.  

It is frequent to apply nested cross-validation when tunning machine learning hyperparameters. This 

process consists in a double loop of cross-validation: the inner loop serves for tunning the 

hyperparameters and the independent outer loop serves for assessing the quality of the model. 

Assuming the inner loop is composed of 𝑘1 folds and the outer loop of 𝑘2 folds, then the total number 

of trained models will be 𝑘1𝑘2. 

For each iteration of the outer loop, it will be chosen one inner model (the one that minimizes the 

cross-validation error) which will be evaluated on the test set for the outer fold. In the end there will 

be 𝑘2 estimates, which can be averaged to obtain the final model. This process is depicted bellow in 

Figure 3.2. 

The typical choice of folds lies between 5 and 10, since there is no formal rule as to the size of k. The 

higher the amount of folds, the smaller the generalization error, however, there is also a large increase 

of the computational performance requirements (Boehmke & Greenwel, 2020).  
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This method allows for the complete used of all data at hand, instead of dividing the dataset into a test 

and training datasets. By running through the train/test folds several times, there can be obtained a 

best estimate of the model performance. 

 

3.3.3.2. Tree-specific and Hyper Parameters Choice 

Machine learning models are characterized by the need of optimizing the tuning and hyperparameters, 

which are elements that define the model architecture. These parameters cannot be directly trained 

from the data, meaning that they are not model parameters. Because of this, the choice of these hyper 

parameters is frequently derived from experimentation. Four of the most commonly tunned 

parameters are described in Table 3.1. 

The simplest and most commonly used method to obtain the optimal values for the previously 

mentioned hyper parameters is grid search (Su & Bai, 2020). This technique develops a model for each 

possible combination of all the hyperparameters that were provided, evaluating each of the models 

and therefore selecting the architecture which outputs the best results. Each of the models should be 

fitted to training and validating data. There are other techniques, such as random search (provides a 

statistical distribution for each of the hyperparameters, instead of a discrete set of values) or Bayesian 

optimization (sequential model-based optimization, uses the information from one experiment to 

improve the next, on the contrary of the previous techniques). The latter is usually more difficult to 

implement, as it is more complex. 

Figure 3.2 - Diagram of nested cross-validation, with inner loop of 5-fold cross-validation and outer 

loop of 6-fold cross validation. The hold-out test for data fold k is fold k, in orange. Considering fold k, 

the parameters are tuned on D\fold k, being the training portion in blue and validation in green. After 

the tuning, the model is trained on D\fold k using the optimal parameters estimated for the data in 

fold k 

Source: Example adapted from Henckaerts, R., Côté, M. P., Antonio, K., & Verbelen, R. (2020). Boosting 

Insights in Insurance Tariff Plans with Tree-Based Machine Learning Methods. North American 

Actuarial Journal, 1–31 
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Table 3.1 - Boosting and Tree-specific Hyper Parameters for the GBM  

Boosting Hyper Parameters Tree-specific Hyper Parameters 

Number of trees: Total number of trees in the 

ensemble. As in GBM each tree is grown in 

sequence to fix the previous one, it is common 

that the total of trees will add up to a large 

value, such as thousands. As so, it is important 

to prevent overfitting, estimating this 

parameter through cross-validation. 

Tree depth: Controls the depth of each 

individual tree. A smaller depth is associated 

with a higher computer efficiency, but a higher 

depth allows for the capturing of unique 

interactions in the algorithm, also increasing the 

possibility of overfitting. It is usually established 

between 1 to 5. 

Learning Rate (λ): Represents the contribution 

of each tree to the final model and controls 

how quickly the algorithm learns. λ is usually 

chosen between 0.001 and 0.3. 

Minimum number of observations in terminal 

nodes: Controls the complexity of each 

individual tree. A higher amount is associated 

with the prevention of overfitting and a smaller 

amount is best when there are imbalanced 

target classes, in classification problems. It 

usually ranges from 5 to 15 or could be set as a 

percentage of the training data. 

Source: Adapted from Boehmke, B., & Greenwel, B. (2020). Hands-On Machine Learning with R. CRC 
Press 

 

3.3.4. Model Interpretability and Evaluation 

Interpretability is one of the most important characteristics of a model. Machine learning models are 

often known as “black boxes” given the lack of ease in the interpretation. However, one cannot simply 

trust the model and ignore the reason behind the decisions taken by the algorithm, which takes special 

importance when it comes to pricing models, as the worst nightmare of an insurance company is not 

being able to explain to a client why does he pay more or less than the standard. 

Analogous to GLM, there are several tools that can facilitate the evaluation of the regression model, 

such as the mean squared error, root mean squared error, deviance and residuals (Boehmke & 

Greenwel, 2020). 

The following subsections highlights some of the most used tools to enable model interpretability. 

 

3.3.4.1. Variable Importance 

Defined by Breiman (2001), variable importance is used to measure how important the several 

explanatory variables are in the prediction of the response variable.  Having random forests as a base 

model, the author defined the importance of a variable in terms of the decrease in the loss function 

value when that variable is chosen as a feature to split a node on. This metric has special emphasis on 

unveiling the variables that actually matter for the prediction. 
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Therefore, having 𝑥𝑙 as the variable of interest, 𝑣(𝑗) the split variable at index j and ∆𝐿 the difference 

in the loss function before and after the split on 𝑥𝑙 (the improvements) for each tree t, it can be written 

as the sum over all splits where the variable of interest is included: 

 

 

𝐼𝑥𝑙
(𝑡) = ∑ 𝕀

𝐽−1

𝑗=1

[𝑣(𝑗) = 𝑥𝑙]∆𝐿 (3.36) 

 

The main idea behind this approach is that important variables appear more often and higher in the 

decision tree, meaning that the sum grows faster for these variables. The values are then normalized, 

giving a sound idea about the relative contribution of each of the variables (Henckaerts et al., 2020). 

Equation (3.36) can be generalized to the ensemble techniques by averaging the importance of the 

variable of interest over the many trees T that compose the ensemble model: 

 

 

𝐼𝑥𝑙
=

1

𝑇
∑ 𝐼𝑥𝑙

(𝑡)

𝑇

𝑡=1

 (3.37) 

 

And therefore, comprising all trees in the GBM. 

 

3.3.4.2. Partial Dependence Plots 

On the other hand, partial dependence is characterized by the marginalization of a variable and 

capture of the effect that it holds on to the outcome predictions (Friedman, 2001). The plot of the 

partial dependence of the predicted variable and one of the independent variables can enlighten the 

relationship between the target and the feature, being it linear, monotonic or more complex.  

Assuming 𝐷 ⊂ {1,2, . . . , 𝑝}  and V its complement, x the training data and 𝒙𝑫 the coordinates in D of 

x. Considering the regression model, the partial dependence function can be depicted as: 

 
𝑓𝐷 = 𝐸[𝑓(𝒙𝑉 , 𝒙𝐷)] = ∫ 𝑓(𝒙𝑉 , 𝒙𝐷) 𝑑𝑃(𝒙𝑉) (3.38) 

 

Given its complexity, the previous equation can be estimated by: 
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𝑓𝐷 =

1

𝑛
∑ 𝑓

𝑛

𝑖=1

(𝒙𝑉𝑖
, 𝒙𝐷) (3.39) 

 

where 𝒙𝑉𝑖
  are the variables used to train the model, n the number of observations in the training data 

and 𝑓 is the statistical model at use (Molnar, 2021). Overall, this method presents the average effect 

of the features of interest. 

Taking special interest in the insurance field, a good application of this method would be to capture 

the relationship between the age of the driver and the amount of claims filled, which is known to be 

high amongst younger and middle-aged drivers. 

 

3.3.4.3. Individual Conditional Expectation Plots 

Similar to the previous topic, individual conditional expectation enlightens the dependence between 

the target function and a certain feature of interest, with the difference that it is presented for each 

sample separately, with one line per instance (Goldstein et al., 2015). 

Having in consideration the elements applied in equation (3.39), for each instance in {(𝒙𝑉𝑖
, 𝒙𝐷𝑖

)}
𝑁

𝑖 = 1
, 

the curve 𝑓𝐷   is plotted against 𝒙𝐷𝑖
 while 𝒙𝑉𝑖

 is fixed. 

Overall, the PDP can be considered the average of the lines in an ICEP. It can be of favor to consider 

individual expectations over partial dependence in the event of weak interactions between the 

features for which the PDP is calculated and other features, because PDP could obscure a 

heterogeneous relationship between the variables, created by interactions. In that event, it would be 

wiser to analyse the ICEP, as it gives more insights and can be more intuitive to interpretate. 

 

3.3.4.4. Friedman’s H-Statistic 

The Friedman’s H-Statistic gives an estimation of the interaction strength between two feature 

variables by measuring how much of the prediction variance originates from the interaction effect 

between both variables (Friedman & Popescu, 2008). Considering 𝑓𝐷(𝒙𝐷)  and 𝑓𝐸(𝒙𝐸)  the one-

dimensional partial dependence of the variables, as defined above in Section 3.3.4.2, and 𝑓𝐷𝐸(𝒙𝐷 , 𝒙𝐸)  

the two-way partial dependence, the H-Statistic can be defined as: 

 

 

𝐻𝐷𝐸
2 =

∑ {𝑓𝐷𝐸 (𝒙𝐷
(𝑖)

, 𝒙𝐸
(𝑖)

) − 𝑓𝐷 (𝒙𝐷
(𝑖)

) − 𝑓𝐸 (𝒙𝐸
(𝑖)

)}
2

 𝑛
𝑖=1

∑ 𝑓𝐷𝐸
2 (𝒙𝐷

(𝑖)
, 𝒙𝐸

(𝑖)
) 𝑛

𝑖=1

 (3.40) 
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4. DESCRIPTIVE AND EXPLORATORY ANALYSIS OF THE DATASET 

4.1. DATASET INFORMATION 

The dataset used on this project was composed of 2 464 181 observations of exposure and 75 263 

observations of claims data for the material TPL cover, correspondent to 799 587 distinct policies, 

collected between 1 January 2016 and 31 December of 2019, for passenger private cars. The policies 

were grouped according to the several feature variables and years. A policy that did not register any 

change in its structure or characteristics would be depicted in four observations.  

Besides the response variables, this dataset includes 36 feature variables, related to the client (such as 

the client’s age, city or profession), the policy (such as the seniority) and the vehicle (such as the brand, 

age or horsepower). Table B.1 in Appendix B presents a summary of the independent variables used 

to develop the models. 

 

4.2. COLLECTION AND TREATMENT OF THE DATA 

The raw data was collected from the insurance company’s data warehouse, and afterwards treated 

using the Microsoft SQL Server Management Studio software.  

To obtain a dataset of valuable and consistent information, there was the need to treat some of the 

variables, as there was missing information and obvious errors, very likely generated due to human-

error. In most cases, missing information or atypical outliers were allocated to the level 999 (numeric 

variables) or unknown (textual variables). Only in some specific events of known human-error, being 

impossible to track the original value, the information was deleted, such as observations where the 

earned exposure was negative. 

Similar to what had been done in previous years, the final dataset only included claims that originated 

incurred costs superior to 5 €.   

 Some of the variables were removed from this study prior to modelling, given the evident lack of 

quality or the very high similarity. These last were variables that were collected from both the clients’ 

table and the policies’ table. For example, the Driver Age originated from the clients table was 

removed, as only the Driver Age originated from the object table was used. It is common to have 

differences between variables that were expected to match, given that the client allocated to the 

policy is not always the regular driver, from which the information is collected in the objects table.  

Figure C.1 in Appendix C demonstrates the correlation matrix, allowing for the study of the correlation 

among variables. Despite the last type of variables mentioned above, which clearly show an extremely 

high correlation, there seems to be a strong correlation between the location-related variables, such 

as Concelho, Distrito, Delegation and Circulation Zone, as well as between Delegation and UEN or 

NBexe and Driver Age. The Own Damage variable is correlated with several other. This information 

should be taken into account when it comes to modelling. 

After the treatment of the variables, the dataset was left with 2 464 181 observations and 21 variables, 

depicted in Table B.2 in Appendix B. 
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Overall, considering the 799 587 distinct policies, this dataset presented 78 264 claims over the four 

years in study, leading to a total incurred cost of 97 908 920 €, as shown in Table 4.1. 

 

Table 4.1 - Policies and claims count and cost from period 2016-2019 

Number of Policies Number of Claims Total Incurred Cost 

799 587 78 264 97 908 920 € 

Source: Authors preparation 

 

4.3. UNIVARIATE DESCRIPTIVE ANALYSIS 

The frequency model response variable is the Claim Count (discrete variable), obtained through the 

original variable Claim Number. The severity model response variable is the cost of claims, Claim 

Amount (continuous variable), directly collected from the dataset.  

In this Section it is presented a univariate descriptive analysis of the variables, with the goal of better 

describing and understanding them, which will be of great value and use when developing the models. 

Given the vast extension of feature variables taken into account, the descriptive analysis that is 

depicted in this paper will comprise the variables that will most likely reveal to be significant to the 

final models, taking into account previous models developed by the insurance company and the usual 

behaviour of the insurance market. 

 

4.3.1. Response Variables 

4.3.1.1. Claim Count 

Used in the frequency model as response variable, Claim Count is a quantitative variable that 

represents the number of claims reported per policy, per year. The elementary statistics related to this 

variable are shown in Table 4.2. 

 

Table 4.2 - Elementary descriptive statistics of claim count, weighted by exposure, from period 2016-

2019 

Total Number of 

Policy Records 

Mean Variance Skewness Kurtosis 

2 464 181 0.04834 0.09289 16.40195 2 285.577 

 Source: Authors preparation. 
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According to the information displayed in the table above, this dataset presents 2 464 181 different 

policy records from year 2016 to 2019, leading to an average of 0.048 annual reported claims, per 

annuity and exposure. 

Given that the variance is higher than the mean, there is proof that the distribution of claim count is 

over-dispersed. A positive and high value of skewness translates into very few observations on the 

right side of the distribution, which is very common for claim count. Lastly, 2 285.577 of kurtosis 

indicates that the distribution of claim count is very peaked, being a very narrow distribution with most 

of the responses in the left side, in this case for 0 claims, as Table 4.3 depicts. 

 

Table 4.3 - Distribution of annual claims per policy record 

Claims 0 1 2 3 4 5 

Policy Records 2 388 567 73 131 2 334 135 10 4 

Source: Authors preparation 

 

On Figure 4.1 it is possible to confirm the assumptions derived from the elementary descriptive 

statistics mentioned above, being clear that the majority of observations fall on 0 claims, with only 

3.07% of policy records having registered one or more claims in the period between 2016 and 2019. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 - Number of annual claims per Policy Record 

Source: Authors preparation 
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4.3.1.2. Claim Amount 

On the other hand, Claim Amount is the response variable related to the severity model. In Table 4.4 

there are presented the elementary statistics related to this variable. The minimum amount filled 

corresponds to 5 € and the maximum to 108 603.70 €. Overall, the average cost per claim is 1 251.01 

€ and the average cost per policy is 122.45 €. 

 

Table 4.4 - Elementary descriptive statistics of Claim Amount 

Number of 

Policies 

Number of 

Policies with 

associated costs 

Average 

Cost per 

Claim 

Standard 

Deviation of 

Cost per Claim 

Average 

Cost per 

Policy 

Standard 

Deviation of 

Cost per Policy 

799 587 70 132 1 251.01 € 1 972.37 € 122.45 € 749.75 € 

Source: Authors preparation 

 

Table 4.5 depicts the right-skewness nature of the distribution of the claim costs, with 99% of claims 

having an associated cost under 8 724.04 €. Considering this threshold, it is possible to visualize the 

claims distribution in Figure 4.2. 

 

Table 4.5 – Quantiles of Claim Amount 

50% 90% 92.5% 95% 99% 

836.60 € 3 116.90 € 3 428.23 € 3 952.60 € 8 724.04 € 

Source: Authors preparation 

 

As it is expected, the vast majority of claims have an associated cost situated around the observed 

average.  

This distribution has two peaks: the first one, at around 300 €, is associated with IDS debtor and 

creditor claims, whose costs are average costs, monthly pre-defined by the convention with APS – 

Portuguese Association of Insurers (and therefore don’t follow a theoretical distribution) and the 

second one is the natural peak associated with the average value of Claim Amount. 
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4.3.2. Offset Variable 

4.3.2.1. Earned Exposure 

This quantitative variable depicts the actual amount of exposure an insured vehicle has been exposed, 

measured as a fraction of the year. Earned Exposure is used as an offset in the frequency model, given 

that there must be different weights for claims suffered in policies with low exposure. 

In this dataset, 40.3% of policy records have one full year of exposure, as Figure 4.3 depicts. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 - Histogram of the Claim Amount 

Source: Authors preparation 

Figure 4.3 - Proportion of Earned Exposure 

Source: Authors preparation 
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4.3.3. Feature Variables 

In the following graphs, the y axis values (Average Cost and Annual Claim Frequency) have been 

removed, in order to comply with the insurance company privacy policy.  For the numeric variables, 

the several levels were grouped sequentially according to the observed values, to facilitate the 

exploratory analysis. The depicted levels were not the final choice used to model. 

The dashed lines represent the overall claim frequency of 0.0483 and average cost per claim of 1 251€. 

The y axis values have been replaced with two percentage values, representing the variation above (or 

bellow) average associated with the level with the highest (lowest) value, which gives a good indication 

on the behaviour of the data that is being represented. The vertical lines represent the confidence 

interval for the estimations. 

 

4.3.3.1. Driver Age 

The quantitative discrete variable Driver Age ranges from values between 18 and 93, being the average 

age in the portfolio 51 years old. In Figure 4.4 (left), there is a clear difference of frequency amongst 

the different age groups, with the peak of frequency at 21 years of age. There is then a decrease at 36 

years of age, then again a very slight increase around the 50-years mark (most likely due to different 

drivers, usually descendants that have come to legal age to drive). It is followed by a second decrease, 

down to the age group of 70, when it is followed by the last upward wave, peaking at 92 years of age. 

The average cost follows a very similar pattern to the claim frequency, registering the peak at younger 

ages.  The peak in frequency mentioned above is stated clear in Figure 4.4 (right), with ages [18, 30[ 

depicting double the average frequency. 

 

 

 

Figure 4.4 - Empiric claim frequency vs Driver Age (left) and Average Cost and Annual Claim 
Frequency vs Driver Age (right) 

Source: Authors preparation 
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4.3.3.2. Payment Instalments 

The Payment Instalments variable has four levels, depending on the payment plan chosen by the 

insured person. In this portfolio, most of the observations fall on annual payment, followed by semi-

annual and monthly, that have similar exposure.  

 

 

 

 

 

 

 

 

 

 

 

Trimester payments are the least chosen option by the clients. The average cost and frequency follow 

a similar pattern, registering the lowest values for the annually payments and a peak for the trimester 

payments, with an increase above average of around 88 € in cost and 0.02 pp in frequency, 

representing double the average frequency, as Figure 4.5 depicts. 

The fact that trimester payments can induce especially higher values of frequency could appear to be 

unlikely, however it has become a known fact registered by the insurance company over the years. 

This behaviour has been studied and a possible reason behind it could be the fact that clients that file 

several claims have a known behaviour of switching between insurance companies, and thereby have 

a preference for paying in fractions. Monthly payments have been obliged to be accompanied by direct 

debit type of payment since before 2016, which could lead this group of clients to select quarterly 

payments, the shortest period after monthly, and therefore having the opportunity to not pay the last 

instalment right after the claim occurrence. 

 

4.3.3.3. Direct Debit Payment 

The categorical variable Direct Debit Payment differentiates the policies that have direct debit as the 

payment option of choice. As it is possible to confirm in Figure 4.6, most of the policies in portfolio do 

not have direct debit, having those specific policies a lower registered frequency, as the average cost 

remains very similar. For policies with direct debit, frequency rises around 9% above average. This is a 

result of Direct Debt Payment being mandatory for policies with monthly Payment Instalments, given 

Figure 4.5 - Average Cost and Annual Claim Frequency vs Payment Instalments 

Source: Authors preparation 
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the bad risk that the latter represent, as depicted in Figure 4.6. This behavior is also translated by the 

correlation factor between the Direct Debit Payment and Payment Instalments variables of 0.77, as 

depicted in the correlation matrix on Figure C.1 in Appendix C. 

 

 

 

 

 

 

 

 

4.3.3.4. Years of Driving 

Constructed upon the variable date of driving license, Years of Driving is a numeric discrete variable 

that clearly outputs different empiric frequency values, according to the several levels, as Figure 4.7 

(left) shows. In this dataset, the average time for which an insured person has had a driver’s license is 

27 years, being the minimum 1 and the maximum 75 years. 

 

 

Figure 4.6 - Average Cost and Annual Claim Frequency vs Direct Debit Payment 

Source: Authors preparation 

Figure 4.7 - Empiric claim frequency vs Years of Driving (left) and Average Cost and Annual Claim 

Frequency vs Years of Driving (right) 

Source: Authors preparation 
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Years of Driving was grouped in 10 levels, as depicted in Figure 4.7 (right). As it would be expected 

given the analysis of the variable Driver Age presented above in this Section (where the majority of the 

insured people were aged between 40 and 60) the highest portion of exposure falls into levels [20, 25[ 

and [25, 30[. Similarly, the highest average cost and frequency are registered for the first levels of Years 

of Driving.  

This variable presents the same trend as Driver Age, with a slight increase for average cost surrounding 

the 25 years of driving, which could once again be explained by the usage of the vehicle by the younger 

descendants. 

It is clear by Figure 4.7 (right) that less experienced drivers have an aggravated behaviour, especially 

for frequency, with observed values being much higher than the average, for this group. 

 

4.3.3.5. Policy Time on Book 

Once again another numeric discrete variable, Policy Time on Book, as the name indicates, represents 

the time, in years, for which the policy has been active. In this dataset, the policy that has been active 

for longest, has 62 years of time on book, being the average 4.82. As Figure 4.8 (left) illustrates, the 

empiric frequency decreases as time on book increases, having some outliers between levels 30 and 

50, being relatively approximate to 0 for policies with more than 30 years of time on book. 

 

 

On Figure 4.8 (right), where the different levels of Policy Time on Book are grouped, there is a 

descending trend in frequency as time on book increases, with levels with more than 4 years of time 

on book being bellow average. On the other hand, the average cost also starts with a descending trend, 

however, from level [4,6[ to [10, 15[, there is registered an increase in costs. 

Figure 4.8 - Empiric frequency vs Policy Time on Book (left) and Average Cost and Annual Claim 

Frequency vs Policy Time on Book (right) 

Source: Authors preparation 
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4.3.3.6. District 

District is a categorical variable, which represents the district where the policyholder lives, ranging 

from code 1 to code 22. As Figure 4.9 shows, the average cost and frequency have a very different 

behaviour depending on each level. Districts 13, 14 and 17 are where the earned exposure is 

concentrated, and alongside with districts 4 and 19, represent the sample of districts with frequency 

above average. 

 

 

The average cost surpasses the global average at districts 1, 2, 4, 9, 12, 14 and 19. There are several 

districts that present very similar behaviour, which indicates they could be grouped.  

 

4.3.3.7. Vehicle Brand 

As the name indicates, Vehicle Brand is the categorical variable that indicates the brand of the insured 

vehicle. 

As Figure 4.10 depicts, for the levels with higher exposure in the portfolio, such as brands 008, 015, 

023, 024, 047, 056, 057, 064, 079 and 083, the average cost and claim frequency are very similar to 

the global averages. For levels with lower exposure, the values in study present a very high fluctuation. 

 

 

Figure 4.9 - Average Cost and Annual Claim Frequency vs District 

Source: Authors preparation 
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4.3.3.8. Seat Capacity 

The Seat Capacity variable depicts the number of seats that the insured vehicle possesses. As it is clear 

by Figure 4.11 the vast majority of the vehicles included in this dataset have a capacity of 5 seats, 

followed by 2 and 4. Level 5 has an average cost and frequency spot on the global average, while the 

rest of the levels register some fluctuations, which is common when the exposure is concentrated in a 

single level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 - Average Cost and Annual Claim Frequency vs Vehicle Brand 

Source: Authors preparation 

Figure 4.11 - Average Cost and Annual Claim Frequency vs Seat Capacity 

Source: Authors preparation 
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4.3.3.9. Vehicle Age 

Being a numeric discrete variable, created based on the year of manufacture, Vehicle Age portraits the 

age of the vehicle at the time of the policy annuity. In this dataset, the vehicles have an average of 

15.61 years, with a maximum of 95 years. As is depicted on Figure 4.12 (left), the empiric frequency 

presents an upward trend, up to vehicles with 25 years of age, decreasing continuously until the age 

of 30, where the empiric frequency is 23% below average, at approximately 0. This could be due to the 

fact of the vehicles being quite old, and so insured people do not use them often. 

 

 

 

As could be confirmed in Figure 4.12 (right), these last mentioned vehicles represent a very small 

portion of the vehicles in this dataset, as the exposure is very low. The average cost decreases until 

level [15,20[, followed by an increase in the following level and finally reaching the minimum of 7% 

below average at the last level of vehicles with over 30 years of age, as mentioned above. 

 

 

 

 

 

 

Figure 4.12 - Empiric claim frequency vs Vehicle Age (left) and Average Cost and Annual Claim 
Frequency vs Vehicle Age (right) 

Source: Authors preparation 
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5. RESULTS 

5.1. FITTING THE DISTRIBUTIONS 

As mentioned above in Section 4.1, the response variables, Claim Count and Claim Amount, usually 

follow certain distributions from the exponential family. It is based on that assumption that the 

frequency and severity models are developed. 

In this section it is presented the study of which distribution best describes the observed behavior of 

these variable. 

 

5.1.1. Claim Count 

Representing the number of claims reported per policy per year, this quantitative variable has been 

described in the section above as having the vast majority of observations allocated to 0 claims, 

followed by a decrease in the amount of observations for 1, 2 and 3 occurrences.  

Given the behaviour of the data, it would be natural to try to fit the Poisson or the Negative Binomial 

distributions, known as good representations of count distributions. Table 5.1 below includes the 

observed probability and expected frequency considering both distributions. Records with five claims 

were grouped with 𝑥 = 4, given that there were only four observations. 

 

Table 5.1 - Modelling Claim Count: Negative Binomial and Poisson Distributions 

x Ox px
obs Ex

NB px
NB  Ex

Poi px
Poi  

0 2 388 567 0.9693147 2 388 595.45 0.9693262 2 387 146.80 0.9687384 

1 73 131 0.0296776 7 009.63 0.0296284 75 817.34 0.0307678 

2 2 334 0.0009472 2 485.20 0.0010085 1 204.00 0.0004886 

3 135 0.000055 87.47 0.0000355 12.75 0.0000052 

4 14 0.000006 3.13 0.0000013 0.10 0.0000000 

Total 2 464 181 1 2 464 181 1 2 464 181 1 

   𝝌𝟐 68.05 𝝌𝟐 3 798.78 

   p-value ≈ 0 p-value ≈ 0 

x - Claim count;     Ox - Number of observations;     px
obs - Observed probability;     Ex - Expected Frequency 

Source: Authors preparation 

 

Considering the Negative Binomial, the distribution parameters were estimated by maximum 

likelihood, achieving 𝑠𝑖𝑧�̂�=0.8146 and 𝑚�̂�=0.0318. Given that the Chi-Square test returned a p-value 

of approximately 0, the hypothesis that the Negative Binomial distribution fits to the data in study is 

rejected at any given significance level. Figure 5.1 (left) shows that despite the rejection of the null 

hypothesis, there seems to be a good approximation of observed frequency. 
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Similarly, the Poisson parameter lambda was estimated as being the observed mean, �̂�=0.03176065. 

By repeating the Chi-Square test for goodness-of-fit, the p-value returned was approximately 0, being 

the null hypothesis that the Poisson distribution fits the data rejected. Similarly, Figure 5.1 (right) 

represents what seems to be a good fit to the Poisson distribution, despite the results stated. 

The fact that both distributions failed the goodness-of-fit test, despite the results in Figure 5.1 

indicating a good fit, could be explained by the vast majority of observations falling into zero claims 

filed or the size of the sample in study. This dataset is composed by real data collected by the insurance 

company, and it is very unlikely that real-life events can be precisely described by probability 

distributions, especially events whose probability is very slim, such as policies having over one claim 

per year. As it is clear in Table 5.1 , both distributions are able to predict the probability of filling 0 

claims in one year fairly well, with that probability being more distant from the observed probability 

as claim count increases. Sample size can also impact the results of the goodness-of-fit test given that 

the Chi-Square test is sensitive to it. With very large samples, even minuscule distances between the 

estimate and the null hypothesis become statistically significant. When facing this problem, the 

rejection of the null hypothesis should not be based solely on the p-value (Lin et al., 2013).  

Given all this information and taking into consideration that the pricing team of the company has 

developed previous frequency models assuming that the claim count follows a Poisson distribution, 

this will be the chosen assumption. Not forgetting that the observed variance was over the average, 

thus being in the presence of over-dispersion, the chosen error structure on EMBLEM is Poisson but 

the scale parameter, also known as dispersion parameter, will be estimated from the Pearson 

estimator, and not fixed at 1 as is usual when the mean matches the variance. This is the equivalent of 

assuming over-dispersion and using quasi-poisson as family parameter when developing GLM in R. 

 

 

Figure 5.1 - Fitting of the Negative Binomial distribution with size=0.8146 and mu=0.0318 (left) and 
Poisson distribution with λ=0.03176065 (right) to Claim Count.  

Source: Authors preparation 
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5.1.2. Claim Amount 

As stated previously, Claim Amount is a continuous variable that represents the costs associated with 

the filed claims. Its distribution is right skewed, as claims with very high costs are more unlikely to 

happen. 

Considering only the observations where there were reported claims, the following boxplots depict 

the distribution of claim amount in the dataset before any capping is done and below with a capping 

at the 99% quantile, corresponding to a maximum cost of 8 724.04 €. 

 

 

As was mentioned in the beginning of Section 4.3.1.2 this dataset included settled IDS claims, which 

do not follow any theoretical probability distribution. Because of so, those type of claims were 

removed from the dataset. Table 5.2 bellow presents the new descriptive statistics of claim amount. 

Given this change, the quantiles of the distribution have also suffered changes, as Table 5.3 depicts. 

The amounts are higher, because the removed claims were associated with relatively small costs, 

bellow average. 

 

Figure 5.2 Total (top) and 99% quantile (bottom) boxplot of Claim Amount. 

Source: Authors preparation 
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Table 5.2 - Elementary descriptive statistics of claim amount, after removing IDS claims 

Number of Claims with associated 

costs 

Average Cost per 

Claim 

Standard Deviation of Cost per 

Claim 

22 262 1 931.94 € 3 312.96 € 

Source: Authors preparation 

 

Table 5.3 - Quantiles of claim amount, after removing IDS claims 

50% 90% 92,5% 95% 99% 

913.34 € 4 517.21 € 6 992.09 € 9 792.54 € 15 000.00 € 

Source: Authors preparation 

 

The following graph depicts the claim amount distribution after this alteration, limited at the new 99% 

percentile, 15 000 €, being visible only one peak now, at around 400 €. 

 

 

 

 

 

 

 

 

 

 

 

 

 

High costs have a low probability of occurrence, and normally do not follow the same probability 

distribution as the “usual” type of claims. Given so, there were performed several goodness-of-fit tests 

for the fitting to the Gamma distribution, considering different maximum limits of costs, whose results 

are summarized in Table 5.4 below. 

Figure 5.3 - Histogram of the Claim Amount after removing IDS claims 

Source: Authors preparation 
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Table 5.4 - Estimated parameters and p-value for the Gamma distribution, according to different 
limits 

Claim Amount Limit 
Nr. of 

Claims 
𝐬𝐡𝐚𝐩𝐞̂  𝐬𝐜𝐚𝐥�̂� V p-value 

A. 108 603.70 € (no limit) 22 262 0.7421 2 603.46 151.94 < 2.2 x 10-16 

B. 15 000.00 € (99% quantile) 22 037 0.9001 1 901.72 37.02 < 2.2 x 10-16 

C. 4 517.21 € (90% quantile) 20 035 1.4481 793.27 12.23 < 2.2 x 10-16 

D. 3 359.67 € (85.36% quantile) 19 002 1.7017 587.89 2.76 0.05108 

Source: Authors preparation 

 

The dataset A comprises all claims observations and datasets B, C and D include the observations 

correspondent to the 99%, 90% and 83.87% quantile, respectively. The specific quantile of 85.36% was 

chosen as it was the highest threshold that outputted a p-value of approximately 0.05, the usual 

significance level. This indicates that the null hypothesis that the claim amount follows a Gamma 

distribution is not rejected. 

Given these results, the observations to be used to model claim severity will be those obtained after 

applying limit D. The elementary descriptive statistics alongside with the histogram of average claim 

amount and density functions are depicted below. 

 

Table 5.5 - Elementary descriptive statistics of claim amount, after removing IDS claims and 
considering limit D 

Number of Claims with associated 

costs 

Average Cost per 

Claim 

Standard Deviation of Cost per 

Claim 

19 002 1 000.45 € 772.76 € 

Source: Authors preparation 

 

Table 5.6 - Quantiles of claim amount, after removing IDS claims and considering limit D 

50% 90% 92,5% 95% 99% 

749.14 € 2 018.51 € 2 444.77 € 2 700.00 € 3 196.23 € 

Source: Authors preparation 
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As it is clear by Figure 5.4 the aforementioned alterations to the initial claims dataset have resulted in 

a combination of observations that can be very well described by a Gamma distribution. 

 

5.2. MODELLING RESULTS 

In this Section, there are presented the results of the two different approaches, for both the frequency 

and severity modelling. Afterwards, the models are compared in terms of total deviance and residuals, 

in order to have a glimpse of which methodology outputs the best results. 

 

5.2.1. Generalized Linear Models 

To develop the GLM models, the dataset was imported to the EMBLEM Software, with the response 

variable being chosen accordingly to the problem in question: Number of reported claims alongside 

with the exposure to be used as an offset for the frequency model and cost of claims alongside with 

amount of reported claims to be used as an offset for the severity model. Both datasets were divided 

in training (80%) and testing (20%). 

 

5.2.1.1. Claim Frequency 

Assuming that the frequency response variable follows a Poisson distribution with overdispersion, the 

Emblem model was defined with Poisson error structure and the dispersion parameter was estimated 

using Pearson Chi-Squared statistic. 

Figure 5.4 - Empiric density and Gamma density considering limit D 

Source: Authors preparation 
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After the data selection made in Section 4.2 there was a group of 21 feature variables that could be 

chosen from to model claim frequency, which can be consulted in Table B.2 in Appendix B. 

The established procedure to make the selection of these variables starts with the addition of those 

variables that were significant in previously developed models. In this case, 10 out of those 21 variables 

were considered as significant in the previous frequency model developed by the pricing team, and 

were added to the model, one at a time. With each variable that was added, it was checked if there 

was the need to perform variable simplification, by grouping the different levels. Firstly, it was always 

taken into consideration the observed frequency (levels with similar observed frequency would be 

grouped together), and also the observed amount of exposure (levels with little to no exposure would 

be grouped with the base level) or existence of unknown levels (grouped with the base level). The 

nature of the grouping would differ with the nature of the variable in question: for discrete variables, 

the grouping is done in the form of Grouped Factors and for the numerical variables, Variates (the 

orthogonal polynomials mentioned in Section 3.2.4.2). The selected grouping would be evaluated 

through the standard errors of the parameter estimates of each final level. If the standard error in 

percentage is smaller than 50%, then both levels are significantly different, and the grouping should 

remain as it is. 

After the simplification of each variable, it was evaluated if that chosen variable was significant to the 

model or not. Comparing the nested models, the Likelihood Ratio test was performed, and the variable 

was kept if the p-value was lower than 5%, meaning that the models are significantly different. 

Out of the initial variables, only eight were kept, being Seat Capacity and Own Damage Cover excluded 

because they did not add value to the model. 

Afterwards, the process was repeated for the other 11 variables that were not included in the model 

that was developed years prior. Out of those, Horse Power was the only addition. Table 5.7 includes 

the listing of the final variables that were considered significant in the frequency model. 

 

Table 5.7 - Significant Variables chosen for the GLM frequency model 

Significant Variables in the Frequency Model  

Fuel 

Vehicle Brand 

Payment Instalments 

District 

Driver Age 

Years of Driving 

Vehicle Age 

Horse Power 

Policy Time on Book 

Source: Authors preparation 
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The selected variables were tested in order to detect possible interactions. It was found an interaction 

between District and Policy Time on Book, as is represented in Figure D.1 in Appendix D. As the policy 

time on book increases, the gap between the predicted values for the base level (dark blue) and other 

District levels decreases (especially considering the initial levels of Policy Time on Book hold the 

majority of the exposure). By rescaling the graph to the District base level, as in Figure D.2 in Appendix 

D, this relation becomes more evident.  

This led to the final frequency model, that was composed of nine feature variables and one interaction. 

Table 5.8 presents the tariff structure for claim frequency, on the training set, on which all factors are 

statistically significant. It should be noted that the betas included in the table below have been 

multiplied by a constant inferior to 1, in order to proceed accordingly to the insurance company data 

sensitivity policy. 

 

Table 5.8 - Tariff structure for claim frequency, using the training dataset 

 Std. Error Std. Error % Exp(β) 

Intercept 0.00886 0.3 0.05047 

Fuel – G2 0.00969 9.2 0.88229 

Vehicle Brand – G2 0.01037 26.7 1.01881 

Payment Instalments – G2 0.00991 4.6 1.21706 

Payment Instalments – G3 0.01456 3.4 1.49960 

District – G2 0.01159 3 0.66522 

District – G3 0.01061 3.9 0.74764 

v1 Driver Age  – OPoly1 0.02098 27.5 1.05781 

v1 Driver Age  – OPoly2 0.01117 30.8 1.01616 

v2 Driver Age  – OPoly1 0.00447 9.5 1.02694 

v2 Driver Age  – OPoly2 0.00383 17.7 0.95903 

v3 Driver Age  – OPoly1 0.0068 17.9 1.01802 

v3 Driver Age  – OPoly2 0.00552 11.5 1.02802 

v1 Years of Licence – OPoly1 0.01452 5.9 0.76646 

v1 Vehicle Age – OPoly1 0.00489 9.3 1.03302 

v2 Vehicle Age – OPoly1 0.00436 14.6 0.95109 

v2 Vehicle Age – OPoly2 0.00413 37.3 0.96922 

v1 Horse Power – OPoly1 0.00787 26.4 0.95119 

v1 Policy Time on Book – OPoly1 0.00615 4.1 0.84388 

v1 Policy Time on Book – OPoly2 0.00367 11.3 1.01234 

District - G2*v1 Policy Time on Book 0.01135 23.2 1.02910 

District - G3*v1 Policy Time on Book 0.01022 23 1.02459 

Source: Authors preparation 

 

For the categorical variables and grouped factors, it is possible to directly interpretate the table above, 

as the last column represents the final model coefficients. For the orthogonal polynomials, there is the 
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need of an extra step to retrieve the final values. Nonetheless, some conclusions can be drawn from 

this table, such as the higher risk related to clients whose Vehicle Brand is in included in G2 or that 

have chosen to pay accordingly to the Payment Instalments defined in G3. 

 

5.2.1.2. Claim Severity 

The approach followed to model claim severity was very similar to the one described above for claim 

frequency. 

As stated in Section 5.1.2, the severity response variable fits best to a Gamma distribution, being this 

the error structure chosen to model in the EMBLEM software. 

First, there were tested the five variables that were present in the prior severity model, following the 

same methodology as described in the Section above. 

Out of the previous selection, only District and Driver Age were included in the model. Afterwards, the 

other variables were tested, and Vehicle Brand was also considered significant. 

 

Table 5.9 - Significant Variables chosen for the GLM severity model 

Significant Variables in the Severity Model  

Vehicle Brand 

District 

Driver Age 

Source: Authors preparation 

 

This selection outputted a severity model with three feature variables, as depicted in the Table 5.9 

above. It is not uncommon for severity models to include less feature variables, as it is harder to explain 

the cost of claims rather than the frequency in which they occur. The sample size being much smaller 

can also lead to this disparity, increasing the volatility.  

The tariff structure of the model is represented in the table below and once again it should be noted 

that the betas included in the table below have been multiplied by a constant inferior to 1, in order to 

proceed accordingly to the insurance company data sensitivity policy. 

It is now clear that clients who live in the Districts included in Group 3 present a higher average cost 

than the average client. On the other hand, clients whose Vehicle Brand is included in Group 2 show a 

lower average cost. 
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Table 5.10 - Tariff structure for claim severity, using the training dataset 

Source: Authors preparation 

 

5.2.2. Gradient Boosting 

The same dataset used to develop the GLM models was also uploaded to R Server, where the 

frequency and severity Gradient Boosting models were developed. The dataset was also divided in 

training (80%) and testing (20%). 

In order to build the models, the R package gbm was used. Since the original version of this package 

does not support the Gamma distribution, it was used a different adaptation of the package for this 

model, retrieved from Harry Southworth’s GitHub (Harry Southworth, n.d.) that enables that option. 

 

5.2.2.1. Claim Frequency 

The first step when developing a Gradient Boosting model is dividing the dataset into different folds in 

order to perform cross validation to obtain the optimal parameters. Typically, the full dataset would 

be used and nested cross-validation would be performed on all data, and so reassuring that the 

parameter selection and model validation could be performed and correctly assessed (Henckaerts et 

al., 2020). In this case, and because the goal is to compare the GLM to the GBM models, it was chosen 

to first divide the full data set in testing and training, as mentioned above, and use this last data set to 

develop the Gradient Boosting models. To obtain these two data sets, the data was divided into five 

random groups of approximate same size, mutually exclusive and stratified, to make sure the resulting 

subsets’ response variable, in this case claim frequency, follow a similar distribution, following a very 

similar approach as explained on Section 3.3.3.1. One of those datasets was chosen as the testing set, 

and the other four as training set. 

The next step would be do define a grid search to find the optimal parameters. Initially, it was 

experimented a model with the default parameters, number of claims as response variable, alongside 

with exposure as an offset and the Poisson deviance as loss function. It should be stated that this model 

did not take into account the overdispersion factor, as it was not an option. It was followed by some 

small shifts according to the previously obtained results. Out of those preliminary results, it was 

possible do define a grid search with the following parameter combinations: 

▪ Number of trees ∈ {100, 250, 400, 500, 750, 1000} 

▪ Shrinkage ∈ {0.1, 0.05, 0.01} 

 
Std. Error Std. Error (%) Exp(β) 

Intercept 0.00970 0.1 998.62853 

Vehicle Brand – G2 0.01285 39.5 0.94864 

District – G2 0.02109 19.8 0.88073 

District – G3 0.02529 27.5 1.07437 

v1 Driver Age – OPoly1 0.00443 17.3 0.95521 
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▪ Interaction depth ∈ {1, 2, 3, 4, 5} 

▪ Minimum observations in terminal nodes =0.01∗𝑛𝑟𝑜𝑤𝑠 

▪ Bag Fraction ∈ {0.7, 0.8, 0.9, 0.95} 

This combination of parameters lead to 360 different models to be tested. 

The ideal approach would be to divide the training dataset in six folds and then test the model with 

the chosen optimal parameters in the testing set. However, given the dimension of the data (the 

training set included 1 971 461 observations, meaning that each iteration of the inner cross validation 

scheme would have to iterate trough 5⁄6 of the data, 1 642 884 observations), it would be very 

computationally exhaustive to use the full training set to obtain the optimal parameter selection. This 

option was tested, and it took over 20 hours to go through around 120 out of the 360 combinations, 

which is a very long time given that this process would have to be repeated six times (and if it were to 

be an option, it would take much longer than developing the GLM models, which goes against the aim 

of this project). 

Given this restraint, it was chosen to retrieve a sample of 50 000 observations from the training set to 

obtain those desired parameters. This sample was apportioned in six data folds, following the 

methodology described in Figure 3.2. 

 

Table 5.11 - Optimal tunning parameters per fold (and average) and out-of-sample Poisson deviance, 
using the 50 000 observations sample for the frequency model 

Fold Nr. of Trees Shrinkage Interaction Depth Bag Fraction OOS Poisson Deviance 

1 37 0.1 2 0.95 0.2802844 

2 64 0.1 2 0.95 0.2802088 

3 642 0.01 2 0.8 0.2802078 

4 116 0.1 1 0.95 0.2793700 

5 239 0.05 2 0.95 0.2791459 

6 47 0.1 4 0.95 0.2796919 

Average 190 0.077 2 0.952  

Source: Authors preparation 

 

Table 5.11 above presents the optimal set of parameters for each of the six folds, each one was 

selected as the combination that lead to the smallest cross validation iteration error in that fold, in this 

case the Poisson deviance. In Table E.1 of Appendix E, it is possible to consult the top 10 combinations 

that lead to the smallest cross validation error per fold. 

The results are quite heterogenous, with the maximum number of optimal trees being achieved for 

the smallest value of shrinkage, in fold 3, a known behavior between these parameters.  
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Model Interpretation 

In order to open the black box in which the GBM models lie, there were used interpretability tools as 

described in Section 3.3.4, on some of the feature variables. 

 

Variable Importance 

Variable importance introduced in Section 3.3.4.1 was used to find the most relevant variables in the 

frequency model. The results are visible in Figure 5.5 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As stated in the figure above, from top to bottom are represented the variables that are the most 

important for the model, measured by the average variable importance over the folds. District, Bonus 

Malus, Vehicle Brand and Payment Instalments are the clear top four variables. Out of these nine 

variables, only Bonus Malus and Client Time on Book were not selected in the GLM model, showing 

that there is a similarity between the choice of variables taken in both models. 

 

 

 

Figure 5.5 - Variable importance in the optimal GBM per data fold for frequency, 
considering an individual fold importance per variable above 0.1% 

Source: Authors preparation 
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Partial Dependence Plot 

In Figure 5.6 is depicted the graphical representation of the partial dependence effect of the variable 

District in the frequency model, taken into consideration a sample of 1 000 observations. 

 

 

 

 

 

 

 

 

 

 

 

 

It is clear in this figure that Districts 4, 8, 14, 17 and 19 present a higher risk of filling a claim, quite 

uniformly between all folds. Comparing to Figure 4.9 where is visible the observed frequency per 

District, the predictions depicted above follow a very similar trend to the observed values. 

 

 

 

 

 

 

 

 

Figure 5.6 - Partial dependence plot representing the effect of the District on 
Frequency, per data fold, using a sample of 1 000 observations 

Source: Authors preparation 

Figure 5.7 - Partial dependence plot representing the effect of the Payment Instalments on 
frequency, per data fold, using a sample of 1000 observations 

Source: Authors preparation 
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Similarly, Payment Instalments GBM frequency predictions mimic the observed frequency in Figure 4.5 

with policies contracted with quarterly payments posing a higher risk than semi-annually or monthly, 

that revolves around 0.055, and much higher than annual payments, as can be observed in Figure 5.7 

above. 

 

Individual Conditional Expectation Plot 

As previously explained in Section 3.3.4.3, the ICE plot enlightens the dependence between the 

frequency and a certain feature of interest, in the example represented below in Figure 5.8, Vehicle 

Brand. In this case, it was selected a sample of 1 000 random policy registries from fold 5 (where the 

OOS Poisson deviance was the lowest), and the several individual conditional expectation lines were 

plotted. Each line shows how the prediction changes when the Vehicle Brand changes, keeping all other 

variables constant. The blue line represents the average of these lines, also known as partial 

dependence. 

 

 

The benefit of using this method is the possibility to capture any heterogeneous relationship created 

by interactions. By analyzing Figure 5.8 above, the several ICE lines seem to follow the same trend as 

the average, however some brands such as 15, 46, 47, 75 and 102 register some predictions that do 

not follow the trend, being visible by the overlapping crossing lines. This could be an indicator of an 

interaction between Vehicle Brand and another variable. 

In order to check for interactions between variables, Friedman’s H-statistic was calculated. Table 5.12 

presents an ordered list of the 10 strongest two-way interactions between the variables. 

Figure 5.8 - Effect of the Vehicle Brand on the frequency model as Partial Dependence (in dark blue) 
and Individual Conditional Expectation (in grey), considering data fold 5 

Source: Authors preparation 
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Table 5.12 - H-Statistic for the 10 strongest two-way interactions between all feature variables in the 
GBM frequency model, considering data fold 5 

Variables H-Statistic 

(Payment Instalments, Vehicle Brand) 0.2255 

(District, Policy TOB) 0.2004 

(Client TOB, Vehicle Age) 0.1560 

(Bonus Malus, Payment Instalments) 0.1424 

(Payment Instalments, Policy TOB) 0.1355 

(District, Vehicle Brand) 0.1147 

(Bonus Malus, District) 0.1038 

(District, Payment Instalments) 0.0868 

(Bonus Malus, Vehicle Brand) 0.0867 

(District, Vehicle Age) 0.0695 

Source: Authors preparation 

 

As Figure 5.8 hinted, Vehicle Brand does in fact seem to have an interaction with Payment Instalments, 

with a value of 0.2255 for the H-Statistic. This value can range from 0 to 1, with 0 meaning that there 

is no interaction present and 1 implying that the effect of both variables on frequency prediction is 

purely driven by the interaction. From the interactions detected above, only the interaction between 

District and Policy Time on Book was included in the frequency GLM model, as it was the only one that 

seemed significant. In theory, GBM is able to handle interactions among input variables and can fit 

nonlinear relationships without requiring additional input from the user (Zhang, 2015). 

The graph represented in Figure 5.9 shows the effects of Vehicle Brand grouped by Payment 

Instalments, for the frequency model. 

 

 

Figure 5.9 - Grouped partial dependence plot for the frequency GBM model, considering data fold 5 

Source: Authors preparation 
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For brands 24, 49, 64, 92 and 448 it is visible that the risk associated with quarterly payments is 

superior than the other possible instalments. On the other hand, there are brands for which the 

different payment fractionations do not seem to affect the frequency predictions, such as brands 3, 

53, 57 and 97. 

 

5.2.2.2. Claim Severity 

The modelling of claim severity using Gradient Boosting was performed in a very similar way to claim 

frequency. Following the same view, the 18 801 observations were separated into training (80%) and 

testing (20%). This time, the development of the model was done on the full training dataset, being 

there no need to collect a smaller sample given that the dimension of this dataset was not an 

impediment that caused computational deterrents.  

Similar to the first approach, there was performed nested cross validation, by dividing the training 

dataset in six stratified folds, and developing a model with 5-fold cross validation for each, resulting in 

six combinations of optimal parameters, that would afterwards be averaged to compute the final 

models.  

Initially there was experimented a model with the default hyperparameters, cost of claims as response 

variable and the Gamma deviance as loss function. Following the results that model outputted, and 

after some tweaking in the parameters, there was defined a grid search to find the optimal values: 

▪ Number of trees ∈ {100, 150, 200, 250, 300, 400, 500} 

▪ Shrinkage ∈ {0.1, 0.05, 0.01} 

▪ Interaction depth ∈ {1, 2, 3, 4, 5} 

▪ Minimum observations in terminal nodes =0.01∗𝑛𝑟𝑜𝑤𝑠 

▪ Bag Fraction ∈ {0.7, 0.8, 0.9, 0.95} 

This combination of parameters lead to 420 different models to be tested. 

 

Table 5.13 - Optimal tunning parameters per fold (and average) and out-of-sample Gamma deviance, 
using the training dataset for the severity model 

Fold 
Nr. of 

Trees 
Shrinkage Interaction Depth Bag Fraction 

OOS Gamma 

Deviance 

1 133 0.05 1 0.95 15.76648 

2 125 0.05 1 0.95 15.76562 

3 56 0.05 2 0.7 15.76658 

4 33 0.1 1 0.8 15.76578 

5 59 0.05 2 0.7 15.76709 

6 75 0.1 1 0.95 15.76697 

Average 80 0.067 1 0.84  

Source: Authors preparation 
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In Table 5.13 are present the optimal parameters for each one of the six folds in which the grid search 

iterated, chosen accordingly to the smallest cross validation iteration error in that fold, in the case of 

severity, the Gamma deviance. The top 10 combinations per fold for severity are available in Table E.2 

in Appendix E. 

The severity model requires less trees to achieve peak performance and the interaction depth is 

smaller, 1 in the majority of cases, which means that the models use trees with only one split as weak 

learners. This indicates that the models are completely additive, without interactions. 

 

Model Interpretation  

Once again, there were applied the same tools as before in order to enable some interpretation of the 

severity model, with the exception of interaction study, given that the severity model has an 

interaction depth of one, and so lacks interactions. 

 

Variable Importance 

In Figure 5.10 is available the graphical representation of variable importance per fold. The results 

follow a quite similar trend among folds, with District being the variable that adds the most value to 

the severity model, followed by Vehicle Brand, Driver Age, License Years and Vehicle Weight. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 - Variable importance in the optimal GBM per data fold for severity, considering an 
individual fold importance per variable above 0.1% 

Source: Authors preparation 
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There could be some concerns in this rank of variables due to the correlation between License Years 

and Vehicle Weight (around 0.3). However, the GBM algorithm is known for handling multicollinearity 

issues, by choosing between certain regressors to maximize prediction accuracy, and are therefore 

robust to multicollinearity problems (Sandri & Zuccolotto, 2008). 

In comparison to the GLM model, the top three variables were present in both versions of the severity 

model, highlighting the similarity between the choice of variables in the two models. 

 

Partial Dependence Plot 

Using a sample of 1 000 observations, Figure 5.11 depicts the partial dependence effect of Driver Age 

in the severity model. When comparing the predicted average cost below with the observed average 

cost in Figure 4.4, there are similarities. In both representations, there is a steeper decrease down to 

around 35-40 years of age, followed by a mild decrease until around 60 years. The steepest decrease 

occurs around the mark of 70 years, with the difference between the predictions and observed values 

lying in the ages above 70, where the observed average cost increases but the predictions remain low. 

 

 

 

 

 

 

 

 

 

 

Individual Conditional Expectation Plot 

Having in consideration a random sample of 1 000 observations and using data fold 2 from the training 

set (the one with the lowest OOS Gamma deviance), it was plotted the ICE, representing the 

dependence between claim severity and District, while keeping other variables constant. In Figure 

5.12, the grey lines represent the ICE and the blue line their average, the partial dependence. 

Figure 5.11 - Partial dependence plot representing the effect of the Driver Age on severity, per data 
fold, using a sample of 1000 observations on the training dataset 

Source: Authors preparation 
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As highlighted above, the several ICE curves are concentrated around the average, especially for 

districts 4, 5, 7, 8, 11, 15 and 16, meaning that keeping all other risk factors constant, the severity is 

less sensitive to changes in these districts. 

 

 

 

 

 

 

 

 

 

 

These are all districts that are not considered big cities and hold less exposure to risk. Overall, the 

predicted average cost associated with each District matches the observed values in Figure 4.9. 

 

5.3. COMPARISON OF THE MODELS 

In the end of the modelling process, there were obtained four different models, two for each of the 

response variables. In order to find an answer for the main question in hands, can machine learning 

models outperform the classical GLM, the comparison between the models is presented in this Section. 

 

5.3.1. Choice of Variables 

One important indicator that could give some insights on whether or not the Gradient Boosting model 

has the capability of assessing which feature variables are best to distinguish risk among policies is the 

choice made of which of those variables to include in the model. Given the fact that this choice in GLM 

is influenced not only by statistical reasons but also business knowledge, it can be very interesting to 

compare the choices between both model approaches. 

Figure 5.12 - Effect of the District on the severity model as Partial Dependence (in dark blue) and 
Individual Conditional Expectation (in grey), considering data fold 2 

Source: Authors preparation 
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Table 5.14 below summarizes the variables that were selected as significant in the frequency and 

severity GLMs and the variables that held at least 0.1% of variable importance per fold, for the 

frequency and severity GBMs. 

 

Table 5.14 - Variables included in the frequency and severity models, according to both approaches: 
GLM and GBM (only those with over 0.1% variable importance) 

Frequency Severity 

GLM GBM GLM GBM 

District District District District 

 Bonus Malus   

Vehicle Brand Vehicle Brand Vehicle Brand Vehicle Brand 

Payment Instalments Payment Instalments   

Policy Time on Book Policy Time on Book   

Vehicle Age Vehicle Age   

Driver Age Driver Age Driver Age Driver Age 

 Client Time on Book   

Horse Power Horse Power   

Fuel    

Years of Driving    

   Licence Years 

   Vehicle Weight 

Source: Authors preparation 

 

As the table shows, the majority of the variables were selected in both versions of each model.  

This could indicate that the Gradient Boosting approach has a similar capability of selecting the feature 

variables that best differentiate risk as the typical approach, but it does not clearly exhibit which of the 

approaches is best at modelling TPL motor risk. 

Regarding the frequency models, it was not surprising that the District, Vehicle Brand and Driver Age 

were included in both models, as these variables are known as being good at differentiating the risk of 

claim occurrence. Some other vehicle-related variables were also included in both models, such as the 

Age and Horse Power. The GBM model gave a great importance to the Bonus Malus variable, but it 

was not chosen to be a part of the GLM given that the vast majority of the exposure was concentrated 

in the maximum level (attributed to clients without claims), and the model outputted a fairly good 

prediction without its addition.  

On the other hand, the Payment Installments was considered significant for both approaches, which 

was surprising, as typically it translates the financial possibilities of the client and is not known to lead 

to differences in the risk of claim occurrence. However, there were studied several interactions whilst 

the development of the GLM model, and there was not significant proof that these results could be 

driven from other variables. This has been a known behavior for the company throughout the years, 
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not only for this specific cover and line of business, but generally. It could be an interesting behavior 

to analyze in further studies. 

For the severity models, both approaches included the District, Vehicle Brand and Driver Age, all of 

which known as good risk differentiating variables for claim severity. The GBM has also given 

importance to License Years and Vehicle Weight, in a much smaller portion comparing to the previous 

two.  

 

5.3.2. Total Deviance 

One way to evaluate the accuracy of the models, is to calculate the total deviance. Table 5.15 presents 

the total Poisson and Gamma deviance, for the frequency and severity models, respectively, following 

each of the approaches in study.  

 

Table 5.15 - Total Poisson and Gamma deviance for the frequency and severity models, respectively, 
considering the two sub-samples and all data 

Sample 
Total Poisson Deviance Total Gamma Deviance 

GLM GBM GLM GBM 

Training (80%) 432 449 428 621 9 406 10 545 

Testing (20%) 107 896 106 773 2 335 2 624 

All (100%) 540 362 535 685 11 742 13 209 

Source: Authors preparation 

 

For the frequency modelling, the Gradient Boosting has the lowest total deviance for all samples, 

indicating that this approach leads to a better fit. On the other hand, for the severity model it is the 

Generalized Linear Model approach that outputs the smallest values of total deviance, considering all 

samples. 

The fact that the frequency GBM has the lowest total deviance goes in accordance with the assumption 

taken in this project that machine learning models have the ability to improve prediction accuracy. 

The contrasting (but approximate) severity results could be due to the severity sample size, that had 

around 18 000 observations. It is known that machine learning models are a good choice for big data, 

but in small sets of samples, their performance can be reduced. 

Other reason could be the volatility associated with severity modelling, that is known for being harder 

to model than frequency. 
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5.3.3. Residuals 

Defined above in Section 3.2.4.4 as the distance between the observed and the fitted values, the 

analysis of the residuals can be a great tool to better understand how the data points deviate from the 

model and could also give important intel on whether or not the chosen distribution is in fact a good 

match for the data in question. 

 

5.3.3.1. Frequency Residuals 

The deviance residuals were calculated using the square root of each observation contribution to the 

deviance, multiplied by the signal of the difference between the observations and the predictions.  

Figure 5.13 top row depicts the residuals obtained for the frequency modelling using the GLM 

approach. The layers of residuals describe policies with the same number of claims, being the majority 

concentrated bellow the horizontal axis, near 0 (as most policies did not register claims). Both training 

and testing datasets show a similar pattern of residuals, ranging from -0.5 to 6. 

 

Figure 5.13 - Deviance residuals for the fitted values of the GLM (top) and GBM (bottom) frequency 
models, considering the training dataset (left) and testing dataset (right) 

Source: Authors preparation 

 



 
59 

 

On the other hand, the bottom row represents the deviance residuals for the Gradient Boosting 

frequency model. 

In this case, the residuals follow a very similar pattern as the ones represented above for the GLM. The 

exception in the GBM model is that its maximum fitted value is around 0.23, whereas the maximum 

fitted value according to GLM is set higher, around 0.26.  

 

5.3.3.2. Severity Residuals 

The severity deviance residuals were calculated and plotted against the fitted values, for each of the 

modelling approaches. 

Collected from the EMBLEM software, Figure 5.14 top row translates the GLM deviance residuals 

plotted against the fitted values, considering both the training set and the testing set.  

 

 

Figure 5.14 - Deviance Residuals for the fitted values of the GLM (top) and GBM (bottom) severity 
model, considering the training dataset (left) and testing dataset (right) 

Source: Authors preparation 
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It is clear that the residuals are centered around 0 and concentrated between -2 and 2, for both 

samples. The variance is constant and does not depict any trend. 

In the bottom row it is possible to observe that for both samples the residuals are randomly centered 

around 0 and concentrated mainly around -2 and 2, with some outliers around 3. In the training set 

the variance appears quite constant, however in the testing set there is a small increasing trend in the 

beginning and some dispersion. This could be an indication that the severity GBM is outperformed by 

the GLM, as the top right plot in Figure 5.14 did not present the same behavior. 

According to all this, there seems to be a general good fitting of the models, regardless of the approach 

in consideration. 

 

 



 
61 

 

6. CONCLUSIONS 

The insurance field has registered a significant growth over the last few years in Portugal, and with 

that comes the rise of competitiveness. It is in every insurance company’s best interest to make sure 

that their prices correctly reflect the risks they are underwriting, which is partially done through the 

development and implementation of fair pricing models. It only makes sense that as new forms of 

modelling claim frequency and severity emerge, and when the scientific community has delivered 

several proofs that these new approaches could in fact provide equally or better results, that these 

companies begin to test the added value that could come with new forms of modelling, in this case, 

supervised machine learning. 

In this work project it was developed the claim frequency and severity models, through the application 

of two different approaches: the classical approach followed by the insurance company, the 

Generalized Linear models, using the EMBLEM software and a machine learning approach, the 

Gradient Boosting models, using the R Studio software, namely the gbm package. 

Firstly, the data was recovered, grouped together and outliers were removed. There was performed a 

descriptive and exploratory analysis of the data that allowed for a better understanding on how the 

behavior of the response variables changed according to each feature variable level. The distributions 

of Claim Count and Claim Amount were studied in order to find which theoretical distribution best 

fitted the data, and after some fittings it was concluded that the Poisson (allowing for over-dispersion) 

and Gamma were the best fit to model claim frequency and claim severity, respectively. 

Both modelling approaches were followed, and it was conducted a preliminary analysis that allowed 

for some interpretation of the model’s estimations. Regarding GLM, the coefficients values allowed 

for a perception of which factor’s levels were related to a higher risk profile. For the GBM, the several 

interpretability tools presented granted the possibility of having a glimpse behind the machine learning 

decisions and thus unveiled similarities between both approaches. 

To assess if the new approach has the capability of improving the accuracy of the models, the total 

deviance was compared, having in consideration the training and testing sets, and the whole samples. 

Taking the results into consideration, the Gradient Boosting only outperforms the classical approach 

for the modelling of claim frequency, as for severity the GLM remains with the lowest deviance, 

regardless of the sample taken into account. The residuals were also plotted, and the results indicated 

that there was an overall good fitting of the models, regardless of the approach. Although, it should 

be noted that allowing for overdispersion in the frequency modelling leads to a better fit. In terms of 

processing, GLM can be more time consuming to develop, given that even though the GBM takes a 

large time to run, it can be done independently dispensing any human input besides the initial 

treatment of the data, that is common for both approaches. Other than that, both models include a 

very similar selection of significant variables, meaning that Gradient Boosting results could be used to 

aid the selection of variables to consider in the GLM, by setting a starting point that most likely includes 

the most significant variables. 

It can now be concluded that this project fulfilled its goal, as it was possible to develop the claim 

frequency and severity according to the Generalized Linear model and the Gradient Boosting model 
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approaches and draw conclusions from the findings. From now on, the insurance company has a 

steadier ground to start implementing machine learning models in their pricing practices. 
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7. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

There were encountered some constraints as this project was being developed, most of which were 

manageable.  

First, the treatment of the data that took a very long time due to its magnitude and complexity. The 

code had to be translated from another programming language, and several adaptations were made. 

Other issue stood with the size of the sample used to model claim frequency, that had over 2 million 

records, and lead to the usage of a sample to achieve the optimal hyperparameters for the Gradient 

Boosting model. A suggestion for future works could be to retrieve this sample from the beginning and 

develop the GLM based upon that same sample, so that the results could be better compared. Another 

suggestion could be the development of the frequency GBM using the full dataset, even if it took days 

to run, to confirm if the gain in performance compared to the model based on the sample justified the 

time it takes to complete. 

Lastly, there were some restraints related to the gbm R Server package, which did not support the 

possibility to use the Gamma loss function. It was overcame by using a different adaptation of the 

package. Another flaw in this package was the inability to adapt to a quasi-poisson loss function, as it 

was not supported.  

A major limitation associated with the GBM lies in the implementation of the findings in order to 

calculate the premium to charge the client. As the GLM outputs several coefficients that can be directly 

used to perform the calculations in any typically used insurance software, the GBM does not give a 

direct output. In order to obtain a premium, there would be the need to execute both the severity and 

frequency models on R, giving each client’s specific information as an input. This is a big inconvenience, 

as there would be many implementation constraints in comparison with the current methodology. 

For future works, there is the recommendation of complementing the analysis performed using 

different packages that develop Gradient Boosting, such as xgboost, h2o or lightGBM (available in R 

Studio) or even other machine learning methods, such as Neural Networks, for example. 
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APPENDIX A 

RELEVANT LITERATURE 

Table A.1 - Summary of relevant literature related to the topic in question 

Title Authors 
Variable in 

study 
Models Applied Main results/findings 

Predictive 

analytics of 

insurance claims 

using multivariate 

decision trees 

(Quan & 

Valdez, 

2018) 

Claim 

occurrence, 

using a dataset 

containing six 

coverages for 

buildings, 

vehicles and 

equipment of 

the US 

government. 

Tree-based 

models with 

multivariate 

response 

variables, 

namely CART, 

Random Forest 

and XGBoost. 

There was an 

improvement in 

prediction accuracy 

when applying the 

models based on 

multivariate trees 

when comparing to 

univariate trees. 

The Accuracy of 

XGBoost for 

Insurance Claim 

Prediction 

(Fauzan & 

Murfi, 2018) 

Claim Frequency 

of a large 

dataset with 

many missing 

values 

XGBoost, 

AdaBoost, 

Stochastic GB, 

Random Forest 

and Neural 

Networks. 

XGBoost has a better 

accuracy in terms of 

normalized Gini than 

the other models. 

Predicting Motor 

Insurance Claims 

Using Telematics 

Data—XGBoost 

versus Logistic 

Regression 

(Pesantez-

Narvaez et 

al., 2019) 

Claim 

occurrence, 

using a dataset 

containing 

telematics data. 

Logistic 

regression and 

XGBoost. 

XGBoost requires more 

attention to match the 

predictive performance 

of the logistic 

regression and is 

harder to interpretate, 

only increasing the 

predictive performance 

slightly. 

Boosting Insights 

in Insurance Tariff 

Plans with Tree-

Based Machine 

Learning Methods  

(Henckaerts 

et al., 2020)  

Frequency and 

severity, based 

on MTPL 

portfolio from a 

Belgian insurer 

from 1997.  

Machine 

learning with 

decision threes 

(simple 

regression 

trees, random 

forests and 

boosted trees). 

Boosted trees 

outperform the 

classical GLM model.  

Machine learning 

applications in 

nonlife insurance  

(Grize et al., 

2020)  

Online motor 

insurance 

(random 

selection of 10 

Commercial 

product 

containing over 

50 standard ML 

The best performing 

model was a Light 

Gradient Boosted Trees 

Regressor with Early 
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000 customer 

profiles 

collected from 

an insurance 

company 

platform). The 

response 

variable is the 

premium 

offered for a 

given customer 

profile.  

algorithms, 

such as 

Gradient 

Boosting 

models, deep-

learning 

models, 

random forests, 

etc.  

Stopping (Gamma 

Loss). Without ML, 

dynamic pricing would 

not have been possible. 

The fast development, 

monitoring and 

updating of the models 

could only be achieved 

by using ML, which 

provides high model 

prediction quality and 

speed of 

implementation.  

Tree-based 

Machine Learning 

Models with 

Applications in 

Insurance 

Frequency 

Modelling  

(Tober, 

2020) 

Claim frequency 

for an all-risk 

insurance tariff, 

based on data 

collected from a 

Swedish 

insurance 

company.  

Three tree-

based ML 

models, namely 

simple decision 

trees, random 

forests and 

Gradient 

Boosting 

machines.  

The gradient boost and 

random forest trees 

outperform the 

individual decision 

trees.  

Best Practice of 

Risk Modelling in 

Motor Insurance - 

Using GLM and 

Machine Learning 

Approach 

(Zhifeng, 

2020) 

Risk premium, 

using five main 

perils provided 

by Liberty 

Insurance. 

Classical GLM 

improved with 

ML, namely 

root in 

penalized GLM 

and XGBoost. 

The top ranked 

variables from 

penalized GLM play an 

important role. The 

XGB detected 

interactions and added 

valuable information to 

the model. 

Stochastic 

Gradient Boosting 

frequency- 

severity model of 

insurance claims 

(Su & Bai, 

2020) 

Claim frequency 

and severity, 

using a TPL 

dataset. 

Combination of 

a stochastic 

gradient boost 

algorithm and a 

profile 

likelihood 

approach: GLM, 

GAM and D-

FSBoost. 

The dependent models 

have a better 

performance, being 

superior to other state-

of-the-art models when 

it comes to predicting 

claim frequency and 

severity. 

Case Study: French 

Motor Third-Party 

Liability Claims 

(Noll et al., 

2018) 

Claim frequency 

on a French TPL 

dataset. 

GLM as a 

benchmark, 

regression 

trees, boosting 

machine and 

Boosting machine and 

neural networks 

produce very similar 

results, better than the 

GLM however the 
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neural 

networks. 

authors state that the 

GLM could have been 

better studied). 

Assessing the 

Performance of 

Random Forests 

for Modeling Claim 

Severity in 

Collision Car 

Insurance 

(Staudt & 

Wagner, 

2021) 

Claim severity of 

a collision 

dataset, from a 

Swiss insurance 

company. 

GLM and GAM 

as benchmark 

and two 

random forest 

models (one for 

claim severity 

and other for 

the log-

transformed 

claim severity). 

The use of the log-

transformation doesn’t 

lead to any 

improvements in the 

random forest model. 

Nevertheless, this 

model is the best to 

explain right-skewed 

claims. Globally, GAM 

has a better 

performance.  
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APPENDIX B  

VARIABLES IN STUDY 

Table B.1 - Summary of the initial proposed feature variables to be used to develop the frequency and 
severity models 

Variable Original Name Levels Description 

Cust_TipoProf 
Self-employed, employed, self-employed and 

employed, unknown 

Type of profession of 

the client. 

Cust_UEN RIF, ZRT  

Type of client (RIF – 

particular, ZRT – 

direct channel). 

Cust_HabAcademicas 

doesn’t know how to read or write, 4th grade, 

9th grade, 12th grade, technical course, 

bachelor, degree, master, doctorate, 

unknown  

Academic 

qualifications of the 

client. 

Cust_IndFilhos Yes, No, unknown 

Flag variable, Yes in 

case the client has 

children, No 

otherwise. 

Cust_ConcelhoT 
308 different levels, from C_CT1 to C_CT308, 

unknown 

County of living of the 

policy undertaker. 

Cust_DistritoT 
22 different levels, from C_DT1 to C_DT22, 

unknown 

District of living of the 

policy undertaker. 

Cust_ZonaCirc 
ZonaA, ZonaB, ZonaC, ZonaD, ZonaE, 

unknown 

Usual circulation area 

of the undertaker. 

Cust_EstadoCivil 
Married, Single, Widower, Divorced, 

unknown 

Marital status of the 

policy undertaker. 

Cust_IdadeT 0-17, 18 to 85 (individually), 85+, unknown 
Age of the policy 

undertaker. 

Cust_AntigClient 1 to 21 (individually), 21+, 999 

Seniority of the policy 

undertaker as a client 

in the company. 

Pol_Frac 1 x year, 2 x year, 4 x year, 12 x year 
Payment instalments 

of the policy. 

Pol_Delegacao 22 different levels, from P_D1 to P_D22 

Distribution channel 

associated with the 

agent responsible for 

the policy. 
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Pol_TipoAgente 17 different levels, from P_TA1 to P_TA17 

Distinguishes the 

agents between 

different levels of 

achievements and 

volume. 

Pol_DebitoDireto Non-DB, DB 

If the policy payments 

come from direct-

charge or not. 

Pol_AntigApolice 1 to 21 (individually), 21+ 
Time on book of the 

policy. 

Obj_Lob 148 different levels, from O_L1 to O_L148 Line of business. 

Obj_ConcelhoC 309 different levels, from O_CC1 to 0_CC309. 
County of living of the 

usual driver. 

Obj_ProfissaoC 
364 distinct levels from O_PF1 to O_PF364, 

unknown 

Profession of the 

usual driver. 

Obj_Marca 
708 different levels from O_M1 to O_M708, 

unknown 
Brand of the vehicle. 

Obj_Lotacao 2, 3, 4, 5, 6, 7, 8, 9, 11+, 999 
Capacity of the 

vehicle. 

Obj_Cilindrada 

1-50, 50-125, 125-250, 250-400, 400-500, 

500-600, 600-700, 700-800, 800-900, 900-

1000, 1000-1100, 1100-1200, 1200-1300, 

1300-1400, 1400-1500, 1500-1600, 1600-

1700, 1700-1800, 1800-1900, 1900-2000, 

2000-2100, 2100-2200, 2200-2300, 2300-

2400, 2400-2500, 2500-3000, 3000-3500, 

3500-4000, 4000-4500, 4500-5000, 5000+, 

999 

Engine capacity of the 

vehicle. 

Obj_HP 0-50, 50-100, 100-150, 150-200, 200+ 

Vehicle power 

measured in 

horsepower. 

Obj_KW 0-50, 50-100, 100-150, 150-200, 200+ 

Vehicle power 

measured in 

killowatts. 

Obj_SistemaSegTravagem ABS, Disco, BWW, unknown 
Brake safety system 

of the vehicle. 

Obj_PesoBruto 

<50, 50-500, 500-600, 600-700, 700-800, 

800-900, 900-1000, 1100-1200, 1200-1300, 

1300-1400, 1400-1500, 1500-1600, 1600-

1700, 1700-1800, 1800-1900, 1900-2000, 

200-2100, 2100-2200, 2200-2300, 2300-

Gross weight of the 

vehicle. 
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2400, 2400-2500, 2500-2600, 2600-2700, 

2700-2800, 2800-2900, 2900-3000, 300-

3100, 3100-3200, 3200-3300, 3300-3400, 

3400-3500, 3500+, 999 

Obj_DissFurto 
18 different levels, from O_DF1 to O_DF18, 

unknown, withoutDF 

Theft deterrent 

present in the vehicle. 

Obj_ValorNovo 

<7000, 7000-10000, 10000-15000, 15000-

20000, 20000-25000, 25000-30000, 30000-

35000, 35000-50000, 50000-100000, 

100000-500000, 500000+ 

Initial value of the 

vehicle, as if it was 

new. 

Obj_Combustivel 
8 distinct levels, from O_F1 to O_F2, without 

fuel, other, unknown 
Fuel of the vehicle 

Obj_DistritoC 
22 different levels, from O_DC1 to O_DC22, 

unknown 

District of living of the 

usual driver. 

Obj_EscalaoBM 
-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14 
Bonus Malus value. 

Obj_AnosCarta 1 to 21 (individually), 21+, 999 
Seniority of driver’s 

license. 

Obj_IdadeVeic 1 to 30 (individually), 30+, 999 Age of the vehicle. 

Obj_IdadeC 0-17, 18 to 85 (individually), 85+, unknown 
Age of the usual 

driver. 

Cov_CapCob CapMin, CapMax 

Flag variable, CapMax 

if the policy has the 

optional 59M TPL 

capital, or CapMin 

ontherwise. 

NBexe RN, NB, FNB 

Flag variable, RN in 

case of renovation, 

NB in case of New 

Business and FNB in 

case of fake new 

business. 

OwnDamage Yes, No 

Flag variable, Yes in 

case the policy has 

the own damage 

coverage, No 

otherwise. 
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Table B.2 - Final feature variables used to develop the frequency and severity models 

Variable Original Name Variable Simplified Name 

Cust_UEN UEN 

Cust_AntigClient Client Time on Book 

Pol_Frac Payment Instalments 

Pol_Delegacao Agent Delegation 

Pol_DebitoDireto Direct Debit Payment 

Pol_AntigApolice Policy Time on Book 

Obj_Marca Vehicle Brand 

Obj_Lotacao Vehicle Seats 

Obj_Cilindrada Engine Capacity 

Obj_HP Horse Power 

Obj_PesoBruto Vehicle Weight 

Obj_ValorNovo Vehicle Value as New 

Obj_Combustivel Fuel 

Obj_DistritoC District 

Obj_EscalaoBM Bonus Malus 

Obj_AnosCarta Years of Driving 

Obj_IdadeVeic Vehicle Age 

Obj_IdadeC Driver Age 

Cov_CapCob Cover Capital 

NBexe New Business  

OwnDamage Own Damage Cover 
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APPENDIX C 

CORRELATION MATRIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Factor 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36.

1. Cust_TipoProf 1

2. Cust_UEN 0,02 1

3. Cust_HabAcademica 0,04 0,13 1

4. Cust_IndFilhos 0,06 0,31 0,22 1

5. Cust_ConcelhoT 0,07 0,22 0,19 0,2 1

6. Cust_ZonaCirc 0,02 0,09 0,09 0,07 1 1

7. Cust_EstadoCivil 0,01 0,26 0,09 0,23 0,07 0,02 1

8. Cust_IdadeT 0,01 0,04 0,11 0,21 0,03 0,02 0,32 1

9. Cust_AntigCliente 0,03 0,06 0,1 0,2 0,08 0,05 0,06 0,09 1

10. Pol_Frac 0,02 0,02 0,07 0,07 0,18 0,07 0,07 0,14 0,14 1

11. Pol_Delegacao 0,03 0,97 0,13 0,25 0,78 0,72 0,13 0,02 0,05 0,15 1

12. Cust_Distrito 0,03 0,16 0,13 0,11 1 0,94 0,05 0,02 0,05 0,14 0,72 1

13. Pol_TipoAgente 0,02 0,88 0,06 0,24 0,32 0,12 0,11 0,02 0,05 0,07 0,31 0,15 1

14. Pol_DebitoDireto 0,01 -0,02 0,11 0,08 0,23 0,08 0,08 0,18 0,17 0,77 0,19 0,17 0,11 1

15. Pol_AntigApolice 0,02 0,11 0,05 0,16 0,06 0,04 0,05 0,08 0,38 0,16 0,05 0,04 0,05 0,18 1

16. Obj_Lob 0,03 0,99 0,11 0,29 0,06 0,11 0,26 0,07 0,18 0,17 0,28 0,1 0,28 0,21 0,39 1

17. Obj_ConcelhoC 0,07 0,24 0,19 0,2 0,92 0,87 0,07 0,03 0,08 0,19 0,79 0,95 0,32 0,23 0,06 0,06 1

18. Obj_Profissao 0,03 0,3 0,26 0,16 0,07 0,15 0,27 0,1 0,09 0,13 0,19 0,14 0,12 0,15 0,1 0,15 0,07 1

19. Obj_Marca 0,01 0,04 0,04 0,04 0,06 0,07 0,04 0,03 0,02 0,07 0,05 0,05 0,02 0,08 0,02 0,04 0,06 0,04 1

20. Obj_Lotacao 0 0,04 0,03 0,02 0,07 0,05 0,03 0,03 0,02 0,04 0,05 0,05 0,02 0,06 0,02 0,06 0,07 0,05 0,18 1

21. Obj_Cilindrada 0,01 0,04 0,04 0,04 0,05 0,06 0,04 0,03 0,02 0,07 0,04 0,04 0,02 0,1 0,02 0,04 0,05 0,05 0,28 0,21 1

22. Obj_HP 0,01 0,02 0,07 0,06 0,08 0,04 0,02 0,06 0,07 0,05 0,05 0,05 0,03 0,11 0,08 0,11 0,08 0,1 0,23 0,1 0,32 1

23. Obj_KW 0,02 0,07 0,09 0,12 0,11 0,06 0,04 0,08 0,16 0,08 0,08 0,07 0,05 0,14 0,19 0,23 0,11 0,12 0,22 0,08 0,31 0,61 1

24. Obj_SistemaSegTravagem 0,01 0,01 0,03 0,01 0,06 0,01 0 0,01 0,01 0,01 0,03 0,03 0,02 0,02 0,02 0,03 0,06 0,03 0,02 0,01 0,02 0,05 0,05 1

25. Obj_PesoBruto 0,01 0,05 0,05 0,1 0,06 0,06 0,05 0,03 0,07 0,11 0,05 0,05 0,03 0,14 0,09 0,09 0,06 0,05 0,12 0,18 0,17 0,29 0,34 0,03 1

26. Obj_DissFurto 0,01 0,05 0,04 0,03 0,06 0,04 0,02 0,01 0,01 0,03 0,05 0,04 0,02 0,06 0,02 0,07 0,07 0,05 0,03 0,03 0,04 0,17 0,2 0,11 0,04 1

27. Obj_ValorNovo 0,01 0,07 0,05 0,08 0,07 0,04 0,02 0,02 0,04 0,04 0,05 0,04 0,03 0,06 0,05 0,08 0,07 0,06 0,11 0,05 0,17 0,36 0,32 0,05 0,18 0,11 1

28. Obj_Combustivel 0,01 0,06 0,02 0,04 0,05 0,02 0,03 0,05 0,07 0,07 0,04 0,03 0,03 0,08 0,18 0,19 0,05 0,07 0,1 0,21 0,28 0,13 0,09 0,02 0,13 0,03 0,07 1

29. Obj_DistritoC 0,03 0,17 0,13 0,11 0,95 0,81 0,05 0,02 0,05 0,14 0,72 0,95 0,15 0,17 0,04 0,1 1 0,14 0,05 0,05 0,04 0,05 0,07 0,03 0,05 0,04 0,04 0,03 1

30. Obj_EscalaoBM 0,01 0,02 0,02 0,06 0,03 0,02 0,08 0,11 0,05 0,08 0,02 0,02 0,01 0,1 0,04 0,11 0,03 0,04 0,01 0,01 0,01 0,03 0,07 0,01 0,03 0,01 0,02 0,01 0,02 1

31. Obj_AnosCarta 0,01 0,01 0,07 0,17 0,03 0,03 0,21 0,29 0,1 0,14 0,03 0,03 0,02 0,17 0,08 0,07 0,03 0,08 0,03 0,02 0,02 0,04 0,09 0,01 0,03 0,01 0,02 0,03 0,03 0,24 1

32. Obj_IdadeVeic 0,01 0,04 0,07 0,04 0,04 0,04 0,03 0,03 0,05 0,07 0,03 0,03 0,02 0,13 0,08 0,05 0,04 0,05 0,07 0,06 0,1 0,18 0,17 0,04 0,07 0,07 0,1 0,08 0,03 0,02 0,03 1

33. Obj_IdadeC 0,01 0,02 0,1 0,19 0,02 0,02 0,24 0,88 0,09 0,14 0,02 0,02 0,02 0,18 0,09 0,07 0,02 0,09 0,03 0,03 0,03 0,06 0,09 0,01 0,03 0,01 0,02 0,06 0,02 0,14 0,31 0,03 1

34. Cov_CapCob 0,01 -0,03 0,1 0,03 0,14 0,06 0,03 0,05 0,07 0,03 0,14 0,09 0,09 0,03 0,1 0,21 0,14 0,17 0,09 0,05 0,09 0,17 0,15 0,05 0,08 0,18 0,17 0,07 0,09 0,03 0,06 0,19 0,04 1

35. NBexe 0,03 0,04 0,07 0,12 0,09 0,04 0,04 0,14 0,54 0,12 0,07 0,07 0,08 0,1 0,71 0,38 0,09 0,15 0,04 0,03 0,04 0,08 0,21 0,02 0,18 0,03 0,09 0,05 0,07 0,11 0,17 0,13 0,15 0,03 1

36. OwnDamage 0,01 0,03 0,16 0,03 0,17 0,08 0,04 0,08 0,03 0,13 0,13 0,12 0,07 -0,15 0,05 0,14 0,17 0,2 0,18 0,13 0,24 0,45 0,44 0,12 0,26 0,47 0,44 0,12 0,12 0,08 0,04 0,57 0,07 -0,3 0,04 1

Figure C.1 – Correlation matrix between the 36 initial variables 
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APPENDIX D 

GENERALIZED LINEAR MODEL INTERACTIONS 

 

Figure D.1 - Predicted values considering Policy Time on Book (Pol_AntigApolice) and District 
(Obj_DistritoC_Cod), for the frequency model. Scale is omitted to proceed accordingly to the insurance 
company data sensitivity policy 

Figure D.2 - Rescaled predicted values considering Policy Time on Book (Pol_AntigApolice) and District 
(Obj_DistritoC_Cos), for the frequency model 
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APPENDIX E 

OPTIMAL PARAMETERS FOR GRADIENT BOOSTING 

Table E.1 - Top 10 parameters per fold ordered by smallest out-of-sample Poisson deviance, using the 
50 000 observations sample for the frequency model 

Fold Nr. of Trees Shrinkage Interaction Depth Bag Fraction OOS Poisson Deviance 

1 37 0.1 2 0.95 0.2802844 

1 37 0.1 2 0.95 0.2802844 

1 37 0.1 2 0.95 0.2802844 

1 37 0.1 2 0.95 0.2802844 

1 37 0.1 2 0.95 0.2802844 

1 37 0.1 2 0.95 0.2802844 

1 71 0.05 2 0.9 0.2803413 

1 71 0.05 2 0.9 0.2803413 

1 71 0.05 2 0.9 0.2803413 

1 71 0.05 2 0.9 0.2803413 

2 64 0.1 2 0.95 0.2802087 

2 64 0.1 2 0.95 0.2802087 

2 64 0.1 2 0.95 0.2802087 

2 64 0.1 2 0.95 0.2802087 

2 64 0.1 2 0.95 0.2802087 

2 64 0.1 2 0.95 0.2802087 

2 96 0.1 1 0.95 0.2802124 

2 96 0.1 1 0.95 0.2802124 

2 96 0.1 1 0.95 0.2802124 

2 96 0.1 1 0.95 0.2802124 

3 642 0.01 2 0.8 0.2802077 

3 642 0.01 2 0.8 0.2802077 

3 78 0.1 1 0.8 0.2802383 

3 78 0.1 1 0.8 0.2802383 

3 78 0.1 1 0.8 0.2802383 

3 78 0.1 1 0.8 0.2802383 

3 78 0.1 1 0.8 0.2802383 

3 78 0.1 1 0.8 0.2802383 

3 119 0.05 2 0.9 0.2802488 

3 119 0.05 2 0.9 0.2802488 

4 116 0.1 1 0.95 0.2793699 

4 116 0.1 1 0.95 0.2793699 

4 116 0.1 1 0.95 0.2793699 

4 116 0.1 1 0.95 0.2793699 

4 116 0.1 1 0.95 0.2793699 

4 90 0.1 1 0.95 0.2794119 

4 239 0.05 1 0.95 0.2794256 
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4 239 0.05 1 0.95 0.2794256 

4 239 0.05 1 0.95 0.2794256 

4 239 0.05 1 0.95 0.2794256 

5 239 0.05 2 0.95 0.2791458 

5 239 0.05 2 0.95 0.2791458 

5 239 0.05 2 0.95 0.2791458 

5 239 0.05 2 0.95 0.2791458 

5 239 0.05 2 0.95 0.2791458 

5 892 0.01 2 0.95 0.2791905 

5 857 0.01 2 0.9 0.2792089 

5 757 0.01 3 0.95 0.2792277 

5 160 0.05 2 0.9 0.2792307 

5 160 0.05 2 0.9 0.2792307 

6 47 0.1 4 0.95 0.2796919 

6 47 0.1 4 0.95 0.2796919 

6 47 0.1 4 0.95 0.2796919 

6 47 0.1 4 0.95 0.2796919 

6 47 0.1 4 0.95 0.2796919 

6 47 0.1 4 0.95 0.2796919 

6 36 0.1 3 0.8 0.2797060 

6 36 0.1 3 0.8 0.2797060 

6 36 0.1 3 0.8 0.2797060 

6 36 0.1 3 0.8 0.2797060 

 

Table E.2 - Top 10 parameters per fold ordered by smallest out-of-sample Gamma deviance, using the 
training dataset for the severity model 

Fold Nr. of Trees Shrinkage Interaction Depth Bag Fraction OOS Gamma Deviance 

1 133 0.05 1 0.95 15.7664842 

1 133 0.05 1 0.95 15.7664842 

1 133 0.05 1 0.95 15.7664842 

1 133 0.05 1 0.95 15.7664842 

1 133 0.05 1 0.95 15.7664842 

1 133 0.05 1 0.95 15.7664842 

1 493 0.01 1 0.9 15.7665069 

1 64 0.1 1 0.9 15.7665218 

1 64 0.1 1 0.9 15.7665218 

1 64 0.1 1 0.9 15.7665218 

2 125 0.05 1 0.95 15.7656292 

2 125 0.05 1 0.95 15.7656292 

2 125 0.05 1 0.95 15.7656292 

2 125 0.05 1 0.95 15.7656292 

2 125 0.05 1 0.95 15.7656292 

2 125 0.05 1 0.95 15.7656292 
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2 58 0.1 1 0.9 15.7656960 

2 58 0.1 1 0.9 15.7656960 

2 58 0.1 1 0.9 15.7656960 

2 58 0.1 1 0.9 15.7656960 

3 56 0.05 2 0.7 15.7665879 

3 56 0.05 2 0.7 15.7665879 

3 56 0.05 2 0.7 15.7665879 

3 56 0.05 2 0.7 15.7665879 

3 56 0.05 2 0.7 15.7665879 

3 56 0.05 2 0.7 15.7665879 

3 56 0.05 2 0.7 15.7665879 

3 59 0.05 2 0.8 15.7667829 

3 59 0.05 2 0.8 15.7667829 

3 59 0.05 2 0.8 15.7667829 

4 33 0.1 1 0.8 15.7657817 

4 33 0.1 1 0.8 15.7657817 

4 33 0.1 1 0.8 15.7657817 

4 33 0.1 1 0.8 15.7657817 

4 33 0.1 1 0.8 15.7657817 

4 33 0.1 1 0.8 15.7657817 

4 33 0.1 1 0.8 15.7657817 

4 180 0.05 1 0.95 15.7658257 

4 180 0.05 1 0.95 15.7658257 

4 180 0.05 1 0.95 15.7658257 

5 59 0.05 2 0.7 15.7670927 

5 59 0.05 2 0.7 15.7670927 

5 59 0.05 2 0.7 15.7670927 

5 59 0.05 2 0.7 15.7670927 

5 59 0.05 2 0.7 15.7670927 

5 59 0.05 2 0.7 15.7670927 

5 59 0.05 2 0.7 15.7670927 

5 33 0.05 5 0.8 15.7671482 

5 33 0.05 5 0.8 15.7671482 

5 33 0.05 5 0.8 15.7671482 

6 75 0.1 1 0.95 15.7669788 

6 75 0.1 1 0.95 15.7669788 

6 75 0.1 1 0.95 15.7669788 

6 75 0.1 1 0.95 15.7669788 

6 75 0.1 1 0.95 15.7669788 

6 75 0.1 1 0.95 15.7669788 

6 75 0.1 1 0.95 15.7669788 

6 149 0.05 1 0.95 15.7670874 

6 149 0.05 1 0.95 15.7670874 

6 149 0.05 1 0.95 15.7670874 
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