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Abstract: In this study, we attempted to find genetic variants affecting gene expression (eQTL =
expression Quantitative Trait Loci) in the human placenta in normal and pathological situations. The
analysis of gene expression in placental diseases (Pre-eclampsia and Intra-Uterine Growth Restriction)
is hindered by the fact that diseased placental tissue samples are generally taken at earlier gestations
compared to control samples. The difference in gestational age is considered a major confounding
factor in the transcriptome regulation of the placenta. To alleviate this significant problem, we
propose here a novel approach to pinpoint disease-specific cis-eQTLs. By statistical correction for
gestational age at sampling as well as other confounding/surrogate variables systematically searched
and identified, we found 43 e-genes for which proximal SNPs influence expression level. Then, we
performed the analysis again, removing the disease status from the covariates, and we identified
54 e-genes, 16 of which are identified de novo and, thus, possibly related to placental disease. We
found a highly significant overlap with previous studies for the list of 43 e-genes, validating our
methodology and findings. Among the 16 disease-specific e-genes, several are intrinsic to trophoblast
biology and, therefore, constitute novel targets of interest to better characterize placental pathology
and its varied clinical consequences. The approach that we used may also be applied to the study
of other human diseases where confounding factors have hampered a better understanding of the
pathology.

Keywords: placenta; preeclampsia; expression Quantitative Trait Loci

1. Introduction

Eutherian mammals made a drastic evolutionary ‘choice’ for survival, the one to host
the embryo and to develop the fetus over a relatively extended period of time. Since the
feto–placental unit is, in fact, a semi-allograft, that in all other circumstances should be
rejected by the maternal immune system. This tolerance period ranges from a few days
in marsupials (13 days in the Virginia opossum, where poor coping with inflammation
apparently shortens the length of the feto-maternal tolerance period [1]) to 22 months in
the African elephant. The pivotal organ for this heavy evolutionary option is the placenta,
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which manages immunotolerance, exchange of nutrients, withdrawal of waste, and pro-
gestational hormone production. The inherent complexity associated with this role of the
interface makes its regular function a fragile equilibrium, which in humans evolve relatively
often towards placental diseases, such as Hypertensive Disorders of Pregnancy (HDP),
Intra-uterine Growth restriction (IUGR), Gestational diabetes or other diseases related to
abnormal implantation [2,3]. Despite this obvious fundamental role, understanding the
genetic function of the human placenta is a difficult challenge, and overall this organ is not
explored as much as other organs. For instance, the Genotype Tissue Expression (GTex)
project, for instance, provides a comprehensive list of expression-Quantitative Trait Loci
(eQTLs), as well as splicing-QTLs (sQTLs) in 49 human tissues, that do not include the
placenta [4] Recent progress using global approaches made it possible to better analyze the
regulation of gene expression in the pathological placenta, such as in preeclampsia and
Intra-Uterine Growth Restriction [5,6]. Genetic regulation of gene expression by genetic
variants has been systematically analyzed in three recent articles that initiated deciphering
the landscape of genetically controlled genes in the placenta [7–9]. Our data presented
herein revisit the question of eQTL in the placentas and uses a novel methodological
approach to identify actual differences between normal and pathological placentas often
blurred by a major confounding factor, such as placental age. For this, we gave a strong
weight to the use and the definition of covariates. Covariates were defined by available
clinical (i.e., age of the placenta, disease status) and technical parameters (i.e., sample
preparation, origins), by principal components discovered from the transcriptome analysis,
and through the systematic identification of Surrogate Variables [10].

Since confounding factors are a major issue in placental genetics (especially the gesta-
tional age, the mode of delivery–C-section or Natural), we develop a novel approach that
could be used to identify relevant disease-associated genetic variants (SNPs) associated
with alterations of gene expression. In the first step, the QTL analysis was performed con-
sidering the disease status as a covariate, and then, in the second step, we did not correct
for disease status looking for eQTLs that might be influenced by genetics and disease and
being, therefore, potentially interesting in the context of placental pathologies. We surmise
that the additional couple of SNP-gene found were mostly and uniquely specific to the
disease. While it is not possible to affirm that the gene expression alterations are causal
to the disease, they could later be evaluated in other human cohorts of placental DNAs to
assess their potential predictive value heuristically.

The approach is summarized in Figure 1. This alternative analysis strategy could be
applicable to a wide range of eQTL studies, especially those in which gene expression is
believed to be highly influenced by clinical and technical variables and that is limited by
small sample sizes, such as those including disease samples.
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Figure 1. Overview of the experimental design. SNP = Single Nucleotide Polymorphism; PCA =
Principal Component Analysis; SVA = Surrogate Variable Analysis; eQTL = expression Quantitative
Trait Locus.

2. Methods
2.1. Summary of the Principle

In the first step, we performed the analysis including the disease status (Control,
Pre-eclampsia (PE), IUGR, and PE + IUGR) as a covariate, which allowed us to identify
eQTLs that influence placental gene expression independently of the disease. In order to
restrict the number of input genes for the analysis, we first built a linear model using the
gene expression levels for each gene in the function of the covariates, then we selected
a subset of potentially relevant genes based on their residual variance (the variability
of their expression level) since genes for which there is no residual variance once the
covariate effects are removed are not going to reveal any detectable effect that could be
partly explained by changes at the genetic level. This approach has similarly been used in a
QTL research paper for genomic methylation QTL (meQTL, [11]).
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This step of identification of eQTLs confirmed a large part of previously identified
couples eSNP-eGenes discovered in previous studies and identified new ones, presenting a
strategy that can be applied with a limited sample size (<100).

In a second step, we aimed to identify genes that are modified during complicated
pregnancy by the disease specifically and which present a component of genetic regulation.
Thus, we removed the disease status from the group of covariates and submitted the
data for analysis again in order to identify a novel list of eQTLs. This approach led to
the discovery of 16 cis-eQTLs that are potentially associated with placental diseases. We
surmise that these genetic factors identified may have been overlooked in previous analyses
since they could have largely been confounded with the covariates. In particular, in our
approach, we managed to partially account for critical confounding covariates such as
placental age, which is often difficult to dissociate from placental disease. Interestingly,
both approaches identified genes where we could observe statistical associations between
disease status and genotype at the locus.

2.2. Human Placental Samples

This study included the use of human placental samples from three different cohorts
for a total of 66 samples. For all the cohorts, the participant gave their informed consent. For
the St George’s cohort, the administrative ethical references were 19/LO/0974, approved by
the Brent Research Ethic Committee (London) on 28 June 2019. For the Angers cohort, the
study was approved by the Ethics Committee of Angers. The cohort was registered at the
French CNIL (Commission Nationale de l’Informatique et des Libertés no. pWP03752UL,
ethics committee for the collection of clinical data from patient records). The study was
validated by the French CPP (Comité de Protection des Personnes) and registered to the
French Ministry of Research under number DC-2009-907. Finally, for the Co-chin hospital
cohort, the ethical administration was given by the CPP ‘Ile de France XI’ under the
reference number 11018, 3 March 2011.

Angers University Hospital and Cochin Hospital cohorts have been described in [12].
They included 8 control (CTRL, placentas obtained from uncomplicated pregnancies) and
13 IUGR samples from Angers, 9 CTRL, 7 PE, and 3 PE+IUGR from Cochin. Preeclampsia
was defined by the presence of hypertension (systolic pressure > 140 mm Hg, diastolic
pressure > 90 mm Hg) and proteinuria (>0.3 g/day). IUGR was defined as a reduction of
fetal growth during gestation accompanied by Doppler abnormalities and birth weight
below the 10th percentile [13,14]. The Gynecochin cohort samples were kindly shared
by Dr. Louis Marcellin, and included 20 CTRL, 13 from natural delivery, and 7 from C-
section. For placental sample collection relative to Angers, Cochin, and Gynecochin cohorts,
sections of 1 cm3 of placental villi were dissected from four different cotyledons between the
basal and chorionic plates, as previously described in [14]. St. George’s Hospital samples,
6 PE placentas from C-sections, were kindly provided by Prof. Basky Thilaganathan and
MD Veronica Giorgione in the context of the iPlacenta consortium. PE was defined by
de presence of hypertension according to guidelines by The International Society for the
Study of Hypertension in Pregnancy [15]. Placental samples were collected from the middle
region of the placenta containing only villous tissue, just above the cord insertion point,
then washed in PBS.

2.3. RNA and DNA Extraction

Human placental tissues were obtained from three different cotyledons of the maternal
side of the placenta, washed extensively in sterile PBS, and snap frozen or in RNAlater
(Invitrogen, Waltham, MA, USA), then powdered using pestle and mortar on dry ice or
the hammering method in liquid nitrogen. The powdered tissues were then processed
for DNA and RNA extraction. RNA was extracted with TRIzol (Invitrogen), according to
manufacturer’s instructions; UltraPure™ Phenol:Chloroform:Isoamyl Alcohol (25:24:1, v/v)
(Invitrogen) was used in place of Chloroform. Extracted RNA was resuspended in RNAse
and DNAse-free water, and integrity was assessed with Bioanalyzer Agilent 2100 nano kit.
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For DNA extraction, powdered tissue was resuspended in Sample Lysis Buffer (10 mM Tris
Hcl pH8, 10 mM EDTA, 50 mM NaCl, 0.5% SDS, Proteinase K (Invitrogen #25530-049) used
at 1:3000) and incubated overnight in shaking water bath at 58 ◦C. Addition of absolute
ethanol allowed precipitation of the DNA in filamentous, visible form, which was then
transferred to new 1.5 mL tubes for additional washes in ethanol 70%. The pellet was left
to air-dry, and DNA was resuspended in Tris-EDTA.

2.4. Transcriptomic Dataset

100 ng of RNA from the human placental samples were analyzed by ClariomD arrays
(Applied Biosystems™, Affymetrix, Thermo Fisher Scientific, Montigny-le-Bretonneux,
France) as described in [12]. This array measures gene expression both at the gene level as
well as the exon level, providing also splicing isoform-specific data. The 66 samples were
processed in three different batches, generating three sets of raw data files (.CEL). Merging
datasets. To reduce batch effects in fluorescence signal due to experimental variability, the
raw data (.CEL) files were processed together using the Transcriptome Analysis Console
(TAC) software (Thermo Fisher Scientific), performing the default Robust Multi-Array nor-
malization (RMA). This algorithm performs background adjustment, followed by quantile
normalization and summarization [16]. The ClariomD array measures expression levels for
a total of 134,748 probes, corresponding to coding and non-coding genes, 18,858 and 66,845,
respectively, as well as predicted genes, pseudogenes, and small RNAs. Probe coordinates
refer to the GRCh38 Genome Build. For downstream analyses, only genes with known
GeneID and Description in TAC have been kept, removing transcripts identified by the
database AceView, as well as transcripts on the Y and mitochondrial chromosomes; for a
final total of 46,624 probes. Probes have been further filtered by mean fluorescent value
(LOG2) across all samples ≥ 4.5, reducing the total number of probes to 33,988 considered
to be “expressed”. Transcriptomic covariates. Classical clinical and experimental variables
in placental studies were used for the whole sample and included a total of 9 variables
(Batch, Cohort, Group, Delivery, Maternal Age, Ethnicity, Gestational Age, Sex, and Parity).
In particular, Batch refers to the experimental batch of transcriptomic data acquisition,
Cohort to the different cohort of origins of the placental samples relative to the Hospital
in which they had been collected, Group to the disease status, Delivery to the delivery
mode, either C-section or Natural delivery, and finally Sex to the placental sex. For these
9 variables, missing values were replaced with the mean of each disease group, according
to the disease group of the sample with missing value [17]. Summary statistics by disease
group are listed in Table 1, the complete dataset is available in Supplementary Table S2.

Table 1. Summary statistics of human placental samples sorted by disease.

Disease Group CONTROLS PE PE + IUGR IUGR

Delivery mode
(Caesarian/Natural) 23/12 (61.4%) 9/0 (15.8%) 3/0 (5.3%) 10/0 (17.5%)

Maternal age (years) 34.0 ± 3.9 34.2 ± 6.0 35.3 ± 2.4 32.1 ± 6.6

Ethnicity (Afr/Eur) 8/27 5/4 1/2 1/9

Gestational age (years) 39.2 ± 1.2 34.9 ± 2.6 30.0 ± 2.5 31.0 ± 2.8

Sex (M/F) 17/18 4/5 2/1 3/7

Parity 1.9 ± 1.5 1.2 ± 1.1 2.0 ± 1.4 1.2 ± 0.4

Principal Component Analysis (PCA) was performed in R (version 4.1.0, 2021-05-
18) with the R package PCATools, on the 57 samples, for the transcriptomic dataset of
46,624 probes. The eigencorplot function within the package was used to calculate correla-
tion coefficients between the first 10 principal components (PCs) and the known covariates;
it performs a Pearson correlation, followed by F-statistic [18]. The R package SVA was used
to identify potential additional sources of variation in the dataset, i.e., surrogate variables,
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by building the mod linear distribution with “Group” as the independent variable and
setting the mod0, to the intercept [10]. For more details, see [12]. A correlation matrix was
calculated in R, using as input the 9 clinical and experimental variables, the first 10 PCs
of gene expression PCA, and 4 identified surrogate variables to identify the final set of
variables correlated with global transcriptomic changes. A correlation coefficient cut-off
threshold of |0.9| was used to remove colinear variables [19]. The final set of transcrip-
tomic covariates includes Batch, Group, Delivery, Maternal Age, Ethnicity, Gestational Age,
Sex, Parity, and Transcriptome PC1 to PC5.

2.5. Genotype Dataset

For the 66 samples, 200 ng of genomic DNA were genotyped using the Infinium
OmniExpress (illumina) BeadChip, which interrogates 713,407 SNPs. The raw data files
were analyzed with GenomeStudio2.0 software to retrieve the genotype dataset using
the A/B allele Illumina notation. SNP coordinates used refer to the GRCh38 Genome
Build. Quality control. Quality control (QC) of samples and SNPs was conducted in
PLINK1.9 [20,21]. Samples were subjected to quality control, removing samples with a rate
of missing genotype ≥ 2%, as well as samples that presented an excess heterozygosity as an
index of contamination F < −0.05, calculated on the pruned dataset (pairwise correlations,
window size 50 SNPs, sliding window of 5 positions, SNPs with r2 ≥ 0.2 removed).
For SNP QC, SNPs with a rate of missing genotypes across samples≥ 1%, as well as
SNPs diverging from Hardy-Weinberg equilibrium (p-value < 10−6), have been removed.
In total, 57 samples and 665,191 variants passed quality control. Genotype covariates.
PCA was performed in PLINK1.9 on the clean dataset (57 samples, 665,191 variants),
pruned as described above, retaining the first 10 principal components (GenotypePC1-
PC10) as covariates for downstream eQTL analysis to summarise population stratification.
Ancestry Estimation. Ancestry estimation has been performed to infer the ethnicity of
placental samples from Cochin and Anger cohorts. Briefly, the genotypes from the 1K
Genomes Phase III release have been downloaded from The International Genome Sample
Resource, mapped to the GRCh37 genome build, and have been used for imputation of
allele frequencies across populations [22,23]. The set of SNPs in common between the two
datasets has been established, and the two datasets merged using PLINK1.9. PCA was
performed on the merged dataset, pruned as described above, including only autosomal
chromosomes, for a total of 185,249 variants. Sample clustering along PC1 and PC2 have
been used to extrapolate the unknown ethnicities of the placental samples based on their
relative distance with the 1K Genomes Phase III samples.

2.6. eQTL Analysis Workflow

The R package MatrixEQTL has been used to perform the eQTL analyses in R [24], by
applying a linear multivariate model to test the contribution of each SNP genotype to gene
expression levels. Two main approaches were pursued. The ALL COVARIATES dataset
included the full set of 23 covariates (Batch, Group, Delivery Placental Sex, Gestational
Age, Maternal Age, Parity, Ethnicity, the first 5 PCs from gene expression PCA, the first
10 PCs from genotype principal component analysis that summarises population strati-
fication), allowing to identify the eSNPs correlating with changes of gene expression of
the eGenes while minimizing spurious associations between SNPs and Genes [25]. The
MINUS DISEASE dataset included all covariates but “Group” and Gene Expression PC5
given its strong correlation with the disease phenotype described by the “Group” variable.
With this approach, the contribution of the disease variable on gene expression changes
was not corrected for, allowing to investigate a set of genes for which the effects of disease
on expression are important and would have otherwise excluded to the residual variance
threshold, to identify SNPs that correlate with gene expression changes and could harbor
interaction effects with the disease phenotype.

For both approaches, the same workflow was followed. Each gene expression distribu-
tion was first normalized by a built-in function with rank (“average” method) followed by
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quantile normalization to reduce the impact of outliers. The normalized gene expression
dataset was then modeled by multivariate linear regression, expressing gene expression for
each gene in the dataset as a function of either the ALL COVARIATES or MINUS DISEASE
set of covariates. The residual variance of the model can be thought of as an indication of
potential genetic influence on gene expression levels [26,27]. Using incremental thresholds
of residual variance from 0.5 to 0.95 with 0.05 increments, 10 gene sets termed “RV0.05” to
“RV0.95” were defined and used as input gene expression datasets in eQTL analyses.

2.7. Cis-QTL Analyses of Gene Expression Subsets

Gene subsets RV0.50 to RV0.95 and 417,114 SNPs (MAF ≥ 0.15) were analyzed for
correlation with the LINEAR model parameter in MatrixEQTL [24]. We evaluated only
the correlation of eGenes and eSNPs in cis (cis-eQTLs) given the limited power of our
analysis and the small number of trans-QTLs previously identified in the placenta by a
larger designed study [9]. To further reduce the total number of tests, the cis-distance has
been set to 100 kb rather than the default 1 Mb [8]. The gene expression dataset has been
normalized with MatrixEQTL prior to performing eQTL analysis, as described above. For
the ALL COVARIATES Dataset analysis, 23 covariates (Batch, Group, Delivery, Maternal
Age, Ethnicity, Gestational Age, Sex, Parity, first five PCs of gene expression PCA, first
10 PCs of genotype PCA) have been accounted for by the software when performing multi-
variate linear regression for each gene-SNP pair, while for the MINUS DISEASE dataset, 21
covariates have been included: Batch, Delivery, Maternal Age, Ethnicity, Gestational Age,
Sex, Parity, first four PCs of gene expression PCA, first 10 PCs of genotype PCA. To correct
for multiple testing, the in-built function in MatrixEQTL has been used that estimates
FDR-adjusted p-values (q-values) for each gene-SNP pair with the Benjamini-Hochberg
procedure. In this study, only SNPs with FDR ≤ 0.05 have been considered as statistically
significant. The full lists of statistically significant eSNP-eGene pairs for both datasets are
presented in Supplementary Tables S3 and S4.

2.8. Calculating Enrichment of Significant cis-QTLs for Each Subset

To choose the best cis-eQTL analytical design, defined by the gene expression subset
used, the enrichment of significant cis-QTLs has been calculated. We define enrichment
as the number of cis-eQTL per eGene. Cis-eQTL enrichment has been considered together
with the total number of eGenes and eSNPs identified as a result of statistically significant
cis-eQTLs (FDR ≤ 0.05) in order to find the optimal cut-off, where we see an increase of
enrichment, without losing too many eGenes. For both ALL COVARIATES and MINUS
DISEASE datasets, the input gene expression dataset RV0.85 was selected as optimal
for the final cis-QTL analysis workflow and statistically significant cisQTLs were further
characterized and are presented here. The list of input genes with relative individual
expression levels as well as residual variances, are presented in Supplementary Tables S5
and S6, respectively.

2.9. Calculating Overlap with Previous Studies

The statistical significance of the overlap with previous studies was calculated with
Fisher’s exact test, with normal approximation, with a statistical significance threshold set at
p-value ≤ 0.05 [28]. As reference total number of genes, we used N = 30,818; this number of
placental expressed genes, with ≥0.1 RPKM (Read Per Kilobase of exon model per Million
mapped reads), as defined in the latest high-quality study on placental transcriptome
by Gong and coworkers [29]. The group carried out an RNA-sequencing analysis on
302 human placental samples, including messenger RNAs, long non-coding RNAs, as well
as small and circular non-coding RNAs. This number is consistent with our study, where
we observe 33,988 genes with mean fluorescent value (LOG2) ≥ 4.5. The total number of
genes in the human genome, even though still lacking consensus, is reported to be higher
than 35000, including coding and non-coding genes, as discussed in [30].
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2.10. Calculating Statistical Significance of Interaction between Best-eSNP and Disease on eGene
Gene Expression

To check whether an interaction exists between the genotype at the best-eSNP and
the disease status on gene expression levels of the eGene we performed a linear regression
in R and considered the linear model to be significant when the model p-value ≤ 0.05,
similarly the effects of each variable on the model were considered significant when the
coefficient p-value in the model was ≤ 0.05. The general formula of the linear regression
model was: eGene ~ eSNP + Group + eSNP*Group. The linear regression was performed
on the residuals of the gene expression dataset after multilinear regression with the MINUS
DISEASE set of covariates to correct for confounding factors (the data had also initially
been normalized by ranking and quantile normalization as described above).

3. Results
3.1. Transcriptome Identification of Confounding Variables

The transcriptome dataset is composed of 57 RNA samples that passed the quality
controls from either the Cochin Hospital (Technologic Facility Gernom’IC), Angers Univer-
sity Hospital, or St George’s Hospital, University of London (Table 1). The transcriptome
data were obtained using the Clariom D microarray (Affymetrix), which allows to analysis
of the level of mRNAs at the exon level [12].

From the transcriptomic datasets, only genes with known GeneID and Description in
the TAC (Transcriptome Analysis Console, Affymetrix) were kept, removing transcripts
identified by the database AceView, as well as transcripts on the Y and mitochondrial
chromosomes (n = 616 and 18, respectively), for a final total of 46,624 probes. Probes were
further filtered by mean fluorescent value (LOG2) across all samples ≥ 4.5, eventually
reducing the total number of probes to 33,988.

A new analysis strategy of our work was the removal of the covariates affecting
gene expression; while some are interesting biological factors that could deserve interest,
such as maternal age for instance, we decided to consider them all as confounders to
identify solely eQTL that influence placental gene expression without obvious medical
consequences. There were nine variables available for each sample that was included ab
initio in the analysis (Batch, Cohort (St Georges, Cochin, or Angers), Disease Group, Mode
of Delivery, Maternal Age, Ethnicity, Gestational Age at Delivery, Sex, Parity). Using PCA in
R (PCATools) enabled us to define principal components (PCA axes). The 10 first PCA axes
captured ~61% of the variability, while the two first axes, PC1 and PC2 only, concentrated
~34.5% of the variability. The correlation of the PC axes with the clinical variables is
represented in Figure 2A. The weights of the clinical covariates could be estimated at 7.4%,
5%, 10.7%, 5.7%, 5.8%, 14.4%, 11.1%, 23.4%, and 23.5% for Parity, Sex, Gestational age,
Ethnicity, Maternal Age, Delivery Mode, Disease Group, Cohort, and Batch, respectively.
The total is above 100% since there are complex correlations between the different items;
for instance, disease status is correlated with gestational age. Some axes were strongly
correlated with the Group (i.e., the disease status), especially PC1 and PC5, the latter one
being also intimately correlated with the gestational age.

In addition, The R package SVA was used to identify possible surrogate variables
(additional unknown sources of variation in the dataset). We collated all variables in a
correlation matrix that was calculated in R, using as input the nine clinical and experimental
variables, the first 10 PCs of gene expression PCA, and four identified surrogate variables
to identify the final set of variables correlated with global transcriptomic changes. A
correlation coefficient cut-off threshold of |0.9| was used to remove colinear variables [19];
see Figure 2B. For the final choice of covariates included in the eQTL analysis, we kept the
five first PCs, “Batch”, “Group”, “Delivery”, “Maternal Age”, “Ethnicity”, “Gestational
Age” and “Sex”. The covariate “Cohort” was removed since it was colinear with “Batch”.
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Figure 2. Definition of covariates and surrogate variables potentially affecting the gene expression
dataset. (A) Eigencorplot expresses the results of Pearson correlation between the clinical and
technical variables and the first 10 principal components obtained from the PCA performed on the
gene expression dataset. A negative correlation is expressed in blue, and a positive correlation is
expressed in red. Within each pair the correlation coefficient is displayed with statistical significance.
(* = p-value ≤ 0.05, ** = p-value ≤ 0.01, *** = p-value ≤ 0.001). (B) Correlation matrix between the 9
clinical and experimental variables, first 10 PCs of gene expression PCA, and 4 identified surrogate
variables, having effects on global transcriptomic changes. Only statistically significant correlations
(p-value ≤ 0.05) are displayed as dots of increasing size as a measure of the correlation coefficient.
Positive correlations are displayed in blue, and negative correlations are displayed in red. In yellow
boxes are the variables that were kept as covariables for subtracting their effect (see text).

3.2. Genotyping and Population Stratification

The final genotype dataset included 665,191 variants for the 57 samples, of which we
kept SNPs with a Minor Allele Frequency > 0.15 (417,114 were kept). The legislation in
France forbids the collection of ethnic data. Nevertheless, with the genotype information,
we were able to classify our samples using PCA alone and with reference to the 1000 genome
project (Supplementary Figure S1). Seven placental samples were clearly of African origin,
42 were of European origin, and eight were mixtures between African and European
backgrounds. The first 10 PCs from the genotype principal component analysis were
included as covariates in the eQTL analysis to account for variations due only to population
stratification.

3.3. Optimal Feature Selection for the eQTL Analysis

We first explored the effect of varying the number of input genes for the eQTL analysis
to identify the optimal gene sets in order to achieve a satisfactory balance between the
number of statistically significant cis-eQTLs (FDR ≤ 0.05), the number of identified eGenes
and cis-eQTL enrichment (in 100 kb proximal to the gene), defined as the number of
eSNPs/eGene. For this, we used the concept of residual variance (RV) to reduce the
number of tested genes.
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Given our limited sample size, it was our primary goal to be able to define the set of
genes to be used as input in the eQTL analysis that would give us the optimal experimental
design to identify significant cis-eQTLs, reducing as much as possible the number of tests,
without missing out potentially relevant genes. The eQTL workflow that we used was based
on multivariate linear modeling, which expresses the variance observed in the expression
levels for each gene in the function of the input covariates. Therefore, the RV is a measure
of potential genetic influence on gene expression levels, amongst other variables [26,27].
The summary of the threshold optimization for analysis is presented is Supplementary
Table S1. While the number of significant eGenes decreased from 153 to 22, when the RV
raised from 0.5 to 0.95, the number of significant SNP per gene increased from 4.00 to 8.91.

We selected an RV threshold of 0.85 for further analysis as a good compromise between
having significant but relevant eQTL, albeit other thresholds could certainly be chosen.
At this threshold, at least six SNP per gene were significant, meaning that the association
with gene expression is not merely due to linkage disequilibrium. The analysis at this
threshold rested upon 3201 genes, 417114 SNPs, a multivariate model with 23 covariates,
and a window of ±100 kb around each gene, following the experimental choice of Kikas
et al. [8], which justified this window by the fact that relevant regulatory SNPs are mostly
in the vicinity (~100 kb) of the gene. These parameters resulted in the discovery of 279 sta-
tistically significant placental SNPs (p < 1.24 × 10−4, FDR < 0.05) proximal to 43 eGenes
(Figure 3, Table 2). The full list of statistically significant eGene-eSNP pairs is provided in
Supplementary Table S3.

In Table 2, the novel genes discovered are presented in yellow, while the genes in
bold correspond to the most stringent threshold and to a Bernouilli genome-wide cor-
rection which does not consider the possible LD relating to successive SNPs. When this
is considered, the Bernouilli correction corresponds to a limited number of independent
tests, leading to a threshold of ~10−4 instead of 10−8 (blue and red line, respectively, in
Figure 3A). We report 22 novel placental eQTL, while 51% of the placental eGenes identified
here have been previously described as placental cis-eQTLs in the three placental studies
available to date (n = seventeen for the Peng et al. dataset, n = eight for Delahaye et al., and
n = five for Kikas et al.) [7–9]. Fisher’s exact tests of the overlaps between datasets were all
statistically significant with p-values < 0.05, respectively p < 5.83 × 10−7, p < 1.88 × 10−6,
and p < 2.75 × 10−8, validating our experimental approach.

Interestingly, out of the 279 cis-QTL found, 37 corresponded to SNPs located between
two genes modified at the expression level. On chromosome 6, 24 eSNPs were found to
be shared between TOB2P1 and ZSCAN9 out of their 41 and 42 cis-eQTLs, respectively
(Figure 3B). On chromosome 11, two different regions of interest were identified, between
LOC646029 and AQP11, that shared 10 eSNPs, out of 11 and 12 cis eQTLs, respectively.
Finally, three eSNPs associated with CARD17 expression deregulations correlated also with
upstream transcript CASP1P2, which had a total of 11 cis-eQTLs (Figure 3B). These observa-
tions strongly suggest that the SNPs influence gene expression in the chromosome region,
either by modifying an enhancer acting on two genes close by or by being transcribed in a
non-coding RNA having a cis-regulatory effect on transcription.
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Figure 3. Overview of the cisQTL results for the ALL COVARIATES dataset. (A) Manhattan plot
showing each tested SNP as a dot in its genomic position on the x-axis, stratified by chromosomes.
The y-axis expresses the -LOG10 of the p-value of the interaction with the eGene. Suggestive line
in red shows the 10 × 10−8 threshold, while in blue, the threshold corresponding to a p-value of
0.05 adjusted for the number of tests (False Discovery Rate) = 1.24 × 10−4. (B) Plots showing the
localization of the tested SNPs within the genomic regions on chromosome 6, containing ZSCAN9
and TOB2P1, and chromosome 11, where AQP11, LOC646029, CASP1P2, and CARD17 are located.
The x-axis expresses the genomic coordinates, while in the y-axis, the -LOG10 of the p-value, the
horizontal line sets the level for FDR ≤ 0.05. The vertical lines represent the start and end sites for
each of the genes. eSNPs that were found to be in common between eGenes in the same region are
highlighted in yellow.
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Table 2. List of eGenes, with the most significant cis-eQTL for the ALL COVARIATES dataset. The table lists the total number of eGenes correlating with the
identified significant cis-eQTLs; for each eGene the total number of eSNPs are listed, and the details of the Best-eSNP reported. The Best-eSNP, in this case, is defined
as the most significant cis-eQTL associated with each eGene (smallest recorded q-value). Beta corresponds to the slope coefficient for the multivariate linear model
and is an estimation of the eSNP effect size on gene expression variance. Novel placental eGenes are highlighted in yellow. If the eGene had been previously
identified as such, the studies are specified in the “Previous study” column.

Gene Symbol Description eSNPs Best-eSNP p-Value q-Value Beta Chr Pos. Previous Study

ZSCAN9 zinc finger and SCAN domain containing
9 42 rs1150707 6.46 × 10−16 1.43 × 10−11 18.80 6 28229827 [8]

PSG7 pregnancy specific beta-1-glycoprotein 7
(gene/pseudogene) 3 rs7248225 3.20 × 10−12 1.68 × 10−8 27.40 19 42918847 [7–9]

TOB2P1 transducer of ERBB2, 2 pseudogene 1 41 rs13408 4.79 × 10−12 2.21 × 10−8 −17.74 6 28244970 [9]
ERAP2 endoplasmic reticulum aminopeptidase 2 13 rs2549778 8.01 × 10−12 3.28 × 10−8 19.34 5 96868551 [7–9]
AQP11 aquaporin 11 12 rs10793257 4.80 × 10−11 1.29 × 10−7 20.84 11 77598488 [7–9]

LOC646029 uncharacterized LOC646029 11 rs10793257 2.48 × 10−10 6.09 × 10−7 20.61 11 77598488
RPS26 ribosomal protein S26 9 rs11171739 8.12 × 10−10 1.95 × 10−6 18.98 12 56076841 [7]

RP1-97J1.2 putative novel transcript 7 rs9372316 1.14 × 10−9 2.62 × 10−6 21.02 6 112000000

MLLT10 myeloid/lymphoid or mixed-lineage
leukemia 15 rs10828248 3.35 × 10−9 6.73 × 10−6 −16.45 10 21535690

IL36RN interleukin 36 receptor antagonist 25 rs6761276 7.09 × 10−9 1.31 × 10−5 −17.30 2 113000000 [8,9]
LYNX1 Ly6/neurotoxin 1 9 rs10956986 1.13 × 10−7 1.47 × 10−4 16.92 8 143000000 [9]

CASP1P2 caspase 1 pseudogene 2 11 rs1023954 1.18 × 10−7 1.50 × 10−4 19.23 11 105000000
MIR4804 microRNA 4804 5 rs2253215 1.26 × 10−7 1.56 × 10−4 23.89 5 72952041
ZFYVE19 zinc finger, FYVE domain containing 19 6 rs10152371 2.43 × 10−7 2.63 × 10−4 16.13 15 40811095 [7,9]
HJURP Holliday junction recognition protein 4 rs2361506 4.05 × 10−7 4.11 × 10−4 18.92 2 234000000

ANAPC4 anaphase promoting complex subunit 4 10 rs1993602 5.38 × 10−7 5.41 × 10−7 −15.90 4 25413484 [9]

OR2F1 olfactory receptor, family 2, subfamily F,
member 1 (gene/pseudogene) 5 rs7798409 1.08 × 10−6 1.00 × 10−3 −20.39 7 144000000

MIR3927 microRNA 3927 1 rs7046565 1.72 × 10−6 1.56 × 10−3 16.92 9 110000000
GBP3 guanylate binding protein 3 5 rs12121223 2.50 × 10−6 2.14 × 10−3 −18.83 1 89015900 [9]

FUT10 fucosyltransferase 10 (alpha (1,3)
fucosyltransferase) 5 rs7018447 3.31 × 10−6 2.67 × 10−3 16.61 8 33467537 [9]

NSUN7 NOP2/Sun domain family, member 7 3 rs2437317 6.06 × 10−6 4.29 × 10−3 25.15 4 40789990

CBLB Cbl proto-oncogene B, E3 ubiquitin
protein ligase 1 rs1503920 6.32 × 10−6 4.45 × 10−3 15.58 3 106000000 [8,9]

AC104135.2 novel transcript 3 rs7573356 9.72 × 10−6 6.43 × 10−3 −20.13 2 74941537



Cells 2023, 12, 578 13 of 27

Table 2. Cont.

Gene Symbol Description eSNPs Best-eSNP p-Value q-Value Beta Chr Pos. Previous Study
GPR132 G protein-coupled receptor 132 2 rs7157567 1.05 × 10−5 6.70 × 10−3 18.27 14 105000000
GTSF1 gametocyte specific factor 1 1 rs11170917 1.31 × 10−5 7.98 × 10−3 24.42 12 54472204 [9]

SLC13A5
solute carrier family 13

(sodium-dependent citrate transporter),
member 5

1 rs9889374 1.46 × 10−5 8.69 × 10−3 17.28 17 6662428

CASQ1 calsequestrin 1 (fast-twitch, skeletal
muscle) 1 rs6693877 1.67 × 10−5 9.80 × 10−3 −14.62 1 160000000 [9]

AC009542.2 novel transcript, antisense to WDR91 3 rs10954493 1.87 × 10−5 1.08 × 10−2 −18.52 7 135000000
KANSL1-AS1 KANSL1 antisense RNA 1 1 rs17585974 2.62 × 10−5 1.46 × 10−2 24.81 17 46171833

MTPAP mitochondrial poly(A) polymerase 2 rs1762598 4.17× 10−5 2.15 × 10−2 −15.63 10 30352501
CPS1 carbamoyl-phosphate synthase 1 3 rs918233 4.27 × 10−5 2.20 × 10−2 −16.64 2 211000000 [9]

MIR4299 microRNA 4299 1 rs7126296 4.53 × 10−5 2.32 × 10−2 17.44 11 11556715
AGA aspartylglucosaminidase 2 rs4690523 5.31 × 10−5 2.63 × 10−2 −15.80 4 177000000 [9]

SOHLH2 spermatogenesis and oogenesis specific
basic helix-loop-helix 2 4 rs9575600 5.41 × 10−5 2.64 × 10−2 16.53 13 36223006 [7]

C8orf46 chromosome 8 open reading frame 46 1 rs12541098 6.17 × 10−5 2.90 × 10−2 −15.38 8 66424147 [7–9]
CTC-482H14.5 novel transcript, antisense to PTPRS 1 rs2251127 6.29 × 10−5 2.90 × 10−2 16.34 19 5138218

NDUFS5
NADH dehydrogenase (ubiquinone) Fe-S

protein 5, 15kDa (NADH-coenzyme Q
reductase)

2 rs10888650 6.30 × 10−5 2.90 × 10−2 −13.27 1 39041489 [8,9]

VN1R84P vomeronasal 1 receptor 84 pseudogene 1 rs2015481 8.31 × 10−5 3.61 × 10−2 13.59 19 21676192
LOC101928775 uncharacterized LOC101928775 1 rs10982832 8.33 × 10−5 3.61 × 10−2 16.77 9 116000000

FGF19 fibroblast growth factor 19 1 rs7105655 1.01 × 10−4 4.24 × 10−2 13.69 11 69738836

CARD17 caspase recruitment domain family,
member 17 3 rs1623342 1.09 × 10−4 4.42 × 10−2 15.14 11 105000000 [7,9]

MIR4527 microRNA 4527 1 rs982265 1.17 × 10−4 4.67 × 10−2 −16.51 18 47444531
Y_RNA Y RNA 1 rs2248978 1.18 × 10−4 4.69 × 10−2 13.64 12 105000000

Highlighted in light yellow are the genes that were not found in the previous studies.
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3.4. Identifying eQTLs Involved in the Disease by a Subtraction Strategy

The same cis-eQTL analysis was performed de novo, suppressing the parameter
‘Disease’ from the confounding factors, as well as PC5 (Figure 2), which were very highly
correlated. This allowed us to include in the analysis genes for which the disease has a
strong influence on changes in gene expression levels, reducing the overall residual variance
after modeling (the number of genes increased from 3201 to 3279, Figure 4). However, these
genes are also believed to be the most interesting in terms of understanding pregnancy
pathologies. For this reason, we aimed to investigate the contribution of genotype changes
on these genes in the context of disease to be able to also detect potential genotype-disease
interactions that would suggest the presence of conditional eQTLs [31] Interestingly, in
this case, the number of identified eGenes was always higher than when the ‘Disease’ was
used as a covariate. At the chosen threshold of 0.85 for the residual variance (Figure 4),
the number of eGenes identified increases from 43 to 54, with the number of statistically
significant (FDR ≤0.05) eSNP increasing from 279 to 307, as represented in Figure 4. The
interpretation of this figure is that 16 SNPs are specific only to the disease, 38 are influenced
by the covariates and the disease, while amongst the five specific to the dataset analyzed
with all the covariates, four did not pass the RV threshold, MLLT10, HJURP, MIR4527,
and Y_RNA. The last one, FGF19, is present in both datasets, but when the disease is
not considered as a covariate, FGF19 is no longer observed as an eGene. The full list of
statistically significant eGene-eSNP pairs is presented in Supplementary Table S4, while
the top-eSNP is listed in Supplementary Table S7.

Figure 4. Comparing the experimental parameters for the ALL COVARIATES and MINUS DISEASE
eQTL datasets. (TOP) Table comparing the parameters of cis-eQTL analyses performed for different
Residual Variance (RV) thresholds (0.5-0.95) for ALL COVARIATES and MINUS DISEASE datasets.
Depending on the RV threshold, different lists of genes were included in the cisQTL analysis, resulting
in 10 output cis-QTL datasets for each approach, ALL COVARIATES in grey and MINUS DISEASE
in white. (BOTTOM) Cis-eQTL enrichment graphs for each approach at the different thresholds
of residual variance tested. Showing the number of significant eGenes (blue), eSNP (orange), and
enrichment expressed as number of eSNP/eGene in grey.
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The 16 eGenes that were specific to the disease are presented in Figure 5 and Table 3.
Several analyses of gene ontology were carried out using these 16 eGenes (disease-specific)
or the 54 eGenes (placental-specific), including the 38 genes that were also presented in
the first analysis using String (https://string-db.org/, accessed on 1 July 2021). All these
analyses failed to identify a significant grouping of genes, suggesting that the couples
eSNP-eGene that we could identify correspond to various aspects of placental biology and
physiopathology and not to several specific categories or gene ontologies. Not surprisingly,
however, some of these genes have been previously identified as deregulated in pregnancy
pathologies (Table 3).

Figure 5. Overlap between cis-QTL datasets ALL COVARIATES and MINUS DISEASE. Venn dia-
grams showing the overlap between the eSNPs and eGenes identified as statistically significant (FDR
≤ 0.05) in ALL COVARIATES (blue) and MINUS DISEASE (yellow).

https://string-db.org/
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Table 3. The 16 placental disease-specific eQTL.

Gene
Symbol Description Chr Strand Group Keyword References

ERICH1 glutamate rich 1 chr8 - Multiple_Complex PE, IUGR
[32]

Identified as
eGene by [9]

DNAJC15 DnaJ (Hsp40) homolog,
subfamily C, member 15 chr13 + Multiple_Complex PE Identified as

eGene by [8,9]

TAS2R64P taste receptor, type 2,
member 64, pseudogene chr12 - Multiple_Complex

NSF N-ethylmaleimide-sensitive
factor chr17 + Multiple_Complex Membrane fusion

[33]
Identified as

eGene by [7,9]

NPM1P35
nucleophosmin 1 (nucleolar

phosphoprotein B23,
numatrin) pseudogene 35

chr11 + Pseudogene NPM1P35

PTTG1 pituitary
tumor-transforming 1 chr5 + Multiple_Complex Trophoblast

invasion

[34]
Identified as
eGene by [9]

C8orf89 chromosome 8 open reading
frame 89 chr8 - Multiple_Complex C8orf89

LINC00654 long intergenic non-protein
coding RNA 654 chr20 - NonCoding LINC00654

LINC01273 long intergenic non-protein
coding RNA 1273 chr20 + NonCoding LINC01273

FGF12-AS1 FGF12 antisense RNA 1 chr3 + NonCoding tumor suppressor [35]
MYRF myelin regulatory factor chr11 + Multiple_Complex autism [36]

ITPKB-IT1 ITPKB intronic transcript 1 chr1 - NonCoding
CITF22-
49E9.3 novel transcript chr22 - NonCoding

SLC30A8 solute carrier family 30 (zinc
transporter), member 8 chr8 + Multiple_Complex

gestational
weight gain,

diabetes
[37]

PROSER2-
AS1 PROSER2 antisense RNA 1 chr10 - NonCoding

Placental
imprinted, risk

for pediatric
fracture,

[38]

PKN3 protein kinase N3 chr9 + Multiple_Complex
endothelial cell

activation,
angiogenesis

[39]

-/+ stands for the reference strand of DNA on which the gene is situated in the coding orientation.

While previously identified eQTLs, such as influencing ZSCAN9 and ERAP2, have
shown a strong genetic influence on their regulation, the implication of this on placental
function remains elusive. In Figures 6–8, we show the levels of expression stratified
according to genotype of the most significant eSNP for a subset of eGenes that presented
a pronounced conditional response depending on disease group (Control vs Disease)
and have been previously linked to placental function and diseases such as IL36R, FUT10,
PTTG1, CBLB, and DNAJC15. Here, we plot the raw data for the expression levels; however,
during analysis, the data is first normalized and then corrected for the covariates. Table 4
summarizes the results of Genotype*Disease interaction testing for each of the eGenes
identified and its most significant eSNP. Interestingly, ZSCAN9, AQP11, LOC646029, FUT10,
NDUFS5, and C8ORF89 showed statistically significant (p-value ≤ 0.05) interaction between
the effects of disease status and the eSNP genotype on the expression of the eGene. This
suggests the existence of a complex interaction between the gene and the phenotype of the
disease.
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Figure 6. Boxplots of eGene expression in relation to the best-eSNP genotype, stratified by Group:
Control vs. Disease. eGenes ZSCAN9, ERAP2, AQP11, RP1-97J1.2, IL36RN, ZFYVE19, FUT10, PTTG1,
DNAJC15.The genotype of each SNP is expressed as 0, 1, 2, and the gene expression data corresponds
to the raw data as mean fluorescence value. CTRL = Control; IUGR = Intra-uterine Growth Restriction;
PE = Preeclampsia. Genes discussed in the text, because of their relevance to placental biology, are
highlighted in green.
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Figure 7. Boxplots of eGene expression in relation to the best-eSNP genotype, stratified by Group:
Control vs. Disease. eGenes TAS2R64P, AC009542.2, CBLB, GTSF1, NDUFS5, C8orf46, LINC00654,
SLC13A5, MIR4299.The genotype of each SNP is expressed as 0, 1, 2, and the gene expression data
corresponds to the raw data as mean fluorescence value. CTRL = Control; IUGR = Intra-uterine
Growth Restriction; PE = Preeclampsia. Genes discussed in the text, because of their relevance to
placental biology, are highlighted in green.
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Table 4. Best-eSNP-eGene pairs for the MINUS DISEASE dataset showing the summary statistics from the eQTL analysis and the results of testing the significance
of the interaction between genotype and disease on gene expression. The Best-eSNP, in this case, is defined as the most significant cis-eQTL associated with each
eGene (smallest recorded q-value). Beta corresponds to the slope coefficient for the multivariate linear model and is an estimation of the eSNP effect size on gene
expression variance. The table shows the test p-values for each coefficient of the linear model to test the effect of genotype and disease on gene expression and their
interaction, as well as the model p-value. eGenes that presented a statistically significant interaction between eSNP genotype and disease status (p-value ≤ 0.05) are
highlighted in green.

From MatrixEQTL Analysis MINUS DISEASE From Linear Regression to Test Genotype-Disease Interaction

eGene Best-eSNP p-Value FDR beta Intercept p-Val eSNP p-Val Group p-Val eSNP*Group
p-Val Model p-Val

ZSCAN9 rs1150707 1.50 × 10−16 3.39 × 10−12 18.807 0.102647651 0.022415409 0.00787265 0.007064547 2.70 × 10−11

ERAP2 rs2549778 1.27 × 10−12 6.63 × 10−9 18.894 0.237759766 0.000807833 0.029435982 0.310364841 2.02 × 10−9

TOB2P1 rs13408 1.38 × 10−12 6.63 × 10−9 −17.608 0.004647281 0.001326778 0.886480707 0.50710562 1.53 × 10−8

PSG7 rs7248225 2.47 × 10−12 1.03 × 10−8 26.757 0.01610927 0.000161224 0.644681149 0.935717136 1.80 × 10−8

AQP11 rs10793257 1.10 × 10−11 3.37 × 10−8 20.693 0.936757201 0.244954435 0.002232625 0.009747518 3.07 × 10−8

RP1-97J1.2 rs9372316 1.30 × 10−10 3.42 × 10−7 21.469 0.04677023 0.02282663 0.98324046 0.5861815 1.34 × 10−5

LOC646029 rs10793257 1.59 × 10−10 3.91 × 10−7 20.487 0.62483721 0.449090131 0.000702104 0.003472929 2.96 × 10−8

RPS26 rs11171739 3.39 × 10−10 8.00 × 10−7 18.460 0.05049322 0.04455226 0.32794464 0.08493583 3.95 × 10−7

IL36RN rs6761276 2.54 × 10−9 5.23 × 10−6 −17.273 0.04374326 0.00261548 0.37625035 0.56160599 3.05 × 10−7

CASP1P2 rs1023954 3.22 × 10−8 4.76 × 10−5 19.003 0.08623347 0.01572294 0.91051179 0.45255771 2.25 × 10−5

LYNX1 rs10956986 3.60 × 10−8 4.86 × 10−5 17.143 0.077423009 0.005369633 0.261583699 0.381727504 6.46 × 10−7

ANAPC4 rs1993602 1.00 × 10−7 1.26 × 10−4 −16.357 0.62788117 0.22099995 0.06658666 0.10987541 4.00 × 10−6

MIR4804 rs2253215 1.90 × 10−7 2.15 × 10−4 22.803 0.73283414 0.05996773 0.08001675 0.27408907 6.05 × 10−6

ZFYVE19 rs10152371 2.32 × 10−7 2.54 × 10−4 16.012 0.29373204 0.05488449 0.18253459 0.21546712 4.07 × 10−6

AC104135.2 rs7573356 5.00 × 10−7 4.97 × 10−4 −20.261 0.1301216 0.146468 0.7380213 0.2503687 3.31 × 10−4

GBP3 rs12121223 8.00 × 10−7 7.81 × 10−4 −19.408 0.025397469 0.004030585 0.591077883 0.775339911 8.26 × 10−6

OR2F1 rs7798409 9.03 × 10−7 8.59 × 10−4 −20.163 0.2916771 0.1675941 0.5381669 0.4819719 1.89 × 10−3

FUT10 rs12155581 2.26 × 10−6 1.93 × 10−3 17.033 0.931411621 0.806002691 0.013310468 0.004690609 5.07 × 10−6
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Table 4. Cont.

From MatrixEQTL Analysis MINUS DISEASE From Linear Regression to Test Genotype-Disease Interaction

eGene Best-eSNP p-Value FDR beta Intercept p-Val eSNP p-Val Group p-Val eSNP*Group
p-Val Model p-Val

MIR3927 rs7046565 2.41 × 10−6 2.04 × 10−3 16.732 0.020431665 0.002434153 0.405350891 0.294832332 5.07 × 10−4

GPR132 rs7157567 3.86 × 10−6 2.96 × 10−3 18.710 0.06895758 0.03121023 0.83496731 0.76965232 2.64 × 10−3

ERICH1 rs1703911 5.35 × 10−6 3.90 × 10−3 −13.888 0.048146347 0.003527824 0.9634337 0.940283908 3.92 × 10−5

DNAJC15 rs17553284 6.26 × 10−6 4.43 × 10−3 −19.484 0.469141 0.2646227 0.0112012 0.0594694 2.67 × 10−5

AGA rs4690523 9.97 × 10−6 6.57 × 10−3 −16.364 0.50371342 0.14900309 0.06567993 0.18234469 7.27 × 10−5

TAS2R64P rs7297949 1.05 × 10−5 6.85 × 10−3 −16.077 0.0824359 0.02563944 0.86790276 0.878125 2.53 × 10−4

AC009542.2 rs10954493 1.07 × 10−5 6.95 × 10−3 −18.232 0.97990037 0.03550566 0.05021882 0.21802336 7.21 × 10−6

GTSF1 rs11170917 1.46 × 10−5 8.84 × 10−3 22.336 0.34080682 0.02176511 0.67946143 0.83764288 2.02 × 10−3

CBLB rs1503920 1.50 × 10−5 9.02 × 10−3 14.714 0.02302123 0.04722184 0.47428316 0.98231439 1.98 × 10−3

SOHLH2 rs9575600 1.65 × 10−5 9.76 × 10−3 16.140 0.10582542 0.01653465 0.87063264 0.92481755 3.25 × 10−4

KANSL1-AS1 rs17585974 1.67 × 10−5 9.81 × 10−3 23.860 0.11809498 0.06863156 0.62204626 0.77192668 4.91 × 10−3

NSUN7 rs2437317 1.73 × 10−5 9.94 × 10−3 23.457 0.01246184 0.01516865 0.08784461 0.56754666 3.00 × 10−3

NSF rs17698176 1.74 × 10−5 9.97 × 10−3 20.367 0.22639048 0.00414694 0.7413922 0.79027276 4.09 × 10−5

NDUFS5 rs10888650 1.82 × 10−5 1.01 × 10−2 −13.620 0.52728811 0.42320815 0.24332657 0.03161536 8.82 × 10−6

CASQ1 rs6693877 1.98 × 10−5 1.10 × 10−2 −14.309 0.1020241 0.0981154 0.9077578 0.3968772 6.41 × 10−4

NPM1P35 rs4488202 2.38 × 10−5 1.29 × 10−2 −21.404 0.6814926 0.2694253 0.1968538 0.1925592 1.02 × 10−3

PTTG1 rs1105789 2.43 × 10−5 1.32 × 10−2 15.471 0.0267482 0.01723734 0.54238551 0.79645133 7.37 × 10−4

C8orf46 rs12541098 4.07 × 10−5 1.98 × 10−2 −15.621 0.01999623 0.01458403 0.4383046 0.67636289 2.10 × 10−3

C8orf89 rs6472746 4.65 × 10−5 2.19 × 10−2 −17.620 0.004634949 0.000225028 0.080493823 0.022123942 3.17 × 10−4

LINC00654 rs6116828 4.93 × 10−5 2.29 × 10−2 12.740 0.16132241 0.02684875 0.56544041 0.76958675 4.19 × 10−4

MTPAP rs1762598 5.02 × 10−5 2.31 × 10−2 −15.032 0.05145106 0.01354065 0.49610048 0.4799675 4.82 × 10−3

CARD17 rs1623342 5.17 × 10−5 2.36 × 10−2 15.497 0.30416008 0.03915456 0.60188393 0.84825756 1.63 × 10−3
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Table 4. Cont.

From MatrixEQTL Analysis MINUS DISEASE From Linear Regression to Test Genotype-Disease Interaction

eGene Best-eSNP p-Value FDR beta Intercept p-Val eSNP p-Val Group p-Val eSNP*Group
p-Val Model p-Val

SLC13A5 rs9889374 5.49 × 10−5 2.48 × 10−2 15.823 0.10733714 0.53938538 0.84592422 0.05661093 4.53 × 10−4

LINC01273 rs6020255 5.91 × 10−5 2.66 × 10−2 −14.134 0.4831266 0.461141 0.2441706 0.1435129 1.01 × 10−3

LOC101928775 rs10982832 5.95 × 10−5 2.66 × 10−2 16.227 0.19619467 0.01188732 0.8784099 0.98711196 1.54 × 10−4

VN1R84P rs2015481 6.03 × 10−5 2.68 × 10−2 13.299 0.01188751 0.10670774 0.3118514 0.42971681 2.99 × 10−4

CPS1 rs2250976 7.35 × 10−5 3.09 × 10−2 14.858 0.19187507 0.09947661 0.68926108 0.80062325 7.05 × 10−3

FGF12-AS1 rs10937543 8.44 × 10−5 3.44 × 10−2 −17.045 0.53243677 0.07383697 0.22123134 0.52782373 4.57 × 10−4

MYRF rs7925523 1.02 × 10−4 4.12 × 10−2 18.305 0.049161643 0.000625781 0.393915774 0.080254068 5.05 × 10−4

ITPKB-IT1 rs697845 1.03 × 10−4 4.15 × 10−2 19.480 0.006181248 0.000344546 0.057691247 0.056088085 5.11 × 10−4

MIR4299 rs7126296 1.04 × 10−4 4.15 × 10−2 15.096 0.03207948 0.01109053 0.62800608 0.46298706 3.04 × 10−3

CITF22-49E9.3 rs137878 1.12 × 10−4 4.38 × 10−2 −17.668 0.20391064 0.02392672 0.9198819 0.67454661 4.21 × 10−3

SLC30A8 rs10505312 1.18 × 10−4 4.57 × 10−2 20.222 0.7540111 0.457554 0.3942176 0.4400821 3.34 × 10−2

CTC-482H14.5 rs2620833 1.25 × 10−4 4.74 × 10−2 16.078 0.084645173 0.008758073 0.852309458 0.531835913 1.04 × 10−3

PROSER2-AS1 rs7900122 1.26 × 10−4 4.75 × 10−2 −15.424 0.1660911 0.03140426 0.69555964 0.72078802 1.49 × 10−2

PKN3 rs10819449 1.32 × 10−4 4.91 × 10−2 19.043 0.3171833 0.416917 0.9639612 0.2775942 9.58 × 10−3
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Figure 8. Boxplots of eGene expression in relation to the best-eSNP genotype, stratified by Group:
Control vs Disease. eGenes C8orf89, CASQ1, ERICH1. The genotype of each SNP is expressed as 0, 1,
2, and the gene expression data corresponds to the raw data as mean fluorescence value. CTRL =
Control; IUGR = Intra-uterine Growth Restriction; PE = Preeclampsia. Genes discussed in the text,
because of their relevance to placental biology, are highlighted in green.

4. Discussion

In this paper, we attempted a novel approach to uncover relevant associations between
genetic variants and gene expression in the placenta from healthy and pathological preg-
nancies. We started by carefully identifying covariates that may have masked important
results in previous studies. As observed previously, gestational age is a major covariate and
is strongly associated with disease status. In PCA analysis, the fifth axis is the most strongly
associated with gestational age (r = 0.49, Figure 2A), and the most strongly associated to
placental disease (r = −0.47, Figure 2A). The inverse correlation between the two features
is consistently seen in many transcriptomic studies comparing normal and pathological
placentas. The problem is that, almost by definition, placentas from pregnancy compli-
cations diseases are usually obtained earlier in gestation than from normal pregnancies.
The originality of our approach is as follows: we performed two separate searches for
eQTLs, one using all covariates available (including disease status) and one without the
disease status used as a covariate, assuming that the difference in the discovery will be
due more or less exclusively to the disease. At the initiation of this work, we performed
a thorough characterization of the covariates influencing gene expression, and while we
could not fully distinguish between “disease group” and “gestational age” given their
strong correlation with PC5, we could partially account for gestational age confounding by
statistically correcting for PC2 which is strongly correlated (0.39, p val < 0.01), but not with
“disease group”.

In the first part of our results which included “disease group” as a covariate, we
expanded the current knowledge of genetic modulation of gene expression in the placenta,
adding to the relatively limited number of previous studies in the field [7–9,12]. We
identified 279 placental cis-eQTLs (FDR ≤ 0.05) in 57 human placental samples, correlating
with expression changes of 43 unique eGenes, among which 22 constituted novel eGenes
over the previous studies. One hundred and eleven (111) of the total 279 cis-eQTLs,
including the most significant eSNPs, were associated with previously described placental
eGenes ZSCAN9, PSG7, TOB2P1, ERAP2, and AQP11, corroborating the validity of our
analysis. Interestingly, for the first time in the placenta, we describe cis-eQTL eSNPs that
correlate with neighboring transcripts, identifying potential placental regulatory hotspots.
On chromosome 11, a novel eGene LOC646029 and downstream AQP11 shared 10 eSNPs,
while the three eSNPs associated with CARD17 expression levels were also eSNPs for novel
placental eGene CASP1P2. Similarly, 24 out of the 42 eSNPs associated with ZSCAN9
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were found to correlate with changes in expression of the upstream transcript TOB2P1
on chromosome 6. CASP1P2 and TOB2P1 are both pseudogenes, which implies that they
may not encompass functional open reading frames and that changes in their expression
could not have an impact on placental function as proteins. However, the changes in
their expression levels as well as in neighboring genes as a result of genetic changes,
highlight these regions as potential placental regulatory sites. As additional evidence of
the relevance of these regions to placental function, genotype changes in these loci show a
statistically significant interaction with the disease status, resulting in significant changes
in the expression of ZSCAN9 and LOC646029, as well as AQP11.

Kikas and coworkers extensively reviewed previous studies on genetic regulation
of gene expression in the placenta, including gene-candidate approaches, as well as the
three genome-wide studies mentioned above [40]. Peng and coworkers combined RNA-
sequencing and genotype data of 159 healthy placentas, laying the foundations for eQTL
analyses in the placenta [9]. They report only the top eSNP of each eGene, therefore
identifying 3218 cis-eQTLs correlating with 3218 unique transcripts and 35 trans-eQTLs
(cis-distance between eSNP and eGene < 500kb) with an FDR threshold, defined by per-
mutations, of 0.1%. This limited number of trans-QTLs, even with a sample size that is
more than double one of other studies in placental eQTLs, prompted to restrict further
efforts to cis-QTL identification alone. Delahaye and coworkers, expanded the repertoire of
placental cis-eQTL by identifying 985 eSNPs, corresponding to 615 eGenes in 80 healthy
placentas, as well as investigating methylation-QTLs in 300 placenta samples [7]. Finally,
Kikas and coworkers, with a total of 40 samples, identified 199 significant cis-eQTLs
(FDR < 0.05) corresponding to 63 unique genes in a window of 100 kb around each gene [8].
Both studies showed considerable overlap with [9], respectively, for 62% and 80% of the
eGenes. However, if we consider the percentage of unique eGenes, not replicated across
all studies, 88%, 37%, and 21% of eGenes were identified, respectively, by Peng et al. [9],
Delahaye et al. [7] and Kikas et al. [8].

When comparing our results with previous studies, the overall level of overlap be-
tween eGene lists is 51%, which could be due to differences in population stratification,
sample size as well as differences in analysis workflow. In particular, the number of over-
lapping eGenes is n = seventeen for the [9] dataset, n = eight for [7], and n = five for [8].
The most significant overlap is with the work of [8]; Fisher’s exact tests p < 2.75 × 10−8,
1–2 orders of magnitude more significant than the overlap with the two other studies. This
could be explained by the fact that in terms of analytical design, our study is closer to the
one of [8]. In both analyses, cis-QTLs were analyzed in a window of 100 kb, for a total
number of variants of 417,114, in the same order of magnitude, similarly; the sample sizes
are also close with 40 and 57 placentas in [8] and our study respectively. Probably the most
crucial similarities are the use of the same software for the eQTL analysis (i.e., MatrixEQTL
in R [24]) and the inclusion of placentas from pregnancies complicated by PE. The use of the
same analytical software improves the replicability of the results since the statistical tests
are the same and can have a huge impact on which eSNP-eGene pairs pass the threshold of
significance.

Similarly, the presence of PE samples implies a similar pattern of gene expression;
however, in our study design, we did consider “disease group” as a confounding factor
and included it as a covariate, which should reduce the effects on the output.

With our analysis comparing the two datasets, the ALL COVARIATES vs. MINUS
DISEASE, that differ only by removing the disease as a confounding covariate in the second,
we propose a new strategy for finding eQTL that are relevant in pathological pregnancies.
In particular, this approach allowed us first to validate our study design as well as sample
quality by being able to compare our findings with the existing literature. In the second
instance, we were able to further investigate the role of genotype changes on the expression
of genes for which disease has a relevant influence and could therefore be important for
placental function.
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Genome-Wide Association Studies (GWAS) use large sample sizes (in the tens of
hundreds) in an attempt to identify the enrichment of variant alleles in the disease group
compared to healthy controls. GWAS conducted in the placenta has identified SNPs
upstream of the FLT1 locus, rs4769613, as harboring the risk allele (T) associated with
PE [41]. Despite the limited functional understanding offered by GWAS approaches, the use
of combinatorial approaches that exploit knowledge from different types of datasets helps
draw these functional conclusions [42–44]. Recently, the rs4769613 locus was genotyped
in a cohort of placental samples, including 57 PE and 277 control; the presence of the risk
allele correlated with changes in the placental gene expression level of FLT1 only in the PE
group, defining rs4769613 as a conditional eQTL [31]. This suggests that the risk variant,
when present in the placentas of mothers with PE, favors the increase in expression of
the FLT1 gene and, therefore, could be located in a regulatory region for the gene itself,
targeted by regulatory factors that are expressed specifically in the PE placenta.

In our work, we identified multiple genes that presented a promising ‘genotype and
disease’ interaction, which could therefore represent placental conditional eQTLs relevant
to disease etiology. The genes found during this stage are supposed to be influenced by the
disease either exclusively or mainly but with an influence of other factors.

Among these, AQP11, IL36R, FUT10, PTTG1, CBLB, and DNAJC15 are interesting
both in terms of behavior, as well as the documented role in placental function.

Among the ‘disease exclusive’ genes represented in detail (in green boxes), there are
PTTG1, DNAJC15 (Figure 6), TAS2R64P and LINC00654 (Figure 7), C8ORF89 and ERICH1
(Figure 8). The profiles of expression are very different; for instance, in the case of ERICH1,
the SNP influence of the profile is the same way in disease and controls, but overall in
the disease, the expression is systematically inferior. By contrast, C8ORF89 has an SNP-
dependent profile in controls but not in disease; PTTG1 is overexpressed in disease but
only rather in specific SNP configuration.

PTTG1 has been involved in trophoblast invasion through the regulation of matrix
metalloproteases MMP2 and MMP9 by regulating integrin/rho signalling [34]. AQP11
belongs to the family of water transporters through the cellular and endoplasmic reticulum
membrane. It has recently been implicated in redox regulation, and other members of the
same family, such as AQP, were found to be involved in the mechanism of aspirin action
in preventing PE [45–47]. IL36RN is highly expressed in the placenta, where it could be
involved in trophoblast proliferation [48]. FUT10, involved in the fucosylation of proteins,
has been shown to promote the binding of TNF to its receptor, thus promoting the inflam-
matory reaction, which is relevant for placental diseases [49]. Interestingly, we identified a
significant interaction between disease and genotype on the levels of FUT10. DNAJC15 is
reported as an important factor in mitochondrial function and regulation of the respiratory
chain. It has been abundantly demonstrated by us and many others how these cascades
of oxidative phosphorylation and oxidative stress are pivotal in placental diseases [50,51].
CBLB has been recently shown to influence Natural Killer cell differentiation [52] and
Uterine NK cells are pivotal for efficient implantation. In summary, all these genes may be
involved in placental disease by a contribution to various pathways, which explains why
they are not explicitly regrouped in a biological function.

5. Study Limitations and Conclusions

Amongst the limitations of our study, there is, of course, the sample size, which makes
our data a preliminary incitement that needs confirmation in further studies. The choice
to subtract extensively the covariate effect encompasses a risk of missing positive hits
(Type II error), but our objective was to decrease the Type I error and minimize the finding
of false positives. Some additional analyses could be performed by removing some of
the covariates to detect eSNPs influenced by sex, but this is beyond the objective of our
current work. Furthermore, among the control placentas, one-third were from natural
deliveries, which we included in our study by adding the delivery mode as an additional
covariate). Gestational age was found to induce 10% of the variability, consistent with
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previous observations in the field. Subtracting its effect and using it as a covariate might be
considered a mathematical trick that could mask complex interactions between the disease
effects and the gestational age effects. Nevertheless, it is currently difficult to adopt a better
strategy in the field of placental disease.

The approach based on two-hits, using unusually the disease as a covariate and then
adding it afterward, allows by subtraction to identify novel couples of SNP-eGenes that
may be of interest for placental disease studies or other cases of human diseases where
confounding factors are important. We hope that our work will be a starting point for
researchers using other complex datasets available for analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12040578/s1, Figure S1, Results of the Principal Component
Analysis performed to assess population stratification and establish admixture. Table S1 present the
parameters for threshold evaluation of the residual variance, Table S2 give the dataset that was used
for the analyses, Tables S3 and S4 list statistically significant couples eSNP-eGene for the dataset
including disease as a covariate and for the one excluding it. Supplementary Tables S5 and S6 lists
the input genes with their expression levels, and residual variances, respectively. Table S7 ists the
top-eSNP in terms of statistical significance.
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