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Abstract
Objective Arterial aneurysms are life-threatening but usually asymptomatic before requiring hospitalization. Oculomics of 
retinal vascular features (RVFs) extracted from retinal fundus images can reflect systemic vascular properties and therefore 
were hypothesized to provide valuable information on detecting the risk of aneurysms. By integrating oculomics with genom-
ics, this study aimed to (i) identify predictive RVFs as imaging biomarkers for aneurysms and (ii) evaluate the value of these 
RVFs in supporting early detection of aneurysms in the context of predictive, preventive and personalized medicine (PPPM).
Methods This study involved 51,597 UK Biobank participants who had retinal images available to extract oculomics of 
RVFs. Phenome-wide association analyses (PheWASs) were conducted to identify RVFs associated with the genetic risks 
of the main types of aneurysms, including abdominal aortic aneurysm (AAA), thoracic aneurysm (TAA), intracranial 
aneurysm (ICA) and Marfan syndrome (MFS). An aneurysm-RVF model was then developed to predict future aneurysms. 
The performance of the model was assessed in both derivation and validation cohorts and was compared with other models 
employing clinical risk factors. An RVF risk score was derived from our aneurysm-RVF model to identify patients with an 
increased risk of aneurysms.
Results PheWAS identified a total of 32 RVFs that were significantly associated with the genetic risks of aneurysms. Of 
these, the number of vessels in the optic disc (‘ntreeA’) was associated with both AAA (β = −0.36, P = 6.75e−10) and ICA 
(β = −0.11, P = 5.51e−06). In addition, the mean angles between each artery branch (‘curveangle_mean_a’) were commonly 
associated with 4 MFS genes (FBN1: β = −0.10, P = 1.63e−12; COL16A1: β = −0.07, P = 3.14e−09; LOC105373592: 
β = −0.06, P = 1.89e−05; C8orf81/LOC441376: β = 0.07, P = 1.02e−05). The developed aneurysm-RVF model showed 
good discrimination ability in predicting the risks of aneurysms. In the derivation cohort, the C-index of the aneurysm-RVF 
model was 0.809 [95% CI: 0.780–0.838], which was similar to the clinical risk model (0.806 [0.778–0.834]) but higher than 
the baseline model (0.739 [0.733–0.746]). Similar performance was observed in the validation cohort, with a C-index of 
0.798 (0.727–0.869) for the aneurysm-RVF model, 0.795 (0.718–0.871) for the clinical risk model and 0.719 (0.620–0.816) 
for the baseline model. An aneurysm risk score was derived from the aneurysm-RVF model for each study participant. The 
individuals in the upper tertile of the aneurysm risk score had a significantly higher risk of aneurysm compared to those in 
the lower tertile (hazard ratio = 17.8 [6.5–48.8], P = 1.02e−05).
Conclusion We identified a significant association between certain RVFs and the risk of aneurysms and revealed the impres-
sive capability of using RVFs to predict the future risk of aneurysms by a PPPM approach. Our finds have great potential to 
support not only the predictive diagnosis of aneurysms but also a preventive and more personalized screening plan which 
may benefit both patients and the healthcare system.
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Introduction

Biomarkers of arterial aneurysm are needed 
in the realm of prediction, prevention 
and personalized medicine (PPPM)

Arterial aneurysm is one of the most common diseases 
affecting the artery after atherosclerosis and represents a 
severe condition due to the increased risk of dissection or 
rupture which has a mortality rate greater than 80% [1, 2]. 
According to data reported by the ‘2019 Global Burden 
of Disease’ study, the global number of aneurysm-related 
deaths is expected to increase by 42% to achieve 244,685 
in 2030, compared to 172,426 in 2019 [3]. Irrespective of 
severity, the onset of aneurysms is usually asymptomatic. 
Therefore, current medical care strategies for aneurysms 
need to be improved, especially in terms of predictive diag-
nosis and targeted screening, such improvement may permit 
early prevention and personalized management [4].

Effective and safe biomarkers are needed for predicting 
aneurysms or the development of preventive screening pro-
tocols. According to current international guidelines, only a 
limited number of general biomarkers, such as age and sex, 
have been applied to facilitate routine aneurysm screening 
[5, 6]. However, these biomarkers neglect the heterogene-
ous characteristics of the disease [7–11] and are not precise 
enough to benefit individuals who do not meet the current 
screening criteria. A recent study proposed an effective and 
accurate screening approach for abdominal aortic aneurysm 
(AAA) based on a broader spectrum of clinical biomark-
ers [12], thereby providing a foundation for developing 
and testing new biomarker-based screening approaches for 
aneurysm. Therefore, the integration of numerous biological 
data, such as genetics and medical images, and the identi-
fication of non-invasive and convenient biomarkers, could 
facilitate the prediction of aneurysm and provide options 
for personalized medical prevention strategies, which is an 
essential step in the context of PPPM [4].

Genomics is a fundamental consideration for PPPM

Exploring biomarkers associated with aneurysms identified 
from routinely collected electronic health records might 
suffer from misclassification bias due to the asymptomatic 
nature of the disease. Genomics can provide unique data 
about an individual’s unique risk of disease [13, 14] and 

genetic risks of aneurysms were stable and precise, which 
might assist in identifying robust biomarkers [15, 16]. There 
have been several large-scale genome-wide association stud-
ies (GWAS) that report a potential shared genetic aetiol-
ogy among the main types of aneurysms [17–21], including 
AAA, thoracic aortic aneurysm (TAA), intracranial aneu-
rysm (ICA) and Marfan syndrome (MFS) in which the main 
complication is TAA [22, 23]. Therefore, the genetic risk of 
aneurysm can be a reasonably precise proxy for aneurysms 
since this risk can (i) better reflect the biological mechanism 
of aneurysms and (ii) better represent an individual’s risk 
and reduce misclassification bias due to the delay or lack of 
aneurysm detection.

Oculomics features imaging biomarkers 
of aneurysms and is an emerging tool for PPPM

Identifying medical imaging biomarkers is a key component 
in PPPM since they are essential to patient-tailored disease 
prediction or therapy [24]. For aneurysm screening or pre-
diction, the use of image biomarkers derived from ultra-
sound or computer tomography (CT) is not cost-effective 
and can expose patients to radioactive agents, thus limiting 
the broad application of these techniques as routine health-
care processes. Oculomics is an emerging research area that 
utilizes ocular information derived from non-invasive and 
easily accessible ocular examinations to gain insights into 
systemic health. Some researchers have reported the use of 
oculomics in the context of PPPM [25], especially for the 
use of oculomics of retinal vascular morphological features 
(RVFs) as prediction biomarkers for cardiovascular diseases 
(CVDs) [26–29]. However, only a few studies have inves-
tigated their relationship with aneurysms [30, 31]. Since 
aneurysms mainly demonstrate irreversible changes in the 
vascular morphology, we hypothesized that the oculomics 
of RVF may contains more imaging biomarkers for aneu-
rysm than for other CVDs and these RVFs may facilitate the 
early identification of patients with a high risk of aneurysm 
from the perspectives of PPPM. This strategy will benefit 
vulnerable populations, especially those that find it difficult 
to reach advanced medical resources [32].

Working hypothesis

Compared to clinical phenotypic data, oculomics derived 
from retinal fundus image is considered more convenient and 
efficient, non-invasive, with lower costs (for all resources), 
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and more importantly, reflects systemic vascular proper-
ties. Previously, we developed a deep learning algorithm, 
the Retinal-based Microvascular Health Assessment System 
(RMHAS) [33] that can generate data on the omics scale 
from RVFs, thus providing more comprehensive oculomics 
of RVFs. In this study, personalized genetic risk of aneu-
rysm was integrated with the oculomics by phenome-wide 
association analysis (PheWAS) to identify biological mean-
ingful aneurysm-RVF biomarkers. Followed by testing their 
capability in differentiating aneurysms, this study aimed to 
investigate the value of oculomics in (i) providing imaging 
biomarkers for the predictive diagnosis of arterial aneurysms 
and (ii) identifying subjects at high risk and supporting early 
detection of arterial aneurysms. This could be particularly 
useful as it might allow us to develop a more refined and 
targeted screening approach for aneurysm that aligns with 
the aims of PPPM.

Methods

Study population

The UK Biobank is a large-scale and prospective cohort 
study with over 500,000 participants aged 40–69 years that 
were recruited between 2006 and 2010. This study collected 
extensive phenotypic and genotypic data from each partici-
pant with their informed consent. Further details of the UK 
Biobank data and the protocols involved have been described 
elsewhere [34]. In brief, a total of 502,505 individuals in 22 
assessment centres across the UK agreed to participate in 
this study (a response rate of 5.5%). During baseline assess-
ment, participants completed comprehensive questionnaires, 
provided a range of physical measurements and provided 
biological samples. Detailed health-related events were 
achieved through linkage to national electronic health record 
datasets. Ophthalmic assessments, including retinal fundus 
photography, were introduced to the baseline assessment in 
2009 for six assessment centres. Participants without fundus 
imaging or genetic data were excluded.

This study was approved by the National Information 
Governance Board for Health and Social Care and the NHS 
Northwest Multicentre Research Ethics Committee (Refer-
ence: 11/NW/0382) and the Biobank consortium (Applica-
tion number: 62489). Since de-identified data in a public 
dataset was used, the Medical Research Ethics Committee of 
Guangdong Provincial People’s Hospital waived the require-
ments to obtain ethical approval.

Genetic risk of aneurysm

In total, 488,377 participants were genotyped by the UK 
Biobank Axiom genotyping array. Stringent quality control 

was performed and genotype imputation was carried out 
using the Haplotype Reference Consortium (HRC) reference 
panel; further details relating to the genotype and quality 
control information were described by Bycroft et al. [35].

Genetic information for abdominal, thoracic and intrac-
ranial aneurysms, and MFS, were taken from genome-wide 
association studies (GWAS) for the corresponding traits. For 
AAA, 12 genetic loci associated with AAA were identified 
from a meta-analysis of 4972 cases and 99,858 controls [17]; 
for TAA, we used three single nucleotide polymorphisms 
(SNPs) that were found to be associated with TAA in a 
previous GWAS of 1351 affected individuals and 18,295 
controls [19]; and for intracranial aneurysms, we used 17 
SNPs that were previously identified by a GWAS of 10,754 
cases and 306,882 controls [18]. These SNPs were used to 
generate different weighted genetic risk scores (GRSs) for 
each participant using the --score function implemented in 
PLINK 2.0 [36]. The magnitude of the association with dif-
ferent aneurysms (GWAS beta coefficient) was used as the 
weighting factor for each variant included in the GRS.

In the analysis of MFS, we selected five MFS SNPs that 
were allocated to different genes [20, 21]. rs10519177 was 
located in the region of FBN1, a common MFS gene, while 
the other four SNPs rs2297676 (located within COL16A1), 
rs1432302 (located within LOC105373592), rs3020167 
(located between C8orf81 and LOC441376) and rs2278601 
(located within SMAD6) were considered to be associated 
with the extreme arterial phenotype of MFS such as tho-
racic aneurysm or dissection. The genotypes of these SNPs 
were extracted by PLINK 2.0 for each participant using the 
--extract and --recode functions.

Oculomics of retinal vascular features

The 45-degree non-mydriatic retinal fundus and optical 
coherence tomography (OCT) images of the optic disc and 
macular were captured using a spectral domain OCT (Top-
con 3D OCT 1000 Mk2, Topcon Corp, Tokyo, Japan) for 
each eye. A total of 131,238 fundus images were obtained 
from 66,500 participants. Only the retinal fundus images 
from the right eye were used for analysis. A machine learn-
ing system, referred to as the Retinal-based Microvascu-
lar Health Assessment System (RMHAS), was previously 
developed and validated to automatically and quickly extract 
and quantify retinal microvascular features [33]. For each 
image, pan-retinal vessel geometric parameters, such as 
calibre, complexity, length, tortuosity and branching angle 
were quantified. A demonstration of the algorithm is pub-
licly available at: https:// www. retin avess el. com/ (Supple-
mentary Method 1).

Compared to previous retinal vessel analysis tools, 
RMHAS can extract pan-retinal vessel features and gener-
ate 91 RVFs for each fundus image. Details of the analysing 
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pipeline and the 91 RVFs are given in Supplementary Fig-
ure 1 and Supplementary Table 1.

Characteristics associated with the risk of aneurysm

According to previous prediction models for aneurysm [12, 
37], modifiable clinical risk factors, demographic informa-
tion and social economic status were considered as charac-
teristics that can be used to predict aneurysm events. Base-
line characters included age, sex, systolic (SBP) and diastolic 
(DBP) blood pressure, blood lipid, glycated haemoglobin, 
smoking status, body mass index (BMI), baseline cardio-
vascular disease (defined by International Classification of 
Diseases [ICD-10] codes I20–I25 and I60–I69 excluding 
I67.0 and I67.1), baseline diabetes (self-reported type 1 or 
type 2 diabetes), self-reported hyperlipidaemia and the use 
of blood pressure- or cholesterol-lowering medications or 
anti-diabetic medications. Refractive error was measured 
using a Tomey RC 5000 autorefractor and data from the 
right eye was used for analysis (Supplementary Method 2 
and Supplementary Table 2).

Identifying aneurysm‑RVF associations by PheWAS

PheWAS was performed between RVFs and each aneurysm 
GRS or SNP. In general, each RVF was regressed against a 
GRS or a SNP while adjusting for age and sex in the main 
analysis and additionally adjusted for SBP, Townsend depri-
vation score, smoking and refractive error in the sensitivity 
analysis. To adjust for multiple testing (we run 91 regres-
sions for each PheWAS), Bonferroni correction was applied 
thus a P value less than 5.50e−04 (0.05/91) was considered 
statistically significant. The R package ‘PheWAS’ [38] was 
used to perform statistical analysis. Venn diagrams were 
used to identify the overall and shared aneurysm-RVFs 
driven by the effect of aneurysm or arterial dissection genes.

Capability of aneurysm‑RVF associations 
in predicting aneurysm risk

Assessment of aneurysm risk

The outcome was an 8-year risk of hospital admission due 
to aneurysm or symptomatic aneurysm defined by the ear-
liest recorded event of fatal or non-fatal aneurysm since 
recruitment. Subjects were selected by their ICD10 code, 
OPCS4 (Classification of Interventions and Procedures) 
code, death record and self-report disease information. 
From the UK Biobank data set, data field ‘41270’, ‘40001’ 
and ‘40002’ were selected to define participants as ‘aneu-
rysm dissection’, ‘thoracic aneurysm’, ‘abdominal aneu-
rysm’, ‘thoracoabdominal aneurysm’, ‘brain aneurysm’ 
or ‘other aneurysm’ by ICD-10 code ‘I71-I72’, ‘I671’ or 

‘I670’. Data field ‘41272’, ‘41200’ and ‘41210’ were also 
selected to define participants who had aneurysm surgery 
by OPCS4 code defined as ‘L18’, ‘L19’, ‘L27’, ‘L28’, 
‘L424’, ‘L464’, ‘L254’, ‘L33’, ‘L48’, ‘L49’, ‘L533’, ‘L56’, 
‘L57’, ‘L623’, ‘L624’ and ‘L705’. Finally, data fields 
‘20002’ and ‘20004’ were selected to define self-reported 
aneurysm by choosing codes ‘1425’, ‘1492’ and ‘1591’ 
and ‘1592’ (Supplementary Table 3).

To derive the survival model, the recruitment date served 
as the beginning of the time at risk for each participant, and 
the period at risk terminated on the earlier of the first quali-
fying aneurysm event or the end of follow-up. The retinal 
images were taken between 2009 and 2010, and the dis-
ease records ended in 2018. Hence, follow-up was limited 
to a maximum of 8 years for each participant for the 8-year 
aneurysm risk.

Model derivation and validation

At first, participants with missing clinical risk data or RVFs 
were excluded; this resulted in 26,964 participants with a 
complete dataset in the cohort. Then, the complete cohort 
was divided into a derivation cohort (70% of the cohort, n 
= 18,954) and a validation cohort (30% of the cohort, n = 
8010). We developed three models, one was the ‘baseline 
model’, including baseline age and sex as covariates; and 
the other two models with two distinct covariate sets, one 
including an additional 20 clinical risk factors, the other 
with the aneurysm-RVFs identified by previous PheWAS 
(Supplementary Method 3). We constructed a Cox model 
for these three models in the derivation cohort, and then run 
these separately in the validation cohort. The performance 
of the Cox models, over 8 years of follow-up, was tested 
by Harrell’s C-index separately in both the derivation and 
validation cohorts, using 2000 bootstraps (performed by the 
R package ‘rms’). The 95% CIs were also calculated based 
on the bootstrapping runs.

The predictive capability of aneurysm‑RVF score

Finally, based on the metric of the aneurysm-RVF model in 
the derivation cohort, the survival probability was calculated 
for each participant in the complete cohort and used as an 
aneurysm-RVF score. This score was categorized into ter-
tiles and the difference in the time-to-aneurysm probability 
across each tertile of the score was evaluated using Kaplan-
Meier curve; log-rank tests were used to calculate P values. 
For sensitivity analysis, participants who have ever been in 
hospital due to aneurysm were removed, and the associa-
tion of the aneurysm-RVF score with the first aneurysm was 
assessed.
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Statistical analysis

Continuous variables are presented as mean and standard 
deviation (SD) if approximately symmetrically distributed, 
and median and interquartile range (IQR) if skewed. Cat-
egorical variables are presented as counts and percentages. 
All analyses were two-sided and a P value of <0.05 was con-
sidered statistically significant. All analyses were performed 
using R 4.0.4 software or Stata14.

Results

Baseline population

The baseline cohort contained 51,597 participants with reti-
nal vascular measurements and genetic information; these 
data were analysed by PheWAS. At the time the retinal 
images were taken, the median age of the participants was 
56.0 (IQR: 14) years, 54.9% were female and 86.2% were 
white. With regard to clinical measurements, the median 
SBP was 135 (IQR: 24.5) mmHg, and DBP was 81.5 (IQR: 
14). Median total cholesterol was 5.65 (IQR: 1.49) mmol/L, 
while for HDL, LDL and triglycerides, the mean values were 
1.43 (IQR: 0.512) mmol/L, 3.50 (IQR: 1.15) mmol/L and 
1.41 (IQR: 1.02) mmol/L, respectively. Mean HbA1C was 
35.1 (IQR: 5.1) mmol/mol. The population had a relatively 
elevated BMI (26.6 [IQR: 5.71] kg/m2) and 56.3% had never 
been a smoker. Regarding medication history, 20.3% had 
never taken blood pressure-lowering drugs, 3.5% had taken 
blood glucose-lowering medication and 16.9% had taken 
lipid-lowering medication. On average, 2244 (4.3%) of the 
participants had a history of CVD, 548 (1.1%) reported a 
history of aneurysm, 374,485 (72.6%) had been diagnosed 
with hypertension, 2505 (4.8%) had diabetes and 23,145 
(44.9%) had hyperlipidaemia. The median refractive status 
was 0.05 (IQR: 2.23) dioptre. Out of the total number of 
participants, 201 had an aneurysm event after recruitment 
(Table 1).

PheWAS results relating to the genetic risks 
of artery aneurysms

First, we performed three PheWASs to identify RVFs that 
were associated with the GRS of AAA, TAA and ICA, 
respectively. Nine RVFs that represent the vessel calibre 
(maximum, mean, stander deviation of central or overall 
vessel calibre), complexity (number of vascular trees) and 
tortuosity (vessel curvature) were associated with AAA 
GRS after Bonferroni correction. Of these, ‘ntreeA’, which 
refers to the number of artery vessels passing through the 
optic disc, demonstrated the strongest association with AAA 
GRS (β = −0.36, P = 6.75e−10) (Fig. 2A). In the sensitivity 

analysis, after additional adjusting for SBP, smoking, dep-
rivation score and refractive status, four RVFs representing 
vessel calibres were no longer significant and only five RVFs 
remained significant (Supplementary Table 4). For TAA and 
ICA, only the mean artery calibre (‘w_mean_mean_a’) (β 
= 0.05, P = 8.37e−05) and the number of vascular trees in 
the optic disc (‘ntreeA’) (β = −0.11, P = 5.51e−06) were 
associated with the genetic risk of thoracic and intracra-
nial aneurysms, respectively. The ‘ntreeA’ was common 
for both AAA and ICA (Fig. 2C). The association between 
‘w_mean_neam_a’ and TAA GRS disappeared after adjust-
ing for more covariates in the sensitivity analysis (Supple-
mentary Table 4).

In summary, in the main analysis, we found that ten 
unique RVFs were associated with the genetic risk of the 
three types of aneurysms (Fig. 1). The majority of the RVFs 
were associated with AAA GRS, and ‘ntreeA’ was associ-
ated with both AAA and ICA.

Table 1  Baseline characteristics of the participants

Continuous variable N (all) Median IQR
Age (years) 51,597 57 14
BMI (kg/m2) 51,360 26.6 5.71
Townsend deprivation 51,527 −1.68 4.33
SBP (mmHg) 51,422 135 24
DBP (mmHg) 51,422 81.5 14
HbA1c (mmol/mol) 47,810 35.1 5.1
Total cholesterol (mmol/L) 48,219 5.65 1.49
HDL (mmol/L) 45,980 1.43 0.51
LDL (mmol/L) 48,138 3.50 1.15
Triglycerides (mmol/L) 48,173 1.41 1.02
Refractive error (D) 51,096 0.05 2.23
Category variable N (all) N Percentage
Sex 51,597
 Female 28,303 54.90%
 Male 23,294 45.10%
Ethnicity 51,484
 Non-white 7118 13.80%
 White 44,366 86.20%
Smoker 51,294
 Never 29,064 56.3%
 Former 17,434 33.8%
 Current 4796 9.3%
Blood pressure lowing drugs (yes) 51,597 10,463 20.3%
Blood glucose lowing drugs (yes) 51,597 1826 3.5%
Blood lipid lowing drugs (yes) 51,597 8742 16.9%
Previous history of CVD (yes) 51,597 2244 4.3%
Previous history of aneurysm (yes) 51,597 548 1.1%
Previous history of hyperlipidaemia 

(yes)
51,597 23,145 44.9%

Previous history of hypertension (yes) 51,597 37,485 72.6%
Previous history of diabetes (yes) 51,597 2502 4.8%
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Fig. 1  Manhattan plot for the 
PheWAS of genetic aneurysm 
risks with RVFs. The x-axis 
represents the 91 RVFs, y-axis 
represent the Z-score (Z-score = 
β/SE) of the PheWAS findings. 
Different symbols represent 
different genetic risks of 
aneurysm, the blue/red colour 
represents whether the P value 
is passing the Bonferroni cor-
rection. AAA, abdominal aortic 
aneurysm; TAA, thoracic aortic 
aneurysm; ICA, intracranial 
aneurysm

Fig. 2  RVFs associated with 
aneurysm GRSs, and MFS 
SNPs identified by PheWAS. 
A Forest plot demonstrat-
ing the significant RVFs that 
were identified by PheWAS 
of AAA/TAA/ICA GRSs; B 
Forest plot demonstrating the 
most common RVFs that were 
identified by PheWAS of MFS 
SNPs; C Venn diagram of 
the PheWAS results showing 
the common RVFs associated 
with AAA/TAA/ICA GRSs; 
‘A/B/C’ reflects the correspond-
ing blocks of RVFs shown 
in A; D Venn diagram of the 
PheWAS results showing the 
common RVFs associated with 
MFS SNPs; ‘A/B’ reflects the 
corresponding blocks of RVFs 
shown in B 
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PheWAS results relating to the genetic risks 
of Marfan syndrome

We then performed five PheWASs to identify RVFs that 
were associated with five different MFS genes, respectively. 
For the most common MFS gene FBN1, 26 RVFs were asso-
ciated with the mutation of the corresponding SNP, and the 
number of artery segments (‘nseg_a’, reflecting vessel com-
plexity) showed the strongest association (β = −1.67, P = 
5.07e−17). After adjusting for covariates, especially refrac-
tive status, 21 RVFs remained significant (Fig. 2B, D, Sup-
plementary Table 5). For the remaining MFS SNPs, three 
RVFs for rs2297676 (COL16A1), three RVFs for rs1432302 
(LOC105373592), three RVFs for rs3020167 (C8orf81/
LOC441376) and ten RVFs for rs2278601 (SMAD6) were 
identified in the main PheWAS analysis (Fig. 1). Sensitivity 
analysis revealed similar findings (Supplementary Table 5).

For all significant RVFs identified by different MFS 
genes, there were some overlaps. For example, ‘cur-
veangle_mean_a’, the mean segment angles between 
each artery branch at a length of ten pixels, was com-
mon for four MFS SNPs (FBN1_rs10519177: β = −0.10, 
P = 1.63e−12; COL16A1_rs2297676: β = −0.07, P = 
3.14e−09; LOC105373592_rs1432302: β = −0.06, P = 
1.89e−05; C8orf81/LOC441376_rs3020167: β = 0.07, P 
= 1.02e−05). And ‘ntreeA’ was shared by four other MFS 
SNPs (FBN1_rs10519177: β = −0.06, P = 2.68e−07; 
COL16A1_rs2297676: β = −0.06, P = 3.14e−05; 
LOC105373592_ rs1432302: β = −0.05, P = 5.02e−05; 
SMAD6_rs2278601: β = −0.07, P = 2.54e−10) (Fig. 2B and 
D).

Taking all the PheWAS results together, in the main 
analysis, 32 unique RVFs were associated with the genetic 
risks of aneurysms and MFS (we referred to these RVFs 
as aneurysm-RVF) (Fig. 1). In the sensitivity analysis, 26 
aneurysm-RVFs were identified (Supplementary Table 4–5). 
Although each aneurysm GRS or MFS gene was associated 
with some specific aneurysm-RVFs, we still observed many 
aneurysm-RVFs that were commonly shared by different 
aneurysm risks (Supplementary Figure 2).

Derivation of an aneurysm‑RVF risk model 
and comparison with a clinical risk model

In the PheWAS stage, 32 RVFs were considered as aneu-
rysm-RVFs. To investigate whether these RVFs were capa-
ble of predicting future aneurysm events, an aneurysm-RVF 
risk model was developed and compared with a clinical risk 
model and a baseline model. Details of the three models are 
listed in Supplementary Method 3.

In the derivation cohort, 54.2% were women, the mean 
age was 55.2 years, and the Townsend deprivation score was 
−1.71 (IQR: 4.28). The majority of the participants never 

smoked (57.1%) and had a slightly elevated BMI (27.2 ± 
4.68 kg/m2). The summary statistics for clinical risk and the 
32 aneurysm-RVFs are shown in Supplementary Table 6 and 
7. There were 59 (0.3%) incident cases of aneurysm during 
the follow-up period. The incidence of aneurysm was 4.06 
(95% CI: 3.09–5.24) per 10,000 person-years, 2.16 (95% CI: 
1.26–3.15) per 1000 person-years in women and 6.31 (95% 
CI: 4.55–8.54) in men per 10,000 person-years.

In all three models, older age and male gender were 
associated with an increased risk of hospital admission 
due to aneurysm over the follow-up period. In the clinical 
risk model, both taking blood pressure-lowering medica-
tion (HR: 2.78, 95% CI: 1.43–5.39) and a previous his-
tory of aneurysm were identified as significant risk factors 
(HR: 18.75, 95% CI: 9.93–35.41). In the aneurysm-RVF 
model, after adjustment for age, sex and previous history 
of aneurysm, both ‘curveangle_mean_v’ (HR: 1.44, 95% 
CI: 1.08–1.93) and ‘nseg_v’ (HR: 1.73, 95% CI: 1.03–2.90) 
were associated with an increased risk of aneurysm. Analy-
sis also indicated that ‘curveangle_sd_v’ (HR: 0.68, 95% 
CI: 0.50–0.93) was associated with a reduction of risk (Sup-
plementary Table 8–10).

After 2000 rounds of bootstrapping within the internal 
tests, the C-index for the baseline model was 0.739 (95% 
CI: 0.739–0.746); for the clinical risk model, the C-index 
was 0.806 (95% CI: 0.778–0.834) and for the aneurysm-
RVF model, the C-index was 0.809 (95% CI: 0.780–0.838) 
(Fig. 3A). In general, in the derivation cohort, the aneurysm-
RVF model we developed demonstrated a good performance 
in predicting the future risk of aneurysm compared to the 
baseline or clinical risk models.

Validation of the aneurysm‑RVF risk model 
and comparison with a clinical risk model

The discriminative capability of these models was further 
examined in a validation cohort. In the validation cohort, 
there were 28 (0.3%) incident cases; the incidence of aneu-
rysm was 4.55 (95% CI: 3.03–6.58) per 10,000 person-years. 
The demographic factors, clinical risk factors and aneurysm-
RVFs were similar when compared between the derivation 
and validation cohort (Supplementary Table 6 and 7).

Over 8 years of follow-up, the baseline model yielded a 
C-index of 0.719 (95% CI: 0.620–0.816), the clinical risk 
model yielded a C-index of 0.795 (95% CI: 0.718–0.871), 
and the aneurysm-RVF model yielded a C-index that was 
similar to the clinical model at 0.798 (95% CI: 0.727–0.869) 
(Fig. 3B). Although the overall discriminative capabilities 
were slightly reduced, the aneurysm-RVF model showed 
equally good performance when compared to the clinical 
risk model. These results validated the findings in the deri-
vation cohort.
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Predictive capability of aneurysm‑RVF score

Finally, to investigate the capability of aneurysm-RVFs to 
identify individuals at risk of aneurysm, an aneurysm-RVF 
score was predicted for each participant in the complete 
cohort based on metrics from the derivation cohort. The 
aneurysm-RVF score was divided into tertiles and a Cox 
proportional hazard analysis was performed. In the main 
analysis, compared to the lowest tertile, the estimated haz-
ard ratio was 3.00 (95% CI: 0.97–9.30) for participants in 
the medium tertile and was 17.80 (95% CI: 6.50–48.75) for 
participants in the highest tertile. The log-rank test demon-
strated that the overall difference in survival rate was statis-
tically significant among the three tertiles (P < 0.01); only 
the difference between the medium and low score groups 
was boundary significant (P = 0.05) (Fig. 4A). In the sensi-
tivity analysis, where participants with previously reported 
aneurysm were removed, the aneurysm-RVF score yielded 
slightly smaller estimates: HR was 3.0 (95% CI: 0.97–9.30) 
for participants in the medium tertile and 12.52 (95% CI: 
4.523–34.677) for participants in the highest tertile. The 
difference was significant among the three tertiles except 
for comparisons between the medium and low score groups 
(P = 0.05) (Fig. 4B). These findings demonstrated that the 
aneurysm-RVF score we developed can precisely discrimi-
nate subjects at risk of aneurysm.

Discussion

Summary of the findings

To our knowledge, this is the first study to innovatively inte-
grate the genetic risk of aneurysm and oculomics of pan-
retinal vascular geometry to investigate the value of RVFs 
in predictive diagnosis of systemic aneurysms. Our PheWAS 
analysis identified 32 RVFs that were associated with the 
genetic risks of aneurysms. The identified RVFs were 

considered to share common biological aetiologies with 
systemic aneurysms and were used to develop an aneurysm-
RVF model to predict the future risk of aneurysm. The aneu-
rysm-RVF model exhibited an equally good performance 
when compared to a clinical risk model (C-index = 0.798 
[aneurysm-RVF model] vs. 0.795 [clinical risk model]). The 
aneurysm risk score derived from our model can success-
fully stratify subjects at different levels of aneurysm risk 
(upper vs. lower tertile, HR = 17.80 [6.50–48.75]).

The existing aneurysm screening guidelines only consider 
a few biomarkers [12, 39] and are generalized for ‘average 
patients’. In contrast, PPPM aims to improve the outcomes 
of medical interventions for each individual by developing 
new medical policies for clear target patients on the basis of 
population heterogeneity [40]; however, this strategy relies 
on advances in biomarker discovery [41, 42]. Our study 
identified new oculomic biomarkers and provided evidence 
that these biomarkers can be used in the predictive diag-
nosis of aneurysms. Our strategy can also help to produce 
a tailored and targeted screening approach to benefit both 
patients and the healthcare system, thus contributing to the 
paradigm of PPPM.

The advantages and rationale of applying 
an individual aneurysm genetic risk for PPPM

Applying an individual’s genetic information is one of the 
fundamental steps of the implementation of PPPM although 
the clinical prospects of this strategy are still being explored. 
Previously, one of the challenges of applying precision 
medicine in aneurysm was to translate genomic informa-
tion to the clinical settings and to develop better diagnostic 
tools or management setups for aneurysms [43]. The results 
of our study provided one potential application. There are 
several advantages of using the genetic risk of aneurysms 
rather than applying the phenotype itself. Aneurysms are 
associated with a low prevalence in the general population 
and are mostly asymptomatic initially. Cases identified from 

Fig. 3  The average C-index of the baseline, clinical risks and aneu-
rysm-RVF model from the derivation and validation cohort. A 
Each coloured violin plot represents the average and distribution of 

C-index of different models from the derivation cohort, the C-indexes 
were derived from 2000 bootstrapping: B the average and distribution 
of C-index of different models from the validation cohort
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routinely collected phenotypic data would usually underes-
timate the true prevalence and render the study extremely 
underpowered. For example, when using phenotypic data, 
the Atherosclerosis Risk in Communities (ARIC) Study 
failed to identify any significant association between retinal 
vasculature and the incidence of AAA [30]. However, in 
our study, we found that 10 RVFs were associated with the 
genetic risk of AAA, even after adjusting for additional con-
founding factors. Of note, the SNPs selected for aneurysms 
often reveal the biological mechanism of the disease; for 
example, SNPs selected for AAA encode genes that exert 

inflammatory and immune function (IL6R and CDKN2BAS1/
ANRIL) or participate in lipoprotein metabolism (SORT1 
and LDLR). These processes are important for the develop-
ment of AAA [44]. The use of aneurysm GRSs would better 
reflect its biological mechanisms [17]; hence, its association 
with RVFs would be more biological rather than statistical.

We also note that more RVFs were found to be associ-
ated with AAA GRS than TAA. This could be due to the 
better performance of AAA GRS which included 12 SNPs 
compared to three or four SNPs included in TAA or ICA 
GRS. In addition, in terms of embryological origin, abdomi-
nal and thoracic aneurysms are different; this causes differ-
ing pathologies [45]. The Vascular Smooth Muscle Cells 
(VSMCs) in the ascending aorta and arch vessels are derived 
from neural crest stem cells and progenitor cells in the sec-
ond heart field, while those in the descending aorta are 
derived from the mesodermal somatic precursor’s layer [46, 
47]. It is also known that the retinal vasculature is derived 
from the mesoderm, which is similar to the descending 
aorta. Hence, the common embryonic origin between AAA 
and retinal vessels might also lead to the better performance 
of AAA GRS.

Oculomics can reflect systemic disorders

As an emerging research area, oculomics has been applied 
to predict systemic diseases under the framework of PPPM. 
The ocular system is enriched with connective (e.g. the 
sclera), neuron (e.g. the retinal neuron layer) and vascular 
(e.g. the retinal vessel and choroid) tissues; hence, oculomics 
can reflect systemic disorders from a variety of aspects. One 
recent study conducted by Evsevieva et al. demonstrated that 
connective tissue dysfunction can be manifested as disorders 
in both systemic vascular system as well as ocular system 
and cause diseases such as myopia and glaucoma [48]. Simi-
larly, MFS is an autosomal dominant genetic disorder of the 
connective tissue. In a manner that differs from polygenic 
diseases in which each SNP only exerts a small effect on the 
outcome [22, 23], the mutation of MFS genes would cause 
relatively severe dysfunction of the connective tissues. The 
corresponding clinical manifestations include arterial aneu-
rysms and high myopia: this could be a potential applica-
tion of using oculomics of high myopia to predict systemic 
disease [49]. Furthermore, connective tissue disorder can 
influence retinal vascular geometry [50]: we suspect that 
this would lead to another potential application of using 
oculomics of RVFs to predict aneurysms. In a previous case 
report, an MFS patient with an FBN1 mutation developed an 
aneurysm and was detected with abnormal retinal vascular 
morphology in both eyes [51]. Another study investigated 
the retinal vasculature alterations in genetically confirmed 
MFS and found that the severity of MFS was significantly 
correlated with impairments in the retinal vasculature [52]. 

Fig. 4  Kaplan-Meier plots for aneurysm risk according to the aneu-
rysm-RVF score. A Aneurysm-RVF score in the complete cohort; B 
Aneurysm-RVF score in the participants with first diagnose of the 
aneurysm
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Consistent with these findings, in our study, we observed 
that (1) the genes with clear biological effects on connective 
tissue disorders like MFS were also associated with ocu-
lomics of RVFs (Supplementary Figure 2); (2) the identified 
oculomics of RVFs had a capability in predicting systemic 
aneurysm, which was more precise than baseline informa-
tion. Our study provides more evidence to support the appli-
cation of oculomics in systemic disease interventions under 
the PPPM framework.

One of the concerns is that MFS patients also suffer from 
high myopia [49]; this might influence the morphology of 
the retinal vessels and induce a spurious association between 
RVF and MFS [33]. Hence, in this study, apart from clinical 
risk factors, refractive error was also carefully adjusted in 
the model to reduce potential bias caused by myopic status.

Biological interpretation of aneurysm RVF

One of our key findings is that ‘curveangle_mean’, a param-
eter that reflects the tortuosity of the retinal vessels, was 
commonly identified by different aneurysms and MFSs, thus 
indicating its importance for aneurysm. Previous studies 
have described variable associations between retinal vessel 
tortuosity and cardiovascular diseases, albeit with conflict-
ing evidence on occasion. For example, it was reported that 
increasing retinal arteriolar tortuosity was associated with 
an increased risk of stroke in type 2 diabetic patients [53] 
and might also be associated with hypertension and hyper-
lipidaemia [54]. Sason gko et al. [55] found no association 
between retinal vessel tortuosity and a range of clinical risk 
factors, including blood lipids in diabetic patients. However, 
Cheung and Taarnhøj reported that flatter retinal vessels 
(smaller in tortuosity) were associated with older age, higher 
blood pressure as well as higher BMI and these are all risk 
factors for aneurysm [56, 57]. Similar to Cheung and Taarn-
høj’s findings, we found that smaller values of ‘curvean-
gle_mean’ (flatter vessels) were associated with an increased 
risk of aneurysm. In previous studies, general tortuosity was 
calculated as the arc-chord ratio of a vessel; this measures a 
wider range of the vessel arch and is insensitive to the fre-
quency with which a vessel ‘wiggles’ [58]. To overcome this 
problem, ‘curveangle’ focuses on smaller regions of the ves-
sels by measuring vessel branches sampled at a length of 10 
pixels [33]. For simplicity, tortuosity and ‘curveangle’ were 
standardized to the same direction: the greater the value, the 
curvier the vessel. We suspect that compared to tortuosity, 
the ‘curveangle’ might be more sensitive in reflecting the 
early degeneration of the retinal vessels. However, to what 
extent this feature can be used for detecting systemic aneu-
rysms needs to be further investigated.

Another interesting finding is that ‘ntreeA’ was negatively 
associated with arterial aneurysms. This may be relevant to 
its geometric capability of reducing the blood flow shear 

stress. Common features of arterial aneurysms include the 
dysfunction and loss of vascular smooth muscle cells, extra-
cellular matrix degradation and inflammation [59], which 
can disrupt arterial wall structural integrity, weaken ves-
sels, remodel the arterial wall and subsequent dilate the 
artery [60]. A high wall shear stress caused by abnormal 
flow conditions can activate pro-inflammatory signalling in 
endothelial cells and disrupt the internal elastic lamina and 
collagen matrix, thereby leading to a focal bulge of the wall 
and the initiation of arterial aneurysm. It is possible that the 
increased number of vascular trees may play an important 
role in diverting and therefore decreasing the shear stress; 
however, further hemodynamic studies are needed.

Strength and limitations

The main strength of the present study is that this large and 
prospective cohort features extensive phenotypic, genotypic 
and oculomics detail about its participants. In addition, this 
study used genetic information relating to aneurysms to 
identify new diagnostic biomarkers that better represented 
the population; furthermore, these biomarkers were highly 
robust. We also used a deep learning system to analyse large 
quantities of retinal images which can automatically meas-
ure a wide range of RVF parameters. However, the findings 
of this study need to be interpreted with caution due to the 
following of the following limitations. Firstly, participants 
involved in the UK Biobank study might not be fully repre-
sentative because extremely poor-health individuals could 
not participate in this study. Secondly, the gene panel for 
MFS included a myopia gene; although the refractive error 
of the eye was adjusted, the pleiotropic effect of the genes 
can still lead to potential bias. Finally, since patients that 
were diagnosed with aneurysms in the UK Biobank data 
set were rare, and participants who had retinal images were 
younger on average, replication in other studies will give 
better clinical indications of these findings.

Conclusion and expert recommendations 
for the framework of PPPM

Our study showed that RVFs, quantified based on retinal 
images, were associated with the genetic risks of aneurysms, 
and that the aneurysm-RVF score can efficiently identify 
patients with risks of aneurysms. Our findings support the 
further development and application of PPPM in the medi-
cal intervention of aneurysms from different perspectives. 
Firstly, from the aspect of disease prediction, conventional 
prediction models mainly rely on clinical risk factors while 
our study innovatively implemented oculomics and identified 
non-invasive biomarkers for aneurysm prediction, thus ena-
bling the construction of more practical prediction models. 
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Secondly, from the aspect of primary aneurysm prevention, 
the current screening strategies for AAA are mainly based 
on age and sex, while for other types of aneurysms, effective 
screening strategies are still required. The aneurysm-RVF 
score can effectively stratify patients at risk. Furthermore, 
these imaging biomarkers are safe and inexpensive, thus 
helping us to monitor the progression of aneurysms in a 
long-term and dynamic manner. Thirdly, from the aspect of 
personalization, as the oculomics of RVF is easily acces-
sible compared to other medical examinations, applying 
oculomics for the detection of aneurysm would benefit the 
majority of the population, especially for younger patients or 
those living in areas with limited medical resources.

Finally, although the aneurysm-RVFs identified from 
our study demonstrated significant potential as reliable 
biomarkers, their biological causes remain unclear. Fur-
ther studies are now warranted to confirm the clinical value 
of RVFs in the screening and early diagnosis of arterial 
aneurysms.
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