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ABSTRACT 

Electrical energy is present in our civilization and has positive and negative impacts in our 

environment, renewable and green energy like solar and wind energy works with significant less 

negative environmental impacts, reducing disasters and fuel dependency. Although, the transition to 

renewable and green energy demands advanced technologies to manage energy distribution in 

society, since the clean sources are stochastic. In this study the research will be done to improve 

electricity consumption forecasting in a household, a tool that can help the energy distribution 

management by microgrids to determine the amount of energy used by consumers at a particular 

moment, resulting in reducing energy waste and allowing P2P energy trading. The goal of this study is 

to do short-term forecasting and test the ability of Power Cepstrum to select autoregressive features, 

the dataset used is of minute-by-minute electricity consumption in kilowatts of a single household in 

the town of Sceaux,, France, between December 2006 and November 2010, the model tested was 

the Convolutional Long Short-Term Memory neural network with selected auto-regressive feature 

model (CLSAF), a Convolutional Long Short-Term Memory model working with Persistence model 

with dynamic feature selection, the ability of Power Cepstrum to select the autoregressive feature is 

tested and compared to CLSAF using Autocorrelation Function to select the autoregressive feature, 

the results are compared either to state of art models such as  ConvLSTM and Persistence model. The 

tests were done comparing different theta threshold, input lags, resolutions, and input length. The 

result show that Power Cepstrum can be used as a replacement for Autocorrelation Function, CLSAF 

have comparable accuracy to ConvLSTM model and better runtime performance when using y[t-1] as 

input lag, for 30 minutes resolution is possible to observe great difference between runtime 

prediction without losing accuracy performance, Power Cepstrum showed better runtime prediction 

when compared to autocorrelation function, also, higher input length improved models 

performance.  

 

 

KEYWORDS 

Short-term energy load Forecasting, Dynamic selection, Power Cepstrum,  Machine Learning, 

ConvLSTM 
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1. INTRODUCTION 

Energy is the ability to do work, and modern civilization is only possible because people have learned 

to convert energy from one form to another. Electrical energy is a secondary energy source produced 

by converting primary energy sources such as natural gas, hydraulic, wind energy, coal, nuclear energy, 

and solar energy into electrical energy. To date, the production process in large, centralized power 

plants fueled by non-renewable fossil fuels causes problems such as environmental degradation, 

energy losses due to the long physical distances between generation and consumption sites, and rising 

prices in energy bills also due to a centralized generation system.  

Electricity distribution provides the needs and comfort of human behavior in the use of space and 

water heating, cooling, cooking, and lighting. According to (Eurostat, 2018), the household sector 

accounts for 27.4% of final energy consumption in Europe, and of the total energy consumed by the 

household sector, 24.8% comes from electricity, from the total electricity consumption, 20.3% comes 

from renewable energy and waste. Several studies show the urgency of the global energy transition, 

according to (Steg, Perlaviciute, and van der Werff 2015), the future must aim at how to fit the 

distribution of renewable energy into the social system and adapt it to provide energy in a smart way 

for human behavior efficiently.  

Microgrids infrastructures and HEMS (House Energy Management Systems) are systems used to 

efficiently improve energy distribution between households and are a turning point in the 

implementation of renewable energy in residential areas, as shown by (Zhou et al. 2016).The results 

show increased energy savings, a change in energy consumption behavior, and can bring savings of up 

to 30%, as shown by (Tuomela et al. 2021).To achieve these goals, the system depends on several tools 

to efficiently manage the energy load. One of the tools needed is household power load forecasting, 

which aims to identify the behavioral pattern of the occupants in a household.       

According to (Proedrou 2021) and (Kuster, Rezgui, and Mourshed 2017),  the energy load forecasting 

studies have used different measures for energy consumption resolution of a household, energy 

consumption of different household electrical devices, the date range of the records, the number of 

houses analyzed, the exogenous features such as weather, income, and building, the statistical model 

used for the predictions such as ARIMA, linear regression, SVM, or ANNs, the detailed information are 

presented to understand the needs to solve the actual problem.  

The study presented by (Li et al. 2021) shows great results using ANNs with exogenous features. The 

ConvLSTM model used by the author was previously implemented by (Shi et al. 2015) using 

spatiotemporal features and is adapted from the LSTM model, which can retain past information to 

identify pattern behavior. The algorithm presented by (Li et al. 2021) uses ConvLSTM neural network 

with selected auto-regressive feature (CLSAF), a ConvLSTM and dynamic feature selection with 

autocorrelation function to identify the autoregressive feature, the autocorrelation is used to identify 

the degree of similarity between current time series lag with past time series lags, this method 

improved the scores results and runtime when performing one-step ahead forecast with one hour 

resolution.  

A new method for identifying autoregressive features is presented by (Lauwers, Vermeersch, and de 

Moor 2022), according to the author's results, the Power Cepstrum can identify autocorrelated 

features more accurately and quickly than Autocorrelation Function used in CLSAF. In this study will 
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be tested the ability of Power Cepstrum to select the autoregressive feature for the CLSAF model and 

the effects for different input lengths, different input lag selections, and different time series 

resolutions when compared to CLSAF using Autocorrelation Function and state of art models such as 

ConvLSTM, and Persistence model. 
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2. LITERATURE REVIEW 

2.1.  RESIDENTIAL LOAD PROFILE MODELS 

In the interest of the study, before applying models to predict the energy load in a household, it is 

necessary to understand what the load profile of residential buildings is. This information can be found 

in the study published by (Proedrou 2021), in which the author defines each parameter that makes up 

the residential consumption to obtain satisfactory results in the prediction of energy load. Residential 

is a private residence with no commercial activity, occupied in whole or in part by one or more person 

during the entire data period. Load is the total electricity consumed in the home by appliances during 

a given time. Profile is the behavioral pattern of the household occupant represented by the electricity 

load during that period. These definitions are important to avoid conducting a study in a home that is 

not representative of a common residence, as this is a known difficulty regarding volatility behavior. 

According to (Proedrou 2021), research in this area has increased since 2004, the modeling approach 

to solve the problem can lead to several paths. The author identifies the most important features such 

as sampling rate, application, and statistical techniques and classifies the approaches into categories 

as demonstrated in Table 2.1. 

Table 2.1 Model categorization summary of the reviewed models based on their key features. 

Categories according to the model’s key features Subcategories 

Sampling rate Low resolution (15 minutes to hours) 

Middle Resolution (1 minute to 15 minutes) 

High resolution (Hz to 1 minute) 

Intended application Demand side management 

Planning, control, and design of energy systems 
distributions grids and local energy efficiency 
strategies 

Residential load profiles 

 

According to the author, the sampling rate indicates how detailed the profile of behavioral exposure 

by household residents is represented in the dataset, divided into low resolution, middle resolution, 

and high-resolution categories. The intended application describes the use of the model to measure 

demand-side management, which aims to change the energy demand behavior of a household, leading 

to energy savings, planning, control of energy systems and distribution networks to use different 

energy suppliers and predict the electricity consumption of a household or group of houses to be used 
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in projects such as person-to-person energy trading. As an example, we can see a load profile for high-

resolution, one-minute energy load information that describes occupant behavior, as we see in Figure 

2.1. 

 

Figure 2.1 High-resolution electricity load profile presented by (Proedrou,2021). 

2.2. FORECASTING MODEL APPROACHES 

The forecast model is responsible for the outcome and is a fundamental component of electricity load 

forecasting. As stated in the study of (Kuster, Rezgui, and Mourshed 2017), the author examined 113 

different case studies with sixteen different models to determine the best methods for each electricity 

load forecasting problem.  

First, data preprocessing is represented in 66% of the papers with four different types of preprocessing 

such as smoothing, filling missing values, measuring variable dependence and significance, data 

decomposition and classification, checking integration order and stationarity, using statistical and 

mathematical tools such as principal component, Pearson correlation, analysis of variance, kernel 

density estimation, and canonical correspondence analysis.  

The prediction time frame is the time that is predicted. The model can predict the next week in 

different resolutions, a week in an hour or minute resolution, for the time frame there are 4 categories, 

very short term for less than an hour, short term for more than an hour, mid- term for a month to a 

season and long term for a year or more, 61.5% of the papers dealt with long term predictions and 

43.6% with short term predictions, i.e. predictions for a year, a day and an hour ahead. This reflects 

the need for short-term forecasts for residential energy loads, or strategies for long-term forecasts in 

industry.  

External characteristics are commonly used in studies, according to the author, and can improve 

results when describing human behavior. These include characteristics such as income, occupancy, 

electricity price, temperature, building size, precipitation, housing type, GDP, population, and others. 

The author has grouped these characteristics into categories such as socioeconomic, weather 

conditions, building type, and activity.  
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In the author's report, the most used models are regression models, artificial neural networks, time 

series ARIMA, SVM, and bottom-up models. For the evaluation, the author recommends the use of 

different comparison methods, such as the mean squared error, the mean absolute percentage error, 

or the mean percentage error. The methodology used by the author, the statistical use of each 

approach is provided in Appendix 1, Appendix 2, Appendix 3, Appendix 4 and Appendix 5. The summary 

in Table 2.2. 

 

Table 2.2 Suggested approaches to energy load forecasting problems summary. 

Approach Action 

Pre-processing. 
 
Mentioned by the author:  
Pre-processing in 66% of 113 different case 
studies. 

Smoothing and filling missing values 

Measurement of variables dependency and 
significance 

Data decomposition and classification 

Check the order of integration and stationarity 

Pearson correlation, analysis of variance, kernel 
density estimation, and canonical correspondence 
analysis 

Forecasting time frame. 
 
Mentioned by the author:  
Long-term and short-term prediction 
represents 61,5% and 43,6% respectively the 
actual needs for electrical loads forecasting in 
buildings. 

Very short-term (Until one hour ahead) 

Short-term (One hour to one month ahead)  

Mid long-term (One month to a season ahead) 

Long-term (One year or more ahead) 

Forecasting input variables Socio-Economic (GDP, Income, Population) - 41,0% 
of the papers and mostly used in long-term 
prediction 

Weather (Temperature, Pressure, Rainfall) - 38,5% 
of the papers focus on short-term prediction. 

Building Type – 48,7% of the papers. 

Models Regression - 43,6% of the papers and used mostly 
for long-term 

Artificial neural networks - 38,5% of the papers and 
used in short-term and mid-term prediction  
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ARIMA - 30,8% of the papers in very short and 
short-term prediction. 

SVM - 15,4% of the papers in very short and short-
term prediction. 

2.3. MODELS 

2.3.1. PERSISTENCE MODEL 

The persistence model is a simple method of forecast with good accuracy for small look-ahead times 

according to (Dutta et al. 2017), consist in predict the next step ahead to be the same as the current 

time step, for example, for time t with energy load y of 4 kWh, the energy load forecasting ŷ for the 

next step ahead t+1 will be 4 kWh as represented in Equation 1. 

ŷ[𝑡 + 1] = 𝑦[𝑡] 

Equation 1 Persistence Model. 

 

2.3.2. ARTIFICIAL NEURAL NETWORK 

The model ANN is an intelligent system inspired by humans brains, more specifically by the biological 

neural network, neurons, as presented by (Jain, Mao, and Mohiuddin 1996). Research on this model 

began in the 1940s with McCulloch and Pitts, was further developed in the 1960s by Rosenblatt with 

the convergence theorem of the perceptron, and the major advance occurred in 1982 with the 

energy approach of Hopfield with a multilayer perceptron.  

A major feature is the wide range of problems in different disciplines that the model can solve: 

Pattern classification, clustering, function approximation, prediction, optimization, content-

addressable memory, and control. The architecture of ANNs depends on neuron connection patterns 

and weights and is divided into two categories: Feed-forward networks and feedback recurrent 

networks. The main difference between the two categories lies in the learning processes. The feed-

forward algorithm is memoryless, and the sequence of inputs does not affect the output; unlike 

feedback algorithms, where the connections between nodes form a temporal sequence that allows 

for temporally dynamic behavior. 

2.3.3. LONG SHORT-TERM MEMORY (LSTM) 

As mentioned earlier, recurrent neural networks showed improvements in solving problems, as in 

(Mikolov et al. 2010), where the author uses the model to tackle a speech recognition problem, 

although basic RNNs are not able to store long-term dependencies where the long signals are 

occasionally lost, as mentioned by (Hochreiter 1998).In addition to this work, long short-term 

memory (LSTM) algorithm was presented to the world by (Hochreiter and Schmidhuber 1997) with 

better memory capacity for sequential data. This was done by adding gates to the internal cell 

architecture, with two gate units helping to open and close access to errors in each memory cell. 

Over the years, researchers began to develop and improve the LSTM cell (Yu et al. 2019), and in 

2015, a study by (Shi et al. 2015) presented a novel model ConvLSTM to solve a spatiotemporal 
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sequence problem, which opened the possibility of storing more than one-dimensional information 

in an LSTM cell with good results. 

2.3.4. CONVOLUTIONAL LONG SHORT-TERM MEMORY (CONVLSTM) 

The ConvLSTM architecture works with the convolution operator used in the state-to-state and 

input-to-state transitions before entering the LSTM cell, as we can see in (Shi et al. 2015), the 

operator in Figure 2.2, the architecture in Figure 2.3 and the calculation in Equation 2  of a ConLSTM 

model as follows: 

 

Figure 2.2 Convolution operator in the ConvLSTM model. 

Source: (Shi et al. 2015 

 

Figure 2.3 Architecture of a ConvLSTM model. 

Source: (Fang et al. 2021) 

 

𝑔𝑡  =  𝑡𝑎𝑛ℎ(𝑊
𝑔

∗ ℎ𝑡−1 + 𝑈
𝑔

∗ 𝑥𝑡 + 𝑏𝑔)  

𝐹𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒: 𝑓𝑡  =  𝜎(𝑈
𝑓

∗ 𝑥𝑡 + 𝑊
𝑓

∗ ℎ𝑡−1 + 𝑏𝑓) 

𝐼𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒: 𝑖𝑡  = 𝜎( 𝑈𝑖 ∗ 𝑥𝑡 + 𝑊𝑖 ∗ ℎ𝑡−1 + 𝑏𝑖) 

𝐿𝑜𝑛𝑔 − 𝑡𝑒𝑟𝑚 𝑠𝑡𝑎𝑡𝑒: 𝑐𝑡  = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑔𝑡 ⊙ 𝑖𝑡 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒: 𝑜𝑡  = 𝜎( 𝑈𝑜 ∗ 𝑥𝑡 + 𝑊𝑜 ∗ ℎ𝑡−1 + 𝑏𝑜) 

𝑆ℎ𝑜𝑟𝑡 − 𝑡𝑒𝑟𝑚 𝑠𝑡𝑎𝑡𝑒: ℎ𝑡  = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) 
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𝑂𝑢𝑡𝑝𝑢𝑡: ŷ𝑡  = 𝑉 ∗ ℎ𝑡 + 𝑐 

Equation 2 ConvLSTM calculation. 

Source: (Fang et al. 2021) 

  

where W and U are parameters for the information from the previous hidden state and current 

hidden state, b is the bias term, and V is the parameter of output. The Xt is the input vector for the 

time series value in LSTM; however, the Xt will take the convolutional layer as input in the 

ConvLSTM2D model.  

2.4. CONVLSTM IN ENERGY LOAD FORECASTING 

The use of ConvLSTM showed good performance in the spatiotemporal domain and as we can see in 

the study (Li et al. 2021), the architecture presented good results in the energy load for one step 

ahead forecasting problems and one hour resolution. Compared to the benchmark models ARIMA 

and Persistence, the model improved the result by 9.6% and 5.6%, respectively.  

The author calculated another model for the benchmark, the CLSAF with the best score of the 

models according to the author, compared to ConvLSTM an improvement of 8%, the CLSAF works 

with the combination of the dynamic feature selection by using the autocorrelation function with the 

ConvLSTM, the reason for implementing this process according to the author is to avoid overfitting 

and cover gaps of human behavior occupancy, it is possible to better understand the architecture 

with the flowchart from Figure 2.4: 

 



18 
 

 

Figure 2.4 The CLSAF model consists of a standard ConvLSTM model with two additions: the 
autocorrelation-based algorithm, which dynamically selects the most-suited prior load, and the 

“default” state which ensures robust forecast during periods of overfitting. 

 Source: Adapted from (Li et al. 2021) 

The algorithm is divided into start, warm-up (1), theta selection (2), main state (3), and default state 

(4). The dataset includes hourly energy load information and additional features such as 

temperature, absolute humidity, wind speed, binary weekday/weekend, and sin(local time[t]) that 

correlate with human behavior.  

2.5. THETA SELECTION 

The selection of the theta is the key point for this model. The author uses the autocorrelation 

function, which is a valuable tool to identify the patterns behavior of energy loads between current 

and past loads, and is defined in Equation 3: 
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𝑟𝑘 =  
∑𝑛

𝑡=𝑘+1 (𝑋𝑡 − 𝑋)(𝑋𝑡−𝑘 − 𝑋)

∑𝑛
𝑡=1 (𝑋𝑡 − 𝑋)2

 

Equation 3 Autocorrelation Function. 

Source: (Li et al. 2021)  

 

where X is the electricity load, t is the current time step position in the time series, ▁X is the mean 

value and k is the past time step position in the time series.  

Based on the study of (Sood and Koprinska 2010), the author compares the amplitude of the 

autocorrelated lag and the theta threshold. If the highest amplitude is higher than the theta 

threshold, the ConvLSTM model uses the selected lag to predict the next step ahead, otherwise the 

persistence model is used. For example, in Figure 2.5, the values from applying the autocorrelation 

function for 24 previous lags to determine the highest autocorrelation amplitude are compared with 

the theta threshold that are shown in dashed red.  

In example (a), the second lag after the first, that is autocorrelated, is higher than the theta 

threshold, so the ConvLSTM model would be used to forecast the next time step ahead for this time 

step, unlike in example (b) where the highest autocorrelation amplitude is lower than the theta 

threshold and the persistence model would be used forecasting the next time step ahead for this 

time step. 

 

Figure 2.5 Autocorrelation Function applied to two different time steps as example, using 24 hours as 
previous steps. 

Source: (Li et al. 2021) 

 

2.6. EVALUATION OF MODEL ACCURACY 

According to (Hyndman 2006), there are four types of forecast scores. The mean absolute error, 

known as MAE, is the easiest to calculate and understand for a single time series, the only problem is 

that you cannot compare it to other time series. The mean absolute percent error, MAPE, does not 



20 
 

need to be scaled and fixes the problem of MAE, it is possible to compare results in multiple time 

series, but for values equal to zero in the time series, the results tend to be infinite. Relative error 

metrics are independent, but when divided by zero, we have the same problem as MAPE.  

The evaluation metric used by the author (Li et al. 2021) is the normalized root mean square error, 

arguing that it is better to calculate errors at low values, presented in Equation 4. 

𝐶𝑉 − 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(%)  =  
√ 1

𝑁 − 1
∑𝑁

𝑡=1 (𝑦𝑡 − ŷ𝑡)2

ȳ
 

Equation 4 CV - Residual (%). 

Source:(Li et al. 2021) 

Where N is the time series length, 𝑦𝑡 is the observed time step ahead, ŷ𝑡 is the time step ahead 

forecasted and ȳ is the time series energy load mean. 

2.7. RESULTS PRESENTED BY THE AUTHOR 

The results published by the author show an improvement in accuracy, minimum error, and 

maximum error when comparing the CLSAF model to the other 4 benchmark models listed in Table 

2.3. 

Table 2.3 Results from models evaluated. Source: (Li et al. 2021) 

Model Name Mean Value Minimum Maximum 

Persistence 61.2 6.3 141.4 

SW-ARIMA 64.1 6.4 201.5 

SW-ETS 63.7 6.4 188.4 

SW-SVR 62.0 6.3 162.3 

ConvLSTM 57.9 6.2 131.1 

CLSAF 53.3 5.9 115.8 

 

The author used the theta threshold with the lowest average CV-Residual (%) of 20 sampled 

apartments in 3 seasons. The results for the theta threshold with the lowest CV-Residual(%) in Figure 

2.6. 
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Figure 2.6 Results for theta threshold. 

Source: (Li et al.,201). 

 

The author observed in results that the higher the diurnal pattern higher the accuracy of the 

prediction model, to measure the strength of the diurnal pattern the author used DFT, formulated in 

Equation 5: 

𝑌𝑘 =  ∑

𝑁−1

𝑛=0

𝑦𝑛𝑒
−2𝜋𝑘𝑛𝑖

𝑁  

Equation 5 Discrete Fourier Transform. 

Source:(Li et al. 2021) 

Where N is the time series length and k the frequency. 

The author observed that another factor in the pattern behavior could be impacting the model 

accuracy, the volatility of the electricity consumption, the CV Observation that is calculated by 

Equation 6: 

 

𝐶𝑉 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(%)  =  
√ 1

𝑁 − 1
∑𝑁

𝑖=1 (𝑦𝑖 − ȳ𝑖)2

ȳ
 

Equation 6 CV-Observation. 

Source:(Li et al. 2021) 

Where N is the time series length, 𝑦𝑡 is the observed time step ahead, ȳ is the time series energy load 

mean. 
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The results observed by the author comparing the CV-Residual(%) with the volatility of the electricity 

consumption and the diurnal pattern behavior in Figure 2.7. 

 

 

Figure 2.7 The results from the author indicating that lower CV-Observation and strength of diurnal 
pattern (S) resulted in better accuracy or low CV-residual(%). 

Source: (Li et al.,2021). 

 

2.8. CEPSTRUM 

The Power Cepstrum is the result of calculating the inverse Fourier transform (IFT) of the logarithm 

of the estimated signal spectrum, a tool for searching for periodic structures in frequency spectra. 

The Power Cepstrum is a tool used in 1963 by B. P. Bogert and M. J. Healy to characterize seismic 

echoes from earthquakes and bomb blasts and is now used to solve various problems such as human 

speech, radar signals, and autoregressive system identification (Lauwers, Vermeersch, and de Moor 

2022), with improvements to a faster system on a larger scale.  

Other positive results using power cepstrum were observed in (Kalpakis, Gada, and Puttagunta 

2001). The Cepstral coefficients for feature extraction improved cluster accuracy with no 
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computational differences between small and long time series. The Power Cepstrum, Cy(k), is the 

result from Equation 7. 

𝐶𝑦(𝑘)  =  |𝐼𝐹𝐹𝑇{𝑙𝑜𝑔(|𝐹𝐹𝑇{𝑓(𝑡)}|2)}|2, or: 

𝛷𝑦(𝑒𝑡𝑤)  = |𝐹𝐹𝑇(𝑦(𝑡))|2 

𝛷𝑦′(𝑒𝑡𝑤)  =  𝑙𝑜𝑔(𝛷𝑦(𝑒𝑡𝑤))  

𝐶𝑦(𝑘)  =  |𝐼𝐹𝐹𝑇(𝛷𝑦′(𝑒𝑡𝑤)) |2 

Equation 7 Power Cepstrum. 

Source:(Li et al. 2021)  

Where FFT is the Fast Fourier Transform and IFFT is the Inverse Fast Fourier Transform. The 

calculation of the FFT and IFFT was done in python with the numpy.fft package. 

2.9. SUMMARY 

The objective of this study is to implement the Power Cepstrum analysis presented by (Lauwers, 

Vermeersch, and de Moor 2022) to replace the Autocorrelation Function in step 2.1, as shown in the 

flowchart of the CLSAF model in Figure 2.4, and compare the results for CV -residual(%), runtime, 

different lag sizes, and input sizes to understand the effect of each parameter on the CV -residual(%) 

results.  

The dataset was selected using the (Proedrou 2021) list of recommendations for different types of 

datasets and profiles. According to the results presented by (Kuster, Rezgui, and Mourshed 2017), 

the best dataset to test the ANN model would be a short-term time frame for forecasting, one hour 

ahead, with a low resolution, maximum the one-hour time step, with global energy load activity in 

time unit representing the behavior of household residents, with available time index with day, 

month, year and time and location to obtain weather information for exogenous characteristics. 
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3. METHODOLOGY 

3.1. INTRODUCTION TO METHODOLOGY 

The methodology contains all the information about the data used in this study and the approach 

used to evaluate the different parameters of the model in different steps. 

3.2. DATA 

The data used in this study consist of minute-by-minute electricity consumption in kilowatts of a single 

household in the town of Sceaux (7 km from Paris, France) between December 2006 and November 

2010 (47 months) from the source Georges Hebrail (georges.hebrail '@' edf.fr), Senior Researcher, EDF 

R&D, Clamart, France, and weather data for the city of Sceaux from the source WorldWeatherOnline 

(https://pypi.org/project/wwo-hist/) between August 2008 and August 2010, which include the 

forecast temperature (°C) for the next hour, the next hourly step, and a Boolean column indicating the 

weekend days.  

For the analysis, the dataset was resampled in hourly steps aggregating the mean for Global Active 

Power, in the matter of the study, to get all seasons, it (?) will be used data for one year, 2009, since it 

is the only complete year with data. The first and last record from the dataset in Table 3.1 and energy 

load time series in Figure 3.1. 

Table 3.1 The first and last line of the dataset used to train and evaluate algorithms. 

Datetime Mean Global_Active_Power 
(Kw/minute) 

Temperature for the 
next hour (°C) 

Weekend Next 
Hour 

2009-01-01 00:00:00 0.534933 -2 0 1 

… … … … … 

2009-12-31 23:00:00 1.690500 1 0 0 
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Figure 3.1 The hourly average kW/minute electricity demand load for the city of Sceaux from January 
2009 to December 2009. 

 

3.3. MODEL 

The goal is to use a short-term forecasting model to predict the one-hour step ahead of the Global 

Active Power for each month of the year. The model proposed to solve this problem in this study is a 

ConvLSTM with a dynamically selected auto-regressive feature and a default state with a persistence 

model, the CLSAF model created by (Li et al. 2021).  

The differences in this proposed model are that the auto-regressive lag is determined by the Power 

Cepstrum, as used by (Lauwers, Vermeersch, and de Moor 2022) and (Kalpakis, Gada, and Puttagunta 

2001) to address the problem with less runtime and better accuracy. In this study, further variations 

are performed compared to the tests made by (Li et al. 2021), the boxes in red will be evaluated with 

different configurations as shown in Figure 3.2. The model was developed in python, the code is 

available in github.com/luisfernandoagottani/ConvLSTM-with-autoregressive-feature-selection-for-
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Short-term-forecasting, the model run was made in a computer with CPU 6 Core 2.70 GHz Intel Core 

i7-10850H (Hyper-Threaded), memory ram of 32370 MB, Dell Inc. model Latitude 5411.  

In the following sections the model procedure is explained. 

 

Figure 3.2 Flowchart of CLSAF Adapted with Power Cepstrum used in the present study. 
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3.3.1. START 

The model is tested separately for each month of the year, following flowchart from Figure 3.2 a date 

is used as an example, between 01/01/2009 to 31/01/2009, which is divided into four weeks, the 

first week is used to warm up and the last three weeks are used to test and retraining in each hourly 

step, the dataset used has a resolution of one hour time step, which in this example gives a total of 

744 records, which corresponds to 744 hours in 31 days. The external features are weather forecast 

results.  

3.3.2. WARM-UP 

The warm-up period was used to train the ConvLSTM model for the first seven days of the month 

before starting to predict the next step. 

3.3.2.1. WARM-UP - STEP 1.1 – SELECT THE FIRST 7 DAYS 

Select the first seven days of the month to train the Conv-LSTM and warm up the model. In this case, 

records from 01/01/2009 to 07/01/2009 are selected, giving a total of 168 records if the resolution is 

one hour and 4 features with a shape of (168,4), as represented in Figure 3.3. 

 

Figure 3.3 Represents the data split to the warm-up period to train the ConvLSTM and forecasting 
with the model retrain period. 

 

3.3.2.2. WARM-UP - STEP 1.2 – TRAIN THE CONVLSTM MODEL 

After selecting the first 7 days for the warm-up period, was trained the ConvLSTM model as 

demonstrated in Figure 3.4: 

 



28 
 

 

Figure 3.4 Sequential architecture of the ConvLSTM model for the warm-up period.  

Source: (Li et al. 2021) 

 

In this study, is used the ConvLSTM2D from Keras, which maps the convolutional neural network with 

the LSTM model used for image classification with matrix multiplication before the cell enters the 

LSTM gate, is used as in (Shi et al. 2015) to better capture the spatiotemporal correlation of their 

data since we use a dataset with multidimensional features. The ConsLSTM configuration can be 

found in Appendix 6. The input shape depends on the benchmark models being evaluated as 

demonstrated in Table 3.4. The output shape will always be one step ahead. 

3.3.3. THETA SELECTION 

The theta selection will be evaluated with Power Cepstrum or Autocorrelation Function to perform 

the autoregressive feature selection. 

3.3.3.1. THETA SELECTION - STEP 2.1 - PREPARE THE PREVIOUS 7 DAYS  

Prepare the previous 7 days, for one hour resolution would be y[t] to y[t-168], to apply the 

autocorrelation function or Power Cepstrum.  

The Power Cepstrum amplitude is calculated using Equation 7 and applied to the previous 7 days for 

autocorrelation analysis, an example with the time 2009-08-20 at 00:00:00, the Power Cepstrum 

values of previous 168 records in Figure 3.5: 
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Figure 3.5 The Power Cepstrum values calculated for the previous 168 hours on the current time of 
2009-08-20 at 00:00:00. 

The same process was performed to evaluate the autocorrelation amplitude with the autocorrelation 

function (ACF) from Equation 3, applied to the 168 hours (7 days) for the autocorrelation analysis, an 

example with the time 2009-08-20 at 00:00:00 in Figure 3.6: 

 

Figure 3.6 The autocorrelation function amplitude values calculated for the previous 168 hours on the 
current time of 2009-08-20 at 00:00:00. 

3.3.3.2. THETA SELECTION - STEP 2.2 – SELECT THE HIGHEST AMPLITUDE 

Applying the autocorrelation function or Power Cepstrum and selecting the highest Autocorrelation 
Amplitude of y[t-168] to y[t-1], the first lag is not analyzed because it is correlated with itself. 

 
The result of the highest Power Cepstrum amplitude for each time step in the time series using the 
previous 168 hours (7 days) of each time step between January 2009 and December 2009 in Figure 
3.7: 
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Figure 3.7 The highest Power Cepstrum value considering the previous 168 hours for each hour from 
January 2009 to December 2009. 

 

The result of the highest ACF amplitude for each time step in the time series using the previous 168 

hours (7 days) of each time step between January 2009 and December 2009 in Figure 3.8: 

 

 

Figure 3.8 The highest ACF value considering the previous 168 hours for each hour from January 2009 
to December 2009. 

 

 

3.3.3.3. THETA SELECTION - STEP 2.3 – VERIFY IF RK VALUE IS HIGHER THAN THE THETA 

THRESHOLD 

After determining the highest autocorrelated amplitude lag was compared the value to the theta 

threshold manually set for the entire period. Higher theta values increase the frequency of using 

ConvLSTM model to forecast, to compare the Power Cepstrum and Autocorrelation Function the 

theta threshold will be defined according to the % of theta using the Main State model. As 

represented in Table 3.2. 
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Table 3.2 Simulate % of lags used according to theta threshold. 

Theta 
Threshold 

% of time steps 
using Main State to 
forecast 

% of time steps using Default 
State to forecast 

0.6 85% 15% 

0.7 60% 40% 

… …  

0.95 15% 85% 

 

3.3.4. MAIN STATE 

The main state runs the ConvLSTM if the Boolean from step 2.3 is True. 

3.3.4.1. MAIN STATE - STEP 3.1 – IMPLEMENT SINGLE-STEP AHEAD FORECASTING 

WITH CONVLSTM 

The ConvLSTM runs the single-step forecast, the parameters used in the ConvLSTM model are in 

Appendix 6. The autoregressive input is determined according to the configuration being tested 

described in Benchmark models Table 3.4, in this study will be tested as autoregressive input the lag 

with highest autocorrelation amplitude, y[t-pn], same as presented by (Li et al. 2021) and will be test 

with always using the last step known, y[t-1]. For higher lengths will be evaluated with the last time 

steps known, for example, for 6 lengths, y[t-1] to y[y-6]. 

3.3.4.2. MAIN STATE - STEP 3.2– RETRAIN THE CONVLSTM 

After forecasting the single step ahead, the ConvLSTM model is retrained with the observed hourly 

load, y[t]. 

3.3.5. DEFAULT STATE 

The author created the default state to avoid overfitting, a period without occupancy, or when 

human behavior is different from usual. 

3.3.5.1. DEFAULT STATE - STEP 4.1– IMPLEMENT SINGLE-STEP AHEAD FORECASTING 

WITH THE PERSISTENCE MODEL 

When the highest autocorrelation amplitude is lower than the theta threshold the Boolean result is 

false in step 2.3 and the default state forecasts the next step ahead with the persistence model, 

equal to the last known time step, calculated by Equation 1. 

3.3.5.2. DEFAULT STATE - STEP 4.2– RETRAIN THE CONVLSTM 

After forecasting the single step ahead with the Persistence model, was retrained the ConvLSTM 

model with the observed hourly load, y[t]. 
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3.4. METRIC TO EVALUATE FORECASTING ACCURACY 

The metric used to evaluate the forecasting accuracy is the normalized RMSE from Equation 4 used by 

(Li et al. 2021). 

3.5. BENCHMARK MODELS AND TEST PROCEDURE 

According to (Li et al., 2021), time series with low volatility and high pattern behavior in electricity 

consumption led to better model accuracy. The first analysis is conducted to check the predictability 

of each month for 2009, after, the analysis of the theta thresholds and the differences in 

autoregressive selection when using Power Cepstrum or ACF are done, and the last step, different 

values of theta threshold are set to test the benchmark models, the tests are conducted by running 

the models 10 times for each benchmark model configuration presented in Table 3.4, each 

configuration are explained as follows: 

3.5.1. INPUT AUTOREGRESSIVE FEATURES 

The input autoregressive features are related to the position of the time step that is used in the input 

to forecast the next time when using the ConvLSTM model. As we can see in the flowchart in Figure 

2.4, step 3.1 , the author (Li et al.,2021) uses as input in the ConvLSTM the time step with highest 

Autocorrelation amplitude lag, y[t-pn], measured in step 2.1 by ACF, in this study, other methods are 

tested for comparison, using also the previous step, y[t-1], every time the highest correlation 

amplitude is higher than  theta threshold set manually, as represented in . 

 

Table 3.3 Autoregressive features time step position configuration example 

Input 

autoregressive 

features 

Current Time 

position 

(hour) 

Prediction Input 

position (hour) 

Output 

position 

(hour) 

y[t-1] 12 12 13 (one step 

ahead) 

y[t-pn] 12 6 (highest 

autocorrelation 

amplitude lag) 

13 (one step 

ahead) 

.  

 

3.5.2. AUTOCORRELATION MEASUREMENT 

Autocorrelation is performed in two ways, the Autocorrelation Function (ACF) or the Power 

Cepstrum. This tool is used in step 2.1 of Figure 3.2. 
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3.5.3. INPUT SHAPE (STEP, LENGTH, FEATURES) 

The input shape is related to the number of time steps, length, and features used as input to train 

and retrain the ConvLSTM model, steps 1.2, 3.1, 3.2, and 4.2 from Figure 3.2, are used in this study 

with one step, different input length for tests, and four features, as shown in Table 3.1. For higher 

input length the epochs for ConvLSTM Structure are higher, as described in Appendix 6. 

 

3.5.4. PREVIOUS LAGS FOR AUTOREGRESSIVE ANALYSIS 

The number of previous lags used to analyze the autocorrelation amplitude with the current time 

step by Power Cepstrum or ACF as in step 2.1 varies depending on the resolution of the time step. In 

this study, the previous seven days of data are used for each lag autocorrelation analysis. 

 

3.5.5. BENCHMARK MODEL CONFIGURATION 

The configuration for each model that will be evaluated is represented in Table 3.4. 

Table 3.4 Benchmark Models and configurations evaluated. 

Analysis 
Description 

Model Name Resolution Autoregressive 
features 

Input 
Length 

AR Calculation Previous days 
for 
autoregressive 
analysis  

Autoregressive 
input analysis 

Persistence 1 hour y[t-1] 1 None None 

Autoregressive 
input analysis 

ConvLSTM 1 hour y[t-1] 1 None 7 days (168  
hours) 

Autoregressive 
input analysis 

CLSAF-ACF y[t-pn] 1 hour y[t-pn] 
 

1 ACF 7 days (168 
hours) 

Autoregressive 
input analysis 

CLSAF-ACF y[t-1] 1 hour y[t-1] 1 ACF 7 days (168 
hours) 

Autoregressive 
input analysis 

CLSAF-Power 
Cepstrum y[t-pn] 

1 hour y[t-pn] 1 Power 
Cepstrum 

7 days (168 
hours) 

Autoregressive 
input analysis 

CLSAF-Power 
Cepstrum y[t-1] 

1 hour y[t-1] 1 Power 
Cepstrum 

7 days (168 
hours) 

Resolution 
Analysis 

ConvLSTM 1 minute y[t-1] 1 None 7 days (10080 
minutes) 

Resolution 
Analysis 

CLSAF-ACF y[t-1] 1 minute y[t-1] 1 ACF 7 days (10080 
minutes) 
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Resolution 
Analysis 

CLSAF-Power 
Cepstrum y[t-1] 

1 minute y[t-1] 1 Power 
Cepstrum 

7 days (10080 
minutes) 

Resolution 
Analysis 

ConvLSTM 30 minutes y[t-1] 1 None 7 days (336 lags) 

Resolution 
Analysis 

CLSAF-ACF y[t-1] 30 minutes y[t-1] 1 ACF 7 days (336 lags) 

Resolution 
Analysis 

CLSAF-Power 
Cepstrum y[t-1] 

30 minutes y[t-1] 1 Power 
Cepstrum 

7 days (336 lags) 

Input Length 
analysis 

ConvLSTM 1 hour y[t-1 to t-input 
length] 

1, 2, 3, 
4, 5, 6, 
12, and 
24 

None 7 days (168  
hours) 

Input Length 
analysis 

CLSAF-ACF y[t-1 
to t-length] 

1 hour y[t-1 to t- 
length] 

1, 2, 3, 
4, 5, 6, 
12, and 
24 

ACF 7 days (168 
hours) 

Input Length 
analysis 

CLSAF-Power 
Cepstrum y[t-1 to 
t-length] 

1 hour y[t-1 to t-length] 1, 2, 3, 
4, 5, 6, 
12, and 
24 

Power 
Cepstrum 

7 days (168 
hours) 

      

 

3.6. MODEL EVALUATION 

The model evaluation analysis will be done by the accuracy scores calculated with Equation 4, and 

runtime in seconds to perform prediction. The results of CLSAF model using Power Cepstrum or 

Autocorrelation Function for different % of lags using ConvLSTM will be compared with ConvLSTM 

model, and Persistence model, when using different autoregressive features as input, different time 

series resolution, and different input length. 

3.6.1. POWER CEPSTRUM AND ACF DIFFERENCES 

Different theta threshold will be tested for CLSAF models, to better compare the models the theta 

threshold will be selected according to the % of lags using the ConLSTM (Main state model), the 

percentages of time steps are 90%, 80%, 70%, 60%, and 50%. 

3.6.2. MODEL SCORE RESULTS FOR AUTOREGRESSIVE INPUT ANALYSIS 

The autoregressive input will be tested with y[t-1] and y[t-pn] for one hour resolution and one input 

length. The autoregressive feature y[t-pn] is selected by the highest Power Cepstrum or ACF 

amplitude, if highest amplitude is higher than theta threshold, the lag with highest autocorrelation 

amplitude will be selected as input for ConvLSTM, different for y[t-1], if the Power Cepstrum or ACF 

amplitude is higher than the theta threshold the input lag for ConvLSTM will be always the y[t-1]. 

This represents step 3.1 from flowchart Figure 3.2. 
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3.6.3. MODEL SCORE RESULTS FOR RESOLUTION ANALYSIS 

The different time series resolution will be tested for one hour, 30 minutes and one minute, using 

autoregressive input always as y[t-1] and one input length. This represents the step 2.1 from 

flowchart Figure 3.2. 

3.6.4. MODEL SCORE RESULTS INPUT LENGTH ANALYSIS 

The different input length will be tested for 1,2,3,4,5,6, 12 and 24 input length, using autoregressive 

input always as y[t-1 to t-input length] and the time series resolution for one hour. The ConvLSTM 

parameter changed compared to others analysis, for this one will be used 50 epochs as described in 

Appendix 6. 
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4. RESULTS AND DISCUSSION 

The results and discussion start with the month predictable analysis using the pattern behavior of 

electricity consumption for each month of 2009 to compare the strength of day cycles using FFT and 

the volatility of the energy load of the occupant behavior for each month of 2009, according to (Li et 

al. 2021), time series with low volatility and high pattern behavior have better model accuracy.  

The results from predictable analysis resulted in the months used to test benchmark models using the 

most predictable from 2009. After selecting the months, the theta thresholds are calculated to obtain 

the same percentage of time steps using the ConvLSTM model when CLSAF models are tested with 

Power Cepstrum or ACF as autoregressive feature selection, this can guarantee correct comparative 

analysis between the two methods. At the end, the results are analyzed for the benchmark models 

and commented accordingly. 
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4.1. MOST PREDICTABLE MONTH FOR HOUR RESOLUTION 

The analysis to identify the most predictive month for this dataset is performed according to the 

results of (Li et al. 2021), which show better model performance for time series with strong daily 

pattern behavior. For this, the author used Discrete Fourier Transform from Equation 5 and CV-

Observation from Equation 6. The results, when applied to global active power consumption for 

2009, show a pattern behavior of one and two cycles per day with higher Spectrum values, as we can 

see in Figure 4.1.1.  

 

 

Figure 4.1.1 Spectrum analysis for global active power consumption for 2009 with a frequency of 
cycles per day using hour resolution. 

 

The analysis for each month of 2009 was performed by applying the Equation 6 and Equation 5, to 

summarize the Spectrum amplitude, an average of the amplitude for one and two cycles per day was 

taken and compared with the volatility of each month, which is shown in Figure 4.1.2. The results 

show that the best results were obtained in the months of April, May, March and December with a 

high Average Spectrum Amplitude and a low CV-Observation. 
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Figure 4.1.2 Scatter plot of CV Observations and Average Spectrum Value for each month of 2009. 
Indicating the most predictable months. 

The analysis of electricity consumption behavior can be illustrated with the mean value of global 

active power consumption per time of day for each month, with high energy consumption observed 

in the morning and evening for the winter, fall, and spring seasons, as represented in Figure 4.1.3. 
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Figure 4.1.3 Average Global Active Power for each time of the day by month of the year for the year 
2009 dataset by hour. 
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4.2. POWER CEPSTRUM AND AUTOCORRELATION FUNCTION DIFFERENCES 

Each time step uses the previous lags to select the highest autocorrelated lag amplitude and 

compare it to the theta threshold, as shown in the flowchart in Figure 3.2. In this study, the goal is to 

compare the Autocorrelation Function (ACF) and Power Cepstrum as an autoregressive feature 

selector. To do this, it is necessary to determine the percentage of time steps using ConvLSTM for 

each type and month.  

The test is performed with autoregressive analysis of 168 hours of previous lags for each time step in 

a hour resolution dataset, the % of Time step using ConvLSTM is defined as 50%, 60%, 70%, 80%, and  

90%, the theta threshold is defined according to the quantity of lags with highest autocorrelated lag 

amplitude higher than the theta threshold value set, for example, to achieve 90% of lags using 

ConvLSTM in a month with 23 days (the first 7 days are used for warm-up period as described in 

Figure 3.2), the total of time steps available are 552 hours, where 497 hour time steps needs to have 

the highest autocorrelated lag amplitude from autoregressive analysis higher than the theta 

threshold set. 

The months evaluated are those selected as the most predictable, March, April, May, and December. 

The full table showing the theta threshold used to evaluate each type of autocorrelation calculation 

and the percentage of time step usage for each month. The results in Table 4.2.1. 

Table 4.2.1 Theta Threshold that will be used to test for each type of autocorrelation calculation, each 
% of time step usage and for each month. 

 

 

The analysis of the number of time steps with the highest autocorrelated lag amplitude for each 

computation type is shown in Table 4.2.2. The AR feature is the position of the autoregressive 

feature lag of the time step with the highest autocorrelation amplitude for the 168 previous hours 

that are above the specified theta threshold. The results show that both types have the same 

position, “y-2”, of the autoregressive feature position with the highest amplitude. 
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Table 4.2.2 Quantity of time steps with highest autocorrelation amplitude for each type, each month 
and for each % of time step usage. 

 

The analysis comparing the time steps using ConvLSTM when performing Power Cepstrum or ACF 

shows that not every step is the same. For example, when 50% of the lags uses ConvLSTM  for March, 

the results show that 67.36% of the time steps are the same when using Power Cepstrum or ACF, 

indicating that 32.64% of the time steps using ConvLSTM are different when comparing the two 

types as shown in Table 4.2.3. 

Table 4.2.3 Results comparing % of same time steps that use ConvLSTM when using Power Cepstrum 
or ACF. 

 

The difference of the time steps using ConvLSTM when using Power Cepstrum or ACF was analyzed 

by summing the number of time steps with highest autocorrelation amplitude higher than theta 

threshold per hour of the day, for each % of time steps using ConvLSTM, and each type of 

autoregressive selector, Power Cepstrum and ACF. The analysis was done with the months of March, 

April, May, and December, a total of 93 days of prediction (121 days minus 28 of warm-up period).  

In the Figure 4.2.1 and Figure 4.2.2 the results for Power Cepstrum and ACF are shown respectively.  



42 
 

 

Figure 4.2.1 Sum of time steps using ConvLSTM when using Power Cepstrum for the months of March, 
April, May, and December.   

 

Figure 4.2.2 Sum of time steps using ConvLSTM when using ACF for the months of March, April, May, 
and December. 

 

The results show that there is a pattern with a higher quantity of time steps using ConvLSTM during 9 

AM and 8 PM for Power Cepstrum, according to Figure 4.1.3, these are the moments of the day with 

a higher global active power average for all % of time steps using ConvLSTM.  

The pattern observed for ACF shows a higher quantity of time steps using ConvLSTM during the 

afternoon, between 10 AM and 6 PM, the time when the global active power average is lower for all 

% of time steps using ConvLSTM. 
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The Figure 4.2.3 shows the sum of time steps using ConvLSTM that are different when using Power 

Cepstrum or ACF as autoregressive selector, the differences are for results with 90% of time steps 

using ConvLSTM and for months of March, April, May, and December, a total of 93 days of prediction 

(121 days minus 28 of warm-up period). 

 

Figure 4.2.3 Quantity of different time steps using ConvLSTM when using ACF or Power Cepstrum for 
the months of March, April, May, and December for 90% of time steps using ConvLSTM. 

The highest quantity of different time steps using ConvLSTM are between 9 AM and 5 PM with higher 

quantity for ACF and between 7 PM and 10 PM with higher quantity for Power Cepstrum.  

This shows that when ACF is used as autoregressive selector for time steps between 9 AM and 5 PM, 

the autocorrelation amplitude of the highest lag for this period is higher than the autocorrelation 

amplitude of the highest lag between 8 PM and 10 PM, indicating a higher autocorrelation amplitude 

for afternoon patterns for 90% of the lags using ConvLSTM 

The same reasoning for Power Cepstrum, since Power Cepstrum has high quantity of time steps 

selected during 8 PM and 10 PM, indicating that when using Power Cepstrum the autocorrelation 

amplitudes are higher for night patterns for 90% of the lags using ConvLSTM. 
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4.3. MODEL SCORE RESULTS FOR AUTOREGRESSIVE TIME STEP INPUT ANALYSIS 

Tests were performed by repeating each configuration of the benchmark models described in Table 

3.4, 10 times for each theta threshold from Table 4.2.1, evaluation is done selecting the best scores 

from CV -Residual (%), calculated using Equation 4. 

The model with highest accuracy is the ConvLSTM model with an average score of 0.5274 in the 

"Grand total" column, but not so far, CLSAF - ACF using autoregressive lag as (t-1) for the input and 

CLSAF - Power Cepstrum using autoregressive lag as (t-1) for the input, the best scores values are 

0.5313 and 0.5302, respectively, for 90% of the time steps using ConvLSTM. 

When compared to the persistence model, with score of 0.5731, an improvement of 6.5% and 1.9% 

lower than ConvLSTM model accuracy, the positive effect is the time consumption of the CLSAF 

model, which is lower than ConvLSTM.  The score results for 60% of the time steps using ConvLSTM 

for CLSAF - ACF using autoregressive lag as (t-1) and CLSAF - Power Cepstrum using autoregressive lag 

as (t-1), the best scores values are 0.5380 and 0.5397, respectively, maintaining the score while 

reducing computational cost. The scores results are similar when comparing ACF and Power 

Cepstrum, except that ACF performs better than Power Cepstrum at 50% of the time steps using 

ConvLSTM (0.5394 versus 0.5459).  

It is noticeable that December is a very good month for predictions, but at low volatility the 

persistence model performs very well, with similar results compared to ConvLSTM and CLSAF with 

autoregressive lag as (t-1). For March, April and May, a higher improvement is observed when 

comparing the models to the persistence model, for example in March with an improvement of 14%.  

The results for the CLSAF models using autoregressive lags as input, y[t-pn] show poor performance 

compared to Persistence and the other models. The results in Table 4.3.1. 

Table 4.3.1 Model CV-Residual score results for hour resolution on March, May, April and December 
of 2009, by % of time steps using ConvLSTM. 
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The main advantage of the CLSAF model is the lower runtime consumption, with a difference of 7 

seconds to execute the prediction, while maintaining model accuracy. This difference can be very 

significant for higher resolution, as we will see in the test with 30 minutes and 1 minute resolution. 

The results show that CLSAF has better runtime performance when compared to ConvLSTM for % of 

time steps using ConvLSTM lower than 90%. The results to compare Power Cepstrum and ACF show 

that ACF has better runtime performance for 90% and 80% of time steps using ConvLSTM, but for 50% 

to 80% we observed similar runtime results. The complete results in Table 4.3.2. 
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Table 4.3.2 Time in seconds to run prediction by model and % of time steps using ConvLSTM for 
March, April, May, and December of 2009. 

  

The CLSAF-Power Cepstrum y[t-1] and CLSAF-ACF y[t-1] models with 70% of the time steps using 

ConvLSTM, from 13-04-2009 to 25-04-2009, were shown in Figure 4.3.1 and Figure 4.3.2 with 

detailed information about the time steps using Persistence or ConvLSTM.  

 

Figure 4.3.1 CLSAF-ACF y[t-1] model prediction results from 13-04-2009 to 25-04-2009, with 70% of 
time step using ConvLSTM which is theta threshold of 0,610852283363079 and 160 hours of warm-
up. 
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Figure 4.3.2 CLSAF-Power Cepstrum y[t-1] model prediction results from 13-04-2009 to 25-04-2009 
with 70% of time step using ConvLSTM which is theta threshold of 0,0639021864467233 and 160 
hours of warm-up. 

 

The yellow dashed line indicates the theta threshold. When the highest value of the autocorrelation 

amplitude in the yellow line is below the theta threshold, the models use the Persistence model; in 

the red line, when the amplitude is higher, the models use the ConvLSTM model; in the green line for 

ACF; and in the blue line for Power Cepstrum. 
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4.4. MODEL SCORE RESULTS FOR RESOLUTION ANALYSIS 

Following the tests for hour resolution, the first step for higher resolution analysis was to identify 

the theta threshold for each % time steps using ConvLSTM defined before, for this analysis will 

be used the month of April in 2009 only and the analysis will be done for 1 minute and 30-minute 

resolution. The results in Table 4.4.1. 

Table 4.4.1Theta threshold values for one minute and 30 minutes resolution for Power Cepstrum and 
ACF and for each % of time steps using ConvLSTM in April 2009. 

 

At 30 minute resolution, the results show great performance of the CLSAF using autoregressive input 

lag as y[t-1] models compared to Persistence and ConvLSTM, with a CV-Residual(%) for CLSAF- Power 

Cepstrum using autoregressive lag as y[t-1] of 0.5182 when using 90% of the time steps with 

ConvLSTM, 6.3% better than the Persistence model and 1.59% better than ConvLSTM and the 

performance for other % of the time steps remains acceptable considering that the runtime is lower 

when using lower % of Time steps as we can see in Table 4.4.3. At 1 minute resolution, the results 

show that the models are worse than the Persistence model and are not usable. The results in Table 

4.4.2. 
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Table 4.4.2 Model CV-Residual score results for minute and 30-minute resolution on April of 2009, by 
% of time steps using ConvLSTM. 

 

Results for run time only for the 30-minute resolution because the persistence model was the best 

model for the 1-minute resolution. As expected, the time difference between the ConvLSTM and 

CLSAF models in running the prediction is larger at higher resolution, with an improvement of about 

40% compared to 50% of the time steps. It can be observed that CLSAF when using Power Cepstrum 

is 11% faster compared to ACF for higher resolution. 

Table 4.4.3 Time in seconds for 30-minute resolution to run prediction by model, % of time steps using 
ConvLSTM for April of 2009. 
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4.5. MODEL SCORE RESULTS FOR INPUT LENGTH ANALYSIS 

The results for higher inputs were run using the same theta threshold as in Table 4.4.1, since the 

highest autocorrelated amplitude for the hourly resolution remains the same. The month chosen for 

testing is the same as for the higher resolution, April 2009. As mentioned in the methodology, the 

ConvLSTM configuration was changed for higher inputs as shown in Appendix 6, with better results 

observed at 50 epochs. Tests were performed for input lengths of 1, 2, 3, 4, 5, 6, 12, and 24. The 

results show that the score improves with higher input lengths. The best average score was observed 

for a 6-step input, 0.89% better than a single step input. The best score, 0.5118 CV -Residual(%), was 

obtained from CLSAF - Power Cepstrum with 80% of lags using the ConvLSTM model. Detailed results 

in Table 4.5.1. 

Table 4.5.1 Model CV-Residual score results for hour resolution on different input length, in April of 
2009, by % of time steps using ConvLSTM. 

  

The results for runtime show similar behavior as previous analysis, when using lower % of time steps 

the runtime performance of the model increases, it is possible to observe that 6 input length has the 

best runtime performance, this is because warm-up period for higher length have lower training time 

steps compared to one length input, and the matrix multiplication time consumption is not as high 

when compared to 24 input length. Results shown in Table 4.5.2. 

Table 4.5.2 Time in seconds to run prediction for each length by model and % of time steps using 
ConvLSTM for April of 2009. 
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5. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

The limitations found in this study was the time consumption to evaluate multiple theta threshold 

values for each month in multiple resolutions using multiple ConvLSTM parameters.  

Testing in others dataset that contains different energy load behavior can lead to different conclusions 

and improve results for CLSAF model when occupancy is not so frequent.  

Apply the model for months that are considered not good for predictions and test new ways to find 

good results for these months to achieve great performance in all periods of the year. 

Test different configuration for input length, warm-up period, and autoregressive feature input.  

Implement the CLSAF model in real world projects automatizing theta threshold optimization in the 

best predictable periods. 
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6. CONCLUSIONS 

In this study, the CLSAF model was tested with Power Cepstrum to select the autoregressive feature 

to achieve better model accuracy and runtime performance. The tests were performed with different 

configurations for input lag selection, input length and resolution.  

The results show that on average, more than 70% of the time steps used for Power Cepstrum and 

Autocorrelation Function are the same when comparing % of lags using ConvLSTM. The difference is 

the result of a higher Power Cepstrum amplitude for the night hours, between 8 pm to 10 pm, when 

compared to 9 am to 5 pm hours, the inverse rationale for ACF, that contains highest amplitude for 9 

am to 5 pm when compared to 8 pm to 10 pm.  

The average CLSAF scores are similar for Power Cepstrum and ACF when comparing the percentage 

of lags using ConvLSTM, the average CLSAF runtime was better when using Power Cepstrum for 

higher resolutions compared to ACF. The autoregressive feature used as input for ConvLSTM showed 

better performance when using the last step known lag, y[t-1] compared to the highest 

autocorrelated amplitude lag, y[t-n].  

Results for one minute resolution showed better performance for the Persistence model, although 

for 30 minutes the models CLSAF y[t-1] and ConvLSTM had better accuracy when compared to 

persistence model. 

High input length improved model accuracy when using CLSAF and ConvLSTM models. The CLSAF 

model with Power Cepstrum as the autoregressive feature selector, with 80% of lags using 

ConvLSTM, and 6 input length achieved the best model accuracy score for hour resolution when 

compared to different input length.  

The best model performance is for CLSAF model using Power Cepstrum, using autoregressive 

features as y[t-1 to t-length], with 80% of time steps using ConvLSTM, and 6 length input for hour 

resolution in April 2019, compared to ConvLSTM and Persistence model the improvement in score is 

1,3% and 13,3% respectively, the improvement in time consumption to run the all month prediction 

when compared to ConvLSTM was improved in 8,6%. 

The CLSAF model can reduce time consumption without losing accuracy when compared to 

ConvLSTM. The method showed great performance using just one week of historical data, which 

makes it easier to apply. The theta threshold presented better results for 80% of time steps using 

ConvLSTM. Is possible to conclude that Power Cepstrum can replace and outperform Autocorrelation 

Function in accuracy and runtime. 
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8. APPENDIX  

Appendix 1 - Selection procedure presented. Source: (Kuster, Rezgui, and Mourshed 2017). 

  

Appendix 2 - Classified forecasting models distribution. Source: (Kuster, Rezgui, and Mourshed 2017). 
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Appendix 3 - Input distribution depending on the scale. Source: (Kuster, Rezgui, and Mourshed 2017). 

 

Appendix 4 – Model distribution by resolution. Source: (Kuster, Rezgui, and Mourshed 2017). 
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Appendix 5 – Model vs inputs distribution. Source: (Kuster, Rezgui, and Mourshed 2017). 

 

Appendix 6 – ConvLSTM parameters. 

Property Value 

Structure One ConvLSTM2D layer and two dense layers 

Filters 36 

Kernel Size (1,2) 

Activation function Relu 

Nodes number of the first dense layer 4 

Nodes number of the second dense layer 1 

Epoch 20 

Epochs testing Higher inputs 50 

Batch size 1 

Loss function MSE 

Optimizer Adam 

Epochs retraining 1 

Input shape (steps, length, features)  (1,1,n) 

Output shape (length, features) (1,1) 

 


