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ABSTRACT In recent times, discovery efforts for novel antibiotics have mostly targeted car-
bapenemase-producing Gram-negative organisms. Two different combination approaches
are pertinent: b-lactam–b-lactamase inhibitor (BL/BLI) or b-lactam–b-lactam enhancer (BL/
BLE). Cefepime combined with a BLI, taniborbactam, or with a BLE, zidebactam, has been
shown to be promising. In this study, we determined the in vitro activity of both these
agents along with comparators against multicentric carbapenemase-producing
Enterobacterales (CPE). Nonduplicate CPE isolates of Escherichia coli (n = 270) and Klebsiella
pneumoniae (n = 300), collected from nine different tertiary-care hospitals across India dur-
ing 2019 to 2021, were included in the study. Carbapenemases in these isolates were
detected by PCR. E. coli isolates were also screened for the presence of the 4-amino-acid
insert in penicillin binding protein 3 (PBP3). MICs were determined by reference broth
microdilution. Higher MICs of cefepime/taniborbactam (.8 mg/L) were linked to NDM,
both in K. pneumoniae and in E. coli. In particular, such higher MICs were observed in 88 to
90% of E. coli isolates producing NDM and OXA-48-like or NDM alone. On the other hand,
OXA-48-like-producing E. coli or K. pneumoniae isolates were nearly 100% susceptible to
cefepime/taniborbactam. Regardless of the carbapenemase types and the pathogens, cefe-
pime/zidebactam showed potent activity (.99% inhibited at#8mg/L). It seems that the 4-
amino-acid insert in PBP3 (present universally in the study E. coli isolates) along with NDM
adversely impact the activity of cefepime/taniborbactam. Thus, the limitations of the BL/BLI
approach in tackling the complex interplay of enzymatic and nonenzymatic resistance
mechanisms were better revealed in whole-cell studies where the activity observed was a
net effect of b-lactamase inhibition, cellular uptake, and target affinity of the combination.
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IMPORTANCE The study revealed the differential ability of cefepime/taniborbactam and
cefepime/zidebactam in tackling carbapenemase-producing Indian clinical isolates that also
harbored additional mechanisms of resistance. NDM-expressing E. coli with 4-amino-acid
insert in PBP3 are predominately resistant to cefepime/taniborbactam, while the b-lactam
enhancer mechanism-based cefepime/zidebactam showed consistent activity against sin-
gle- or dual-carbapenemase-producing isolates including E. coli with PBP3 inserts.

KEYWORDS cefepime, taniborbactam, zidebactam, carbapenemases, Enterobacterales,
b-lactam enhancer, b-lactamase inhibitor

Resistance to carbapenems in Enterobacterales is principally mediated by carbape-
nemases, which are either serine-b-lactamases (SBLs; class A, C, and D) or me-

tallo-b-lactamases (MBLs; class B). Klebsiella pneumoniae carbapenemase (KPC) and
oxacillinase-48-like (OXA-48-like) are serine-b-lactamases while New Delhi metallo-
b-lactamase, imipenemase (IMP), and Verona integron-encoded MBLs (VIMs) are
metallo-b-lactamases (1). The genes encoding these b-lactamases exist in plasmids and
integrons and have been disseminated globally. However, the epidemiology of each of
these carbapenemases among Enterobacterales is heterogeneous. NDMs are endemic in
India and China, predominately in Escherichia coli and also in K. pneumoniae (2, 3), albeit
many clinical cases involving NDM-Enterobacterales are regularly reported from other
parts of the world such as South Korea, Iran, and Italy (4–6). OXA-48-like enzymes are
predominant in Europe, northern Africa, the Middle East, and increasingly in India (7, 8).
KPCs are the most frequent carbapenemases in the United States, Greece, Italy, and
China while rarely documented in India (9, 10). From the antibiotic resistance perspec-
tive, India is a hot spot with carbapenem resistance rates consistently exceeding 30% in
Enterobacterales (10), and therefore, Indian isolates reflect the current as well as future
challenges of antibiotic resistance which other parts of the world may face eventually.

Among the licensed novel b-lactamase inhibitors, avibactam and relebactam are based
on the diazabicyclooctane (DBO) pharmacophore; avibactam inhibits Ambler class A, C, and
someD enzymes and relebactam inhibits class A and C enzymes, while both lackMBL-inhib-
itory activity (11). Vaborbactam, a boronate-based inhibitor with an inhibitory spectrum akin
to that of relebactam, also lacks MBL inhibition (12); however, the structural changes in this
pharmacophore have led to newer boronates with an extended b-lactamase-inhibitory
spectrum (13). In this series of b-lactamase inhibitors, taniborbactam is shown to inhibit all
four Ambler class A, B, C, and D enzymes (except IMP), and its combination with cefepime
has recently completed a registrational phase 3 trial for the indication of complicated urinary
tract infection (cUTI) or acute pyelonephritis (AP) in adults (14, 15).

Chemical modifications of DBOs led to the identification of a novel bicyclo-acyl hydra-
zide (BCH) pharmacophore, derivatives of which have shown a selective pan-Gram-nega-
tive penicillin binding protein 2 (PBP2) binding feature, as well as inhibiting class A and C
b-lactamases. Zidebactam is the first-in-class BCH being combined with PBP3-targeting
cefepime (16–18). The antibacterial activity of this combination is mediated by synergistic
PBP inactivation, in addition to the b-lactamase inhibition feature of zidebactam.
This novel mode of action endowed the combination with broad-spectrum activity
against Gram-negative organisms expressing all four Ambler class b-lactamases (19–23).
Cefepime/zidebactam is in phase 3 clinical development for the indication of cUTI or AP
treatment (ClinicalTrials.gov identifier NCT04979806).

In view of these two cefepime-based novel combinations utilizing divergent mecha-
nisms of action in overcoming carbapenemases, we sought to determine their in vitro
activity against a collection of contemporary, genetically confirmed carbapenemase-
producing Enterobacterales isolates collected from different hospitals in India.

RESULTS

The MIC distributions for cefepime/taniborbactam, cefepime/zidebactam, and other
comparators are shown in Table 1 (E. coli) and Table 2 (K. pneumoniae). The distributions
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are provided for both the organisms under three subsets: NDM, NDM plus OXA-48-like,
and OXA-48-like producers.

E. coli. Against NDM-producing E. coli isolates (n = 211), activities of cefepime/
taniborbactam and cefepime/zidebactam were quite contrasting. Applying cefepime’s
susceptible–dose-dependent (SDD) breakpoint of #8 mg/L, the susceptibility to cefe-
pime/taniborbactam was only 12.3% (26 of 211). The modal MIC was 32 mg/L, 2 dilutions
higher than cefepime’s SDD breakpoint. On the other hand, cefepime/zidebactam inhib-
ited all the isolates at #2 mg/L. Aztreonam/avibactam showed a wide range of MICs
with most isolates in the range of 1 to 16 mg/L. Purely based on the potency compari-
son, aztreonam/avibactam was superior to cefepime/taniborbactam, though both were
inferior to cefepime/zidebactam.

E. coli isolates harboring both NDM and OXA-48-like were relatively few (n = 39),
and the MIC distribution pattern of antibiotics was no different from that for the NDM-
alone subset. At #8 mg/L, cefepime/taniborbactam inhibited 4/39 (10.3%) isolates,
while for cefepime/zidebactam all the isolates were inhibited at #4 mg/L. Aztreonam/
avibactam showed a scattered MIC distribution. The smallest subset among E. coli was
the OXA-48-like producers (n = 20); cefepime/taniborbactam had much better activity
than against other subsets with MIC values of #8 mg/L for 19/20 (95%) isolates.
Cefepime/zidebactam continued to show the potency advantage with all the isolates
inhibited at #4 mg/L, while aztreonam/avibactam again had a wider MIC distribution.

TABLE 1MIC distribution for E. coli categorized by carbapenemase typea

Antibiotic [carbapenemase(s) produced
(no. of isolates)]

No. of isolates with MIC (mg/L)

% S

MIC (mg/L)

£0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 >64 MIC50 MIC90

NDM producers (n = 211)
Cefepime 4 207 0 .64 .64
Imipenem 1 8 48 89 46 19 0 32 64
Meropenem 3 2 7 20 57 122 0 64 .64
Ceftazidime/avibactam 1 6 10 194 0 .64 .64
Imipenem/relebactam 1 2 9 58 82 44 15 0 32 64
Meropenem/vaborbactam 2 3 6 26 56 118 0.94 .64 .64
Cefepime/taniborbactam 3 7 1 15 31 63 57 34 12.3 32 .64
Cefepime/zidebactam 53 85 44 23 5 1 100 0.12 0.5
Aztreonam/avibactam 14 1 9 12 31 37 39 40 26 2 67.8 4 16

NDM plus OXA-48-like producers (n = 39)
Cefepime 2 37 0 .64 .64
Imipenem 10 11 13 5 0 32 .64
Meropenem 3 10 26 0 64 .64
Ceftazidime/avibactam 1 1 1 36 0 .64 .64
Imipenem/relebactam 2 7 16 9 5 0 32 .64
Meropenem/vaborbactam 3 9 27 0 .64 .64
Cefepime/taniborbactam 2 1 1 9 13 7 6 10.3 32 .64
Cefepime/zidebactam 8 15 11 2 1 1 1 100 0.12 0.5
Aztreonam/avibactam 5 1 1 3 4 3 9 8 2 1 1 1 66.67 4 16

OXA-48-like producers (n = 20)
Cefepime 1 1 1 4 3 1 9 35 16 .64
Imipenem 1 1 2 4 5 5 1 1 65 1 2
Meropenem 2 3 1 8 4 1 1 90 0.5 1
Ceftazidime/avibactam 3 1 1 6 6 2 1 100 1 4
Imipenem/relebactam 2 2 6 2 3 4 1 75 0.25 2
Meropenem/vaborbactam 5 2 2 6 3 1 1 95 0.5 1
Cefepime/taniborbactam 1 3 6 5 3 1 1 95 1 4
Cefepime/zidebactam 5 7 4 1 2 1 100 0.12 1
Aztreonam/avibactam 4 2 1 1 4 1 6 1 60 4 16

aThe shaded boxes indicate the nonsusceptible range per CLSI criteria. % S, percent susceptibility was evaluated based on CLSI interpretive criteria published in M100, 32nd
edition (43). Cefepime/zidebactamMICs were determined using a 1:1 ratio. For all the b-lactam–b-lactamase-inhibitor-based combinations, a fixed inhibitor concentration
of 4 mg/L was employed, except for vaborbactam, for which a fixed 8-mg/L concentration was employed. For cefepime-based combinations, the percent susceptibilities
were determined based on the susceptible–dose-dependent breakpoint of#8 mg/L for Enterobacterales. For aztreonam/avibactam, the percent susceptibilities were
determined based on aztreonam CLSI interpretive criteria for Enterobacterales.
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To note, a substantial number of OXA-48-producing E. coli isolates were susceptible to
carbapenems.

The 4-amino-acid insert in PBP3 was detected in 97% (n = 263/270) of E. coli isolates
regardless of the type of carbapenemase expressed (NDM and/or OXA-48 like pro-
ducers, n = 243/250; solely OXA-48-like producers, n = 20/20).

Table 3 shows the relationship between the MIC distributions of aztreonam/avibac-
tam and cefepime/taniborbactam. Of 89 E. coli isolates with nonsusceptibility to aztreo-
nam/avibactam (MICs of $8 mg/L), 79/89 (89%) were also nonsusceptible to cefepime/
taniborbactam (MICs of $16 mg/L). Even among aztreonam/avibactam-susceptible E.
coli isolates (MICs of ,8 mg/L), a high proportion of isolates (142 of 181, 79%) were
nonsusceptible to cefepime/taniborbactam.

K. pneumoniae. Cefepime/taniborbactam showed improved activity against NDM-
producing K. pneumoniae with 74.5% inhibition compared to 12.3% inhibition of
NDM-producing E. coli isolates at #8 mg/L, while at the same cefepime concentra-
tion, cefepime/zidebactam inhibited 100% of isolates. Aztreonam/avibactam demon-
strated potent (100% inhibition at #2 mg/L) activity against NDM-producing K. pneumo-
niae. Against NDM plus OXA-48-like producers (n = 122), cefepime/taniborbactam
displayed limited activity with MIC values at #8 mg/L for only 23 (18.9%) isolates, while
for cefepime/zidebactam all isolates, barring one, were inhibited at #8 mg/L. Aztreonam/
avibactam was also potent against this dual-carbapenemase subset. Finally, against OXA-

TABLE 2MIC distribution for K. pneumoniae categorized by carbapenemase typea

Antibiotic [carbapenemase(s) produced
(no. of isolates)]

No. of isolates with MIC (mg/L)

% S

MIC (mg/L)

£0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 >64 MIC50 MIC90

NDM producers (n = 47)
Cefepime 2 4 8 33 0 .64 .64
Imipenem 3 7 17 9 11 0 32 .64
Meropenem 1 4 10 9 23 0 64 .64
Ceftazidime/avibactam 47 0 .64 .64
Imipenem/relebactam 1 6 5 17 8 10 0 32 .64
Meropenem/vaborbactam 1 3 2 19 22 2.1 64 .64
Cefepime/taniborbactam 1 1 2 8 12 3 7 1 3 5 3 1 74.5 2 32
Cefepime/zidebactam 1 5 12 7 8 7 4 3 100 0.5 4
Aztreonam/avibactam 21 17 6 1 2 100 0.12 0.25

NDM plus OXA-48-like producers (n = 122)
Cefepime 2 7 113 0 .64 .64
Imipenem 2 7 4 9 23 77 0 .64 .64
Meropenem 2 2 6 16 96 0 .64 .64
Ceftazidime/avibactam 122 0 .64 .64
Imipenem/relebactam 2 2 5 2 6 11 16 78 1.6 .64 .64
Meropenem/vaborbactam 1 4 9 12 96 0.81 .64 .64
Cefepime/taniborbactam 3 5 4 5 6 19 37 29 14 18.9 32 .64
Cefepime/zidebactam 1 3 9 15 41 21 18 13 1 99.18 1 8
Aztreonam/avibactam 13 36 55 12 3 2 1 99.18 0.25 0.5

OXA-48-like producers (n = 131)
Cefepime 2 1 5 2 2 2 10 107 7.63 .64 .64
Imipenem 6 36 52 24 3 4 2 4 4.6 4 8
Meropenem 3 1 6 22 48 40 8 3 2.3 16 32
Ceftazidime/avibactam 2 14 70 35 8 2 100 0.5 1
Imipenem/relebactam 1 1 26 52 29 10 6 2 2 2 21.37 2 8
Meropenem/vaborbactam 4 5 28 61 21 11 1 6.87 16 32
Cefepime/taniborbactam 5 2 1 10 44 44 20 5 100 4 4
Cefepime/zidebactam 1 3 13 28 66 20 100 1 2
Aztreonam/avibactam 19 47 51 11 2 1 100 0.12 0.5

aThe shaded boxes indicate the nonsusceptible range per CLSI criteria. % S, percent susceptibility was evaluated based on CLSI interpretive criteria published in M100, 32nd
edition (43). Cefepime/zidebactamMICs were determined using a 1:1 ratio. For all the b-lactam–b-lactamase-inhibitor-based combinations, a fixed inhibitor concentration
of 4 mg/L was employed, except for vaborbactam, for which a fixed 8-mg/L concentration was employed. For cefepime-based combinations, the percent susceptibilities
were determined based on the susceptible–dose-dependent breakpoint of#8 mg/L for Enterobacterales. For aztreonam/avibactam, the percent susceptibilities were
determined based on the aztreonam interpretive criteria for Enterobacterales.
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48-like-producing K. pneumoniae isolates (n = 131), the largest subset in K. pneumoniae,
all three combinations, cefepime/taniborbactam, cefepime/zidebactam, and aztreonam/
avibactam, were highly potent (100% inhibition at #8 mg/L, #2 mg/L, and #2 mg/L,
respectively).

Since zidebactam has been reported to possess significant standalone activity
against Enterobacterales, we examined whether cefepime/zidebactam is able to show
synergistic activity against isolates with elevated zidebactam MICs by determining
cefepime/zidebactam MICs for such isolates. These isolates were essentially K. pneumo-
niae (n = 141), of which 99.3% were inhibited at #8 mg/L of cefepime/zidebactam
while the MICs of standalone zidebactam for all the isolates were $32 mg/L (Table 4).

Overall, in the case of both E. coli and K. pneumoniae, other recently approved b-lac-
tam–b-lactamase inhibitors investigated, ceftazidime/avibactam, imipenem/relebactam,
and meropenem/vaborbactam, expectedly lacked meaningful activity against subsets pro-
ducing NDM alone or NDM plus OXA-48-like. Against OXA-48-like producers, ceftazidime/
avibactam showed universal inhibition at its susceptibility breakpoint of #8 mg/L.
Imipenem/relebactam and meropenem/vaborbactam were not active against OXA-48-like-
harboring K. pneumoniae, but substantial activity was observed for OXA-48-like-harboring

TABLE 3 MIC distribution of cefepime/taniborbactam versus aztreonam/avibactam for all
E. coli isolates (n = 270)a

Aztreonam/avibactam
MIC (mg/L)

No. of isolates inhibited

At indicated cefepime/taniborbactam MIC (mg/L)

Total£0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 >64
#0.06 1 3 10 1 2 3 1 2 23
0.12 1 1 2
0.25 1 1 3 3 3 1 12
0.5 1 3 7 3 2 16
1 6 10 8 6 5 35
2 1 4 5 19 8 4 41
4 2 2 3 9 11 18 7 52
8 1 2 5 17 12 12 49
16 1 1 3 2 2 7 12 6 34
32 3 1 4
64 1 1
.64 1 1

Total 1 0 0 6 15 5 5 17 40 76 65 40 270
aOf 89 E. coli isolates with nonsusceptibility to aztreonam/avibactam (MICs$ 8 mg/L), 79 (88.8%) were also
nonsusceptible to cefepime/taniborbactam. Even among aztreonam/avibactam-susceptible E. coli isolates
(MICs of#8 mg/L), a high proportion of isolates (142 of 181, 79%) were nonsusceptible to cefepime/
taniborbactam. For aztreonam/avibactam, CLSI’s aztreonam interpretive criterion is used. For cefepime/
taniborbactam, CLSI’s cefepime interpretive criterion is used. Shaded boxes represent isolates with identical
MICs of aztreonam/avibactam and cefepime/taniborbactam.

TABLE 4MIC distribution of cefepime/zidebactam for K. pneumoniae (n = 141) with elevated
MICs for zidebactam ($32 mg/L)

Cefepime/zidebactamMIC (mg/L)a No. of isolates with MIC % cumulative inhibition
#0.06 3 2.1
0.12 3 4.3
0.25 11 12.1
0.5 23 28.4
1 44 59.6
2 25 77.3
4 16 88.7
8 15 99.3
16 0 99.3
32 1 100
aCefepime/zidebactam MICs were determined at a 1:1 ratio. The MIC50 was 1 mg/L, and the MIC90 was 8 mg/L.
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E. coli. However, the latter activities were essentially attributed to the carbapenems alone
as both relebactam and vaborbactam are not known to inhibit OXA-48 variants.

DISCUSSION

Unlike other antibiotic resistance hot spots such as Greece, China, and Italy, India
presents a more disturbing trend in terms of high prevalence of dual carbapenemases
(NDM plus OXA-48-like) among Enterobacterales (7) and therefore needs access to antibi-
otics that are able to tackle such organisms. Among the late-stage pipeline antibiotics,
based on the published data, cefepime/taniborbactam and cefepime/zidebactam seem
to hold such promise. The present study was designed to test both these combinations
against a challenging panel of carbapenemase-producing isolates collected in India.

Though cefepime is the common b-lactam backbone, the modes of action of cefe-
pime/taniborbactam and cefepime/zidebactam are quite divergent (Table 5). For
instance, the activity of cefepime/taniborbactam entirely relies on taniborbactam’s
ability to spare cefepime, by inhibiting cefepime-hydrolyzing b-lactamases. On the
other hand, in cefepime/zidebactam, the PBP2 binding action of zidebactam plays the
pivotal role in overcoming cefepime-impacting resistance mechanisms. By what is
termed “b-lactam enhancer” action, cefepime and zidebactam have been reported to
concurrently inactivate multiple PBPs, thereby triggering synergistic and pleiotropic
bactericidal action which is independent of b-lactamase inhibition (19).

To facilitate the activity comparison between the antibiotics, E. coli and K. pneu-
moniae isolates used in this study were categorized into three subsets (NDM, NDM
plus OXA-48-like, and OXA-48-like) reflecting the prevailing resistance scenario in
high-resistance regions like India and China. Analysis of cefepime/taniborbactam
MICs obtained in this study revealed the following activity pattern: good activity

TABLE 5 Comparative profile of taniborbactam and zidebactama

aFor sources of data in the table, please see references 17 to 22 and references 24 to 26 and 28. MDR, multidrug
resistant; P. aeruginosa, Pseudomonas aeruginosa; A. baumannii, Acinetobacter baumannii; % f T.MIC, proportion
of time during which antibiotic concentration remains above MIC.
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($95% inhibition at #8 mg/L) against isolates expressing OXA-48-like as the only
carbapenemase, which is in agreement with previous reports (24–26), and subopti-
mal activity (,80% inhibition at #8 mg/L) for isolates producing NDM alone or
NDM plus OXA-48-like. In particular, cefepime/taniborbactam activity was weaker
(;10% to 12% inhibition at #8 mg/L) against E. coli harboring NDM with or without
OXA-48-like. This is striking since cefepime is known to be stable to OXA-48-like
b-lactamases (27), and therefore, against such organisms, taniborbactam’s role was
limited to tackling the NDM and other coexpressed extended-spectrum b-lacta-
mases (ESBLs).

Even though taniborbactam has been reported to possess potent inhibitory activity
(50% inhibitory concentration [IC50]) against the purified NDM variants and many
ESBLs (28), higher MICs obtained against E. coli producing NDM and OXA-48-like or
NDM alone led us to undertake an additional investigation. Based on previous publica-
tions (29–31), we analyzed PBP3 for the presence of 4-amino-acid insertions among E.
coli isolates and found that an overwhelming proportion of isolates (97%) harbored
the inserts regardless of the carbapenemase type. It has been reported previously that
those b-lactams that heavily rely on the PBP3 engagement for their antibacterial
action are adversely impacted by the presence of amino acid inserts in PBP3 of E. coli
(32, 33). Further, it has also been proposed that the presence of amino acid inserts in
PBP3 predisposes the organism to acquire a carbapenemase (34). This is evident from
the present study as 97% of carbapenemase-producing E. coli isolates harbored PBP3
inserts. Thus, it seems that the combination of two resistance mechanisms, NDM and
PBP3 inserts, leads to a significant compromise in the cefepime/taniborbactam activity.
This has been reported previously for isolates collected in China, wherein 28/29 NDM-
expressing E. coli isolates with cefepime/taniborbactam MICs of .8 mg/L harbored
amino acid insertions in PBP3 (31). In the present study, a significant cross-resistance
between aztreonam/avibactam and cefepime/taniborbactam was also observed in E.
coli, suggesting a deleterious impact of the amino acid insert in PBP3 on the activity of
both these PBP3-targeting combinations. However, in the absence of NDM, unlike that
on aztreonam/avibactam, the impact of PBP3 insert on cefepime/taniborbactam activity
was relatively lower as against OXA-48-like-producing E. coli subset, 19/20 isolates were
inhibited at#8 mg/L of cefepime/taniborbactam.

Among K. pneumoniae isolates, cefepime/taniborbactam MICs exceeded 8 mg/L for
a substantial number of isolates producing NDM with or without OXA-48-like. In a pre-
vious study employing NDM-expressing K. pneumoniae isolates collected in the United
States, the MIC50 and MIC90 of cefepime/taniborbactam were 1 and 32 mg/L, respec-
tively (35), which is in agreement with our study. Since PBP3 inserts are not reported in
K. pneumoniae, we tend to believe that the poor activity of cefepime/taniborbactam
against such isolates could be linked with impermeability. This proposition is supported
by another study involving K. pneumoniae, Enterobacter cloacae, and E. coli isolates
wherein higher cefepime/taniborbactam MICs ($4 mg/L) were linked to alterations in
the major porins (29).

The pattern of cefepime/zidebactam activity against carbapenemase-producing
Indian isolates observed in this study is in concordance with earlier investigations that
tested U.S. and global isolates (20, 36–38). In these studies, the cefepime/zidebactam
combination inhibited .99% of carbapenemase-expressing Indian isolates at #8 mg/L
regardless of resistance mechanisms. Importantly, cefepime/zidebactam readily over-
came the challenge of NDM with or without OXA-48-like plus PBP3 amino acid inserts
in E. coli, which is attributed to zidebactam’s PBP2 binding-mediated b-lactam
enhancer action (38). A concurrent multiple-PBP binding feature of cefepime/zidebac-
tam is broadly analogous to that of carbapenems, which are also known to effectively
overcome the PBP3 insert-based resistance mechanism, albeit only in isolates that do
not produce carbapenemases (38). Such an advantage associated with multiple-PBP
binding action is not available to cefepime/taniborbactam, aztreonam/avibactam, and
ceftazidime-avibactam as they primarily target PBP3.
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There was a single isolate with a cefepime/zidebactam MIC of. 8 mg/L. This was a K.
pneumoniae isolate that harbored both NDM and OXA-48-like enzymes. The elevated
MIC of cefepime/zidebactam against this isolate is possibly due to severe downregula-
tion in the expression of outer membrane porins and/or hyperefflux in conjunction with
NDM expression.

This study underscores that a b-lactamase-inhibitor-based approach may be intrinsi-
cally constrained in overcoming nonenzymatic resistance mechanisms such as PBP
changes, efflux, and impermeability. Moreover, knowing the versatility of Gram-negative
pathogens in evolving scores of b-lactamase variants, the b-lactam and b-lactamase-in-
hibitor approach would constantly face the challenge of newer b-lactamases.

In conclusion, the present study revealed the differential ability of cefepime/tani-
borbactam and cefepime/zidebactam in tackling carbapenemase-producing clinical
isolates. While cefepime/taniborbactam activity was compromised against isolates pro-
ducing NDM, cefepime/zidebactam retained a consistent activity regardless of the type
of carbapenemase produced.

MATERIALS ANDMETHODS
Bacterial isolates. Carbapenemase-expressing isolates used in this study (E. coli, n = 270, and K.

pneumoniae, n = 300) were collected during 2019 to 2021 from nine Indian tertiary-care hospitals includ-
ing Christian Medical College and Hospital, Tamil Nadu; Baby Memorial Hospital, Kerala; Dr. Somervell
Memorial CSI Medical College, Kerala; Seth G.S. Medical College & KEM Hospital, Maharashtra; Panimalar
Medical College, Hospital & Research Institute, Tamil Nadu; Meenakshi Medical College & Research
Institute, Tamil Nadu; Pondicherry Institute of Medical Sciences, Pondicherry; Saveetha Medical College,
Tamil Nadu; and Tata Medical Center, Kolkata. The isolates (nonduplicate, one isolate per patient) were
retrieved from various clinical specimens including blood, urine, bronchial fluid, pus, catheter, rectal
swabs, sputum, and stool. Bacterial species were identified using the matrix-assisted laser desorption
ionization–time of flight (MALDI-TOF)-based Vitek mass spectrometer (MS) (bioMérieux, Marcy-l’�Etoile,
France). Carbapenemases were identified by PCR using previously described primers for blaKPC, blaOXA-48-like,
blaVIM, blaNDM, and blaIMP (39–41).

MICs. Cefepime, imipenem, meropenem, ceftazidime, and aztreonam were obtained from Sigma-
Aldrich Company (St. Louis, MO, USA), and zidebactam, avibactam, relebactam, and vaborbactam were
obtained from MedKoo Biosciences, Inc. (Morrisville, NC, USA). Taniborbactam was obtained from MolPort
(Riga, Latvia). MICs were determined by the broth microdilution method following the M07 guidelines
(11th edition) published by the Clinical and Laboratory Standards Institute (CLSI) (42). Cefepime/tanibor-
bactam MICs were determined with a fixed 4-mg/L concentration of taniborbactam while cefepime/zide-
bactam MICs were determined at a 1:1 ratio as recommended by CLSI. Similarly, the CLSI-recommended
concentration for b-lactamase inhibitors was used for other combinations: 4 mg/L for all, except 8 mg/L
for vaborbactam (43).

MAMA for PBP3 insert. We developed sequencing-free mismatch amplification mutation assay
(MAMA) PCR for the real-time detection of a 4-amino-acid insert (YRIK/YRIN) in PBP3 of E. coli isolates
using forward (59-CAACCCTAACAATCTGAG-39) and reverse (59-GTTAATTCGATAGTTAATTCGA-39) primers.
All carbapenemase-expressing E. coli isolates (n = 270) were screened for the presence of the PBP3
insert. The total volume of the PCR mixture was 20 mL with 5� master mix (Qiagen, Hilden, Germany),
and the final concentration of the primers was 2 mM for the ftsI gene that codes for the PBP3 insert.
Amplification was performed using the thermocycling condition of 95°C for 15 min for initial denatura-
tion, 94°C for 30 s, 46°C for 1 min, and 72°C for 1 min for 30 cycles, and 72°C for 10 min. Amplified PCR
products were run on 2% agarose and visualized on a Bio-Rad Gel Doc XR1 (Bio-Rad, Richmond, CA).
This method was validated using whole-genome-sequenced appropriate positive-control (with PBP3
insert) and negative-control (without PBP3 insert) strains (see Table S1 in the supplemental material).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, DOCX file, 0.02 MB.
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