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A B S T R A C T

Numerical studies of ice flow have consistently identified the grounding zone of outlet glaciers and ice streams
(the region where ice starts to float) as crucial for predicting the rate of grounded ice loss to the ocean. Owing
to the extreme environments and difficulty of access to ocean cavities beneath ice shelves, field observations
are rare. Estimates of melt rates derived from satellites are also difficult to make near grounding zones with
confidence. Therefore, numerical ocean models are important tools to investigate these critical and remote
regions. The relative inflexibility of structured grid models means, however, that they can struggle to resolve
these processes in irregular cavity geometries near grounding zones. To help solve this issue, we present a new
nonhydrostatic unstructured mesh model for flow under ice shelves built using the Firedrake finite element
framework. We demonstrate our ability to simulate full ice shelf cavity domains using the community standard
ISOMIP+ Ocean0 test case and compare our results against those obtained with the popular MITgcm model.
Good agreement is found between the two models, despite their use of different discretisation schemes and
the sensitivity of the melt rate parameterisation to grid resolution. Verification tests based on the Method of
Manufactured Solutions (MMS) show that the new model discretisation is sound and second-order accurate. A
main driver behind using Firedrake is the availability of an automatically generated adjoint model. Our first
adjoint calculations, of sensitivities of melt rate with respect to different inputs in an idealised grounding zone
domain, are promising and point to the ability to address a number of important questions on ocean influence
on ice shelf vulnerability in the future.
. Introduction

Recent observations have shown that outlet glaciers and ice streams
n West Antarctica are retreating at an alarming rate (Mouginot et al.,
014; Scambos et al., 2017). In total there is enough ice in West
ntarctica to raise sea level by approximately 3.5 m (Fretwell et al.,
013). Evidently, this has serious implications for communities that
ive in low lying coastal regions. There are still major uncertainties,
owever, in predictions of how much ice could be lost and, importantly,
n what time scales this may occur. Increased basal melting beneath
ce shelves, due to increased ocean heat, is thought to be the main
ause for ice loss in West Antarctica (Rignot et al., 2013). Wherever ice
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shelves are topographically confined, they provide buttressing forces to
the grounded glaciers (Shepherd et al., 2018). When ice shelves thin,
a decrease in buttressing can lead to an increase in ice flow speeds
and hence the rate at which grounded ice is lost increases. Predicting
sea level rise is a pressing issue, but there are also questions about
how changes in melt water flux to the ocean can affect global ocean
dynamics (Dinniman et al., 2016). Improving understanding of ocean
processes beneath ice shelves and their impact on ice shelf vulnerability
is therefore an important problem in glaciology and climate science.

Numerical models of ocean flow beneath ice shelves play a key
role in our understanding of ocean cavities, since direct observations
are so limited. The model needs to resolve the interaction between
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salinity, temperature and the flow, along with the thermodynamics
at the complex, sloping ice-ocean interface that characterise ice shelf
cavity environments. Melting ice injects buoyant, fresh water into the
domain, which in turn drives overturning ocean circulation within the
cavity. The freezing point of water decreases with depth so, in some
cases, ice that melts at depth in the cavity can refreeze closer to the
ocean surface, thus transporting ice up the underside of the ice shelf.
This is known as the ‘ice pump’ mechanism (Lewis and Perkin, 1986;
Jenkins and Bombosch, 1995).

In coastal regions where changes in coastlines and bathymetry can
have important effects on dynamics, horizontally unstructured grid
models have proven to be extremely useful tools (Kärnä et al., 2018).
In an ice shelf cavity setting, this is doubly important since the base
of the ice shelf can vary as much as the seafloor, with the formation of
basal crevasses and channels that evolve with the ocean, and indeed ice,
flow. The lack of flexibility in traditional structured grid ocean models
in resolving these features means that there is still large uncertainty
in flow dynamics beneath ice shelves (Dinniman et al., 2016). This
is compounded by the fact that results using the commonly employed
‘three-equation melt parameterisation’ depend significantly on vertical
resolution and implicitly on the model’s choice of vertical discretisa-
tion (Gwyther et al., 2020) — an issue that will be explored further in
Section 3.2.

Satellite measurements indicate that spatial melt rate patterns near
grounding zones (the region separating the grounded ice sheet from
the floating ice shelf) are highly variable (Milillo et al., 2019). This
implies that there must be a complex combination of processes in the
grounding zone that need to be resolved to accurately model melt
rates. Due to the limitations on grid resolution imposed by structured
grids used by traditional ocean models, it has not been possible to
investigate in detail melting at grounding zones. Ensemble simulations
from glacial flow models have shown that the largest uncertainties in
projected ice loss come from estimating melt rates at the grounding
zone (Arthern and Williams, 2017). Similarly, Goldberg et al. (2019)
used an ice flow model with an associated adjoint model to investigate
how sensitive the volume of ice loss was to spatially varying melt
for Dotson and Crosson ice shelves. Again, they found that ice loss
was most sensitive to melting at the grounding zone. An extension of
this study to the wider Amundsen Sea Embayment confirmed the high
sensitivity of ice loss to melting at the grounding zone (Morlighem
et al., 2021). Therefore, accurately simulating ocean dynamics near the
grounding zone seems to be one of the most important tasks required to
help reduce uncertainty in ice loss estimates, and consequently reduce
uncertainty in sea level projections.

The finite element method is particularly well suited to solving
problems in complicated domains (Elman et al., 2014). The power of
the finite element method comes from being able to define the solution
using piecewise functions which can be defined on completely arbitrary
meshes. This is ideal for modelling flow in complicated domains, such
as ice shelf cavities. A fully unstructured finite element ocean model,
Fluidity (Piggott et al., 2008), was previously adapted to enable sim-
ulation of ice shelf cavities (Kimura et al., 2013). Due to its ability to
run on fully unstructured grids, Fluidity was able to resolve all the key
features of an ice shelf cavity (pinching grounding lines, sloping ice
base and the steep vertical ice front; Kimura et al. 2013), as well as
investigate flow within basal crevasses (Jordan et al., 2014).

The model presented here is similarly motivated by the applicability
of finite elements on unstructured meshes and the need to retain a
full representation of physics, valid at order one aspect ratios, for
buoyancy driven flows in domains with complicated geometries, such
as ice shelf cavities. A significant departure from previous work is use
here of the Firedrake toolkit to implement the underlying discretisation
of the finite element method (Rathgeber et al., 2016). The philosophy
behind Firedrake has several advantages. By separating the underlying
software implementation from the physics of the system, it enables a

Firedrake user to quickly develop and test new discretisation methods
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on the problem in question. The syntax of the Unified Form Language
(UFL) Firedrake employs is designed to closely mimic the mathematical
description of the weak form prescribing the finite element discreti-
sation (Alnæs et al., 2014). This, combined with the readability of
the Python programming language, helps to improve the longevity
of the code by reducing the learning curve require for new users
before they can start using and implementing features in the model.
‘Icepack’, a glacier flow modelling package built on top of Firedrake, is
a good example of this (Shapero et al., 2021). The Firedrake framework
automatically translates this high-level mathematical description of the
numerics into highly optimised low-level C code which leads to an
efficient implementation of the finite element method. In addition, Fire-
drake uses the Portable, Extensible Toolkit for Scientific Computation
(PETSc) a state-of-the-art library to efficiently solve the systems that
arise from the finite element discretisation (Balay et al., 1997).

There are already ocean models that use horizontally unstruc-
tured grids to investigate ice shelf cavities, such as FESOM (Tim-
mermann et al., 2012), FVCOM (Zhou and Hattermann, 2020) and
MPAS-O (Ringler et al., 2013; Gwyther et al., 2020). These models
typically retain a distinct difference in how they deal with horizontal
and vertical motion in the model. In part this means making the
hydrostatic approximation: provided the horizontal length scales are
much larger than the vertical, the vertical acceleration terms can be
neglected, which reduces the computational cost. This approximation
is evidently true for the open ocean when typically the meshes used
for simulations have horizontally stretched, anisotropic grids. To in-
vestigate interesting basal features under ice shelves though, such as
crevasses (Jordan et al., 2014) or in the proximity of topographically
complex grounding zone regions, one may want to have more flexibility
by using meshes where the aspect ratio of the grid becomes close to
order one, i.e., the horizontal grid sizes are comparable to the vertical
grid cell sizes. In this case the hydrostatic approximation may no longer
be valid. Therefore we include the nonhydrostatic vertical acceleration
terms as part of the solve. Moreover, by treating the horizontal and
vertical equations on the same footing, our model has been designed so
that it can easily incorporate isotropic turbulence closure schemes from
the CFD literature, similar to work carried out by Yeager (2018), whilst
at the same time able to transition to more traditional GFD turbulence
closures in high aspect ratio domains, where vertical and horizontal
mixing is parameterised separately.

Probably the main advantage of using a framework such as Fire-
drake, or similar projects such as Fenics (Alnæs et al., 2015), is the
fact that it readily facilitates the use of an automatically generated
adjoint model, thanks to the work of the dolfin-adjoint project (Mi-
tusch et al., 2019). Adjoint modelling represents an efficient means to
calculate gradients of model output functionals with respect to model
inputs (Errico, 1997). By solving the adjoint system the gradient of
an output functional can be calculated with respect to any number
of input parameters, independent of the number of these input pa-
rameters. Adjoint modelling is often the only tractable method for
calculating gradient information for numerical models that rely on
grid-based discretisations, like ocean models, because the number of
input parameters scales with the grid resolution (Errico, 1997). Early
implementations of adjoint models were developed by hand separately
from forward models (Kalnay, 2003). As the complexity of the forward
code develops this approach becomes time consuming and error prone.
A more sophisticated method uses what is sometimes referred to as
automatic differentiation (AD) of the forward code, by using the chain
rule on each line of forward code repeatedly to generate an adjoint
model (Errico, 1997). Usually, careful intervention by the user is re-
quired during development and maintenance, especially with regards
to ensuring the computational efficiency of the adjoint model. Hence
it is common to refer to this process as algorithmic, not automatic,
differentiation. The approach implemented by the dolfin-adjoint project
makes use of the high-level symbolic representation of the discrete

mathematical problem written in UFL (Mitusch et al., 2019). Since the
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mathematical problem is separate from its software implementation,
provided the mathematical form of the equations is differentiable then
the process is automatic. The adjoint model is consistent with the
forward discretisation and automatically inherits the solver strategies
and the parallelisability of the forward model (Mitusch et al., 2019).

Sensitivities of a functional with respect to different inputs are
very useful in their own right (Errico, 1997). In a time-dependent
forward model, the equivalent adjoint model propagates sensitivities
backwards through time, from the final time to the initial time. This
complimentary information can be very useful when trying to under-
stand modelled processes that may not be obvious from considering
the forward model alone. Gradient information is also very useful for
optimisation problems, in particular parameter estimation and data as-
similation. In many ocean modelling studies there are many parameters
that are unknown, but can be constrained by observations. Gradient
information can be used to update these parameters in an efficient
manner by minimising a functional that measures the error between
observed and modelled values.

There have been a limited number of studies of an ocean adjoint
in an ice shelf cavity context. The first used the MITgcm ocean model
to simulate the Pine Island Ice Shelf cavity (Heimbach and Losch,
2012). Goldberg et al. (2020) extended MITgcm’s adjoint model, such
that it was able to calculate the sensitivity of melt rate to bathymetry.
Notably, this was using the open source AD tool, openAD (Utke et al.,
2008). Most recently the ECCO2 assimilation framework (which also
relies on MITgcm’s adjoint capability) was applied to the Amundsen
and Bellingshausen seas and ice shelf cavities (Nakayama et al., 2021b).
Since all the previous adjoint modelling work for ice shelf ocean
cavities have used the MITgcm framework, they inherit the relative
inflexibility of MITgcm’s structured grid. Although MITgcm’s resolution
can vary in space (𝑑𝑥 can vary horizontally) 𝑑𝑧 is limited to varying
with depth. This has limited practical application for ice shelf cavities
since the ocean cavity thickness varies significantly from the ground-
ing zone to the open ocean. We see our model, which can combine
flexible unstructured meshes with the adjoint capability, as a tool with
significant potential for investigating ocean conditions in the complex
domains that are ice shelf cavities.

The outline for the rest of this paper is as follows: Section 2 covers
the model discretisation choices. In Section 3.1 the accuracy of the
second-order discretisation is verified using a Method of Manufac-
tured Solution-based test which includes melting. We demonstrate the
resulting model’s capability to run simulations for the 3D ISOMIP+
test case in Section 3.2 and compare results with the MITgcm ocean
model. This includes an investigation into the sensitivity of the melt
parameterisation to vertical mixing and resolution choice. Finally, we
present preliminary adjoint sensitivity results in an idealised domain
in Section 3.3. These steps are necessary to prove the capabilities and
accuracy of the model, so that future work can tackle the challenging
problem of simulating ocean dynamics and melt rates near grounding
zones.

2. Model description

2.1. Model equations

As emphasised in Section 1, one of the key motivations is to develop
a model with the ability to treat vertical dynamics in the same way as
horizontal dynamics, when the mesh cells become close to isotropic, on
fully unstructured meshes. This means we solve the full incompressible
Navier–Stokes equations for velocity and pressure, and we do not make
the hydrostatic approximation.

Conservation of momentum (in strong form) for a rotating fluid
under the Boussinesq approximation can be written as
𝜕𝐮 + 𝐮 ⋅ ∇𝐮 + 2Ω × 𝐮 = − 1 ∇𝑝 + ∇ ⋅ 𝝉 + 𝐅, (1)

𝜕𝑡 𝜌0
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here

= 𝝂 ⋅
[

∇𝐮 + (∇𝐮)𝑇
]

. (2)

The rotation vector of the Earth is given by Ω and in the applications
presented in this work Coriolis is implemented using an 𝑓 -plane as-
sumption, with 𝑓 = −1.409 × 10−4 s−1, corresponding to a latitude of
75 ◦S (Vallis, 2017). 𝜌0 is the reference density of sea water, taken as
1027.51 kg m−3 following Asay-Davis et al. (2016). Note Table 1 sum-
marises values for general model parameters. Kinematic eddy viscosity,
𝝂, is a rank two tensor and can be spatially variant. 𝐅 is a generic
vector body force. The velocity, 𝐮 = (𝑢, 𝑣,𝑤)𝑇 , and pressure, 𝑝, can be
solved for using the continuity equation as a constraint to enforce the
incompressibility condition

∇ ⋅ 𝐮 = 0. (3)

In this work we have not modified the continuity equation to allow
for a free surface implementation. The top surface of the model is
treated as a rigid lid. Flows with more complicated tidal forcing may
require a free surface to accurately capture the dynamics though and
we anticipate implementing this feature in future work.

To complete the description of the problem boundary conditions
need to be imposed, which are given as follows

𝐮 = 𝐮𝐷 = 𝑢𝑛𝐧 + 𝑢𝑡𝐭 on 𝛤𝐷, (4)

𝐮 ⋅ 𝐧 = 𝑢𝑛, 𝜏𝑛𝑡 = 𝑓tang on 𝛤𝐷𝑛 , (5)

− 𝜌0𝜏𝑛𝑛 + 𝑝 = 𝑝ext, 𝜏𝑛𝑡 = 0 on 𝛤𝑝ext , (6)

nit normal and tangential vectors are given by 𝐧 and 𝐭 respectively. On
𝐷 Dirichlet boundary conditions for both the normal and tangential
omponents of velocity, 𝑢𝑛 and 𝑢𝑡, are specified. This type of boundary
an be used for rigid walls by setting 𝑢𝑛 = 𝑢𝑡 = 0 for no-normal, no-
lip conditions. Although these boundaries are not used in this work
hey are included for completeness to ensure the correctness of the
eak forms in Section 2.2. In this work all walls are represented using
𝐷𝑛 boundaries. On these boundaries only the normal component of
elocity is specified and is combined with a condition for the shear
tress in the tangential direction

𝑛𝑡 = 𝐧 ⋅ 𝝉 ⋅ 𝐭. (7)

In this work all side walls are free slip boundaries. These are im-
osed by setting 𝑓tang and 𝑢𝑛 to zero. On the top and bottom boundaries,
amely the floating ice shelf and the seabed, we apply quadratic wall
rag

tang = 𝐶𝐷|𝐮|𝐮 ⋅ 𝐭 (8)

here 𝐶𝐷 is a drag coefficient.
For boundaries, 𝛤𝑝ext , only an external pressure is specified in (6),

ith 𝜏𝑛𝑛 the normal component of the stress vector on the boundary
iven by

𝑛𝑛 = 𝐧 ⋅ 𝝉 ⋅ 𝐧. (9)

lthough we do not consider these types of boundaries in this paper
e include their formulation for completeness to ensure that the sur-

ace integrals in the weak forms of Section 2.2 are consistent. These
ypes of boundaries are necessary in open domains, where an external
ydrostatic pressure field is applied to balance the stress on either side
f the open boundary, thus preventing fluid from ‘falling’ out of the
omain.

To incorporate buoyancy effects we make the Boussinesq approxi-
ation, where perturbations in density are neglected in all terms except

he buoyancy term, which is implemented as a source 𝐅 where

= −
𝜌′

𝜌0
𝑔𝐤, (10)

where 𝑔 = 9.81 m s−2 is the gravitational acceleration and 𝐤 is the unit
vector pointing in the vertical direction. 𝜌′ is a density perturbation
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related to temperature, 𝑇 , and salinity, 𝑆, by a linear equation of state,
given by

𝜌′ = 𝜌0(𝛼𝑇 (𝑇 − 𝑇0) + 𝛽𝑆 (𝑆 − 𝑆0)), (11)

where 𝛼𝑇 = −3.733 × 10−5 ◦C−1 and 𝛽𝑆 = 7.843 × 10−4 are respectively
the expansion and contraction coefficients for temperature and salinity.
𝑇0 = −1 ◦C and 𝑆0 = 34.2 are reference temperature and salinity values
used in the linear equation of state again with values from Asay-Davis
et al. (2016). Note that a constant hydrostatic pressure term has been
subtracted from the momentum equations and incorporated into the
definition of pressure, so that 𝑝 is a perturbation pressure

= 𝑃 − 𝑃hyd, (12)

where 𝑃 is the full pressure and 𝑃hyd is given by

hyd = −𝜌0𝑔𝑧, (13)

nd 𝑧 is the vertical coordinate.
Temperature and salinity are governed by scalar advection diffusion

quations, which can be written in strong form as
𝜕𝑇
𝜕𝑡

+ 𝐮 ⋅ ∇𝑇 = ∇ ⋅ (𝜿𝑇 ⋅ ∇𝑇 ) + 𝑟𝑇 (𝑇res − 𝑇 ), (14)

and
𝜕𝑆
𝜕𝑡

+ 𝐮 ⋅ ∇𝑆 = ∇ ⋅ (𝜿𝑆 ⋅ ∇𝑆) + 𝑟𝑆 (𝑆res − 𝑆), (15)

where 𝜿𝑇 and 𝜿𝑆 are the (eddy) diffusivity of temperature and salinity
respectively. These are spatially variant rank two tensors similar to
viscosity. 𝑟𝑇 and 𝑟𝑆 represent restoring frequencies when relaxing the
solution in a sponge region to specified values, 𝑇res and 𝑆res.

Boundary conditions for temperature and salinity are given as

𝑇 = 𝑇𝐷 on 𝛤𝐷𝑇 , (16)

(𝜿𝑇 ⋅ ∇𝑇 ) ⋅ 𝐧 = 𝛷𝑇 on 𝛤𝛷𝑇 , (17)

𝑆 = 𝑆𝐷 on 𝛤𝐷𝑆 , (18)

(𝜿𝑆 ⋅ ∇𝑆) ⋅ 𝐧 = 𝛷𝑆 on 𝛤𝛷𝑆 , (19)

where 𝑇𝐷 and 𝑆𝐷 are the Dirichlet boundary values for temperature
and salinity respectively on walls 𝛤𝐷𝑇 and 𝛤𝐷𝑆 given in (16) and (18).
Neumann boundary fluxes for temperature (17) and salinity (19) are
given by 𝛷𝑇 and 𝛷𝑆 respectively. Note the definition of 𝛷 includes
diffusivity, so if the tracer is temperature, the units of 𝛷𝑇 would be m
K/s.

The next section gives the weak forms of (1), (3), (14) and (15)
necessary for the finite element discretisation.

2.2. Weak form of model equations

2.2.1. Tracers
Choosing a suitable scalar function space, , for a generic tracer,

𝑞, and a test function, 𝜙, the weak form of the advection diffusion
equation ((14) and (15)) can be written as

𝑀𝑞 + 𝐴𝑞 +𝐾 = 𝐹𝑞 − 𝑆, ∀𝜙 ∈  (20)

where

𝑀𝑞 = ∫𝛺
𝜕𝑞
𝜕𝑡
𝜙 𝑑𝑥, (21)

𝐴𝑞 = ∫𝛺
−𝑞∇ ⋅ (𝜙𝐮) 𝑑𝑥 + ∫𝛤

𝜙𝑞𝐮 ⋅ 𝐧 𝑑𝑠, (22)

𝐾 = ∫𝛺
∇𝜙 ⋅ (𝜿 ⋅ ∇𝑞) 𝑑𝑥 − ∫𝛤𝐷𝑞

𝜙𝐧 ⋅ 𝜿 ⋅ ∇𝑞 𝑑𝑠 − ∫𝛤𝛷𝑞
𝜙𝛷𝑞 𝑑𝑠, (23)

𝐹𝑞 = ∫𝛺
𝐹𝜙𝑑𝑥, (24)

𝑆 = 𝛼res𝑞𝜙 𝑑𝑥, (25)
∫𝛺 2

4

where the individual terms are denoted: 𝑀𝑞 — time derivative, 𝐴𝑞
— advection, 𝐾 — (eddy) diffusivity, 𝐹𝑞 — source and 𝑆 — sink.
Dirichlet boundary values for the tracer are denoted 𝑞𝐷 and Neumann
oundary conditions as 𝛷𝑞 . Note 𝑞 is the ‘advected’ scalar value defined

in Section 2.4 in the context of surface integrals and Discontinuous
Galerkin (DG) finite elements.

2.2.2. Velocity–pressure
To derive the weak forms of (1) and (3) we choose separate,

suitable function spaces  and  for velocity, 𝐮 = (𝑢, 𝑣,𝑤)𝑇 , and
pressure, 𝑝 respectively. Multiplying (1) by a vector test function 𝝓 =
(𝜙𝑢, 𝜙𝑣, 𝜙𝑤)𝑇 ∈  and integrating over the domain, 𝛺, gives

𝑀 + 𝐴 + 𝐶 + 𝑃 + 𝑉 = 𝐹 ∀𝝓 ∈  , (26)

here

= ∫𝛺
𝜕𝐮
𝜕𝑡

⋅ 𝝓 𝑑𝑥, (27)

𝐴 = ∫𝛺
−𝐮 ⋅ [∇ ⋅ (𝐮⊗ 𝝓)] 𝑑𝑥 + ∫𝛤

(�̃� ⋅ 𝝓)(𝐮 ⋅ 𝐧) 𝑑𝑠 (28)

= ∫𝛺
−𝑓𝑣𝜙𝑢 + 𝑓𝑢𝜙𝑣 𝑑𝑥, (29)

= ∫𝛺
1
𝜌0

𝝓 ⋅ ∇𝑝 𝑑𝑥 − ∫𝛤𝑝ext

1
𝜌0

(𝑝 − 𝑝ext)(𝝓 ⋅ 𝐧) 𝑑𝑠, (30)

𝑉 = ∫𝛺
∇𝝓 ⋅ 𝝉 𝑑𝑥 − ∫𝛤𝐷∪𝛤𝐷𝑛

𝝓 ⋅ (𝐧 ⋅ 𝝉) 𝑑𝑠 (31)

+ ∫𝛤𝐷𝑛
(𝐧 ⋅ 𝝉 ⋅ 𝐭)(𝝓 ⋅ 𝐭) 𝑑𝑠 − ∫𝛤𝐷𝑛

𝑓tang𝝓 ⋅ 𝐭 𝑑𝑠,

= ∫𝛺
𝐅 ⋅ 𝝓 𝑑𝑥, (32)

he individual terms being: 𝑀 — time derivative, 𝐴 — advection, 𝐶
rotation, 𝑃 — pressure gradient, 𝑉 — (eddy) viscosity and 𝐹 —

ource. Note �̃�, similar to 𝑞, is an ‘advected’ velocity also defined in
ection 2.4. The symbol ⊗ represents an outer product between two
ector quantities.

Multiplying (3) by a test function 𝜓 ∈  and integrating by parts
ives the weak form of the continuity equation

𝛺
−∇𝜓 ⋅ 𝐮 𝑑𝑥+ ∫𝛤𝑝ext

𝜓𝒖 ⋅ 𝐧 𝑑𝑠+ ∫𝛤𝐷∪𝛤𝐷𝑛

𝜓𝑢𝑛 𝑑𝑠 = 0, ∀𝜓 ∈  . (33)

efining 𝜓 in the pressure space ensures that the discretised divergence
nd gradient operators are the negative transpose of each other and it
eans there are the same number of discrete continuity equations as
ressure degrees of freedom. This is natural, since the pressure can be
hought of as a Lagrange multiplier that enforces the incompressibility
onstraint (Strang, 2007).

.3. Finite element discretisation: Fully unstructured and ‘extruded’ meshes

.3.1. Tracers
On fully unstructured meshes (2D: triangle elements, 3D: tetrahe-

ral elements) we use linear discontinuous basis functions (P1DG) for
he tracer test and trial space, . This is because P1DG elements are
ell suited to advection dominated problems (Kärnä et al., 2018).

For high aspect ratio domains, where the horizontal extent of the
omain is much greater than the depth, for instance when simulating
n entire ice shelf cavity, an alternative option to using a fully un-
tructured mesh is to make use of Firedrake’s in-built ‘extruded’ mesh
eature. Extruded meshes offer increased performance and robustness
hen elements are highly anisotropic, yet retain the flexibility of a
orizontally unstructured mesh (Bercea et al., 2016; McRae et al.,
016).
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Fig. 1. Schematic of 3D extruded elements used in Section 3.2. Degrees of Freedom (DOF) are represented by black dots (with arrows representing vector quantities). DOF situated
on the edges of the element indicate continuity between elements, whereas DOF displaced into the element indicate discontinuity between elements. The extruded triangular prism
elements are created by taking the product of a triangular element in the horizontal with an interval element in the vertical. The element on the left, used to discretise pressure,
is a tensor product of P2 in the horizontal with P2 in the vertical. The element in the middle, representing the horizontal velocity component, is formed by taking a product of
N2 in the horizontal with P2 in the vertical. This ensures the horizontal component of velocity is discontinuous in the normal direction but continuous in the tangential direction.
The element on the right is the vertical velocity component formed from taking a product of P2 in the horizontal with P1DG in the vertical. This ensures that the vertical velocity
component is discontinuous in the vertical direction but continuous in the horizontal direction.
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Although we do not carry out 2D vertical slice modelling on ex-
truded meshes in this paper we describe the 2D case to help build
intuition for the 3D case, which is used in Section 3.2. An extruded
2D vertical slice mesh is made up of quadrilateral elements, which
can be thought of as the tensor product of an element interval in the
horizontal and an element interval in the vertical. For 3D domains the
elements are triangular prisms, which are formed by the tensor product
of a triangular element in the horizontal with an interval element in
the vertical. This means the horizontal part of the mesh can be fully
unstructured. In the vertical direction the mesh is structured. It is
possible to choose between a fixed number of columns in the vertical,
or a fixed cell height, as well as ‘shaving’ cells in the top and bottom
columns to accurately fit the domain geometry.

Finite elements on extruded meshes are defined in terms of a tensor
product of a finite element on the horizontal mesh and finite element
on the vertical mesh. This approach controls how the element behaves
in the horizontal direction and how the element behaves in the vertical.
This is particularly useful for more ‘exotic’ element combinations that
have different continuity requirements in the horizontal and vertical
directions.

On extruded meshes we choose the scalar finite element which
mimics the P1DG element. This is formed by taking the tensor product
of P1DG on the horizontal element with P1DG on the vertical interval.

2.3.2. Velocity–pressure
The choice of a suitable finite element velocity–pressure element

pair is crucial to ensuring an accurate and stable discretisation of
the continuous equations (Elman et al., 2014). On fully unstructured
meshes we use (vector) P1DG basis functions for the velocity space,  ,
nd quadratic continuous basis functions (P2) for the pressure space,
. The resulting P1DG-P2 velocity–pressure element pair has been

sed with the finite element ocean model Fluidity (Kramer et al., 2010;
imura et al., 2013; Jordan et al., 2014) and more recently imple-
ented within the Thetis (coastally-focused) ocean model developed
sing Firedrake (Kärnä et al., 2018; Wallwork et al., 2020). The element
air has been shown to maintain geostrophic balance, because the
kew gradient of the pressure maps to the velocity space (Cotter et al.,
009b,a; Cotter and Ham, 2011).

On extruded meshes we have chosen an element pair that has
imilar properties to P1DG-P2, so that as the horizontal mesh is refined
he discretisation is able to deal with order one aspect ratios. Defining
he equivalent of P2 on extruded meshes is relatively straightforward:
t is the tensor product of a P2 horizontal element with the equivalent
2 element on the vertical interval, as shown on the left side of Fig. 1.
orming the required velocity element on an extruded mesh is more
omplicated though. Our solver strategy, outlined in Section 2.5, relies

n the gradient of functions in the pressure function space mapping s

5

o functions in the velocity trial space. Given our discretisation choice
or pressure this places a constraint on the continuity of the velocity
lement. Along the element boundary the gradient of the pressure is
ontinuous across cells in the tangential direction and varies quadrat-
cally. In the normal direction the pressure gradient is discontinuous
etween cells and varies linearly.

For a 2D vertical slice the horizontal component of this velocity
lement, 𝑢, is formed by taking the tensor product of P1DG on a
orizontal interval and P2 on a vertical interval. This ensures that the
orizontal component of velocity is discontinuous in the horizontal
irection, but continuous between elements on vertical facets. The ver-
ical component of the velocity, 𝑤, is defined the other way round, as a
ensor product of P2 in the horizontal and P1DG in the vertical. Again,
his ensures that the vertical velocity is continuous in the horizontal
irection, but discontinuous in the vertical direction.

The 3D equivalent of the 2D velocity element is built up as follows:
he horizontal velocity components, 𝑢 and 𝑣, are formed by taking the
ensor product of a Nedelec element of the second kind (N2) defined
n a triangular element with a P2 element in the vertical. N2 elements
re inherently (2D) vector elements, that are tangentially continuous
etween cells and discontinuous in the normal direction (Kirby et al.,
012). The middle panel of Fig. 1 shows this element discretising the
orizontal velocity components. The vertical component of velocity is
efined in the same way as on the 2D vertical slice mesh with a tensor
roduct of P2 in the horizontal and P1DG in the vertical and is shown
n the right hand side of Fig. 1. Similarly Fig. 2 from Section 2.6
etailing the melt parameterisation shows a 2D vertical schematic rep-
esentation of the P1DG discretisation on the fully unstructured mesh
ersus the tensor product discretisation on the vertically structured
xtruded mesh.

.4. Discontinuous Galerkin surface integrals

Various terms in the weak form have been integrated by parts,
esulting in additional surface integrals, which can be exploited to en-
orce boundary conditions weakly. With continuous finite element basis
unctions, contributions from either side of the same internal boundary
etween elements cancel. This means only surface integrals defined
n exterior boundaries need to be considered. In the Discontinuous
alerkin (DG) method however, the surface contributions from either

ide of the internal boundaries do not cancel, because of the ‘jump’ in
he solution value across the boundary.

For the advection term in (28) we choose the advected velocity, �̃�,
o be the upwind value. On an exterior outflow boundary this simply
eans �̃� is the solution inside the domain and on inflow boundaries,

̃ is set using the Dirichlet values at the boundary. In the interior, the

olution fields on either side of a facet between two adjacent elements
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are arbitrarily labelled with ‘+’ and ‘-’. Averages across interfaces are
denoted by {{⋅}}, while [[⋅]] denotes a jump across an interface with
unit normal 𝐧. Integrals over interior facets are given by ∫𝛤int

𝑑𝑆. Using
this notation, the additional term for DG advection is

∫𝛤int

�̃� ⋅ ([[𝝓(𝐮 ⋅ 𝐧)]]) 𝑑𝑆, (34)

where the upwind velocity, �̃� is given by

�̃� = 𝐮+ if 𝐮 ⋅ 𝐧− ≤ 0, (35)

�̃� = 𝐮− if 𝐮 ⋅ 𝐧− > 0. (36)

The viscosity term is discretised using the Symmetric Interior
Penalty Galerkin (SIPG) method (Epshteyn and Rivière, 2007). After
integrating by parts the discontinuous velocity field leads to an interior
facet term

−∫𝛤int

[[𝝓⊗ 𝐧]] ⋅ {{𝝂 ⋅ (∇𝐮 + (∇𝐮)𝑇 )}} 𝑑𝑆. (37)

Adding only this term to (31) would not give a stable scheme.
Instead, two additional terms are included which ensure that the form
of the diffusivity term is symmetric positive definite given by

− ∫𝛤int

([[𝐮⊗ 𝐧]] + [[𝐮⊗ 𝐧]]𝑇 ) ⋅ {{𝝂 ⋅ ∇𝝓}} 𝑑𝑆 (38)

+ ∫𝛤int

𝜎[[𝝓⊗ 𝐧]] ⋅ ({{𝝂}} ⋅ ([[𝐮⊗ 𝐧]] + [[𝐮⊗ 𝐧]]𝑇 )) 𝑑𝑆.

The first term in (38) makes the scheme symmetric. The second term
is a penalty term, penalising jumps in the solution to ensure that the
operator remains coercive which is required for stability. Eqs. (3.20)
and (3.23) from Hillewaert (2013) give a minimal value for the penalty
parameter, 𝜎 as

𝜎 = 𝛼𝐶(𝑝)𝑛𝑒{{𝐴𝑓∕𝑉𝑒}}, (39)

where 𝑛𝑒 is the number of facets for the element type, 𝛼 is a constant
(the theoretical minimum is 1 for stability, but after experimentation
we found using a value of 2 improves robustness), 𝐴𝑓 is the area of
the facet, 𝑉𝑒 is the volume of the element. Eq. (3.7) from Hillewaert
(2013) defines 𝐶 as a constant that depends on polynomial degree, 𝑝,
and element type such that

∫𝑓
𝑢2𝑑𝑆 ≤ 𝐶𝐴𝑓∕𝑉𝑒 ∫𝑒

𝑢2𝑑𝑥, (40)

is true for all polynomials u of degree p. Values for 𝐶 are given in Table
3.1 from Hillewaert (2013). The additional SIPG terms are also added
on exterior surfaces

− ∫𝛤𝐷
((𝐮 − 𝐮𝐷)⊗ 𝐧 + ((𝐮 − 𝐮𝐷)⊗ 𝐧)𝑇 ) ⋅ (𝝂 ⋅ ∇𝝓) 𝑑𝑠 (41)

+ ∫𝛤𝐷
2𝜎𝝓⊗ 𝐧 ⋅ (𝝂 ⋅ ((𝐮 − 𝐮𝐷)⊗ 𝐧 + ((𝐮 − 𝐮𝐷)⊗ 𝐧)𝑇 )) 𝑑𝑠.

Scalar advection is treated similarly to momentum, with the addi-
tional interior facet term, due to the discontinuous finite element space,
given by

∫𝛤int

[[𝜙𝐮 ⋅ 𝐧]]𝑞 𝑑𝑆, (42)

where the upwind value of the tracer, 𝑞, is defined as

𝑞 = 𝑞+ if 𝐮 ⋅ 𝐧− ≤ 0, (43)

𝑞 = 𝑞− if 𝐮 ⋅ 𝐧− > 0. (44)

On Dirichlet boundaries 𝑞 is again only replaced if the flow is into the
domain. Scalar diffusion in (23) is also implemented using the SIPG
formulation, where the additional terms are given by

− [[𝜙𝐧]] ⋅ {{𝜿 ⋅ ∇𝑞}} 𝑑𝑆 − [[𝑞𝐧]] ⋅ {{𝜿 ⋅ ∇𝜙}} 𝑑𝑆 (45)
∫𝛤int
∫𝛤int

e

6

+ ∫𝛤int

𝜎[[𝜙𝐧]] ⋅ ({{𝜿}} ⋅ [[𝑞𝐧]]) 𝑑𝑆

− ∫𝛤𝐷𝑞
(𝑞 − 𝑞𝐷)𝐧 ⋅ 𝜿 ⋅ ∇𝜙𝑑𝑠 + ∫𝛤𝐷𝑞

2𝜎𝜙𝐧 ⋅ 𝜿 ⋅ (𝑞 − 𝑞𝐷)𝐧 𝑑𝑠,

nd similar interpretations of each term can be made as for momentum
iscosity in (31).

.5. Timestepping and solver strategy

As outlined in the previous section, (26), (20) and (33), are the
onservation of momentum, the incompressibility constraint and ad-
ection diffusion equations, and together they form a coupled system
hat needs to be solved for velocity, pressure, temperature and salinity.
s stated before we are solving for the full nonhydrostatic dynamics
nd we do not carry out any mode splitting to separate the barotropic
nd baroclinic components of the flow.

First, we solve for the velocity and pressure using (26) and (33)
y the established pressure projection approach (Chorin, 1967; Kramer
t al., 2010), which splits the solve into two parts. There is an initial
rediction step to find an intermediate velocity, where the momentum
quation is solved using an implicit Backward Euler timestep for all
he terms in the momentum equation, except the pressure, 𝑝𝑛, which
ses the value from the previous timestep. The nonlinear advection
nd drag terms are linearised by setting the advecting velocity to the
elocity value from the previous time step. This intermediate velocity,
int, is not divergence-free, however, so a correction step enforces
he incompressibility constraint. This finds the updated pressure, 𝑝𝑛+1,
eeded to obtain a divergence-free velocity field 𝐮𝑛+1. This correction
tep takes the form of a time-splitting step
𝑛+1 = 𝐮int + 𝛥𝑡∇

(

𝑝𝑛+1 − 𝑝𝑛
)

, (46)

hich is discretised in the same way as the 𝑀 and 𝑃 terms in (26),
oupled with an incompressibility constraint Eq. (33) for 𝐮𝑛+1.

Firedrake provides an interface to choose solver options to pass to
ETSc, the package that implements the solver routines (Balay et al.,
997). Typically, we choose the GMRES Krylov subspace method to
olve the momentum equation during the prediction step, because
he matrix is not symmetric. It is preconditioned with an algebraic
ultigrid preconditioner, such as PETSc’s default Geometric Algebraic
ultigrid (GAMG) or BoomerAMG from the HYPRE suite (Henson and
ang, 2002).

The block structure of the coupled correction solve is simpler than
he full Navier–Stokes system (26) and (33) because the matrix that
rises in the top left-hand block is only a mass matrix (resulting from
he time derivative term in (27)), where in the full system it would
ontain contributions from all the other terms in the momentum equa-
ion. Because of the careful choice of velocity–pressure finite element
unction spaces (see Section 2.3.2), where the gradient of pressure maps
ointwise exactly into the velocity function space, it can be shown
hat the Schur complement of this system is exactly equivalent to a
tandard Continuous Galerkin discretisation of the pressure Poisson
quation (Cotter and Ham, 2011).

This Poisson equation is solved using the Conjugate Gradient (CG)
lgorithm, preconditioned with an algebraic multigrid. The efficiency
f this solution strategy is highly dependent on the condition number.
or an anisotropic domain, this is proportional to the square of the
spect ratio of the grid cells (Kramer et al., 2010). Thus, as the aspect
atio goes to infinity the condition number can become unbounded,
ith negative implications for the convergence of the solve. However,
y preconditioning the CG algorithm with a preconditioner that ap-
roximates the solution to the depth averaged equations, convergence
an be made independent of the aspect ratio. This so called vertical
umping approach (Kramer et al., 2010) is similar to the idea first used
n MITgcm and ensures that when the dynamics are close to a hydro-
tatic state, the solve is as fast as when only solving the hydrostatic

quations (Marshall et al., 1997).
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For parallel efficiency, the method does require cells to be aligned in
olumns in the vertical direction. This can be achieved using Firedrake’s
n-built extruded mesh feature in combination with the tensor product
iscretisation discussed in Section 2.3.1. We have found that when
unning 3D simulations on structured tetrahedral meshes, on aspect
atios larger than 102 (e.g., dx = dy = 2 km, dz < 20 m), using
he generic algebraic multigrid preconditioner GAMG, the wall clock
ime needed to solve one timestep of the model was dominated by
he pressure correction solve. However, on extruded meshes with the
ertical lumping preconditioner, the pressure correction solve is faster
han the momentum solve for the intermediate velocity.

After solving for velocity and pressure we solve for temperature and
alinity individually. We use a 3-stage Diagonally Implicit Runge–Kutta
DIRK) time-stepping method (Ascher et al., 1995) for the temperature
nd salinity advection diffusion equations (20). The method is third
rder accurate. It is also an L-stable scheme, so it is suitable for stiff
roblems. We apply a vertex-based slope limiter after each time-step to
revent the solution from becoming unbounded (Kuzmin, 2010). We
ave found that using a slope limiter is only necessary in the region
f the ice front transition, which tends to have the fastest flow as the
uoyant melt water plume accelerates up the ice front. Without the
imiter a spurious freezing signal can occur, confined to the final grid
ell before the ice front transition. With the limiter, however, freezing
oes not take place.

Although, computational performance and parallel scalability are
ot directly considered in this paper we expect our P1DG finite element
ased method with implicit time stepping to be about an order of
agnitude slower than a conventional low order (possibly explicit)

inite volume model for the same model domain and grid resolution.
he ability to take longer timesteps can offset this. More importantly,
y using a fully flexible meshing strategy we are able to represent
mall scale features in a large domain that would be impossible to
epresent with structured grids, typical of other ocean models. We
ave run Firedrake simulations of ocean circulation beneath ice shelves
n parallel with up to 128 cores. The reader is referred to the main
iredrake paper for a more in depth study of performance (Rathgeber
t al., 2016). Future work will investigate the performance of this ocean
odel when it is applied to more demanding, geometrically complex
D domains that require a fully flexible unstructured mesh.

.6. Melt parameterisation

Melt rates are calculated based on conservation of heat and salt at
he ice-ocean boundary and under the assumption that the boundary
s at the freezing point, commonly referred to as the ‘three-equation’
elt parameterisation (Hellmer and Olbers, 1989; Holland and Jenkins,
999; Dinniman et al., 2016). Conservation of heat is expressed as
𝑇
𝑖 −𝑄𝑇𝑤 = 𝑄𝑇latent, (47)

here the latent heat term, 𝑄𝑇latent is given by

𝑇
latent = −𝜌0𝑤𝑏𝐿𝑓 , (48)

ith 𝑤𝑏 the unknown melt rate (melting: 𝑤𝑏 > 0, freezing: 𝑤𝑏 < 0) and
𝑓 = 3.34 × 105 J kg−1 is the latent heat of fusion. The conductive heat

lux into the ice, 𝑄𝑇𝑖 is

𝑇
𝑖 = −𝜌𝑖𝑐𝑝𝑖𝑤𝑏(𝑇𝑖 − 𝑇𝑏), (49)

here 𝜌𝑖 = 920 kg m−3 is the density of ice, 𝑐𝑝𝑖 = 2000 J kg−1 K−1 is
he specific heat capacity of ice, 𝑇𝑖 is the far field ice temperature,
aken to be −20 ◦C and 𝑇𝑏 is the unknown temperature at the ice-ocean
oundary. The turbulent heat flux from the ocean to the ice, 𝑄𝑇𝑤 is given
y
𝑇
𝑤 = −𝜌0𝑐𝑝𝛾𝑇 (𝑇𝑏 − 𝑇𝑤), (50)

here 𝑐𝑝 = 3974 J kg−1 K−1 is the specific heat capacity of water and
the turbulent thermal exchange velocity. Commonly 𝛾 is expressed
𝑇 𝑇

7

s 𝛤𝑇 𝑢⋆, where 𝛤𝑇 is a dimensionless constant and 𝑢⋆ =
√

𝐶𝐷|𝑢| is the
friction velocity (Asay-Davis et al., 2016). We use the velocity at the top
surface of the domain to calculate 𝑢⋆, in effect making the assumption
that our computational boundary is in the surface layer (where rotation
effects are unimportant) which may not be valid in the presence of
strong stratification (McPhee, 2008). 𝑇𝑤 is defined by Holland and
Jenkins (1999) as the temperature in the mixed layer at the edge of the
turbulent ice-ocean boundary layer. In most ocean models this is either
taken as the value of the temperature in the top model cell adjacent
to the boundary or temperature value representative of some distance
from the ice-ocean interface (Gwyther et al., 2020). We take 𝑇𝑤 as
the model temperature value at the computational boundary. This is
perhaps an uncommon choice compared with other ocean models (Din-
niman et al., 2016). Unless doing Direct Numerical Simulation (DNS),
which is prohibitively expensive for ice-ocean simulations in more than
metre scale domains (Couston et al., 2021), the scalar molecular and
turbulence boundary layer will not be modelled explicitly; it must be
accounted for with a parameterisation. Since we are unable to model
these effects explicitly we choose to imagine that the actual ice-ocean
interface is offset slightly beyond the computational domain, which is
similar to the approach taken for the parameterisation of wall regions in
Reynolds Averaged Navier–Stokes (RANS) turbulence models (Yeager,
2018). Fig. 2 shows a schematic of the melt parameterisation. While the
finite element solution is valid at any point within each element, and
this means it is possible to offset where the tracer is sampled towards
the interior of the domain as shown by Kimura et al. (2013), this could
cause performance issues when running the model in parallel because
the sampled tracer value may not be stored on the same processor.

The conservation of salt is similar to heat and is given by

𝑄𝑆𝑖 −𝑄𝑆𝑤 = 𝑄𝑆brine, (51)

where the fresh water melt flux 𝑄𝑆brine is given by

𝑄𝑆𝑏𝑟𝑖𝑛𝑒 = −𝜌0𝑤𝑏(𝑆𝑖 − 𝑆𝑏), (52)

and where 𝑆𝑖 is the salinity of the ice, which is taken to be zero, and 𝑆𝑏
is the unknown salinity at the ice base. The turbulent salt flux across
the ocean boundary layer 𝑄𝑆𝑤 can be written as

𝑄𝑆𝑤 = −𝜌0𝛾𝑆 (𝑆𝑏 − 𝑆𝑤), (53)

here 𝛾𝑆 is the turbulent salinity exchange velocity, analogous to 𝛾𝑇
and as before we take 𝑆𝑤 as the value of salinity at the edge of the
computational domain offset from the ice-ocean boundary. The diffu-
sive flux of salt into the ice, 𝑄𝑆𝑖 is assumed to be zero. The ice-ocean
boundary temperature, 𝑇𝑏 is assumed to be at the freezing point

𝑏 = 𝑎𝑆𝑏 + 𝑏 + 𝑐𝑃𝑏, (54)

where 𝑎=−5.73 × 10−2 ◦C, 𝑏=8.32×10−2 ◦C and 𝑐=−7.53 × 10−8 ◦C Pa−1
are the coefficients obtained from linearisation of the nonlinear freezing
point equation (Millero, 1978) using the values from Asay-Davis et al.
(2016) and 𝑃𝑏 is the pressure at the boundary. This means there are now
three equations ((47) (51) and (54)) to solve for the three unknowns,
𝑤𝑏, 𝑆𝑏, and 𝑇𝑏; the melt rate and the salinity and temperature values at
the boundary, respectively. Rearranging the equations gives a quadratic
equation for 𝑆𝑏, and the positive value is taken as the solution. By using
the form of the heat and salt flux from (50) and (53), Robin boundary
conditions for temperature and salinity can be imposed as shown in
Fig. 2 according to

𝛷𝑇 = 𝜅𝐧 ⋅ ∇𝑇 = (𝛾𝑇 +𝑤𝑏)(𝑇𝑏 − 𝑇𝑤), (55)

and

𝛷𝑆 = 𝜅𝐧 ⋅ ∇𝑆 = (𝛾𝑆 +𝑤𝑏)(𝑆𝑏 − 𝑆𝑤), (56)

where 𝛷𝑇 and 𝛷𝑆 are substituted into the third term of (23). Since
the ice-ocean boundary is not a material interface, we include the
melt water correction term accounting for the advection of melt water
(with water mass properties corresponding to values at the ice-ocean
interface) into the ocean domain as part of the temperature and salt

flux boundary conditions following Jenkins et al. (2001).
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t

Fig. 2. 2D vertical schematic of melt parameterisation and implementation of tracer boundary conditions. Black dots on the left hand side of the computational domain represent
locations of Degrees of Freedom (DOFs) for P1DG finite element, which is used for the tracers and velocity components on vertically unstructured meshes. The right hand side of
the figure represents the computational domain for the vertically structured (but horizontally unstructured) ‘extruded’ mesh. Black dots are DOFs for the element used for scalar
quantities formed by taking the tensor product of P1DG on a horizontal interval with P1DG defined on a vertical interval. The velocity element (not shown) is also defined using
a tensor product (as described in Section 2.3.2) and is discontinuous in the normal direction, but continuous in the tangential direction. Note the offset computational domain
so in our modelling we assume that the ice-ocean interface is slightly beyond the computational domain following Yeager (2018). 𝑇𝑤 and 𝑆𝑤 are the finite element solutions for
temperature and salinity at the edge of the computational domain. Other terms are as defined in Section 2.6. After solving for 𝑇𝑏, 𝑆𝑏 and 𝑤𝑏, Robin boundary conditions for
emperature and salinity are imposed weakly (third term of (23)) using the definition of the heat, 𝑄𝑇

𝑤, and salt 𝑄𝑆
𝑤, fluxes from the melt parameterisation.
Table 1
General constants for model equations and melt parameterisation. Note in this work
Salinity is treated as unitless, except for thermodynamic relations or equations of state,
where it is assumed to be g kg−1.

Parameter Value Description

𝑓 −1.409 × 10−4 s−1 Coriolis parameter
𝜌0 1027.51 kg m−3 Reference density of sea water
𝑔 9.81 m s−2 Gravitational acceleration
𝛼𝑇 −3.733 × 10−5 ◦C−1 Temperature expansion coefficient
𝛽𝑆 7.843 × 10−4 Salinity contraction coefficient
𝑇0 1.0 ◦C Reference temperature in EOS
𝑆0 34.2 Reference salinity in EOS
𝐿𝑓 3.34 × 105 J kg−1 Latent heat of fusion of ice
𝜌𝑖 920 kg m−3 Density of ice
𝑐𝑝𝑖 2000 J kg−1 K−1 Specific heat capacity of ice
𝑐𝑝 3974 J kg−1 K−1 Specific heat capacity of water
𝑇𝑖 −20 ◦C Far field ice temperature
𝑆𝑖 0 Far field ice salinity
𝑎 −5.73 × 10−2 ◦C Coefficient freezing point equation
𝑏 8.32 × 10−2 ◦C Coefficient freezing point equation
𝑐 −7.53 × 10−8 ◦C Pa−1 Coefficient freezing point equation
𝛤𝑇 0.011 Turbulent heat exchange coefficient
𝛤𝑆 𝛤𝑇 /35 Turbulent salt exchange coefficient
𝐶𝐷 2.5 × 10−3 Drag coefficient

2.7. Model implementation

We have built a Python module on top of Firedrake to facilitate
simulations of ice shelf cavities. The core part of our Python package
is made up of 11 modules. We make use of Python classes to build
up the complexity of the code in blocks. Each equation inherits useful
attributes from a BaseEquation, i.e. a method for summing the residuals
from each term. And each equation is made up of terms, effectively
each term in (20) and (26), themselves based on a BaseTerm, which
contains the required features of a term, i.e. a method to evaluate
the residual form for the term. This approach leads to a compact
codebase, aids with debugging, as individual pieces of the code can
be isolated and tested, but retains the flexible nature of Firedrake,
which is one of the main reasons for using the software. The code
is available at https://github.com/thwaitesproject/thwaites.git. It has
also been stored in this Zenodo repository: https://doi.org/10.5281/
8

zenodo.7584700, along with instructions for running the examples
from Section 3.

The next section presents a simplified verification test applicable to
ice-ocean models, which will hopefully prove of value for other models,
to ensure that the code is solving the model equations correctly and
consistently.

3. Results

3.1. Method of manufactured solution (MMS) tests

The Method of Manufactured Solutions (MMS) is a rigorous method
for verifying that the numerical scheme as implemented is solving
the model equations accurately and consistently (Farrell et al., 2011;
Roache, 1998). This is a separate problem to that of validating whether
the model, including the choice of underlying equations, yields a good
approximation to the real system. Such a validation requires compari-
son with observations, which is challenging for simulations of ice shelf
cavity circulation. The most reliable way to test whether a numerical
approximation is consistent is to ensure that the solution error relative
to a known solution decreases at the correct order as the grid is
refined (Salari and Knupp, 2000). However, finding analytical solutions
to systems of coupled Partial Differential Equation (PDE) that arise in
fluid dynamics is notoriously difficult, and only possible for simple
geometrical configurations and often simplified Boundary Conditions
(BCs). MMS removes much of this difficulty. Instead of solving the
PDE system to find the solution, the analytical form of the solution is
chosen to begin with. Solution fields are constructed from smoothly
varying differentiable functions, often trigonometric and polynomial
functions. These functions are substituted into the strong form of the
equations and the resulting residuals (which are expected to be non-
zero as these functions could not be expected to represent an exact
solution) provide additional source terms that can be used to force
a version of the simulation for which the chosen functions are exact
solutions. The chosen functions can be manufactured to meet specific
constraints (for example incompressibility of the flow field) or specific
BCs. Alternatively, consistent BCs can be found directly from the chosen
solutions simply by evaluating the solution at the boundary for the type
of BC required for testing.

https://github.com/thwaitesproject/thwaites.git
https://doi.org/10.5281/zenodo.7584700
https://doi.org/10.5281/zenodo.7584700
https://doi.org/10.5281/zenodo.7584700
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Fig. 3. Example MMS solution and error fields. Left panel shows example solution field for horizontal velocity components on the two coarsest grids (10 × 10 cells and 20 × 20
ells). Red indicates flow to the right and blue indicates flow to the left. The right panel shows the squared error of the finite element solution relative to the chosen manufactured
olution on the two meshes. Note the log scale on the right hand plot. Although the solution fields in the left hand panels at the two resolutions are visually similar, the error is
learly lower on the finer grid in the right hand panel. This plot is intended as a qualitative example of MMS, Fig. 4 demonstrates that the solution fields converge at the correct
rder.
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Following the notation from Farrell et al. (2011), the error on a
iven mesh is

ℎ1 ≈ 𝐶ℎ
𝑐𝑝
1 , (57)

here 𝐶 is a constant, ℎ1 is the characteristic mesh size, and 𝑐𝑝 is the
rder of accuracy of the numerical approximation. The error on a finer
esh is

ℎ2 ≈ 𝐶
(

ℎ1
𝑟

)𝑐𝑝
, (58)

here the new characteristic mesh size ℎ2 = ℎ1∕𝑟. By taking the ratio
f the two errors the convergence rate can be found using

𝑝 ≈ log𝑟

(

𝐸ℎ1
𝐸ℎ2

)

. (59)

The MMS solutions should be constructed to be as general as
ossible to ensure good coverage of the terms in the equations (Salari
nd Knupp, 2000). Although this does not require the chosen solution
ields to be realistic, the solution we have chosen for this MMS test
s an overturning flow that is a crude representation of an ice-pump
echanism.

For simplicity we have limited ourselves here to flow within a 2D
ertical slice. The domain is a square box with length 𝐿 = 100 m, height
= 100 m, and with the bottom boundary at a depth 𝐷 = 1000 m. The

hosen solution for the horizontal velocity is

= 𝑢0
𝑥
𝐿

cos
(

−
𝜋(𝑧 +𝐷 −𝐻)

𝐻

)

, (60)

here 𝑢0 is a characteristic velocity of 1 m/s, 𝑥 and 𝑧 are the horizontal
nd vertical coordinates. As an example of the MMS procedure, Fig. 3
hows the finite element solution fields for the horizontal velocity
omponent on the two coarsest grids alongside the corresponding error
elative to the chosen solution. The error on the finer mesh is noticeably
educed compared to the error on the coarser mesh despite the two
olution fields being qualitatively similar.

The chosen solution for vertical velocity is

= 𝑢0
𝐻 sin

(

−
𝜋(𝑧 +𝐷 −𝐻)

)

. (61)

𝜋𝐿 𝐻

9

This has been chosen to ensure that the flow is incompressible so that
the continuity equation, ∇ ⋅ 𝐮 = 0, is satisfied. For this simple flow
configuration, the vertical velocity does not depend on 𝑥. The right
and side is specified as an open boundary and all other boundaries
mploy free-slip conditions, with no normal flow imposed. The pressure
ield has been chosen to have homogeneous Neumann boundaries (∇𝑝 ⋅
= 0)

= 𝑝0cos
(𝜋𝑥
𝐿

)

cos
(

−
𝜋(𝑧 +𝐷 −𝐻)

𝐻

)

. (62)

𝑝0 is a constant set to 1 Pa to ensure the dimensions remain consistent
and the reference density, 𝜌0, is set to 1 kg m−3 for this test. The
temperature field is

𝑇 = 𝑇𝑐 sin
( 4𝜋𝑥
𝐿

)

+ 𝑎𝑇 𝑧2 + 𝑏𝑇 𝑧 + 𝑐𝑇 , (63)

here 𝑇𝑐 is 0.1 ◦C, 𝑎𝑇 is −3.89×10−4 ◦C m−2, 𝑏𝑇 is −7.54 × 10−1 ◦C
−1, and 𝑐𝑇 is −3.64 × 102 ◦C. The salinity field is

= 𝑆𝑐 cos
( 4𝜋𝑥
𝐿

)

+ 𝑎𝑆𝑧2 + 𝑏𝑆𝑧 + 𝑐𝑆 , (64)

where 𝑆𝑐 is 0.345, 𝑎𝑆 is −1.44 × 10−4 m−2, 𝑏𝑆 is −2.81 × 10−1 m−1,
and 𝑐𝑆 is −1.03 × 102. The viscosity and diffusivity are 1 m2/s.

As already described, the source terms are derived by substituting
the solutions into the strong form of the equations. The source term for
velocity is thus given by

𝐒𝐮 = 𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅ ∇𝐮 + 1
𝜌0

∇𝑝 − ∇ ⋅ 𝝉 +
𝜌′

𝜌0
𝑔𝐤. (65)

Note the coriolis term is not included because the domain is a 2D
vertical slice. The implementation of rotation has been verified against
analytical solutions of Ekman spirals (not shown). The source term for
temperature is given by

𝐒𝑇 = 𝜕𝑇
𝜕𝑡

+ 𝐮 ⋅ ∇𝑇 − ∇ ⋅ 𝜅𝑇∇𝑇 . (66)

he source term for salinity is given by

= 𝜕𝑆 + 𝐮 ⋅ ∇𝑆 − ∇ ⋅ 𝜅 ∇𝑆. (67)
𝑆 𝜕𝑡 𝑆
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Use of symbolic computation tools, such as SymPy (Meurer et al.,
2017), make this process relatively straightforward to implement. For
example, the source term for the horizontal velocity component in this
case is given by

𝐒𝑢 =
−𝑝0𝜋sin(𝜋𝑥∕𝐿)cos(𝜋(−𝐻 +𝐷 + 𝑧)∕𝐻)

𝐿𝜌0

+
𝑢20𝑥 sin(𝜋(−𝐻 +𝐷 + 𝑧)∕𝐻)2

𝐿2
+ (68)

𝑢20𝑥 cos(𝜋(−𝐻 +𝐷 + 𝑧)∕𝐻)2

𝐿2
+
𝜋2𝜈𝑢0 𝑥cos(𝜋(−𝐻 +𝐷 + 𝑧)∕𝐻)

𝐻2𝐿
Note we chose this term for its compactness because it does not include
buoyancy terms.

Dirichlet BCs for temperature and salinity are applied on the left and
right boundaries, with Neumann conditions on the bottom boundary.
Values for these boundary conditions are found in a similar manner to
defining source terms, the solution itself is substituted to give the exact
form of the (generally inhomogeneous) boundary conditions (Salari and
Knupp, 2000). Particular attention is given to the boundary conditions
at the ice-ocean interface situated at the top of the domain, as verifying
the accuracy of the model implementation at this location is a key
reason for carrying out the MMS test. The boundary conditions at
the ice-ocean interface are represented by Robin boundary conditions,
which define the gradient of the temperature and salinity fields at the
boundary as a function of the temperature and salinity at the edge of
the computational domain (see Section 2.6 for more information). The
default boundary condition for the melt boundary is given by (55) and
(56), which are imposed weakly in the third term of (23). For an MMS
test the temperature boundary condition applied at the top is given by

𝛷𝑇 = 𝜅𝐧 ⋅ ∇𝑇 𝑎 +𝛷ℎ
𝑇 −𝛷𝑎

𝑇 . (69)

The first term in (69) represents the temperature gradient of the analyt-
ical temperature field, 𝑇 𝑎, (found from (63)), at the boundary with the
eddy diffusivity as a multiplication factor as discussed previously. This
is the only term needed to implement Neumann boundary conditions
for conventional MMS tests. The second term 𝛷ℎ

𝑇 is the flux boundary
condition calculated by the melt parameterisation using the modelled
temperature (and salinity) values, equivalent to (55) (and (56)). The
final term, 𝛷𝑎

𝑇 , is the flux calculated by the melt parameterisation using
the analytical temperature field. Provided the temperature, salinity and
velocity (through 𝑢⋆) fields converge at the correct order, then the
melt rate error (calculated using the exact temperature, salinity and
velocity fields) should also converge at the correct order because the
contribution from 𝛷ℎ

𝑇 and 𝛷𝑎
𝑇 cancel out.

This is a spatial convergence test so the solution fields have been
chosen to be stationary (Farrell et al., 2011). The simulation is spun
up from rest. Backward Euler is used for timestepping the momentum
equations and the scalar equations. The timestep is initially set to 4
m/(𝑢0𝑛𝑥), chosen for robustness in the initial spin-up, where 𝑛𝑥 is the
number of cells in the 𝑥 direction. The timestep is increased to L/(𝑢0𝑛𝑥)
after 100 time steps. For convenience Table 2 summarises parameters
and constants used for the MMS convergence test.

Velocity and tracer fields are discretised with P1DG elements and so
second order convergence is expected, which means that halving the
grid size should reduce the error by a factor of four. Pressure is dis-
cretised with P2 elements so third order might be expected; however,
coupling errors associated with the velocity mean that in practice the
convergence is about second-order (Cotter and Ham, 2011).

Fig. 4 plots the errors for each solution field, with logarithmic
axes. Velocity, temperature and melt rate are all very close to the
expected second order convergence or higher. Salinity and pressure
are slightly lower, though never below 1.8 and the convergence rate is
increasing towards second order as the grid is refined. The integrated
melt is also initially above second order but drops to 1.82 convergence.
Overall these convergence results give confidence in the accuracy and
consistency of the numerical discretisation and hopefully will prove to
 w

10
Fig. 4. MMS convergence tests for temperature, salinity, melt, integrated melt over
the top boundary, velocity and pressure. The test was carried out on four grids with
grid resolution of 10 m (10 × 10 cells), 5 m (20 × 20 cells), 2.5 m (40 × 40 cells),
1.25 m (80 × 80). The error is given in the L2 norm. Both axes use a logarithmic scale.

triangle with slope of two has been added to the plot to help show that all fields
chieve the expected second order convergence.

Table 2
Parameters and constants used for MMS convergence test in Section 3.1.

Parameter Value Description

𝐿 100 m Domain length
𝐻 100 m Domain height
𝐷 1000 m Domain depth
𝑢0 1 m s−1 Characteristic velocity
𝑝0 1 Pa Characteristic pressure
𝜌0 1 kg m−3 Reference density
𝑇𝑐 0.1 ◦C Coefficient in chosen temperature solution
𝑎𝑇 −3.89 × 10−4 ◦C m−2 Coefficient in chosen temperature solution
𝑏𝑇 −7.54 × 10−1 ◦C m−1 Coefficient in chosen temperature solution
𝑐𝑇 −3.64 × 102 ◦C Coefficient in chosen temperature solution
𝑆𝑐 0.345 Coefficient in chosen salinity solution
𝑎𝑆 −1.44 × 10−4 m−2 Coefficient in chosen salinity solution
𝑏𝑆 −2.81 × 10−1 m−1 Coefficient in chosen salinity solution
𝑐𝑆 −1.03 × 102 Coefficient in chosen salinity solution
𝜇 1 m2 s−1 Viscosity
𝜅 1 m2 s−1 Diffusivity
𝑛𝑥 Variable Number of grid points
𝛥𝑡 4 m/(𝑢0𝑛𝑥) Timestep (first 100 steps)
𝛥𝑡 𝐿/(𝑢0𝑛𝑥) Timestep (after 100 steps)

be a useful tool as the model continues to be developed. In the following
section we demonstrate our ability to simulate more complex ice shelf
cavity geometries in 3D using the ISOMIP+ Ocean0 test case.

.2. 3D simulations of an idealised ice shelf cavity: ISOMIP+ Ocean0

The aim of this section is to demonstrate our ability to simu-
ate ocean flow in a fully three-dimensional ice shelf cavity. The Ice
helf Ocean Model Intercomparison Project+ (ISOMIP+) consists of
set of idealised ice shelf cavity geometries and parameters for a

et of common experiments (Asay-Davis et al., 2016). Here we use
he Ocean0 experiment, which has been used for a number of studies
o introduce and compare different ocean models for ice shelf cavity
pplications (Zhou and Hattermann, 2020; Gwyther et al., 2020; Favier
t al., 2019). This experiment reaches a quasi-steady state in the cavity
ithin a few months of simulation time, so it is a convenient test
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Table 3
Parameters and constants used for the ISOMIP+ Ocean0 test case in Section 3.2.

Parameter Value Description

𝐿 ∼400 km Domain length
𝑊 ∼80 km Domain width
𝐷 720 m Maximum depth
𝑑𝑥, 𝑑𝑦 2 km Default horizontal grid size
𝑛𝑧 36 (30) layers Default (under ice) vertical grid for Firedrake
𝑑𝑧 20 m Default vertical grid size for MITgcm
ℎ𝜎min 10 m Minimum ocean thickness for Firedrake
ℎ𝑧min 40 m Minimum ocean thickness for MITgcm
𝛥𝑡 900 s Timestep
𝜇ℎ 6 m2 s−1 Horizontal viscosity
𝜇𝑣 1 × 10−3 m2 s−1 Vertical viscosity (ISOMIP+ switch)
𝜅ℎ 1 m2 s−1 Horizontal diffusivity
𝜅𝑣 5 × 10−5 m2 s−1 Default vertical diffusivity (ISOMIP+ switch)

Table 4
Parameters and constants used for adjoint sensitivity calculations in the idealised
grounding zone domain from Section 3.3. Note the values used for the expansion and
contraction coefficients for temperature and salinity are changed from Table 1.

Parameter Value Definition

𝐿 10 km Domain length
𝐻 2–100 m Domain height
𝐷 600 m Domain depth
𝑑𝑥 500 m Horizontal grid size
𝑑𝑧 2 m Vertical grid size
𝛥𝑡 300 s Timestep
𝑇𝑖𝑛𝑖𝑡 1 ◦C Initial and restoring temperature
𝑆𝑖𝑛𝑖𝑡 34.4 ◦C Initial and restoring salinity
𝑡𝑟𝑒𝑠𝑡𝑜𝑟𝑒 1 day Restoring period
𝜇ℎ 0.25 m2 s−1 Horizontal viscosity
𝜇𝑣 1 × 10−3 m2 s−1 Vertical viscosity
𝜅ℎ 0.25 m2 s−1 Horizontal diffusivity
𝜅𝑣 1 × 10−3 m2 s−1 Vertical diffusivity
𝛼𝑇 −2 × 10−4 ◦C−1 Temperature expansion coefficient
𝛽𝑆 7 × 10−4 Salinity contraction coefficient

case for carrying out model comparisons and testing model parameter
choices (Asay-Davis et al., 2016). There is not an ‘exact’ solution that all
models are aiming to replicate. For this reason, we have found it helpful
to run simulations of MITgcm alongside our model. MITgcm is a finite
volume, 𝑧-layer (fixed vertical resolution), ocean model widely used
in a number of applications including investigations of ice shelf-ocean
cavities (Losch, 2008; Dansereau et al., 2014; Seroussi et al., 2017;
Nakayama et al., 2017; Kimura et al., 2017; Nakayama et al., 2021a;
Naughten et al., 2021). It also has a nonhydrostatic option, selected for
this comparison, so that both models solve the same underlying set of
equations, albeit with different discretisations.

The Ocean0 domain is approximately 400 km long, 80 km wide and
has a maximum depth of 720 m. The bathymetry is specified by an
analytical profile representing an idealised fjord, and the ice draft is
from an ice flow simulation from the corresponding MISMIP+ exper-
iment (Asay-Davis et al., 2016). The target ISOMIP+ grid resolution
is specified as 2 km in the horizontal and 36 vertical layers, with the
caveat that different vertical meshing strategies will impose constraints
on the resolution (Asay-Davis et al., 2016). The ISOMIP+ protocol does
not specify exactly how the cavity thickness should be defined as the
‘real’ cavity pinches to zero thickness at the grounding line. For MITgcm
simulations we have followed the suggested 40 m minimum thickness
for 𝑧-layer models, so that there are always at least two cells with the
specified 20 m vertical resolution. To create the 3D Firedrake mesh
we used the inbuilt ‘extruded’ mesh capability of Firedrake. First, we
used QGIS (QGIS Development Team, 2022) to generate the horizontal
extent of the mesh. We chose the grounding line by tracing the 10 m
ocean thickness contour (ice draft–bathymetry). We used the qmesh
package (Avdis et al., 2018) to generate the horizontal surface mesh
that forms the base of the columns in the full 3D extruded mesh. qmesh
is effectively a wrapper for Gmsh (Geuzaine and Remacle, 2009) to
11
Fig. 5. Integrated melt rate over deepest region, where ice draft is deeper than
300 m following Asay-Davis et al. (2016). Melt rates are instantaneous values, not
time averaged. MITgcm values are plotted every 10 days with blue symbols dependent
on vertical resolution. Triangles — 20 m, Pluses — 10 m, Crosses — 5 m, Circles
— 2.5 m. Firedrake values are plotted as lines, with colour dependent on horizontal
resolution (and line style dependent on vertical resolution). Orange — 2 km, Red — 4
km (Dashed — 18 vertical levels outside the cavity, Continuous — 36 vertical levels
outside the cavity, Dotted — 72 levels outside the cavity), Purple — 8 km, Black —
2 km in vicinity of grounding zone and western boundary coarsening to 8 km outside
the cavity.

allow meshing of domains generated from GIS data. The surface mesh
is then extended in the vertical direction to create columns of extruded
triangular prism elements (Bercea et al., 2016; McRae et al., 2016). We
use 30 layers under the ice, with a transition to 36 layers in the open
ocean region, with this transition occurring over a single horizontal
grid cell. Squashing the domain under the ice gives a terrain following,
quasi-sigma style mesh within the cavity, with higher vertical resolu-
tion towards the grounding line. We use the tensor product elements
described in Section 2.3.2 for the discretisation of the velocity–pressure
finite element pair, and for tracers the tensor product element described
in 2.3.1.

The temperature and salinity profiles for initialisation and restoring
on the northern boundary are the ‘warm’ profiles given in Table 6
from Asay-Davis et al. (2016). We use a timestep of 900 s, with
Backward Euler time stepping for the momentum equations and a
Diagonally Implicit Runge–Kutta method, DIRK33, for the tracers. Hor-
izontal and vertical kinematic viscosity are specified at 6 m2/s and
1 × 10−3 m2/s respectively, and horizontal and vertical diffusivity are
specified at 1 m2/s and 5 × 10−5 m2/s as per the ISOMIP+ proto-
col (Asay-Davis et al., 2016). We include the ‘switch’ to higher vertical
mixing values when the stratification is unstable, however, the scheme
has negligible effect on calculated melt rates due to the build up of
stable stratification at the ice-ocean boundary during melting.

The melt parameterisation specified by ISOMIP+ does not include
heat flux into the ice and uses constant turbulent exchange coefficients
based on Jenkins et al. (2010). For this comparison both models use
the same turbulent exchange coefficients in the melt parameterisation,
𝛤𝑇 : 0.011 and 𝛤𝑆 = 𝛤𝑇 /35. The vertical averaging scheme for melting
is turned off in MITgcm (Losch, 2008). Drag boundary conditions are
applied on the top and bottom interfaces with a drag coefficient, 𝐶𝐷 =
2.5 × 10−3. Model parameters are summarised in Table 3.

Fig. 5 shows melt rates for the first 100 days of simulation integrated
over the region where the ice draft is deeper than 300 m, follow-
ing Asay-Davis et al. (2016). We have found that melt rates are very
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Fig. 6. Plan view of basal melt at 50 days for MITgcm at target ISOMIP+ resolution for 𝑧-layer models (dx: 2 km, dz: 20 m), along with finer vertical resolution (dz: 10 m,
5 m, 2.5 m) and Firedrake at target ISOMIP+ resolution for terrain following model (dx: 2 km, 36 levels with 30 levels inside the ice shelf cavity). The circle in the top panel
highlights a time varying, grid resolution dependent feature that is referred to in the text.
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sensitive to the grid resolution. MITgcm melt rates are plotted in blue,
with vertical resolution given by the symbol (triangles: 20 m (target
ISOMIP+ resolution), pluses: 10 m, crosses: 5 m, circles: 2.5 m). Clearly,
integrated melt rates calculated by MITgcm are highly dependent on
vertical resolution, as refining the mesh three times leads to nearly
a factor of two difference and there is no sign of convergence. Our
model also shows vertical dependence of melt rate as evidenced by the
red lines in Fig. 5 (dashed: 18 levels, continuous: 36 levels, dotted: 72
levels), however, the spread is lower than with the 𝑧-layer model. These
results are consistent with a recent study by Gwyther et al. (2020) using
a range of models applied to the same ISOMIP+ Ocean0 experiment and
we will refer to their work later in the discussion.

Fig. 6 shows plan view snapshots of melt rate at 50 days for MITgcm
at different vertical resolutions, compared with Firedrake at the target
resolution specified by ISOMIP+ for layered models (36 layers outside
the cavity, 30 layers inside the cavity). As the vertical resolution of
MITgcm increases the spatial melt rate pattern can be seen to approach
that from Firedrake. The streaky, time evolving artefacts present in
MITgcm at coarser vertical resolutions (circled in Fig. 6) disappear as
the grid is refined. Note that while time-mean fields of melt rate act
to smooth out the ‘streaks’ there are still noisy grid scale features after
time averaging (not shown).

Reducing the vertical diffusivity and viscosity linearly at the same
rate as the grid refinement does not bring the ‘streaks’ back (not
shown). This suggests it is not a numerical instability of the type
dependent on grid Reynolds number (the Reynolds number evaluated
at the grid scale, 𝑅𝑒𝛥𝑥 = 𝑈𝛥𝑥∕𝜈 where 𝑈 is a characteristic velocity,
𝛥𝑥 is the grid resolution and 𝜈 is the eddy viscosity) or grid Péclet
number (similarly 𝑃𝑒𝛥𝑥 = 𝑈𝛥𝑥∕𝜅 where 𝜅 is the eddy diffusivity).
The streaks may therefore be a grid discretisation error caused by
the step representation of the boundary that is inherent to 𝑧-layer
models, even with a partial cell representation (Losch, 2008). Both

models show highest melting at the grounding line, which is consistent t

12
with the depth dependent melting point, warm initial and restoring
conditions at the bottom of the water column, and steeper basal slopes
close to the grounding line that enhance buoyancy driven flow. This
melt pattern is also consistent with other published ISOMIP+ Ocean0
results (Asay-Davis et al., 2016; Zhou and Hattermann, 2020; Gwyther
et al., 2020).

Within the cavity, both models show a clearly defined western (de-
fined as positive y) boundary current, due to the effects of rotation. This
can be seen in Fig. 7, which is a cross section of the cavity at 𝑥 = 480
m (close to the grounding line). There is strong northward flow along
he western boundary together with colder (and fresher) conditions,
hich results from melt water accumulating and preferentially flowing

hrough this part of the domain. The middle panel of Fig. 7 shows
ITgcm at the higher vertical resolution. Refining MITgcm leads to

etter qualitative agreement with Firedrake. The return boundary flow
nd the stratification at the top of the domain is qualitatively much
etter resolved by MITgcm at the higher resolution, particularly in the
astern half of the domain. At this location the cavity thickness is close
o 100 m, so with 30 vertical layers, Firedrake’s vertical grid resolution
s similar to MITgcm’s vertical grid resolution of 2.5 m, so it is not
nexpected that the higher resolution MITgcm simulation yields results
uch closer to those from Firedrake.

In reality, melting leads to the injection of cold, and importantly,
uoyant fresh water at the top of the domain. If the ice shelf base has a
ufficient slope the buoyant melt water drives a shear flow and thus en-
ances mixing. However, melting can also lead to a negative feedback
echanism since melt water forms a stratified layer, especially for low

asal slope angles that effectively shuts down vertical mixing (McPhee,
008; Vreugdenhil and Taylor, 2019). This leads to reduced melt rates
ecause the ice base is insulated from the warmer, saltier water below.
t is the competition between the buoyancy driven shear and build up
f stratification (as well as external sources, such as tidal currents)

hat controls mixing. Modelling vertical mixing accurately is therefore
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Fig. 7. Cross section across ice shelf cavity at 𝑥 = 480 km, close to the grounding line. Top panels show a snapshot of temperature at 50 days, bottom panels show a snapshot
f meridional velocity at 50 days. Plots are stretched one hundred times in the vertical. From left to right the panels correspond to MITgcm at the target ISOMIP+ resolution for
-layer models (dx = 2 km, dz = 20 m), MITgcm fine (dx = 2 km, dz = 2.5 m), Firedrake (dx = 2 km, 36 levels with 30 levels under the ice shelf). Note the cavity is about
00 m thick at this location, so the vertical size of the Firedrake layers is similar to MITgcm at the fine resolution shown in the middle panel. The alternating barotropic flow
attern, evident in the MITgcm meridional velocity at the ISOMIP+ target resolution (dx: 2 km, dz: 20 m), is reduced by plotting time averaged fields and is closer in magnitude
o the simulation with finer vertical resolution. Time-mean fields of temperature are qualitatively very similar to snapshots after 50 days.
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f fundamental importance to represent flow in ice shelf cavities and
o calculate the associated melt rate. The total amount of mixing
imulated by a numerical ocean model is a combination of resolved
urbulence mixing, explicitly specified mixing that aims to account for
he unresolved turbulent mixing (here we use a simple eddy diffusivity
losure with constant diffusivity) and a grid size dependent implicit
ontribution, often referred to as numerical mixing. This spurious,
umerical mixing is often dictated by the details of the discretisation
f the advection and diffusion operators (Griffies et al., 2000). Refining
he grid resolution decreases the amount of spurious numerical mixing
dded by the model. In the context of ice shelf cavity modelling,
educed mixing can lead to increased stratification and in turn lower
elt rates if the basal slopes are not too steep. Terrain following
odels, with typically higher resolution at the grounding zone resulting

rom the squashed vertical grids will have lower numerical mixing and
hus resolve more of the stratification effects than a 𝑧-layer model run at

typical coarse vertical resolutions, as seen in Fig. 7. This means terrain
following models in typical configurations tend to calculate lower melt
rates. 𝑧-layer models, like MITgcm, can produce lower melt rates at
higher resolution as shown in Fig. 5. The specified vertical mixing has
to be higher than the spurious mixing value for grid convergence of the
melt rate, otherwise as the grid is refined the total amount of mixing
generated by the model decreases, leading to a reduction in melt rates.

The dependence of melt rate on vertical resolution has been inves-
tigated previously in a separate study also using the Ocean0 experi-
ment (Gwyther et al., 2020). Gwyther et al. (2020) used three ocean
models with different vertical coordinate systems (sigma: ROMS, 𝑧:

OCO, hybrid: MPAS-O) and showed that the two models with con-
tant, 20 m vertical resolution at the boundary specified by ISOMIP+
COCO and MPAS-O) systematically calculate higher melt rates than
he sigma-coordinate based model, which is consistent with the results
resented here. Gwyther et al. (2020), following the ISOMIP+ protocol,
ramed the problem as a matter of tuning the turbulent exchange
oefficients from the melt parameterisation to obtain the same melt
ates between models. The ISOMIP+ protocol suggests a target melt
ate averaging 30 m/a in the grounding zone region (where the ice draft
s below 300 m depth). Gwyther et al. (2020) showed that the sigma
odel ROMS was incapable of reaching this target melt rate purely by
13
djusting the exchange coefficients. Here we take a different approach
nd frame the problem in terms of grid convergence, with the aim of
chieving a melt rate that is unaffected by grid resolution and keeps the
xchange coefficients fixed. Given the current implementation of the
elt parameterisation and turbulence closure (constant eddy diffusivity

nd viscosity) this means we need the temperature, salinity and velocity
ields to remain constant at the boundary as the grid is refined to
chieve a fixed melt rate.

Gwyther et al. (2020) show that sigma-coordinate based models
an produce higher melt rates with elevated vertical diffusivity at
he boundary. Fig. 8 shows integrated melt rates for Firedrake run
t different vertical resolutions and vertical diffusivities. The lines in
ed are the same as from Fig. 5, which is the integrated melt rate
t the target ISOMIP+ vertical diffusivity of 5 × 10−5 m2/s. With this

diffusivity the melt rate still depends on grid resolution as discussed.
The blue and orange lines in Fig. 8 show the melt rate with diffusivities
of 5 × 10−6 m2/s and 5 × 10−7 m2/s respectively. Despite the order of
magnitude change, there is no significant difference in melt rate. This
suggests that numerical mixing dominates when the specified mixing
is specified at these low levels. As a result, the melt rate would be
expected to be highly dependent on grid resolution and we expect
refining the vertical resolution further would reduce melt rates. In
contrast, by increasing the vertical diffusivity by ten times the amount
of the ISOMIP+ specification to 5 × 10−4 m2/s, shown by the black
lines in 8, the integrated melt rate calculated with 72 layers is very
close to the melt rate calculated with 36 layers (the specified number
of layers for the ISOMIP+ profile). Since the melt rate appears to
be converging towards a consistent value as the grid is refined, the
specified diffusivity must be dominating over the spurious, resolution
dependent, numerical mixing. This comparison suggests that a rough
estimate for the numerical mixing for a Firedrake simulation with
the ISOMIP+ target of 36 layers is likely between 5 × 10−6 m2/s and
5 × 10−5 m2/s. Since the upper bound has the same value as specified
in the ISOMIP+ protocol, this serves to highlight the importance of
running ice-ocean simulations at multiple resolutions to determine how
sensitive the melt rate is to resolution for a particular model and setup
configuration.

The implicit assumption made here is that the diffusivity and viscos-

ity do not vary close to the boundary. This is not necessarily physically
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Fig. 8. Integrated melt rate with Firedrake run at different vertical resolutions and
vertical diffusivity values. The melt rate is integrated over the deepest region, where
ice draft is deeper than 300 m following Asay-Davis et al. (2016). As in Fig. 5 the
line style indicates vertical resolution: Dashed — 18 vertical levels outside the cavity,
Continuous — 36 vertical levels outside the cavity (target ISOMIP+ resolution), Dotted
— 72 levels outside the cavity. The colour of the lines indicates the vertical diffusivity:
Black — Kv = 5 × 10−4 m2/s, Red — Kv = 5 × 10−5 m2/s (target ISOMIP+ diffusivity),
Blue — Kv = 5 × 10−6 m2/s, Orange — Kv = 5 × 10−7 m2/s.

justifiable, as Monin–Obukhov theory implies that with strong melting
and insufficient shear turbulence to break down the stratification, the
mixing rate (and hence the values of diffusivity and viscosity) will
be much lower, leading to overestimated melt rates (Vreugdenhil and
Taylor, 2019; McPhee, 2008). We have assumed fixed diffusivity and
viscosity primarily for reasons of simplicity: it is the ISOMIP+ specifica-
tion and with a new model we wanted to have confidence that we could
understand the general behaviour before implementing more compli-
cated turbulence closure schemes. Even if the model is responsible
for explicitly calculating diffusivity and viscosity, the pertinent length
scales close to the boundary are very small, sub metre scale (McPhee,
2008), so it may be impractical to account for these effects in large
scale ocean simulations. Potentially the melt parameterisation could be
modified to incorporate the enhanced stratification effects that arise
during melting (similar to the transition of scalar properties across
the viscous boundary later, which is accounted for; Holland and Jenk-
ins, 1999), but this leaves the question of where to sample 𝑇𝑤 and
𝑆𝑤 open. Unless the sampling distance is chosen for physical reasons
it seems like it will inherently depend on the grid resolution. It is
not obvious how applicable an ice shelf ocean cavity simulation will
be for different forcing scenarios or geometrical configurations if the
exchange coefficients have been tuned specifically to compensate biases
arising from a somewhat arbitrary choice of grid resolution.

Overall, our integrated melt rate of 7.6 m/a for the target ISOMIP+
resolution of 2 km horizontally and 36 vertical layers (orange line
Fig. 5) is consistent with, and within the spread of, other published
results when using the same turbulent exchange coefficients in the
melt parameterisation (𝛤𝑇 : 0.011 and 𝛤𝑆 = 𝛤𝑇 /35). Published results
for terrain following models with 36 layers include FVCOM: 10 m/a
(Figure 9 from Zhou and Hattermann, 2020) and ROMS: 4 m/a (Figure
4 from Gwyther et al., 2020). Similarly, examples of 𝑧-level models at
high vertical resolution (dz = 2 m) include COCO: 5 m/a and MPAS-
O: 9 m/a (Figure 5 from Gwyther et al., 2020), as well as POP2x: 7
m/a (Figure 9 from Asay-Davis et al., 2016). Also note the MITgcm
14
integrated melt found here for this comparison is consistent with COCO
and MPAS-O, which both gave around 15 m/a with 20 m vertical
resolution (Figure 5 from Gwyther et al., 2020).

We also investigated melt rate sensitivity to horizontal resolution
within the cavity. We ran Firedrake at two coarser horizontal reso-
lutions, additionally shown in Fig. 5 (purple: 8 km, red: 4 km), to
compare with the target ISOMIP+ resolution (orange: 2 km). Although
the spatial patterns of melt rate are still broadly equivalent, with
highest melting at the grounding line seen in all simulations (not
shown), the integrated melt rates have not converged to a consistent
result. To investigate the potential of a horizontally unstructured mesh
to focus resolution we ran a preliminary simulation with the target
ISOMIP+ 2 km resolution only along the western boundary and the
grounding zone region, relaxing to 8 km outside the cavity. These
areas were chosen to best capture the observed spatial melt pattern,
with highest melting at the grounding line, as well as the fast-flowing
western boundary current present due to Coriolis. The integrated melt
rate for this non-uniform mesh is shown by the black line in Fig. 5.
A positive result is that the melt rate predicted with the non-uniform
mesh is closer to the value from the uniform 2 km mesh than the 8
km, and indeed the 4 km, uniform mesh. However, considering the
Degrees of Freedom (DOFs) associated with each mesh this may not
be surprising. The number of combined velocity, pressure, temperature
and salinity DOFs is 964,059 for the 8 km mesh, 3,448,681 for the 4 km
mesh and 13,693,896 for the 2 km mesh. The non-uniform mesh has
5,011,517 DOFs, which is actually 1.45 times more DOFs than the 4 km
mesh. In more complicated cavity geometries, the ability to vary the
mesh resolution flexibly, especially in the presence of large channels
and crevasses, may prove crucial (Zhou and Hattermann, 2020).

As emphasised in Section 1 one of the main motivations for us-
ing the Firedrake framework to simulate ice-ocean interactions is the
availability of an automatically generated adjoint model. In the final
section we show our first steps at using this capability to investigate
sensitivities in an idealised ice shelf cavity.

3.3. Preliminary adjoint sensitivity calculations in an ice shelf cavity

We present preliminary results of sensitivity information obtained
with the adjoint to our model. A simplified domain has been chosen
to make interpretation of the adjoint sensitivity patterns easier. The
domain is a vertical 2D slice within 10 km of an idealised grounding
zone domain, with a 2 m wall at the grounding line and a 100 m wall at
the open ocean. The domain has a uniform seabed depth of 600 m. The
temperature and salinity are initialised with constant temperature and
salinity of 1 ◦C and 34.4, respectively. The temperature and salinity
fields are relaxed to these values in a sponge region, which linearly
ramps up over the final four grid cells to the right hand side of the
domain with a restoring period of one day at the boundary. The grid
is made up of triangles arranged in columns, similar to a 𝑧-layer
discretisation. For an example the reader is referred to Kimura et al.
(2013). The grid resolution is 500 m in the horizontal and 2 m in
the vertical. Horizontal viscosity is 0.25 m2/s and vertical viscosity
is 1 × 10−3 m2/s, matching the grid aspect ratio. Diffusivity for both
tracers is set equal to viscosity. We use a P1DG-P2 discretisation for
velocity and pressure, and P1DG is used for the tracers. The timestep
is 300 s. Table 4 summarises parameters and constants used for the
adjoint sensitivity experiment. The forward simulation is run for 50
days to reach a spun-up state. Fig. 9 shows the spun-up state at 50 days.
The flow is characteristic of the ice pump mechanism with a clockwise
overturning flow, concentrated near the ice ocean boundary, driven by
buoyant melt water. At the grounding line the water column is well
mixed in the vertical, though the temperature field becomes progres-
sively more stratified away from the grounding line. This type of flow
is similar to that described in Holland (2008) where background tidal
mixing dominates at the grounding zone if the overturning circulation
weakens. In this instance it is likely caused by the coarse grid resolution
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Fig. 9. Temperature and velocity fields at 50 days after the forward model has spun up. After 30 days of simulation time there is negligible change in the fields or melt rate (not
shown).
and constant eddy diffusivity values, because at the 2 m high grounding
zone wall on the left hand side of the domain there is only one cell to
resolve the overturning circulation. It is likely that refining the grid
resolution (effectively reducing implicit spurious mixing as described
in Section 3.2) or using a turbulence model would change the rate
of mixing in this region and the water column would become more
(vertically) stratified.

The model is run for a further 20 days with the adjoint model. An
objective functional is chosen to be the total basal melt beneath the
ice shelf at the final time step. Although using the average basal melt
beneath the ice shelf may have been a more conventional quantity,
this can be obtained by dividing the results by the length of the
ice shelf. We calculate sensitivities of this functional to perturbations
of the spatially varying temperature and salinity fields at each time
level, as well as to spatially varying perturbations of the viscosity and
diffusivity fields which are kept fixed in time. These fields are known
as ‘controls’ (Errico, 1997).

The accuracy of the adjoint sensitivity can be verified by a Taylor re-
mainder convergence test (Farrell et al., 2013). If the gradient is correct
then with 𝐽 (𝑚) as the functional, 𝑚 as the control, and 𝛿𝑚 as a small per-
urbation in an arbitrary direction, |𝐽 (𝑚 + 𝛿𝑚) − 𝐽 (𝑚) − ∇𝐽 ⋅ 𝛿𝑚| should

converge to zero with second-order accuracy as the magnitude of the
perturbation is reduced, i.e. halving the size of the perturbation should
cause the result to decrease by a factor of four. We have carried out
such Taylor remainder convergence tests for each control field, with the
melt functional evaluated after ten timesteps (3000 s) from the 50 day
checkpoint. The errors do indeed display convergence at second-order
and verify that the gradient information is being calculated accurately
by the adjoint model.

Fig. 10 shows adjoint sensitivity of the final total melt flux (note
defined here as a volume flux, not a mass flux) to temperature and
salinity at three times in the simulation. The adjoint model is ef-
fectively a transpose of a linearised version of the full, non-linear
forward model. This linear forward model is referred to as the Tangent
Linear Model (TLM) and it relates perturbations of the control fields
to changes in the objective function. The adjoint model reverses the
flow of information (because it is the transpose of the TLM), instead
calculating the sensitivity of the objective function to the controls. For
time dependent models the adjoint sensitivities thus ‘flow backwards’
in time, from the time when the objective function is evaluated towards
the earlier times, provided that the controls had an impact on the
objective function (Errico, 1997). The top panel of Fig. 10 shows six
hours before the final time, where the sensitivity fields are concentrated
at the ice-ocean boundary, where the objective function is evaluated.
Since we have evaluated the objective function at the final time, this
is equivalent to adding an ‘initial’ condition to the adjoint model. As
such even though the forward model is steady, the adjoint sensitivities
evolve backwards with time in the opposite sense to the forward model.

At two days before the final time (middle panel) the sensitivity patterns
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are concentrated closer to the grounding line and at the bottom of the
cavity. Finally, five days before the final time (bottom panel) most of
the sensitivity of the objective function to the temperature and salinity
fields has been lost. The counterclockwise motion of the sensitivity
fields is effectively the ice-pump mechanism, but viewed in reverse. The
time for the sensitivity fields to be lost is consistent with the forward
velocity. Flow speeds are on the order of 0.05 m/s, and an advection
path length of 20 km (twice the domain length) gives a circulation time
of 4.6 days.

An interesting feature of Fig. 10 is that the signs of adjoint tem-
perature and salinity are opposite. In the same region a small positive
perturbation to temperature is required to increase the final total melt
flux, whereas an increase in salinity would decrease the final total
melt flux. Initially this seems counter intuitive, since increasing salinity
decreases the freezing point, which should lead to more melting and
thus have the same effect as increasing temperature. This dependency
has been found before in an adjoint simulation of Pine Island Glacier
ice shelf cavity (Heimbach and Losch, 2012). Heimbach and Losch
(2012) suggest that buoyancy effects may account for the sensitivity
difference, since increasing temperature and decreasing salinity both
increase buoyancy. This in turn should strengthen the overturning
ice pump and lead to higher melt rates. Scaling the sensitivity fields
by the expansion coefficients in the linear equation of state (𝛼𝑇 =
−2 × 10−4 ◦C−1, 𝛽𝑆 = 7 × 10−4) the two sensitivity fields are almost
identical, in sign and magnitude strongly suggesting that buoyancy
is controlling the sensitivity pattern. Even though this is a highly
idealised experiment, the adjoint model shows potential to investigate
the importance of subglacial hydrology and the formation of buoyant
plumes at the grounding line and hence the overall effect on melting,
as a complimentary tool to the forward model.

Fig. 11 shows patterns of adjoint sensitivity for vertical viscosity,
temperature diffusivity and salinity diffusivity. Sensitivity with respect
to the vertical components were an order of magnitude stronger than
the horizontal components, which is not surprising considering how
sensitive the melt rate and hence the flow is to vertical stratification as
explored in Section 3.2. Sensitivity for all three fields is concentrated
towards the grounding line and the ice-ocean interface. This is intuitive
because the overturning flow brings water through the grounding zone
region. Results from Yeager (2018) using a 𝑘 − 𝜖 Reynolds Aver-
aged Navier–Stokes (RANS) model to investigate ocean conditions near
grounding lines, suggest that changes in diffusivity of several orders of
magnitude may occur within 1 km of the grounding line. Even though
these large changes in diffusivity would not linearly relate to changes in
melt rate, the fact that total melt rates are sensitive to grounding line
eddy diffusivity values, which probably vary significantly, highlights
the importance of modelling these values accurately.
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Fig. 10. Adjoint sensitivity fields of final total melt flux with respect to temperature (left) and salinity (right) at three time intervals: 6 h before the final time, two days before
he final time and five days before the final time. Note the opposite sign of adjoint temperature and salinity. The sensitivities are calculated in the L2 norm, < 𝜕𝐽∕𝜕𝑚, 𝛿𝑚 >= 𝛿𝐽 ,
here < ⋅, ⋅ > implies taking the inner product and integrating over the domain. By using this integral definition of sensitivity, the sensitivities are not dependent on the mesh

esolution (an important consideration if the grid size varies within the mesh). The units for adjoint temperature in this case become 1/(K s) to ensure that the units of the
bjective function, 𝐽 are correct (volume flux: m2/s) given a temperature perturbation field, 𝛿𝑚, with units of K.
Fig. 11. Sensitivity of total basal melt at the final time step to vertical viscosity and eddy diffusivity for temperature and salinity calculated in the L2 norm (see the caption of
Fig. 10 for an explication of units). Note the change in colour scale for the adjoint vertical viscosity compared with adjoint temperature and salinity vertical diffusivity.
4. Conclusion and future work

We have presented a new model for ocean flow in complex ice
shelf cavity environments. By carrying out an MMS test we confirmed
that the numerical discretisation of velocity, pressure and tracer fields,
and consequently the melt rate, are second order accurate, as expected
from our model discretisation choice. We believe that it is important
to carry out rigorous code verification checks, for which the MMS
technique is ideally suited, because comparing solely with other models
may mask model errors. This is especially true considering the strong
dependence of the melt parameterisation on grid resolution, as seen in
the simulations of the ISOMIP+ test case.

The model is capable of running robustly in 3D domains of a full
ice shelf cavity, demonstrated by simulations of the ISOMIP+ test
16
case. Our simulation results compare favourably when run alongside
MITgcm, and the melt rates are consistent with the spread found in
the literature (Asay-Davis et al., 2016; Zhou and Hattermann, 2020;
Gwyther et al., 2020). We find melt rates are highly sensitive to grid
resolution as has been observed before. Ultimately the balance between
specified mixing and spurious numerical mixing dictates how sensitive
the melt rate is to changes in the grid resolution (and discretisation
choice). Our study emphasises the importance of running ice-ocean
cavity simulations at multiple resolutions to gauge this sensitivity as
it will always be problem specific.

As discussed in Section 3.2, given the assumption of fixed diffusivity
and viscosity close to the boundary, finding a melt rate that is insen-
sitive to grid resolution using the existing melt rate parameterisation
may not be directly applicable to real ice shelf cavity environments.
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A detailed investigation into the melt parameterisation is beyond the
scope of this paper, and developing a new, more robust melt parame-
terisation for large scale applications is not our immediate aim. Studies
of the ice-ocean boundary layer are underway that use a hierarchy of
models, from Direct Numerical Simulations (Middleton et al., 2021;
Couston et al., 2021), to Large Eddy Simulations (Vreugdenhil and
Taylor, 2019; Begeman et al., 2022; Vreugdenhil et al., 2022), as well
as theoretical models (Jenkins, 2016, 2021). It is likely that these
combined approaches will be needed to develop a parameterisation
that is consistent with the physics explicitly resolved by the numerical
model (and the model’s own mixing schemes) and is applicable to the
unique environment of the ice shelf-ocean boundary layer where the
effects of stratification and basal slope are important. Potentially a
model like the one implemented here using Firedrake with flexible grids
in the horizontal and vertical will be a useful tool to bridge the gap
between high resolution models of boundary flow and the necessarily
coarser regional and global scale ocean models.

Ultimately model validation will remain a challenge until more di-
rect observations of sub-ice shelf ocean conditions are made in tandem
with measurements of melt rate. Adjoint models are powerful tools to
assess model uncertainties and incorporate observations into numerical
ocean models (Errico, 1997; Heimbach and Losch, 2012; Goldberg
et al., 2020; Nakayama et al., 2021b). We showed preliminary ad-
joint sensitivity results for an idealised grounding zone domain, which
clearly showed a ‘reverse’ ice-pump mechanism. The link between
buoyancy and melt rate also suggests the importance of subglacial
outflow into the cavity. The sensitivity of melt rate to vertical mixing
(especially at the grounding zone) was also identified by the adjoint
model. This again suggests the importance of accurately modelling, or
accounting for, mixing within ice shelf cavities. We plan to implement
additional turbulence closure schemes such as RANS and LES to inves-
tigate these effects, with the caveat that the turbulence closure problem
is inherently uncertain and thus challenging to model. In future work,
we aim to apply the model to more complicated geometries, in partic-
ular ocean flow in realistic grounding zone regions and the impact that
basal crevasses have on the ocean flow. We anticipate that the use of
fully unstructured meshes will be necessary to resolve these features
accurately. We also intend to extend our adjoint capability to solve
optimisation problems, to help constrain unknown parameters, such as
turbulent mixing coefficients under the ice shelf, based on observations.
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