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Towards a unified eco-
evolutionary framework for
fisheries management: Coupling
advances in next-generation
sequencing with species
distribution modelling

Miguel Baltazar-Soares1*, André R. A. Lima2, Gonçalo Silva2

and Elie Gaget1

1Department of Biology, University of Turku, Turku, Finland, 2MARE–Marine and Environmental
Sciences Centre, ARNET–Aquatic Research Network, ISPA – Instituto Universitário de Ciências
Psicológicas, Lisboa, Portugal
The establishment of high-throughput sequencing technologies and

subsequent large-scale genomic datasets has flourished across fields of

fundamental biological sciences. The introduction of genomic resources in

fisheries management has been proposed from multiple angles, ranging from

an accurate re-definition of geographical limitations of stocks and connectivity,

identification of fine-scale stock structure linked to locally adapted sub-

populations, or even the integration with individual-based biophysical

models to explore life history strategies. While those clearly enhance our

perception of patterns at the light of a spatial scale, temporal depth and

consequently forecasting ability might be compromised as an analytical

trade-off. Here, we present a framework to reinforce our understanding of

stock dynamics by adding also a temporal point of view. We propose to

integrate genomic information on temporal projections of species

distributions computed by Species Distribution Models (SDMs). SDMs have

the potential to project the current and future distribution ranges of a given

species from relevant environmental predictors. These projections serve as

tools to inform about range expansions and contractions of fish stocks and

suggest either suitable locations or local extirpations that may arise in the

future. However, SDMs assume that the whole population respond

homogenously to the range of environmental conditions. Here, we

conceptualize a framework that leverages a conventional Bayesian joint-SDM

approach with the incorporation of genomic data. We propose that introducing

genomic information at the basis of a joint-SDM will explore the range of

suitable habitats where stocks could thrive in the future as a function of their

current evolutionary potential.

KEYWORDS

high-throughput sequencing, genomics, species distribution model (SDMs), fisheries
applications, evolutionary ecology
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Introduction
There is unequivocal evidence that marine biodiversity is

declining, with severe impacts on marine ecosystems that

reverberate at ecological, social and economic scales (Cardinale

et al., 2012). As 40% of the human population lives within 100

km from the coast (Stead, 2018), marine fish constitute one of

the most accessible food bases and the main source of protein.

Overfishing, habitat destruction and pollution have been pointed

as the main responsible causes for marine biodiversity loss both

regionally and globally, but the role of climate change in shifting

distribution ranges and promoting local extinctions is becoming

more and more evident (Brander, 2010; Lam et al., 2020).

Climate change is reflected in temperature increments

inducing modifications both at biochemical and geological

levels, including ocean acidification, hypoxia, sea level rises,

and more frequent droughts, storms, or heat waves (Lohbeck

et al., 2012; Frölicher and Laufkötter, 2018). Environmental

oscillations and anthropogenic pressures such as fisheries have

direct effects on the trophodynamic structure and function of

marine systems, and consequently a massive impact on

worldwide fisheries (Cheung et al., 2009). At the light of such

events, fisheries research has become pivotal in understanding

stocks response to climatic shifts and attempts to predict their

future distribution and abundance. Currently, there are perhaps

two major tools at scientists’ disposal to do it so. The first is

genomic resources, which became increasingly more reachable

for non-model species after the advent of next-generation

sequencing a decade ago (Allendorf et al., 2010; Benestan

et al., 2016). Genetics has since decades delivered valuable

outputs to fisheries management, though restrained to a

handful of well-established systems (Bernatchez et al., 2017).

Early implementations of genetic information came tackle some

of the wider gaps on fisheries management, such as estimates of

stock connectivity and delimitation, development of monitoring

programs, and design of marine protected areas (Hauser and

Carvalho, 2008; Verspoor et al., 2008; Casey et al., 2016; Blasco

et al., 2020). Characterizing genetic diversity as respective

distribution patterns became more enticing with NGS as it

permitted to expand the search beyond the traditional stock

structure and connectivity towards signatures of selection and

inference of the putative adaptive potential of those same stocks

(Therkildsen et al., 2013; Baltazar-Soares et al., 2021b). Inferring

adaptive potential on top of stock connectivity is pivotal to

estimate the repertoire of genetic-based adaptive responses and

build expectations on the spatial reshuffling of adaptive alleles

(Eizaguirre and Baltazar-Soares, 2014; Capblancq et al., 2020).

The second one is the development of algorithms to infer

species distribution forecasts, which is being performed by

using Species Distribution Models (SDM) based on

assumptions of niche conservatism (Guisan and Thuiller,

2005). These have been created to provide an understanding
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of the factors and processes that may cause fluctuations in local

populations, and to facilitate climate-ready management of

living marine resources under social, economic, and ecological

perspectives (Porfirio et al., 2014; Villero et al., 2017).

Distribution models can describe essential habitats for early

(egg, larval, and pelagic juvenile) and later (juvenile and adult)

life history stages of marine fishes (Zurell et al., 2016; Laman

et al., 2017). They can also be used to predict potential

spawning habitats (Planque et al., 2007), provide a basis to

define new fishing areas by evaluating gains and losses in

species suitable areas over time, and propose better

management options in areas where habitat contractions are

predicted in the future (Lima et al., 2022). Different levels of

complexity and data integration already exist in SDMs, but

efforts are still needed to offer more than correlative outputs

(Zurell et al., 2016). Indeed, the integration of complementary

methodologies and multidisciplinary approaches, such as

genomics and SDM, constitute promising advances on

predicting species response to environmental changes by

incorporating “genomic vulnerability” or “genomic offset” in

the model (Fitzpatrick et al., 2007; Laman et al., 2018; Nielsen

et al., 2021; Layton and Bradbury, 2022).

Here we proposed an entirely different approach on how

SDMs could utilize genomic information. Briefly, the

framework we propose consists of 1) utilizing high-

throughput sequencing to detect candidate genomic variants

whose frequency is associated with environmental conditions

at spawning areas, 2) explore links between genotype and

phenotype to infer functionality of the relationship and

selective value and 3) utilize allelic frequencies as inputs to

joint-SDMs, using allele selective values as prior on allele-

environmental conditions relationships, taking into account

for allele co-occurrence patterns and phylogeny to, 4) predict

allele distribution, and de facto species distribution. Our focus

on spawning areas is justified by their relevance to define the

viability of fish populations as enhancers of reproductive

success. It has been demonstrated that broadcast spawning (a

reproduction strategy common in the marine environment)

have evolved to optimize spawning timing and location to

target optimal environmental conditions (Thorrold et al., 2001;

Planque et al., 2007; Baltazar-Soares et al., 2018) . For the large

majority of marine species, early life stages prior to first feeding

check also occurs in the vicinity of spawning areas and thus we

hold this framework in the premise that selective pressures at

spawning are extremely high and thus require the evolution of

adaptive responses. We will first cover how genetics is a tool

utilized to understand evolutionary responses within natural

populations and revise how high-throughput sequencing

revolutionized the statistical power of genomic signatures.

We will then approach concepts and methodologies behind

SDMs and lastly, we will briefly illustrate ongoing efforts to

conjugate both research areas and present our own suggestion

to do it so.
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High-throughput sequencing on the
search of genetic signatures in
natural populations

Screening genomes has become a routine task in

evolutionary genetics in the recent decade, but that has not

always been the case. The early 2000s experienced the first steps

towards characterizing genome-wide diversity in no-model

species with the discovery of short-tandem repeats (STRs)

(Ellegren, 2004; Vieira et al., 2016). STRs loci are usually

captured across random locations in the genome, each

optimally exhibiting high levels of sequence length

polymorphism (Jarne and Lagoda, 1996). Therefore,

inferences from polymorphic-STRs analyses are based on

multiple independent observations of the target genome´s

evolution. In general terms, HTS relates to massive parallel

production of DNA sequences. Its implementation expanded

our capacity to collect multiple molecular markers across the

genome (Mardis, 2008a). Nowadays, HTS techniques have

evolved to sequence full genomes both in the form of short-

reads DNA se, i.e., 250 base-pair sized reads commonly

produced with Illumina, or long-reads DNA strings, where

average read-lengths are as high as dozens of kilo base-pairs

such as those commonly produced with PacBio or Oxford

Nanopore technology (Mardis, 2008b; Hu et al., 2021). While

the abovementioned strategies aim to sequence the whole of

the nuclear DNA molecule, HTS have further expanded to

sequence the full spectrum of DNA replication via the

characterizing of transcriptomes and proteomes. Sequencing

these DNA provides strong evidence of functionality,

reinforcing the putative links between genotypic and

phenotypic variation that can be observed at individual,

population, or species level (Oomen and Hutchings, 2022).

The working-horse on any population genetic analysis are

allelic frequencies. Thus, the baseline output after data

processing (which involves cleaning of raw sequence data,

curation, and variant calling) is a panel of genetic markers

with allelic or haplotype frequencies distributed either by loci,

individuals, or populations (R. Nielsen and Slatkin, 2013).

Population genetics theory holds on principles of mendelian

inheritance, evolution, and mathematics to devise how allelic

frequencies vary across generations (R. Nielsen and Slatkin,

2013). It is against theoretical expectations of allelic frequency

distributions that observed patterns of genetic variation are

interpreted at population scales. One of the main goals of

applying population genetics theory has been linking

evolutionary and demographic processes, where the linear

relationship between indices of genetic diversity such as

heterozygosity or allelic richness and effective population sizes

is well established (Reed and Frankham, 2003). Inferring

population structure, effective population size and historical

demography with genetic variation that has no impact on
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individual fitness became staple examples of applied

population genetics. However, next generation sequencing

effortlessly pushed the limits of population genetic inferences

and greatly facilitated the search for molecular signatures of

selection (Frankham, 2010).

Genome-wide screens usually target > 20 individuals from as

many locations of the species’ distribution as possible. The objective

at this stage is to obtain representativity of the overall genetic

diversity of the natural population. Here, the most common

methodology to identify signatures of selection are environmental

associations (EA). These frameworks identify signatures of selection

by comparing allelic frequencies against gradients of environmental

variables. At the light of evolutionary theory, significant correlations

indicate selection for the presence of the candidate allele (in a

population) in numbers higher than those expected by chance.

Thus, candidate loci (under selection) will be those whose allelic

frequencies vary consonant to the hypothesized environmental

gradient (Forester et al., 2016). For instances, Benestan et al.

(2016) candidate loci putatively involved in the response to

thermal adaptation of lobsters by reporting an environmental

association of allelic frequencies across a latitudinal gradient

(Benestan et al., 2016). Currently, identification of loci under

selection is an active and fertile research ground. There exist

multiple methodologies, frameworks and even ideologies that are

beyond the scope of this manuscript to discuss in detail (Günther

and Coop, 2013; Whitlock and Lotterhos, 2015). Still, the major

caveat of environmental correlations is arguably the absence of

causality. The fact that a functional link cannot be established

between genetic variation and a successful response to selective

pressures renders environmental associations insufficient to argue

with confidence about demographic impacts (Lotterhos and

Whitlock, 2015).

Validating the adaptive potential estimated from molecular

signatures can be achieved experimentally. Manipulating

environmental settings to test fitness effects of candidate

genomic variants in different environmental conditions should

provide conclusive evidence of functionality (Lenz et al., 2013;

Kaufmann et al., 2014). The challenge is seldom rearing is

possible, which is an essential step to a) observe the

functionality and b) validate true positives. If rearing is

possible, then the method is partially quite established. It

consists in exposing specimens to specific selective pressures

measuring reproductive success and subsequent fitness of F1

and/or F2 (to mitigate the noise of natural genetic variation and

family effects), and genotype individuals either at the end point

of the experiment or through biologically established

timestamps (Huang et al., 2016; Heckwolf et al., 2020).

Genotyping is commonly performed via collecting and

sequencing transcripts of individuals exposed to different

conditions, where fold-differences or structural variants such

as SNPs, copy number and/or splicing variants are indicators of

selection and respective adaptive responses (Lenz et al., 2013;

Heckwolf et al., 2020).
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Understanding SDMs and respective
predictive potential for fisheries

Species distribution models are valuable statistical tools

providing management and conservation supports (Zurell

et al., 2022). In addition to describe and explain relationships

between species and environmental characteristics based on the

niche-biotope duality, they are extensively used to map species’

present-day distributions and to forecast changes over space and

time (Zurell et al., 2020). SDMs traditionally follow a bottom-up

approach using geo-referenced species records (presence-only,

presence-absence [or presence-pseudo-absence], abundance) to

estimate species niche in a correlative framework. This

framework is based on the extraction of environmental

characteristics from a stack of physical and biogeochemical

climate model projections (past, present and (or) future) for

each sampling point, including potentially the environmental

characteristics where the species does not occur (absence or

pseudo-absence) (Hollowed et al., 2013; Lima et al., 2022). The

chosen algorithm then creates response functions exhibiting the

environmental optima and explaining the relationship of the

species’ occurrence and the environment (Hollowed et al., 2013).

Such relationship is returned as an index of habitat suitability

which can be, under several assumptions (e.g., constant

detection probability), considered as occurrence probability

(Royle et al., 2012). Final SDM outputs are estimated

relationships between species occurrence, environmental

variables, and habitat suitability maps. SDMs can eventually be

used to evaluate whether the spatial variability of a species’

environmental optima will shift under different climate change

scenarios over large scale spatial projections (Raybaud et al.,

2017; Jghab et al., 2019; Schickele et al., 2020). From these maps

it is also possible to define range expansion and contraction in

the distribution of the species over time by calculating suitable

areas (km2) over the entire distribution range or in specific

habitats (Lima et al., 2022). Recent developments have been

done to increase SDM’ ecological reliability and tackle many of

its caveats (Zurell et al., 2016; Ovaskainen et al., 2017). For

example, introducing Bayesian inference allows to cover the

simplified vision of niche conservatism where individuals’

occurrences remain fixed throughout space and time in a

correlative approach. Bayesian inference has been used to

improve the estimation of species-environmental relationships

by integrating a priori knowledge on species niche dimensions.

In Bayesian theory, the probability of an event to occur is

mediated by information on past occurrences of the event.

Technically, it translates into the use of priors with a

respective distribution density (Gaussian, Poisson, etc.

distribution) representing the event’s past occurrence, to build

a range of probable future events, or the so-called posterior

density distribution (Bolstad and Curran, 2016). Posterior

density distributions are constructed with Markov-Chain-
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Monte-Carlo (MCMC) samplers which, briefly, are a chained

repetition of the model utilizing randomly picked priors from

the proposed distribution (Van Ravenzwaaij et al., 2018).

Bayesian inference coupled with MCMC simulations allow the

efficient computation of thousands or millions of scenarios based

on prior-posterior conjugations and are regarded as a major

improvement in statistical computing frameworks in biology

(Huelsenbeck et al., 2001; Yau and Campbell, 2019). Bayesian

inferences have been shown to improve the explicative and

predictive powers of SDMs (Vermeiren et al., 2020). Another

aspect traditionally limiting the ecological reliability of SDMs it

their reliance on abiotic variables, when it is factual that biotic

variables, such as species interactions, also play a critical role to

shape species niche (Zurell et al., 2016). Joint-SDMs have been

built to tackle this issue, by considering multi-species co-

occurrences inside the same model, using functional traits or

phylogenetic relatedness to investigate the dependance pattern

between species (Ovaskainen et al., 2017). Estimating multi-

species niche, while combining different sources of data improve

prediction accuracy, and that is why exploring possibilities to

capitalize the amount of information produced by HTS is

flourishing research area (Ovaskainen et al., 2017; Peel et al.,

2019; Vermeiren et al., 2020; Andrello et al., 2022).
Riding the wave of evolutionary-
based SDMs: Current integrations of
genetics and SDMs

Adaptations accounting from genomic interaction with

environmental conditions are usually ignored but might be

important to explain and predict species distribution

(DeMarche et a l . , 2019) . SDMs usual ly assume a

homogeneity of the genomic composition inside the

distribution of a focal species. Relationships between

genomic diversity and environmental factors have been used

to map the vulnerability of the species at intra-specific level

(Ruegg et al., 2018). This can help understanding where

individuals of a same species will be more impacted by

climate change or will need faster adaptive capacity/

facilitation/resilience. To date, most studies have considered

that evaluating different SDMs of genetically defined

populations of a given species would be a sufficient proxy to

integrate adaptive potential (Ikeda et al., 2017; Chardon et al.,

2020). These studies used predictions of species’ niche space by

considering that genetically distinct populations would

respond differently to present-day climate, and thus future

climates, to then test for similarity in the climatic niche of the

groups (DeMarche et al., 2019). Alternatively, researchers

now have been focusing on evolutionary algorithms to

combine multiple information in one single learning cycle

(Gobeyn et al., 2019). Those frameworks consider that the
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geographical range of a species is defined by its ability to track

favourable environmental conditions depending on its

physiology, evolutionary adaptation and the inter and

intraspecific biotic interactions (Thuiller et al., 2013). SDMs

also span the divide between correlative and mechanistic

models using eco-evolutionary forecasting frameworks (Bush

et al., 2016; Cotto et al., 2017). The framework combines niche-

based projections and individual-based, genetically and

spatially explicit stochastic simulations (Cotto et al., 2017).

Modelling frameworks such as AdaptR are useful to predict the

distribution of species through time steps known as

generations (Bush et al., 2016). This hybrid approach allows

the incorporation of adaptive capacity as phenotypic plasticity,

evolutionary adaptation and adaptive capacity through

physiological limits into the same framework (Bush et al.,

2016). 2016). In eco-evolutionary dynamic models, local

populations on a grid cell are assumed to adapt to local

environmental conditions, whilst accounting for stochastic

processes of individual life cycle, such as birth, death and

migration (i.e. age-structured demographic model). Here,

static niche models are used to predict the current

distribution of a species based on environmental conditions.

Then, the predicted distribution is used to initialize simulated

changes in the distribution accounting to adaptation as driven

by scenarios of climatic change (Cotto et al., 2017).
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Integrating genomic at the onset of
SDMs: Predicting stock distribution
as a function of standing
adaptive variation

Our proposal places adaptive potential – from genomics – at

the basis of an SDM approach (Figure 1). Conceptually, we

propose to adjust the Bayesian J-SDM framework presented in

the previous section to utilize information at genotype level, or

specifically, allelic frequencies. In essence, we are literally

transfiguring the concept of “species” into “alleles”. This

means that instead of a pool of species (or individuals of a

given species), we would have a pool of allelic frequencies from

the candidate loci obtained either via environmental associations

or transcriptomes of experimentally exposed individuals. The

biological input variable would thus be allele presence-absence

or frequency between populations of either specimens collected

across the species distribution range or experimental groups.

Naturally, the concept can be extended to a pool of candidate

loci (and respective alleles), as the identification of several or

dozens of candidate loci either through environmental

associations or experimental work is nevertheless common

(Hoban et al., 2016). The main goal is to consider adaptive

genomic information as valid predictors of shifts in species
B

C

D

A

FIGURE 1

Conceptual eco-evolutionary framework adapted from a Bayesian joint-species distribution model (J-SDM) to estimate species distribution from
allele occurrence patterns and fitness. The framework is divided in four steps, (A) fish sampling at spawning locations representative of the
species distribution, (B) identification of the candidate genes and if possible, empirical assessment of allele reaction norm for a focal
environmental variable, (C) model conception based on allele occurrence and environmental conditions at sampling sites, using optimum and
variance of the reaction norm to inform prior distributions and phylogenetic trees to identify similarities between sampled locations genetic
composition to characterize allele cooccurrence patterns, and (D) explain allele relationships with environmental variables, predict allele
distributions and eventually forecast species spawning distribution as the stacked allele distributions changes in response to environmental
variable changes.
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distribution, implying that to be a canonical response to change

of environmental conditions. Here we can make use of the more

informative power of experimental approaches by utilizing

reaction norms - or the range of phenotypic expression of a

specific genotype - as priors of the Bayesian-JSDM framework

we are proposing. Because reactions norms relate to the

phenotypic response of the measured trait of which the

genotype would be responsible for, these transcriptome-

derived priors are key to model posterior distribution of

adaptive genetic variation. When candidate loci are identified

with environmental associations, then the priors for allele

association with environmental variable can be the correlation

statistics reported by currently utilized environmental

association software. To name some, Bayenv2 (Günther and

Coop, 2013) reports Bayes factors and Spearman’s rho statistic

for each allele-environment variable association, and the latent

factor mixed models (lfmm) incorporated in R package LEA

(Frichot and François, 2015) identifies candidate loci

considering a z-score distribution of correlation values also for

each allele-environment variable association. This candidate-

detection software also employs Bayesian statistics and thus

correlation statistics outputs of several runs consecutively

identifying the same candidate loci can be utilized as prior

distribution for allelic response. Certainly, these priors are far

less indicative of an allelic response than reaction norms

obtained from experimental set-ups. Nevertheless, having a

prior on allele-abiotic predictor relationships can reduce the

risk for spurious correlation in the SDM framework and become

useful in case of sampling bias.

Lastly, the abiotic input variables would be those relevant to

explain species niche, such as temperature, salinity, oxygen

concentrations, etc. Priors for these variables are key - because

environmental conditions are highly dynamic in the marine

environment - and can be obtained from several databases such

as BioOracle (Assis et al., 2018). At the end, the output variable is

the occurrence probability, or frequency, of candidate loci’s

alleles in response to abiotic predictors. Species distribution is

eventually obtained by stacking together genotype distributions,

returning the potential full habitat suitability map at species level

as a function of the adaptive potential if its populations

(Figure 1). Adding phylogenetic trees to the J-SDM like

framework can help identifying similarities between sampled

locations genetic composition and characterize allele co-

occurrence patterns.
Applicability to fisheries management

The combined framework we propose here explores the

adaptive potential of fish stocks while projecting it into future

species distributions. As such, the framework not only has the

potential to inform about the suitability of areas beyond the
Frontiers in Marine Science
 06
currently known viable distribution but also that species might

adapt to environmental shifts within current distribution

boundaries. In this context, mobility (to follow environmental

optima) and adaptation (to remain in the same environment) are

not mutually exclusive. For fisheries management, the

realization of a dynamic fish stock both in terms of mobility

and adaptive potential would necessarily translate in the

following considerations:

1 – Local or regional extinction of stocks – often assumed

when only mobility is considered – might not necessarily occur

as a function of environmental shifts. This means that

management bodies should not “give up” on the protection of

specimens that are already moving to outside their respective

areas of governance. If anything, it becomes even more

important to protect mobile stocks because selective pressure

posed by environmental shifts acts synergistically with

anthropogenic pressure of fishing (Baltazar-Soares et al., 2021a;

Hočevar and Kuparinen, 2021). In practice, identifying adaptive

potential of stocks potentiates the development of measures to

maintain local stocks levels despite species’ migratory capacity.

Notably, mechanisms to implement measures stemming from

the above premise already exist and are commonly applied

upon stock crashes: fishing restrictions and imposition of

quotas. The context however would differ, because in our

particular example fish stocks are not necessarily in a

vulnerable state in present conditions.

2 - New areas might be deemed as suitable on top of those

that are currently being proposed by traditional SDMs

approaches. The implications for management here are

multiple and range from an increase of monitoring activities

to detect the species presence at those sites, to the design of

measures to preserve/protect of future spawning areas, and to a

deeper investigation of biotic interactions that might result from

those expansions. Perhaps in a first stage, biomonitoring

activities appears to be immediately applicable measure in

scientific fisheries surveys. Identifying this type of climate

migrants and where/when they start to occur would be an

indicator of change and evidence of shifting climatic

conditions. Within a management framework, it would also

likely lead to access the impact of these newcomers to nonnative

to the sustainability of local fisheries.

We acknowledge that it might be challenging to accept the

above considerations in the absence of the hindsight the future

inevitably offers. Still, tackling climate-related issues requires

enhancing of our predictive capacity and arguably no other

framework would do it better besides one that incorporates

ecological and evolutionary components. Still, it is important to

remember that a framework like ours holds on assumptions that

are in themselves speculations in the respective area of research.

The most notable are those associated with the assignment of

genetic variation to selective advantage and with habitat suitability

disregarding biotic interactions in new habitats. It is obvious that
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our framework will certainly benefit from knowledge increments

on genotype-phenotype-environment interactions in providing

conclusive evidence for genomic signatures of selection, and in

SDMs considering biotic interactions (HilleRisLambers et al.,

2013; Pigot and Tobias, 2013). For example, expanding the

spatial scope to other areas critical to marine organism’s life

cycle such as nurseries or feeding grounds will certainly increment

the resolution of analytical strategies focused on evolutionary

responses. Likewise, considering genetic other architectures

more complex than the simplistic genotype x phenotype view

we illustrated here would also offer a more realistic picture of

evolutionary responses. Until complexity arises, frameworks such

as the one we propose here remain highly exploratory but

nevertheless a stepping stone to the flourishing field of

advanced fisheries research.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material. Further

inquiries can be directed to the corresponding author.
Author contributions

All authors contributed to the article and approved the

submitted version.
Funding

The authors acknowledge the Portuguese Foundation for

Science and Technology (FCT) through the strategic project
Frontiers in Marine Science 07
MARE-UIDB/04292/2020 granted to MARE (Marine and

Environmental Sciences Centre) and through the project LA/

P/0069/2020 granted to the Associate Laboratory ARNET. AL

acknowledges the European Union’s (EU’s) Horizon 2020

(H2020) research and innovation programme under the Marie

Skłodowska-Curie grant agreement No 101038057. EG

acknowledges the Turku Collegium for Science, Medicine and

Technology. MBS acknowledges the Academy of Finland

funding decision 321417.
Acknowledgments

We also thank members of the ICES-PICES Working Group

on Small Pelagic Fish (WGSPF) for helpful discussions.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
Allendorf, F. W., Hohenlohe, P. A., and Luikart, G. (2010). Genomics and the
future of conservation genetics. Nat. Rev. Genet. 11 (10), 697–709. doi: 10.1038/
nrg2844

Andrello, M., D’Aloia, C., Dalongeville, A., Escalante, M. A., Guerrero, J.,
Perrier, C., et al. (2022). Evolving spatial conservation prioritization with
intraspecific genetic data. Trends Ecol. Evol 37 (6), 5537–564. doi: 10.1016/
j.tree.2022.03.003

Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E. A., and De Clerck,
O. (2018). Bio-ORACLE v2. 0: Extending marine data layers for bioclimatic
modelling. Global Ecol. biogeogr. 27 (3), 277–284. doi: 10.1111/geb.12693

Baltazar-Soares, M., Hans-Harald, H., and Eizaguirre, C. (2018). Integrating
population genomics and biophysical models towards evolutionary-based fisheries
management, ICES J. Mar. Sci. (2018) (Wiley Online Library), 75.4 1245–1257.

Baltazar-Soares, M., Brans, K. I., and Eizaguirre, C. (2021a). Human-induced
evolution: Signatures, processes and mechanisms underneath anthropogenic
footprints on natural systems. (Wiley Online Library) 14, 2335–2341.
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