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Abstract
Software defined radar (SDRadar) systems have become an important area for future
radar development and are based on similar concepts to Software defined radio (SDR).
Most of the processing like filtering, frequency conversion and signal generation are
implemented in software. Currently, radar systems tend to have complex signal processing
and operate at wider bandwidth, which means that limits on the available computational
power must be considered when designing a SDRadar system. This paper presents a
feasible solution to this potential limitation by accelerating the signal processing using a
GPU to enable the development of a high speed SDRadar system. The developed system
overcomes the limitation on the processing speed by CPU‐only, and has been tested on
three different SDR devices. Results show that, with GPU accelerator, the processing rate
can achieve up to 80 MHz compared to 20 MHz with the CPU‐only. The high speed
processing makes it possible to run in real‐time and process full bandwidth across the
WiFi signal acquired by multiple channels. The gains made through porting the pro-
cessing to the GPU moves the technology towards real‐world application in various
scenarios ranging from healthcare to IoT, and other applications that required significant
computational processing.

KEYWORD S
GPU accelerator, signal processing, software defined radar

1 | INTRODUCTION

The applications of radar cover many broad and various areas,
for example, the long‐range airborne and weather surveillance,
short‐range target detection, target recognition and classifica-
tion, etc. These applications have diverse demands, leading to
the proliferation of highly specialised radar systems on the
same platform, for example, ship, aircraft and others [1]. In
addition, these platforms are also equipped with a number of
other types of Radio Frequency (RF) sensors, such as
communication and navigation systems. Many radar systems
were implemented using hardware such as Field programmable
gate arrays (FPGAs). However, a software implementation,
which uses general‐purpose processors is more desirable for its
cost‐effective, flexibility and fast development. Thus, the

approach of sharing a platform with an SDRadar allows these
requirements to be met [2]. However, increases in signal
sampling rates (signal bandwidth) and the number of receiver
channels in Multiple‐Input and Multiple‐Output (MIMO)/
distributed radar systems, mean there are more data need to be
processed. For example, the universal software radio peripheral
(USRP) family [3] has sampling rate from 20 MHz up to
160 MHz for 2 to 4 channels, the DigitizerNetbox (Dig-
itizerNetbox) [4] can operate at 5 GHz with up to 16 channels,
and also Ultra‐Wide Band design [5]. Consequently, this
increasing requirement in computational power becomes a key
parameter to be considered for an SDRadar system.

FPGA and GPU are commonly employed to accelerate
computational processing. There are a number of differences
between these two architectures, in terms of flexibility, power
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consumption and latency etc [6, 7]. The major concern in this
work is the amount of onboard memory. For example, com-
mercialised Xilinx FPGA UltraScale product line has a
maximum of 133 megabytes block memory [8]. In comparison,
gaming GPUs such as NVIDIA GeForce GTX 2060 can offer
onboard memory of 6 gigabytes. In this work, we focus on the
high sampling rate radar signal which requires extensive data
transfer via the peripheral component interconnect (PCI)
Express. Therefore, GPU has larger onboard memory and
allows data to be transferred and processed simultaneously,
making it well‐suited for this SDRadar work. Also, GPU‐based
accelerator means the system can be easily modified with other
Software Defined Radio (SDR) devices without heavy devel-
opment by FPGA‐based accelerator.

With the introduction of NVIDIA Compute Unified
Device Architecture (CUDA), the parallel processing capabil-
ities of GPU becomes accessible not only for the graphics, but
makes financially and technologically accessible. Another
advantage of GPU‐based accelerator is its ability to free‐up the
CPU from heavy parallel computing and focus on Data
Acquisition (DAQ) and synchronisation control. The uti-
lisation of GPU enables a real‐time ability without degradation
on sampling rate.

Considering these advantages, many researchers have been
working on GPU‐based accelerator in various systems to deal
with high computational process such as fast Fourier trans-
form (FFT) [9] and correlation [10]. An early work [11] pre-
sents an analysis on correlation with GPU acceleration and
demonstrates a speed‐up factor of 15 compared to CPU only
process. Work [10] demonstrates a GPU‐accelerated back‐
projection in reconstruction of Synthetic Aperture Radar. It
also shows an impressive runtime with a speed‐up factor be-
tween 50 and 60. However, this system does not provide a
practical solution for GPU‐based accelerators in real‐time
processing. A Raspberry Pi base SDRadar system described
in [9] built for passive radar including reference signal recon-
struction and two‐dimensional FFT (size of 2048 � 512) with
on‐board CPU and GPU. In this case, GPU only shows a slight
improvement by 10% due to the sequential framework design
which leads to overhead for single FFT. The limitation of this
system is that it operates at a relatively low sampling rate
240 kHz and is not fully compatible with the parallel frame-
work to take full advantage from GPU acceleration. GPU has

also been used to accelerate radar image processing [12] with
real‐time capability. This system hybrids CPU‐GPU scheme to
process on 40 MHz sampling rate, and can generate images at
8 fps composed of 6000 pixels. In SDRadar systems, using a
GPU as an accelerator has been studied broadly in recent years.
One of the most representatives is [13], which implemented a
real‐time Global Positioning System (GPS) receiver with
adaptive beam‐steering capability using a software‐defined
approach. This SDRadar offers sufficient computational
capability to support 4‐element antenna array up to 40Msps
(mega samples per second). After that, a testbed [14] for anti‐
jamming receiver was developed embedded with Space‐Time
Adaptive Processing and Space‐Frequency Adaptive Process-
ing. It further deploys the batch mode to fully take advantage
of the parallelism resources provided by GPU. However, both
of the two SDRadars are especially developed for beamform-
ing and are limited in flexibility and configurability. A com-
parison between these works and our system is summarised in
Table 1.

In this work, we use the LabVIEW GPU analysis toolkit
to interface the CUDA functions and embed into our pre-
vious SDRadar system [15] with a new architecture. This is
achieved by switching to a parallel framework where DAQ by
CPU and signal processing (partly by GPU) are processed
separately. The processing speed is significantly improved
with the GPU accelerator when compared to CPU‐only
system. To demonstrate the effectiveness of GPU acceler-
ator in real‐time, three SDR devices have been tested to
quantify the advantage of proposed concepts in flexibility
deployment and processing speed. The hardware specification
of these SDR devices is presented in Table 2 and shown in
Figure 1.

Compared to previous works [12, 17, and 18], the
following contributions are made by this paper:

� This paper presents a robust high‐speed SDRadar system
that is capable of processing sampling rates of up to
80 MHz without sacrifice from dropping samples. The
system runs with a typical passive radar processing including
Cross‐Ambiguity Function (CAF) and Direct Signal Inter-
ference cancellation [19].

� The proposed system can be easily tuned to run with various
SDR devices. We have modified it to run with three

TABLE 1 Comparison with other SDRadar systems

Work [13] [14] Our work

Mechanism Beamforming Nulling and beamforming Cross ambiguity function

Configurability Limited Partially Fully adjustable

SDR device USRP2 ADC Multiple

No. channel 4 Up to 8 Up to 16

Real‐time ability Partially Partially Fully adjustable

Processed sample rate (I/Q) 20Msps 20Msps 80Msps

Application GPS sensors Anti‐jamming Near‐field monitoring

Abbreviations: ADC, analog‐to‐digital converter; SDR, Software defined radio.
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different devices including the USRP 2920, USRP 2945 and
DigitizerNetbox.

� The new system shows a marked improvement in process-
ing speed when comparing to our previous CPU only sys-
tem [15]. Three SDRadar features (full bandwidth
processing, multi‐channel and phased‐array system) have
been implemented to demonstrate the feasibility of GPU
accelerator.

The rest of this article is organised as follows. Section II
outlines the concepts of our SDRadar system and the associ-
ated signal processing for WiFi based passive sensing; Sec-
tion III presents the design and implementation of GPU‐based
parallel processing; measured performance and experimental
results are shown in Section IV; finally, conclusions from this
study are in Section V.

2 | SIGNAL PROCESSING IN SDR

2.1 | Cross‐correlation

Cross‐correlation evaluates the level of similarity between two
functions or signals [20], and is widely used to detect the time
delay and Doppler shift for a known transmitted signal and
reflected signal from objects. More specifically, according to
our previous works [15, 21], cross‐correlation consumes the
major computational power in signal processing. In such
scenarios, the speed of the cross‐correlation is crucial to
the overall performance of the system. In the time and discrete
domains, the definition of cross‐correlation between reference

(transmitted) signals sr and surveillance (received) signals ss can
be written as Equations (1) and (2):

sr ⋅ ssð ÞðτÞ ¼ ∫ ∞

−∞
sr∗ðtÞssðtþ τÞdt ð1Þ

sr ⋅ ssð Þ½n� ¼
X∞

m¼−∞
sr∗½m� � ss½mþ n� ð2Þ

where * represents complex conjugate. The cross‐correlation
theorem suggested in [22] in discrete form is presented in
Equation (3):

sr ⋅ ssð Þ½n� ¼
X∞

m¼−∞
IFFT FFT s∗r ½m�

� �
FFT ss½mþ n�ð Þ

� �
ð3Þ

where FFT is fast Fourier transform and IFFT is inverse fast
Fourier transform.

One of the limitations to apply Equation (3) to SDRadar
system is the size of sr and ss. Considering the sampling rate of
20 MHz (a typical bandwidth of WiFi signal at 2.4 GHz), which
means there are 20 M data points that need to be processed for
every second. Particularly, the FFT process on a long sequence
is very slow. This makes the cross‐correlation almost impos-
sible to be processed in real‐time. For this reason, batch pro-
cess has been applied which segments a long sequence s into L
short and equal length sequences s = [s1, s2,…, sL]. Cross‐
correlation with batch process can be expressed as:

sr ⋅ ss ¼
XL−1

i¼0

IFFT FFT sri∗
� �

FFT ssi
� �� �

ð4Þ

TABLE 2 Specification of SDR devices in this work

Device USRP 2920 [3] USRP 2945 [16] DigitizerNetbox DN2.593‐16 [4]

No of channels (devices) 1 (2) 4 (1) 16 (1)

Connector Ethernet PCIe Ethernet

ADC resolution 16‐Bit 14‐Bit 16‐Bit

Max. sampling rate per channel 20 MHz 80 MHz 80 MHz

Theoretical sampling rate (as a SDR device) 40 MHz 100 MHz 640 MHz

Coherent/non‐coherent Non‐coherent Non‐coherent Coherent

Data type I/Q I/Q Amplitude

Abbreviation: SDR, Software defined radio.

F I GURE 1 Three Software Defined Radio (SDR) devices: (a) USRP 2920, (b) USRP 2945, and (c) DigitizerNetbox (DN)
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2.2 | Signal processing in SDR

The block diagram of the SDRadar signal processing is shown
in Figure 2. The processing begins with DAQ from SDR de-
vices. The signals from the antenna are digitised and trans-
ferred to computer for processing. The CAF calculates the
distance and velocity of the target. However, the target, clutter
and direct signal are mixed which reduces the sensitivity of
SDR. The CLEAN algorithm [19] is used to suppress the
clutter and direct signal. Afterwards, a Constant False Alarm
Rate has been used to further reduce the noise.

The block diagram of the CAF process is shown in
Figure 3. The complete CAF process has two inputs: trans-
mitted signal which is broadcast by the radar system, and
received signal which is reflected from target. Both signals are
then reshaped into batch mode to avoid the long sequence.
Afterwards, cross‐correlation Equation (4) is applied to find
the relative time delay within each batches. The final step is to
carry out another FFT process across the batches. This is to
calculate Doppler shift upon the time delay from cross‐
correlation. The output is a 2D range‐Doppler surface SCAF.

CLEAN algorithm shares similar approach to the CAF,
while both of its inputs are the transmitted signal. This is to
create a self range‐Doppler surface Sself which is the repre-
sentative for the direct signal. Then the cleaned range‐Doppler
surface Sclean is calculated as Sclean ¼ SCAFj j − α Scleanj j, where
:j j represents the absolute value and α is the scaling factor for
Sclean in relate to SCAF.

3 | GPU‐BASED PARALLEL
PROCESSING

When comparing the hardware architectures between GPU
and CPU, GPUs are specifically designed for computationally
intensive calculations that have high parallelism rates. Conse-
quently, GPUs are designed with more transistors for data
processing than data caching and flow control. These differ-
ences in hardware architectures determine the different pro-
cessing speed of signal processing. For operating systems, there
is no affect to process the data in GPU memory which also
gives better stability. As a result, accelerating the signal pro-
cessing with GPU is considered a powerful and fast develop-
ment option for SDRadar systems [10, 17].

CUDA is a general purpose parallel computing platform
and programming model that leverages the parallel compute
engine in GPUs to solve many complex computational prob-
lems in a more efficient way than on a CPU [23]. Moreover, the
LabVIEW GPU Analysis Toolkit can access the CUDA
function, and DAQ software in LabVIEW to control SDR
devices.

A comparison of FFT performed (in batch mode) by CPU
and GPU is shown in Figure 4. The X‐axis represents data
points from SDR devices, and Y‐axis represents the time
(a batch can be considered as data points from each specific
time period). A conventional SDRadar system uses a CPU to
perform FFT in a sequential order that sweeps across all data
points in each batch as shown in Figure 4a. In this paper, we
propose to use GPU to perform simultaneous multiple FFTs
upon a plan of data points as presented in Figure 4b. The high
capacity of parallel computation is expected to significantly
accelerate the cross‐correlation of SDR.

3.1 | Mapping the data points to GPU grid

Figure 5 presents the structure of mapping the data points to
GPU grid. An SDRadar system with inputs from N channels at
Sr sampling rate in Ti integration time, has a data size of N �
Sr � Ti. Within each channel, data points are segmented
equally into L batches with a batch length of LB. Batches from
each channel are combined together and downloaded into
GPU memory for cross‐correlation. In the CUDA framework,
a given sequence of instructions is called kernel. Each kernel
controls a group of blocks which process the data in parallel.

F I GURE 2 Block diagram of proposed SDRadar system

F I GURE 3 Block diagram of Cross‐Ambiguity Function (CAF)

(a) (b)

F I GURE 4 A comparison between (a) serial fast Fourier transform
(FFT) processing (on CPU) and (b) parallel FFT processing (on GPU)

1086 - LI ET AL.
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The block index (red context in Figure 5) indicates the number
of parallel block NB, where NB = N � L. To make it simple, we
use the processing rate Pr to measure the actual data that
processed by the system. The number of blocks, overall data
size downloaded by GPU and processing/sampling rate can be
expressed as:

N � Sr � Ti ¼NB � LB ¼ Pr ð5Þ

whereas the left part represents the processed data points in
CPU memory, the middle part represents the data points in
GPU memory. The processing rate can also be calculated as
the product of NB � LB. Note that, the value of parameters in
Equation (5) is not constant. They vary depending on the SDR
device and the maximum throughput of DAQ.

3.2 | System integration

Figure 6 schematically displays the system integration of the
GPU‐accelerated cross‐correlation processing for our SDRa-
dar system. There are three major threads including raw data
DAQ (Thread1, T1), multi‐channel cross‐correlation by GPU
(Thread2, T2) and spectrogram generation (Thread3, T3),
respectively. The solid arrows describe the main data stream,
and the red arrows indicate the data flow inside the GPU.

In T1, the raw RF signal is acquired by the SDR device and
transferred into the host computer's memory through the
Ethernet/PCIe port (10 GHz). Afterwards, there is an initial
preparation to sort the data into 2D matrix. Then, it can be

saved into the hard drive for off‐line processing or down-
loaded into the GPU memory through the PCIE X 16 3.0
interface for subsequent online processing. In T2, the whole
process is operated for each cross‐correlation in parallel by the
GPU accelerator, and the obtained data are uploaded to host
memory from GPU memory again in the end. In T3, the
spectrogram is generated by the CPU from the data loaded in
the host memory for graphic user display or storage into the
hard drive for further processing for example, activity recog-
nition, identification, etc.

Recall the Equation (5), taking integration time Ti of 1
second as example, the total amount of received data points are
N � Sr. The detailed description relating to the cross corre-
lation processing on the GPU is given below:

1. Reshape the received vector data (complex values) into
parallel blocks NB � LB. This process is done by CPU.

2. Download the batch data from CPU to GPU memory.
3. Complex conjugate is implemented as a GPU function and

applied on the received signal (NB − L) � LB in time
domain, by changing the sign of imaginary parts of the
complex number. This is because the transmitted signal
does not do complex conjugate.

4. FFT: forward FFT is performed on all the batchesNB� LB.
5. The transmitted signal L � LB and every L � LB received

signal, both are complex numbers in the Fourier domain,
are multiplied. This gives size of (NB − L) � LB.

6. IFFT: inverse fast Fourier transform is performed on all the
batches (NB − L) � LB.

7. Upload the processed data from GPU to CPU memory.

F I GURE 5 Mapping data points on the GPU

F I GURE 6 Flow chart of GPU‐accelerated raw Radio Frequency (RF) data processing

LI ET AL. - 1087
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8. Intercept first 30 samples within each batch (NB − L) � 30.
Because the redundant batch length LB is not necessary in
terms of the sensing distance.

9. The final step is to do another short FFT across all the
batches on CPU. This is to calculate the Doppler shift upon
the time delay.

The implementation of cross‐correlation on GPU is shown
in Figure 7.

Finally, to ensure different SDR devices are working in a
similar fashion, a ‘two‐process’ design has been used, where
the DAQ and signal processing run separately as shown in
Figure 8. A queue is used to link together DAQ and signal
processing and follows First‐In‐First‐Out order. The queue
length control is to ensure the queue is not too long to be
processed. If the queue length is over a pre‐defined value, the
queue will be erased. This design minimises the interference of
data overflow in DAQ to the real‐time signal processing.

3.3 | Performance comparison on CPU and
GPU

Here we compare the processing time of cross‐correlation on
CPU and GPU. The host computer is equipped with an AMD
Ryzen 3600@3.59 GHz CPU, an NVIDIA GeForce RTX2060
GPU with 6 GB graphics memory. Random generated data
was used in this comparison with data type of CDB (16bytes/
element). Upon each test, both processing methods were
performed 100 times, and calculated the averaged processing
time. To match with the DAQ flow from SDR devices, we
simulate 1 second of data but with varied sampling rates, that is

different numbers of data points. Due to the specification of
SDR devices, we consider the maximum sampling rate of
50 MHz and up to 16 channels.

Figure 9 shows the performance comparison results be-
tween the CPU and GPU based cross‐correlation processing
upon various data sizes. It can be seen from Figures 9a and b
that the processing time of CPU and GPU on either set of
cross‐correlation increases in proportion to the number of data
points, irrespective of the increase in the block number of
batch length. However, the processing of the GPU‐based
method is much faster than the CPU‐based processing for
any values of block number or batch length, even though the
CPU‐based processing has been optimised with matrix multi-
plication. Figures 9c and d show the ratio of processing time of
the CPU‐based processing over GPU‐based processing for
each test. It is observed that the processing acceleration of the
GPU‐based method over the CPU‐based method ranged from
2 to 5 times. In addition, both Figures 9c and d clearly

F I GURE 7 Cross‐correlation on the GPU

F I GURE 8 Two‐process design for SDRadar system

1088 - LI ET AL.
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demonstrate that this acceleration ratio increases with the size
of batch length and block number. The comparison between
Figures 9c and d demonstrates that the GPU accelerates the
cross‐correlation based on two factors: 1. Faster FFT pro-
cessing over longer data in each block; 2. More efficient parallel
processing due to the highly paralleled core hierarchy in GPU.

The simulation is based on the data from 1 second, which
means latency will be induced when the processing time is
longer than 1 second, thus not suitable for real‐time process-
ing. Besides, CPU also has another heavy load task: DAQ from
SDR devices. From Figure 9b, it can be seen that CPU has
more than 1 second processing time in the test of 200 k, 500 k
batch length and 800, 1600 blocks, while GPU in all tests are
less than 1 second. In addition, the overall acceleration ratio in
this work is not as significant as in work [18] which ranged
from 10 to 30 times faster. The reason is because we also
simulated the process of downloading and uploading data to
the GPU memory which revealed longer processing times than
the cross correlation instead. This has a particular effect in
processing time especially with a large data size.

It is worth noting from Figure 9a that the processing time
of 10k(LB) � 100(NB) can be accelerated to 2 times faster than
CPU processing. This is the minimum sampling rate (1 MHz)
used in this work; GPU performs 2 times faster than CPU
despite it having a short processing time. In comparison, at
500k(LB) � 100(NB) (the maximum sampling rate), GPU has
contributed more than 4 times acceleration ratio. From
Figure 9b, GPU processing also has much shorter processing
time when dealing with multiple channels. The processing time
of 20k(LB) � 50(NB) has been accelerated up to 3 times faster
than CPU processing. While, there is only slightly acceleration
has been seen at 20k(LB) � 1600(NB) at 3.7 times, but still

lower than the 1 second of processing time. These results
indicate an attractive performance delivered by GPU acceler-
ator which is a feas of high sampling rate processing.

4 | SDRADAR APPLICATIONS

A typical radar system requires at least two channels: one
transmitter and one receiver. Two USRP 2920 have been used
since each of them only has 1 channel. More details about the
two USRP 2920 setup can be found in our previous paper [24].
In comparison, USRP 2940 (4 channels) and DigitizerNetbox
(16 channels) can fully function as an SDRadar system.
Additional channels can be employed for distributed sensing
and angle‐of‐arrival detection.

4.1 | Advantages in sensitivity (USRP 2920)

One of the important measures for SDRadar system is it's
ability to detect targets against the background clutter and
noise. This is defined by multiple factors, for example, the
signal strength, antenna beam pattern, etc. In terms of range‐
Doppler surface, the sensitivity can be measured as the Peak
Signal‐to‐Noise Ratio (PSNR), where peak represents the pulse
relating to the object and noise represents the sidelobes. High
PSNR means the object can be easily identified.

Here we provide examples of range‐Doppler surface based
on WiFi signals. In this measurement, two USRP 2920 s were
used as receivers, one channel was connected directly to the
WiFi router to measure a ‘Reference’ signal while the other
channel was connected to an antenna to record corresponding

F I GURE 9 Performance comparisons between CPU and GPU based cross‐correlation processing on various sizes of batch length and block number.
(a) Processing time comparison on 100 blocks with varying batch length. (b) Processing time comparison on varying block numbers with a fixed batch length of
20 k. (c) and (d) GPU–CPU processing acceleration ratio and processing rate corresponding to (a) and (b), respectively
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signal reflections from the environment. The antenna was
configured as the same direction towards the WiFi router
under a stationary environment without any Doppler shifts.
Both USRP 2920 were operated at 20 MHz for full bandwidth
of WiFi signal at 2.4 GHz channel. To demonstrate the
sensitivity performance of SDRadar system in different signal
scenarios, three different WiFi frame rates were used as 20 Hz,
100 Hz and 1 kHz per second. The integration time Ti was set
at 1 s, the block number was constant at 100 that gives
the maximum batch length of 20 M/100 = 200 k. Thus, the
processing rate is given as (2 � 100) � 200k = 40 MHz, where
2 represents two channels. The SDRadar system made a full
CAF processing upon various batch lengths.

Figure 10 presents the range‐Doppler surface on three
frame rates at different of batch lengths. As expected, frame
rate of 1 k has the best performance compared to frame rates
of 20 and 100 Hz. This is because of the effective signal
depending on the WiFi frame rate as discussed in our previous
paper [15]. However, the effective signal may not be captured if
the batch length is not of sufficient length, even under a high
frame rate. Consequently, improvements can be observed in
range‐Doppler surfaces with increasing batch length and frame
rate. In the worst case, 20 Hz frame rate with 10 k batch length
results in significant difficulties with identifying the preferred
peak. This situation gets improved when the batch length is
increased to 200 k. Range‐Doppler surface at 100 Hz frame
rate with 200 k batch length, has almost similar performance
compared to the same batch length at 1 k frame rate. In
comparison, all peaks in 1 k frame rate can easily be
distinguished.

Figure 11 presents the PSNR versus batch length from 1 k
to 200 k for three frame rates. The red dash line indicates the
maximum CPU processing ability at 100 k, however, the GPU
accelerator can easily process more than 200 k. The highest
PSNR of 20 Hz frame rate can reach up to 17 dB, whereas
100 frame rate and 1 k frame rate both can reach more than
27 dB. PSNR values are getting closer after batch length of
160 k between 100 and 1 k frame rate. This indicates that WiFi
signal at 100 Hz can deliver high performance when sufficient
data points have been processed, this can be also observed
from Figure 10. In addition, in 1 k frame rate, there is only little
improvement after batch length of 80 k. Processing on addi-
tional data points will not have extra benefit on PSNR. Thus,
the trade‐off between the amount of processing and PSNR
threshold needs to be identified depending on the frame rate.

4.2 | Distributed channels (USRP 2945)

Distributed channels, which measure the object from different
angle of aspects, can generate multiple range‐Doppler surfaces
simultaneously. This can bring spatial diversity in Doppler in-
formation and deliver higher recognition accuracy [25]. How-
ever, there are many challenges for such systems, for example,
the clock/time synchronisation among different channels, also
the much higher sampling rate when compared with single
channel SDR.

In this measurement, a USRP 2945 was used as the
receiver with total 4 channels. Among them, one channel was
used to recreate transmitted signal, and other three channels

F I GURE 1 0 Range‐Doppler surface for a WiFi signal: rows 1, 2 and 3 illustrates frame rates of 20 Hz, 100 Hz and 1 kHz, respectively. Column 1–7 are
batch lengths of 10 k, 20 k, 30 k, 50 k, 100 k, 150 k and 200 k, respectively. The x‐axis plots range and the y‐axis plots Doppler
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are for the surveillance. A participant was asked to walk
around randomly within an area of 6 � 5 m with pauses
during the experiment as shown in Figure 12. A WiFi router
was aligned with the walking path and marked as 0°. After-
wards, three antennas (one for each channel) were set to
different angles towards the walking path to demonstrate the
Doppler signatures at different angles. The WiFi router was
fixed at 100 frame rate, SDRadar system had been set up
with constant parameters as 100 block number and 20 MHz
of sampling rate. The full size of processed data point is (4 �
100) � 200k = 80 M.

Figure 13 shows a 30 s Doppler spectrogram for walking,
captured at different angles. Because the USRP 2945 has three
surveillance channels, we measure the walking activity repeat-
edly for three times. It can be seen that the real‐time Doppler
record for each period of walking can be distinguished from
the others. Doppler signatures are varied in each node due to
the variations in monitoring angle. This difference provided by

spatial diversity is very important for many machine learning
tasks to improve their accuracy like activity recognition,
localisation, people counting etc. Additionally, unlike the CSI‐
based systems [22], the phase noise of our SDRadar exhibits
better stability and can more easily be extracted to provide an
indication of target direction, where the positive pulses
represent the person moving towards the antenna and negative
pulses represent away from the antenna. Moreover, we can also
observe the micro‐Doppler caused by limbs movement, which
indicates the system is very sensitive even for small
movements.

Afterwards, we record the processing time within each step
to demonstrate the actual time spent by the GPU and CPU
during real‐time processing. Three processing rate tests had
been conducted including CPU‐only at 20 MHz, and GPU at
both 20/80 MHz. Based on observations, CPU at 20 MHz and
GPU at 80 MHz are the maximum processing rates that can be
operated without time latency on current hardware. We run
100 s of processing for each test, and record the average
processing time.

Table 3 summarises the three tests with the processing time
for each step. As it can be seen, the CPU at 20 MHz reaches
1329.3 ms in overall time which is close to that in GPU at
80 MHz at 1389.5 ms. Also, GPU at 20 MHz has an overall
time of 654.4 ms which is only half to the CPU‐only pro-
cessing time. These results indicate our GPU accelerator can
improve the processing rate up to four times than the CPU‐
only SDRadar system. Reshape process is to convert the
long vector data into 2D matrix which depends on the size of
data. The highest processing time for CPU‐only are FFT and
IFFT due to the serial processing. In comparison, GPU has
much lower processing time in FFT and IFFT in both 20 and
80 MHz. There are additional download and upload processes
for GPU to transfer the data with CPU memory. However,
GPU are still faster than the CPU‐only processing even when
including these extra steps.

F I GURE 1 1 PSNR versus batch length
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F I GURE 1 2 Experiment setup: distributed channel
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F I GURE 1 3 Doppler spectrogram captured by 3 distributed receivers at different angle (random direction walking)

TABLE 3 CPU & GPU real processing time comparison

Device USRP 2945(CPU) USRP 2945(GPU) USRP 2945(GPU)

Channel 4 4 4

Sampling rate (Sr) per channel 5 MHz 5 MHz 20 MHz

Processing rate (Pr) 20 MHz 20 MHz 80 MHz

Block number (NB) 400 400 400

Batch length (LB) 50k 50k 200k

Processing time (ms) for 1 s of data

Reshape 287.5 258.6 567.5

Download to GPU 0.0 74.2 125.7

FFT 467.2 54.6 152.8

IFFT 380.8 54.9 148.7

Upload to CPU 0.0 40.7 129.8

Others 193.8 171.4 265.0

Overall 1329.3 654.4 1389.5

Abbreviations: FFT, fast Fourier transform; IFFT, inverse fast Fourier transform.
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4.3 | Angle finding (DigitizerNetbox)

The 16‐channel DigitizerNetbox was originally designed
for waveform spectrum analyser, whereas we use it as a
MIMO‐SDR. We integrated a phased array antenna to the
DigitizerNetbox and performed an Angle‐of‐Arrival (AoA)
analysis over the measurements from all 16 channels. Let the
RF signal received at ith channel be si(t), the sampling data
from DigitierNetbox can be written as S(t) = (s1[t] s2[t] … si[t]),
i ≤ 16. For T period of sampling time, AoA is calculated as
the sum of the signal amplitude from the signal source as

θðtÞ ¼ FFT
PT−1

t¼0 SðtÞ
� �

. Since there is only a single FFT

process, we slightly modified the architecture shown in
Figure 7 by removing the multiplication and second FFT
process. Here, the AoA analysis aims to search the direction of
the incoming signals by the signal source.

Due to limitations of the Ethernet cable creating a data
flow bottleneck, we reduced the DAQ rate to 3 iterations per
second (96 M data points received every second). The sampling
rate was set at 80 MHz for all 16 channels. We ran the system
with and without GPU accelerator to show the difference in
angular detection. To ensure the system remains in real‐time
processing, only the CPU was running at a block number of
0.4 k and batch length of 20 k (8 M data points processed every
iteration), while GPU accelerator was running at a block
number of 1.6 k and batch length of 20 k (32 M data points
processed every iteration). According to the angle resolution
Δθ ¼ D

λ where D is the size of antenna, it is expected that 16‐
channel system should provide 4 times higher resolution than
the 4‐channel system.

In this measurement, a WiFi access point (AP) was
located at 50° towards the phased array antenna at a distance
of 3 m Figure 14 presents an AoA plot for a signal source

using data from 4‐channel processed by CPU (as the base-
line) and data from 16‐channel systems processed by GPU.
As expected, the angular resolution has been largely
improved by the 16‐channel with a clear peak at 50°, whereas
the 4‐channel system gives a much coarse estimation. This
indicates the performance gain using a GPU accelerator can
sufficiently improve the angular resolution at no additional
cost on the computing unit.

5 | CONCLUSIONS

This paper presents a high‐speed design for an SDRadar sys-
tem by using a GPU accelerator to speed up the cross‐
correlation process. The idea is that CPU can handle raw
Data DAQ and post‐processing which are non‐parallel threads,
while GPU can handle the parallel threads involving FFT
process. The proposed GPU accelerator demonstrates high
flexibility and extensibility, and is able to work with three
different SDR devices. Experimental results show that the
proposed GPU accelerator can speed up the system by up to
four times than the CPU‐only system. There are significant
improvements in PSNR (Figure 10) and angular resolution
(Figure 14) by using the GPU accelerator to process more
samples.

Future work will focus on the joint FPGA and GPU
implementation for ultra‐speed SDRadar systems. This could
save more computational power from the CPU and reduce the
sampling rate from computer side as some processing can be
performed by FPGA. It is envisioned that such systems could
be a solution for many industry‐based radar applications and
can be compatible with AI systems for mission‐critical appli-
cations that require very low‐latency, such as autonomous ve-
hicles and manufacturing operations.

F I GURE 1 4 Performance gain: angle‐of‐arrival plot for a signal source measured at 50° to the antenna, (a) data from 4‐channel and processed by CPU and
(b) data from 16‐channel and processed by GPU
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