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A B S T R A C T   

Forecasting with accuracy the quantity of energy produced by wind power plants is crucial to enabling its 
optimal integration into power systems and electricity markets. Despite the remarkable improvements in the 
wind forecasting systems in recent years, large errors can still be observed, especially for longer time horizons. 
This work focuses on identifying new numerical weather prediction (NWP)-based features aiming to improve the 
overall quality of wind power forecasts. 

The methodology also incorporates a sequential forward feature selection algorithm. This algorithm was 
designed to select iteratively the meteorological features which minimize the wind forecast errors. 

The methodology was applied separately to seven wind parks in Portugal with different climate characteris-
tics. The proposed approach allowed a reduction between 13% and 37% in the root mean square errors of wind 
power forecasts, compared with a baseline scenario. While the meteorological features identified for each wind 
park showed similarities within regions with analogous wind power generation profiles, each wind park required 
specific meteorological parameters as input data to obtain the best performance. Thus, the results show to be 
crucial to select the most relevant features of a specific site to maximize the accuracy of a wind power forecast.   

1. Introduction 

Accurate forecasting of wind power production is important for the 
efficient and safe operation of a power system, especially for large shares 
of embedded wind generation [1,2]. In addition, in most electricity 
markets, a better wind power forecast also enables to reduce the need of 
balancing energy from the reserve markets, which often incurs a high 
cost that reduces the profitability of the wind power producers [3]. 

Forecast approaches can be split into three main categories: i) 
statistical-based approaches using historical time series, ii) physical 
approaches based on the use of numerical weather prediction models 
(NWP), and iii) hybrid approaches that combine two or more models of 
similar or different nature [4]. For the forecast time horizon of interest 
in this work, numerous approaches have been developed in recent years 
to forecast wind energy based on NWP models [4]. Detailed reviews may 
be found in the literature [5,6]. Notwithstanding the advances observed 
on NWP outcomes, systematic errors still persist in their outputs due to 
the chaotic nature of the atmosphere, whereby small initial errors can 
grow within a deterministic system and eventually result in the failure of 

the forecast for a long time horizon [7]. To overcome some of the 
drawbacks of these models, statistical downscaling techniques of the 
NWP outputs have been proposed, providing location-specific wind 
power forecasts [8]. Several approaches have been developed that show 
a higher capability of improving forecast accuracy when compared with 
a purely NWP-based approach [9]. 

Also crucial for maximizing the accuracy of NWP are the meteoro-
logical parameters used as input data for a power forecast system [6,10]. 
In most of the existing literature, the focus is essentially on the devel-
opment of statistical methods, often neglecting the potential of NWP 
accurate information to improve the accuracy of forecasts. While nu-
merical models provide a variety of different meteorological parameters 
that can be used as inputs [11], most studies use only wind speed and 
direction as input variables in their forecast systems [10]. A few others 
include parameters such as air pressure, wind shear, temperature and 
humidity, which also influence the conversion efficiency [12,13]. 
However, recent works have shown that a careful selection of input 
variables for statistical methods can strongly improve the accuracy of 
such wind speed/power forecasts [11,14]. 
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Methodologies based on principal component analysis (PCA) have 
proved to be useful for assessing wind power variability. In the region 
under study in this work, which is strongly influenced by climatic pat-
terns such as the North Atlantic Oscillation (an important source of 
predictability for wind power [15,16]) some authors successfully used 
weather-type approaches based on PCA to understand and predict 
extreme events as wind power ramps [17] as well as the monthly wind 
power resource variability and production [18]. 

Another common approach in the literature is the use of PCA as a 
data dimensionality reduction technique [14]. The outputs from the PCA 
are used to feed the statistical methodologies enabling to obtain the 
wind power forecasts. A PCA approach coupled with a random forests 
filter algorithm to identify the spatial patterns of meteorological pro-
cesses that are related to strong wind variability was used in Ref. [19]. 
The authors suggest that meteorological parameters, such as the geo-
potential height, are crucial to improving the characterization of wind 
speed variability. With a similar approach, based on PCA coupled with a 
mutual information approach, different degrees of meteorological 
connection with wind power ramps were detected [20]. They later 
identified the zonal and meridian wind components at different pressure 
levels, as well as the geopotential height, as the most important features 
that characterize wind power variability, especially during wind power 
ramp events. 

An improvement of up to 20% in the hourly and daily wind speed 
forecast can be obtained when a feature selection approach to select the 
most meteorological input parameters was applied [11]. The model that 
ranked first in the European Energy Market 2020 wind power fore-
casting competition is based on a physics-oriented pre-processing system 
[21]. This model includes a NWP parameters selection approach that 
had a positive impact on the model performance. The authors identified 
25 parameters as the most appropriate to improve the forecast accuracy 
up to 20% in hourly and daily wind speed accuracy from a set of 98 
predictors extracted for a NWP single spatial point. These predictors 
include the meridional and zonal wind components at the surface and 
upper levels (500 hPa), as well as the vertical gradient of temperature, 
which is a measure of atmospheric instability. 

As highlighted in some aforementioned works, another feature from 
NWP that has been explored is the use of spatial grid data information, in 
contrast with the use of data from just a single spatial point or an average 
of the points of the NWP domain that surrounds a wind park. Indeed, the 
variability of wind power observed in a specific location depends not 
only on local wind dynamics, but it is also strongly influenced by large- 
scale atmospheric patterns [22]. While these patterns may be correctly 
simulated for a larger area, the time series may show deviations in a 
specific location [23]. By using NWP spatial grid data information, it is 
possible to assimilate the dynamics of neighbouring regions to com-
plement the current local information used for forecasting. Several 
spatial approaches to extract the most relevant information from a set of 
NWP grid data were implemented in Ref. [22]. In the case of wind 
power, the authors concluded the PCA approach helps to obtain the best 
performance. 

1.1. Research gap 

As described by several authors (e.g. Ref. [14]) one of the most 
relevant research directions for improving wind energy forecasting is the 
use of additional exogenous input parameters. Most of the existing 
works are limited to a small set of meteorological parameters such as 
wind speed and direction, air temperature and pressure to feed the wind 
power forecast systems. Even the works that explore up-to-date statis-
tical approaches do not explore all the information available from the 
NWP models (e.g. Ref. [24]), which provide information regarding 
meteorological conditions with impact on the wind power output [14]. 
To the best knowledge of the authors, no previous research has inves-
tigated the benefits of combining optimally a large number of meteo-
rological parameters with the use of PCA, neither highlight the 

importance of some meteorological parameters with impact in the wind 
power variability (e.g., vertical temperature gradient) to improve the 
accuracy of wind power forecasts. Nevertheless, if not properly selected, 
the use of a large amount of input data can lead to an underperformance 
of the forecasts [11]. In addition, the similarities in NWP meteorological 
features identified among regions/wind parks under distinct climate 
conditions were not addressed in the aforementioned works. 

1.2. Novel contributions 

The aim of this work is to identify new NWP-based meteorological 
features capable of improving the overall quality of a deterministic wind 
power forecast. Thus, this work addresses the identification and selec-
tion of the meteorological input data that proves to be most effective in 
improving the wind power forecast accuracy. Parameters traditionally 
not considered in the forecast systems were considered by exploring 
meteorological data derived directly from a NWP and others with a 
known influence on wind power variability [21], such as wind shear 
[13] or atmospheric instability, which can be computed based on the 
data from these models. The meteorological parameters include infor-
mation from surface-level (e.g., mean sea level pressure) and vertical 
levels (e.g., air temperature). At the same time, this work contributes to 
identify if the use of spatial grid data instead of data from a single point 
enables to improve the forecast accuracy as discussed by several authors 
(e.g. Ref. [22]). Therefore, rather than explore new statistical ap-
proaches - an usual artificial neural network (ANN) technique is used - 
this methodology provides insights into how much the accuracy of a 
forecast can be improved by exploring all the capabilities of a NWP. The 
work considers seven wind parks located in distinct climatic regions in 
Portugal, thus enabling to provide some insights regarding the most 
adequate meteorological parameters for typical regions (e.g., coastal 
and mountain regions). The forecasting methodology uses a greedy 
sequential forward feature selection algorithm to choose iteratively the 
meteorological features that minimize an objective function. This al-
gorithm embeds a statistical approach based on an artificial neuronal 
network, which is one of the most used approaches in wind power 
forecast systems. 

The remainder of the paper is structured as follows: Section 2 de-
scribes the data and the methodology used in this work, Section 3 pre-
sents the results obtained for different wind parks, and, finally, in 
section 4 some final remarks are provided taking into consideration the 
main findings of this work. 

2. Data and methodology 

The period used to apply the methodology developed in this work is 
from January 1, 2015 to December 31, 2016. The data were split into 
two subsets: one for calibration, which includes training and testing; and 
another for validation. The validation dataset comprises two months, 
one in summer (August 2016) and the other in winter (December 2016). 
The remaining period (twenty-two months) is used to calibrate the 
methodology presented in this work. 

2.1. NWP and wind power data 

2.1.1. NWP data 
NWP numerical models, such as the publicly available Weather 

Research and Forecasting (WRF) model [25], allow the grid output for a 
given limited region to be obtained without the need to use an extensive 
and expensive monitoring network. WRF models are able to accurately 
simulate the evolution of air masses using the Navier-Stokes equations, 
physical parameterizations, and boundary and lateral conditions data. 
For this reason, wind energy forecasting systems for time horizons above 
6 h strongly rely on data from these models. 

In this work, data from the WRF model provided by MeteoGalicia are 
used [26]. These data are freely available and comprise various 
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historical meteorological forecast parameters. Three nested domains are 
used with the following spatial grid resolution: 36, 12 and 4 km. The 4 
km domain does not cover all the locations analysed in this work, 
therefore, data from the 12 km domain was used. The longitude of the 
domain ranges from − 21.33◦ to 6.16◦, while the latitude is 33.78◦ to 
49.46◦. The time resolution is 1 h. Each WRF run is initialized at 00h 
UTC and the time horizon considered is 48 h ahead, comprising the time 
frames used by the Iberian Electricity Market. Here, only the last 24 h 
are analysed since bids in the electricity markets are based on this period 
and thus would directly benefit from improvements in the forecast 
accuracy. 

In this work, most of the outputs provided by the WRF model are 
used and tested to identify new meteorological features that improve the 
accuracy of a wind power forecast (Table 1). 

In addition to the outputs from the NWP model, new parameters that 
can influence the variability of wind speed and the wind-to-power 
conversion process were computed for the same grid-points. These 
variables are mean sea level pressure gradient (MSLPGrad), vertical 
temperature variation (Tvar.), wind shear (WindShear), and wind power 
density (WPD). MSLPGrad was calculated from the mean sea level pres-
sure (MSLP) field using a first-order centred finite difference, Equation 
(1). 

MSLPGrad =
∂MSLP

∂x
î +

∂MSLP
∂y

ĵ ≈
MSLPi+1,j − MSLPi− 1,j

2Δx

+
MSLPi,j+1 − MSLPi,j− 1

2Δy
(1) 

In the previous equation i-th and j-th represent the spatial point of the 
domain, in the x and y coordinates of projection, respectively. Δx and Δy 
represent the spatial resolution in the x and y coordinate of projection, 
respectively. 

The vertical temperature variation was determined using the tem-
perature between two pressure levels from the NWP model at 2 m and 
850 hPa, Equation (2): 

Tvar. =T850 − T2 (2) 

The hourly wind shear parameter was determined based on the 
power law profile, which assumes that the wind speed varies with the 
height above ground, according to Equations (3) and (4): 

WS(z)= βzWindShear (3)  

≡ ln(WS(z))= (WindShear× ln(z)) + ln(β) (4) 

The previous expression is in the general form: y = mx+ b. There-
fore, the wind shear is assumed to be provided by the slope determined 
using a linear least squares algorithm that fits the NWP wind speed 
vertical profile. The wind speed heights used were WSσ0.994 and 
WSσ0.986, which correspond to nearly 50 m and 110 m above ground 
level, respectively. In the previous equations, β is a constant and z is the 
height above ground level. The wind power density is an indicator of the 
maximum recoverable power as previously used to improve the wind 
power forecast accuracy [21]. This parameter is determined as described 
in Equation (5): 

WPD= 0.5 × ρair × WS3
σ0.986 (5) 

Due to the data available, ρair was computed for 2 m above ground 
level. The barometric formula was used to extrapolate the pressure 
values using the MSLP and T2 data. 

2.1.2. Wind parks data 
Instead of randomly selecting a set of wind parks to apply the 

methods presented in this work, it was decided to use the information 
presented in Ref. [27]. In the aforementioned work, the authors applied 
a clustering algorithm to identify regional wind power generation pat-
terns across the locations of existing wind power plants in Portugal. The 
authors identified eight (spatial) regions and associated these regions 
with different weather climates and local characteristics (see Fig. 1). As 
described in Ref. [27], regions 1 to 4 are mostly located in central/-
northern Portugal and are mountain areas with highly complex orog-
raphy. The remaining regions (5–8) are mainly located in coastal regions 
(centre and south of Portugal) with low-to-moderately complex 
orography. 

In this work, seven of these regions are analysed, using one wind 
park located in each region. This approach enables to identify similar-
ities in the NWP meteorological features among the different regions/ 
wind parks. All wind parks have approximately 20 MW of nominal ca-
pacity. For each wind park (WP), a common period of two years of data 
was gathered. For Region 8, it was not possible to obtain data from a 
wind park and, therefore, this region was not analysed. 

2.2. Methodology to obtain a deterministic wind power forecast 

Fig. 2 depicts a flowchart of the proposed methodology to identify 
the most relevant NWP meteorological features. In this case, the most 
relevant are the ones that minimize the wind power forecast normalized 
root mean square error (NRMSE) for each wind park under analysis. 
Nevertheless, the methodology followed in this work could easily 
incorporate other objective functions. The NRMSE is a commonly used 
metric to evaluate forecasts against observations, enabling to assess the 
amplitude and phase errors. 

Fig. 2 provides a flowchart of the main steps and a brief description 
of each step is provided in the following subsections. 

The benchmark forecast used in this work consists in feeding the 
statistical approach with single point information of the most common 
meteorological input data in the wind power forecast systems: wind 
intensity (WS σ0.986) and information regarding the wind direction (U 
σ0.986 and V σ0.986). 

2.2.1. Principal component analysis 
The application of principal component analysis (PCA) aims to detect 

the most relevant spatial-temporal synoptic variability modes, while 
cancelling the impact of local effects that occur in principal components 
(PCs) with reduced percentage of variance [28]. PCA has been used by 
several authors as a dataset reduction dimension technique [14]. 
Mathematically, each of the aforementioned meteorological parameters 
that have j-th spatial points and a temporal dependency can be 

Table 1 
Meteorological parameters obtained from the NWP model and their respective 
acronyms.  

Type of 
information 

Meteorological Parameter Acronym 

Single level Cloud cover at high levels CHF 
Convective available potential energy CAPE 
Convective inhibition CIN 
Humidity relative at 2 m HR 
Mean sea level pressure MSLP 
Planetary boundary layer height PBL 
Surface downwelling longwave flux LWF 
Surface downwelling shortwave flux SWF 
Surface wind speed gust Gust 
Total accumulated convective rainfall Rainfall 
Atmospheric visibility Vis 

Multiple level Air temperature at 850, 500, and 2 m T500,T850, T2 

Geopotential height at 850, 500, sigma 
level 0.986 

HGT500, HGT 850, 
HGT σ0.986 

U-wind component at sigma levels 0.994 
and 0.986, and 10 m 

U σ0.986, U σ0.994, U 
10 

V-wind component at sigma levels 0.994 
and 0.986, and 10 m 

V σ0.986, V σ0.994, V 
10 

Wind speed at sigma levels 0.994 and 
0.986 

WS σ0.986, WS σ0.994  
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decomposed through a linear combination of spatial and time weights, 
Equation (6). 

Z =
∑N

j=1
atjej (6)  

where Z is the meteorological variable, atj are the PCs’ scores, ej is the 
eigenvector of the covariance matrix and N is the number of total spatial 
points [28]. The first PC explains the maximum amount of the variance 
for a specific parameter. From the residual variance, the second PC ex-
plains the maximum possible variance. This PC is uncorrelated with the 
first identified PC. The same happens until the N-th PC [28]. In a first 
step, in this work, the number of retained PCs for each meteorological 
parameter was determined according to the total explained variance. 
Typically, for forecast purposes, the total variance used ranges from 80% 
to 95% [22,29]. Therefore, since no predefined value was identified in 
the literature, the criterion to retain the number of PCs that explained 
90% of the total variance for each meteorological parameter was used as 
a first approach. 

Based on the NWP data, the PCA is applied for each meteorological 
variable after applying a data normalization process for each meteoro-
logical parameter, as shown in Equation (7). 

Zt,j =
Xt,j − xj

sj
(7) 

In equation (7), Zt,j is the normalized value, Xt,j is the original value, 
and xj and sj are the mean and standard deviations for j-th grid point, 
respectively. 

2.2.2. Feature selection approach 
Algorithms for the selection of the best input features aim to identify 

a subset of variables from a larger dataset, which can efficiently lead to 
more reliable predictions by reducing negative effects, from noise to 
irrelevant variables that might lead to an underperformance of the 
forecast model [30,31]. Thus, the benefits of this step are to: a) reduce 
the computational effort, b) simplify model selection procedures for 
accurate prediction, and c) improve the comprehension of complex 
dependencies between the predictor and the predicted variables [14]. 

Feature selection methods can be classified into three main types: 
filter, wrapper and embedded [32]. The filter methods remove the less 
significant variables a priori, and then a model is created based on this 
selection. In this case, for instance, the variables with low cross corre-
lation values can be eliminated. The wrapping methods involve the 
entire training algorithm in the variable selection process, training 
several iterations (as many as there are variables) of the model by 
adding (or removing) variables to each one of them and evaluating the 

Fig. 1. a) Location of existing wind parks in Portugal (December 2018) and assignment of each wind park according to its geographical region, b) wind power daily 
average profile by region. Figure adapted from Ref. [27]. 

Fig. 2. Flowchart of the main steps to obtain the most relevant meteorological features. The steps in the blue box belong to the K-fold cross validation procedure.  
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performance of the model obtained. The variables that help to improve 
the accuracy of the model are retained for the construction of the final 
model. On contrary, the variables that do not allow improving the ac-
curacy of the model are discarded. Lastly, embedded methods introduce 
the variable selection process directly into the training process, in order 
to avoid the complete search that happens in integrated methods, thus 
reducing computational complexity. 

In this study, to identify the most relevant meteorological features, a 
wrapper technique was implemented. Specifically, the Sequential For-
ward Feature Selection (SFFS) algorithm was selected [30]. The SFFS 
implemented is a greedy algorithm that chooses the “most attractive” 
solution in each iteration [11]. In this case, the algorithm attempts to 
find the optimal feature subset by selecting, iteratively, the meteoro-
logical PC that reduces the NRMSE value for the calibration period. Note 
that this type of approach may not be as effective compared with a 
meta-heuristic approach, in which different sets of features are evalu-
ated together, as discussed in Ref. [11]. However, a greedy algorithm 
guarantees a good enough solution with reduced computational cost. 

Considering the robustness of the SFFS results, i.e., the consistent 
production of a reliable feature subset, a ten-fold cross validation was 
employed by splitting the calibration period into training and testing 
data [30]. This step consists in removing randomly two months of data 
from the calibration period, which constitute the testing data, Fig. 3. 
Then, the SFFS algorithm is applied using the remaining training data 
corresponding to a total of twenty months. Afterwards, the NRMSE 
performance is evaluated using the data from the testing period. Ulti-
mately, only the PCs that repeat eight or more times are used in the final 
results (validation dataset) to assess the benefits of the feature selection 
algorithm to improve the wind power forecast. 

2.2.3. Ranking the PCs 
The distance correlation [33] between each retained PC and the 

observed wind power is computed to rank in descending order the PCs 
that will interactively feed the SFFS algorithm, Fig. 4. The main 
advantage of the distance correlation, compared with the common 
Pearson’s correlation, is its capability to detect both the linear and 
nonlinear associations between two random variables [33]. Distance 
correlation ranges from 0 to 1. A value of zero indicates independence 
between the PC and the observed wind power production from a given 
wind park, while a value of one implies linearity between the two 
time-series. The PC with the highest correlation value is used to start the 
SFFS algorithm. 

2.2.4. Artificial neural network – statistical approach to obtain wind power 
forecast 

An artificial neural network (ANN) methodology capable of assessing 
nonlinear relationships is used to forecast the wind power for a site [10]. 
Due to its capability to “learn by examples and experience”, the ANN is a 
highly interesting technique for solving nonlinear [34]. Thus, the main 
advantage of the ANN is its learning capability, which enables it to 
approximate nonlinear functions to solve problems where the 
input-output connexion is not well defined or not easily computable [4]. 

The use of ANN involves two main steps: training and learning. One 

of the most effective learning algorithms in ANN is the backpropagation 
algorithm [35,36] This type of algorithm uses supervised learning to 
adjust the weights and biases in each unit to produce the desired 
response to the given inputs. Thus, the algorithm aims to reduce this 
error until the ANN learns the training data [35]. The training begins 
with random weights that are adjusted iteratively so that the error (the 
difference between estimated and expected results) based on input and 
output data will always be minimized to an acceptable value. Within 
backpropagation algorithms, the Levenberg-Marquardt (LM) algorithm 
is one of the most efficient training algorithms for methodologies based 
on artificial neural networks [34,36]. LM is an appropriate choice when 
it comes to the minimization of nonlinear functions, where a fast but 
efficient and stable convergence is required. 

2.3. Metrics to assess the wind power forecast performance 

Currently, a single unique metric that can describe or measure the 
performance of a forecasting methodology does not exist. For this 
reason, it is usual to analyse the performance of a variety of metrics in 
order to assess the methodology’s strengths and weaknesses. In this 
work, the following metrics are used: NRMSE, Equation (8) and the 
Pearson correlation coefficient (r), Equation (9). 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑T

t=1
(PFor. (t)− PObs.(t))2

T

√

NominalPower
(8)  

r=
∑

(PFor.(t) − PFor.(t))(PObs.(t) − PObs.(t))
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(PFor.(t) − PFor.(t))2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
(PObs.(t) − PObs.(t))2

√ (9)  

where PFor. and PObs. are the wind power forecast and observed for each t- 
th time, respectively. NominalPower corresponds to the nominal power of 
each wind park. The optimal value for NRMSE is zero. The Pearson 
correlation coefficient measures the similarities between observed and 
the forecast data. This coefficient varies between − 1 and 1. A value close 
to zero means a poor forecast, while the unit value represents perfect 
forecast without phase errors. A high negative value means that the 
forecast is in phase opposition. 

To quantify the improvement of including additional meteorological 
parameters, the approach followed in Ref. [22] is used for each metric 
and wind park as follows, Equation (10). 

Forecast improvement(%)=

(

1 −
ForecastMethodology

ForecastBenchmark

)

× 100 (10)  

where ForecastMethodology represents the results of a specific metric for one 
wind park using the different forecast methodologies analysed in this 
work, and ForecastBenchmark represents the forecast results for the 
benchmark methodology. A positive Forecast improvement value in-
dicates an improvement of the proposed forecast methodology. A 
negative value corresponds to an underperformance of the forecast 
methodology, with the benchmark showing the highest performance. 

Fig. 3. Visual representation of the different subsets defined: calibration and validation.  
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3. Results 

The results for the different metrics are shown for the validation 
period, which comprises two months: a summer month (August 2016) 
and a winter month (December 2016). Using the criteria described in 
section 2.2.1 (minimum number of PCs that explain a total variance 
above 90%) the number of PCs obtained can be significant for some 
meteorological parameters such as rainfall that presents a high spatial 
and temporal variability. After preliminary tests, it was verified the 
retained PCs of order equal to or greater than five were unable to 
improve the prediction and were therefore discarded by the SFFS algo-
rithm. This result is explained by the reduced variability explained by 
these higher order PCs that tend to represent only local effects that have 
no impact on the final results. As a consequence these PCs were removed 
from the analysis to reduce the computational effort. A total of 123 PCs 
were attained. 

Regarding the ANN, there is no predefined rule to define its config-
uration. Therefore, general rules of thumb and sensitivity tests were 
followed for determining a proper configuration. The following pa-
rameters were imposed in the ANN: 1) The number of hidden layers: It was 
considered only one hidden layer; 2) The different numbers of units in each 
layer: In this case, the number of hidden units starts with two. Then, two- 
thirds the size of the input layer plus the size of the output layer is used 
[37]. When necessary, rounding up is performed. Thus, this number 
increases as the number of PC that helps to reduce the NRMSE are 
identified; 3) The transfer function: In this case, a sigmoid function was 
considered for each unit from the input layer to the hidden layer. From 
the hidden layer to the output layer, a linear function was used; and 4) 
The learning algorithm: is the Levenberg-Marquardt [34]. The method-
ology was carried out using the Neural Network Toolbox [38], which is 
available in the MATLAB software package. 

3.1. Impact of the meteorological features in the NRMSE 

As an example, Fig. 5 presents the NRMSE for the first-fold cross 
validation, for four of the wind parks under analysis. This figure illus-
trated the impact of testing all PCs identified. To easily compare the 
behaviour of the algorithm for different WPs, the data were normalized 
by the forecast value achieved using the PC that ranked in the first place. 

From Fig. 5, it is possible to verify that the most accentuated decrease 
in the NRMSE is verified in the first ten components introduced in the 
SFFS algorithm. For the best case (WP 5), the reduction in the NRMSE is 
more than 30% of the initial value. The smallest decrease, around 20% 
of the initial value, was observed in WP 3. The remaining PCs allowed 
for further reduction of the errors, but in a less expressive way. WP 5 is 
the one that presents the most significant improvements as PCs with low 
distance correlation values are introduced in the algorithm. 

After the PC ranked in 33rd place was introduced, it is possible to 
verify that WP 7 does not benefit from more information to improve its 
forecast results. On the other hand, in the case of WP 3, it is possible to 
verify that the PC ranked in 108th place with a low distance correlation 
value allows a slight improvement in the forecast. 

This result highlights the importance of applying this type of feature 
selection algorithm, which does not filter a priori any PC that exhibits 
low distance correlation values with the observed wind power produc-
tion. Thus, one can conclude that the first features are much more 
important to reduce the NRMSE of the forecasting model than the other 
remaining features. However, if only the first features are used as input, 
the overall performance of the forecasting will be worse than the one 
with all features combined, as shown in Fig. 5. 

Despite the sharp decrease in the NRMSE values in the first ten 
principal components, it is possible to verify that there are some mete-
orological features that degrade the quality of the forecast and, 

Fig. 4. Visual representation of the PCs ranking based on the distance correlation.  

Fig. 5. NRMSE variation according to the number of PCs used in the SFFS algorithm for wind parks 1, 3, 5 and 7.  
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therefore, should not be considered in the final solution. Table 2 pre-
sents the top ten PCs for each wind park highlighting those that were 
selected through the SFFS algorithm. In the supplementary material, the 
list of the meteorological parameters used for each WP is presented. 

According to this table, it is possible to verify that, in all regions, the 
PCs that present the highest distance correlation values with the 
observed production are those parameters related to the primary source 
of wind power – wind speed or wind gust. Specifically, the parameter 
wind gust, Gust, usually not applied in forecasting systems, is the one 
with the highest distance correlation values in wind parks located in the 
interior of central and northern Portugal in mountainous areas. In the 
other locations, the average wind speed at different heights is the 
parameter with the highest distance correlation values. Other parame-
ters such as wind shear, planetary boundary layer and visibility also 
appear in the top 10 for several wind parks. These parameters are 
associated with atmospheric stability, which has an influence on wind 
power production. In some cases, they can have an active role in 
improving the forecast accuracy as depicted in Table 2. 

3.2. Feature selection results 

Table 3 shows quantity of PC retained for each parameter after 
applying the SFFS approach presented in this work. 

From Table 3, it is possible to verify that only three variables are used 
in all regions: wind gust, and wind speed at two different heights. WP 5 
is the one that uses more input features, 20 in the total. On the other 
hand, WP 7 only needs 11 to achieve its best performance. 

Although it can vary at the vertical level selected, the V-wind 
component of the wind is another variable retained to reduce the 
NRMSE in all regions under analysis. By contrast, the U-wind component 
of the wind is most useful in wind parks located in coastal regions and 
with reduced topographical complexity (WPs 5–7). For these wind 
parks, the identification of vertical temperature variation (Tvar) as a 
parameter is particularly important to reduce errors. The identification 
of these later two variables can be partially explained by the sea/land 
breezes that develop in these regions. This phenomenon is characterized 
by atmospheric instability caused by imbalances in the warming and 
cooling of the land surface and the sea. 

For WPs 1–5, part of the atmospheric instability is introduced in the 
forecast model through variables such as the planetary boundary layer 
(PBL) height. The PBL varies throughout the day due to factors such as 
large-scale dynamics, cloudiness, convective mixing, and the diurnal 
cycle of solar radiation. The importance of carefully selecting the PBL 
scheme for wind power application was analysed in several works, e.g. 
Refs. [39,40], since this parameterization can have an important role in 
the characterization of the low-level wind structure [41]. In the specific 
case of the model used in this work, the PBL is computed using Yonsei 
State University (YSU) non-local closure parameterization [42]. Ac-
cording to the authors, the PBL height parameter is given by the height 
where the minimum turbulent flux (heat, momentum, moisture) occurs. 
Visibility also has an impact on the forecast performance for four of the 
seven wind parks analysed. This parameter also reflects atmospheric 

stability, since it takes into account aspects such as water vapour, cloud 
and rain water mixing ratios, as well as air pressure. 

Regarding the variables that were calculated based on the model 
outcomes, as expected, power density is the parameter most used for 
different parks. The results also suggest that, with the methodology 
applied in this work, parameters at surface level such as mean sea level 
pressure, relative humidity, cloud cover at high levels, surface down-
welling longwave flux, as well as information on the highest levels of the 
atmosphere (e.g. temperature at 500 hPa) are not useful in reducing 
forecast error. 

3.3. Wind power forecast results 

Fig. 6 presents the results of improvements in the NRMSE of the 
proposed forecast solution in comparison with the benchmark method-
ology used in this work. The Pearson’s correlation results are provided in 
appendix B. The forecast improvement is computed for each WP using 
equation (10). 

The results demonstrate an improvement in the performance of the 
forecast for all wind parks (WP). This improvement varies from 13% 
(WP1) to 37% (WP4) in the case of the NRMSE. As shown in Table 3, for 
WP4, it is possible to verify that the most common parameters in wind 
power forecast systems (associated with wind direction) are, in practice, 
discarded and only Vσ0.994 is used. Another peculiarity of this park is the 
selection of information at high atmospheric levels, geopotential height 
at 500 hPa (HGT 500). The second best improvement in the forecast was 
observed for WP7 with a value of 33%. In this case, the most common 
variables are used as well as parameters associated with atmospheric 
stability, such as vertical temperature variation, Tvar.. Although not very 
expressive, the results suggest that wind parks located in mountainous 
regions tend to benefit more from the forecast methodology proposed to 
reduce the NRMSE. 

Although the results are not shown, it should be noted that the final 
weather features obtained for each park were tested in the remaining 
parks. In all cases, the results showed a lower performance than the one 
obtained for the model calibrated specifically for each wind park. 

3.4. Understanding the benefit from using spatial grid data and the SFFS 
algorithm 

In order to clearly understand the benefits of the proposed method-
ology - a feature selection with NWP grid data – identified by the 
acronym PCA with SFFS, two other forecast methods, that cover the most 
common approaches in the wind power forecast systems, are also ana-
lysed: PCA without SFSS, and Point with SFFS (Table 4). 

The first method (PCA without SFFS) uses the same meteorological 
parameters as the benchmark method (see section 2.2). In this case, the 
PCA technique is applied and all PCs that explain 90% of the total 
variance are retained, and used to feed the ANN approach. For the 
second model Point with SFFS”, the feature selection algorithm is applied 
using only the meteorological information from one NWP grid-point (as 
in the benchmark methodology). The nearest point between the NWP 

Table 2 
List of the first ten meteorological parameters and the number of the PC for each wind park. The parameters in bold text are the ones used for the final forecast.  

PC ranking WP 1 WP 2 WP 3 WP 4 WP 5 WP 6 WP 7 

1 Gust PC#1 Gust PC#1 Gust PC#1 Gust PC#1 WSσ0.994 PC#1 WSσ0.986PC#1 WSσ0.994 PC#1 
2 WSσ0.986PC#1 WSσ0.986PC#1 WSσ0.986PC#1 WSσ0.986PC#1 WSσ0.986PC#1 WSσ0.994 PC#1 Gust PC#1 
3 MSLPGrad PC#1 WSσ0.994 PC#1 WSσ0.994 PC#1 WSσ0.994 PC#1 Gust PC#1 Gust PC#1 WSσ0.986PC#1 
4 WSσ0.994 PC#1 WPD PC#1 WPD PC#1 MSLPGrad PC#1 WPD PC#1 WPD PC#1 WPD PC#1 
5 WPD PC#1 MSLPGrad PC#1 WindShear PC#1 WPD PC#1 WSσ0.994 PC#2 WindShear PC#1 PBL PC#1 
6 WindShear PC#2 WPD PC#2 Vσ0.986PC#3 PBL PC#3 Gust PC#2 HGT σ0.986 PC#2 Vσ0.986PC#3 
7 PBL PC#3 WSσ0.994 PC#2 Vis PC#1 Vis PC#1 WSσ0.986PC#2 PBL PC#3 SWF PC#2 
8 WS σ0.986PC#2 WindShear PC#2 PBL PC#3 ConvPrec PC#1 WPD PC#2 Gust PC#2 Uσ0.994 PC#1 
9 ConvPrec PC#1 WSσ0.986PC#2 SWF PC#3 WindShear PC#2 PBL PC#3 Vσ0.986PC#3 U10 PC#1 
10 Vis PC#1 Vis PC#1 PBL PC#1 WPD PC#2 HGT σ0.986 PC#2 WSσ0.986PC#2 Uσ0.986PC#1  
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grid points and the wind park is used. In Fig. 7, the quantification of the 
potential benefit of the different solutions against the benchmark 
approach considered in this work is presented. 

From Fig. 7, it is possible to verify that the results are consistent 
across all wind parks studied. PCA with SFFS has the lowest NRMSE 

value, followed by the Point with SFFS method. On average, the differ-
ence between the PCA with SFFS and Point with SFFS is approximately 
8%, with the highest values being shown in WPs 2 and 6. The PCA 
without SFFS method that uses only the most common meteorological 
variables and spatial information also enables a reduction in the error 
values. This result is consistent with those identified by other authors, e. 
g., Ref. [22]. However, this method without SFFS in WPs 2, 4 and 5 
shows an improvement of less than 5% compared with the benchmark 
results. The results in Fig. 7 highlight that the identification of the most 
relevant meteorological parameters with the application of the SFFS 

Table 3 
Features selected with the SFFS algorithm for the different wind parks.Colours represent the total number of PCs 
used for each meteorological parameter.. 

Fig. 6. Forecast improvements of RMSE over the benchmark by using the 
forecast approach proposed in this work for the different wind parks (WP). 

Table 4 
Characteristics of the scenarios analysed.  

Forecast 
method 

NWP 
data 

All meteorological 
parameters 

PCA SFFS 
algorithm 

Benchmark Grid- 
point 

No No No 

PCA with SFFS Grid- 
data 

Yes Yes Yes 

Spatial – PCA Grid- 
data 

No Yes No 

Point with SFFS Grid- 
point 

Yes No Yes  
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algorithm, even without PCA, enables to clearly improve the perfor-
mance of the forecast and reduces the NRMSE always above 7% (results 
for WP1 using the Point with SFFS method). 

4. Conclusions 

New meteorological features to improve the accuracy of wind power 
forecasts were investigated in this work. A wrapper feature selection 
approach was adopted by using numerical weather prediction (NWP) 
data that is publicly available. The meteorological feature selection was 
executed using a common statistical algorithm in the wind energy 
sector, the artificial neural network (ANN). The proposed methodology 
was applied to seven wind parks located in Portugal. Those wind parks 
present distinctive climatic conditions, enabling to identify similarities 
in the NWP meteorological features that contribute to improve the 
forecast at the same time they enable to compare the performance of the 
forecast among the wind parks available. 

It was shown that the use of key meteorological parameters such as 
wind gusts, wind power density, wind shear, and planetary boundary 
layer height can be used to improve a forecast of wind power. Using the 
methodology proposed, it was possible to observe an improvement in 
the forecast performance ranging between 13% (wind park 1) and 37% 
(wind park 4) in the case of the normalized root mean square error. 

This paper also analyses the benefits of using spatial information 
from the NWP grid compared with the use of time series for a specific 
grid point. It was possible to verify that the impact of the feature se-
lection algorithm is superior, when compared with the use of spatial 
information. However, combining the use of spatial information from 
the NWP with a rigorous choice of input meteorological data revealed to 
be the approach that produces the most accurate results. Future works 
should focus on understanding the impact of using meteorological fea-
tures that explain a reduced variance as well as the use of other objective 
functions in the feature selection algorithm. (e.g., maximization of the 
remuneration in the wholesale electricity market).The results suggest 
that an appropriate selection of meteorological features can improve the 
characterization of wind power variability, reducing the uncertainties in 
a wind power forecast. Thus, this selection constitutes a crucial step 
towards improving the accuracy of wind energy forecasting systems, 
which will play a crucial role in supporting stable, robust, and near 
100% renewable power systems. 
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