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A B S T R A C T

A macroscopic model for unsteady incompressible isothermal non-Newtonian flow in homogeneous porous
media, taking into account inertial and slip effects at solid–fluid interfaces, is derived in this work. The
development is carried out considering a general Newton’s law of viscosity for the fluid phase. Using
the classical volume averaging method, the seepage velocity is shown to be solenoidal. The macroscopic
momentum equation is derived in the Laplace domain, employing a simplified version of the volume averaging
method, which calls upon Green’s formulas and adjoint problems for Green’s function pairs for the velocity and
pressure. In the Laplace domain, the macroscopic momentum equation takes the form of Darcy’s law corrected
by a term that accounts for the initial flow condition. Once transformed back into the time domain, this
equation provides the macroscopic velocity that depends on two terms. The first one is under the form of a time
convolution between the macroscopic pressure gradient and the time derivative of an apparent permeability
tensor. The second one is a memory term that accounts for the effect of the initial flow conditions. These two
effective quantities are determined from the solution of a single closure problem that naturally results from
the derivations. The model is consistent with the unsteady model in the Newtonian case and simplifies to the
steady versions of some non-Newtonian macroscopic flow models. The macroscopic model is validated with
pore-scale simulations performed in 2D model porous structures, considering a Carreau fluid. The impact of
inertia and non-Newtonian effects on the dynamics of the macroscopic coefficients is highlighted.

ttps://doi.org/10.1016/j.jnnfm.2022.104840
1. Introduction

Non-Newtonian fluid flow in porous media is of interest in many ap-
plications such as biological systems [1], food engineering [2], biomed-
ical research [3], enhanced oil recovery (EOR) [4], as well as in the
pharmaceutical, textile, polymer and composites industries [5], to list
a few. Interest in this topic was strengthened after the formalization
of viscous instability for two-phase flow in porous media [6], which
contributed to intensify the use of aqueous species to increase water
viscosity in EOR processes [7]. This made the study of non-Newtonian
flow in porous media an important research topic in engineering during
the second half of the 60’s, as testified by the abundant literature
on the subject during this period. Unfortunately, theoretical tools to
derive macroscopic flow models in porous media were still at their
infant stage at this time. First attempts to formally derive Darcy’s
law in the Newtonian case were published in the late 60’s [8,9], but
were completed years later [10–12]. This probably explains why one-
phase macroscopic models for non-Newtonian flow in porous media

widely remained empirical (see reviews in [13–15]) until the late 90’s.
The common practice in engineering applications has been to extend
Darcy’s law with an effective viscosity to that flow situation.

Nowadays, the study of porous media systems can be carried out
by performing pore-scale simulations in detailed reconstructions of the
porous matrix topology [16] or by developing upscaled models that
capture the essential information from the microscale and carry it to
the macroscale. In this regard, there are many upscaling techniques
available as reviewed in [17]. However, the derivation of upscaled
models for this type of flow is a challenging task due to the non-
linear character that the momentum balance equation exhibits at the
microscale, even under creeping flow conditions. Several upscaling
approaches have been used to that purpose. For example, the macro-
scopic flux to force relationship has been inferred from simplified
representations of the porous structure under the form of bundles
of capillaries [18,19] and pore-network models [20,21]. More formal
approaches have also been employed, including the thermodynamically

https://doi.org/10.1016/j.jnnfm.2022.104840
https://doi.org/10.1016/j.jnnfm.2022.104840
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2022.104840&domain=pdf


Journal of Non-Newtonian Fluid Mechanics 306 (2022) 104840

 
 
 
 
 

 

 

 

 
 
 
 
 

 
 
 

 

 
 

 

 

 
 
 
 

 
 

 
 
 

 

 
 
 

 

w
p

N
d
i
b
s
i
a
T
a
m
d
m
N

p
c
e
t
d
i
c

2

𝛽

constrained averaging theory (TCAT) [22], the classical [23–37] and 
adjoint [38] homogenization techniques and the volume averaging 
method [39–42]. In the following paragraphs a brief literature review, 
mainly focused on applications of the homogenization and volume
averaging methods, is presented. This is motivated by the fact that these
upscaling approaches are those more closely related to the methodology
used in this work, whereas an exhaustive literature review on the
subject of non-Newtonian flow in porous media is beyond the scope
of this paper.

The homogenization technique has been widely used to study non-
Newtonian flow in porous media and a comprehensive overview on
the subject is available from Mikelić [43]. The first attempts dealt 
with Bingham [23,24] and power-law and Carreau fluids under laminar 
flow conditions [25]. In the latter reference, Bourgeat and Mikelić
reported that the auxiliary flow problem resulting from the power-
series expansion is nonlinear but that it has, nevertheless, a unique
solution that implicitly depends on the microstructure, the fluid proper-
ties and the macroscopic forcing. The micro- and macroscale coupling
led Gipouloux and Zine [44] to use iterative algorithms to numerically
solve the microscale and macroscale models in both isotropic and
anisotropic geometries in the creeping regime. For the particular case
of power-law fluids, Auriault et al. [27] concluded that the upscaled
model can be expressed as an explicit nonlinear function of the macro-
scopic pressure gradient and an apparent permeability tensor that
solely depends on the fluid properties only for transversely isotropic
and orthotropic systems. These conclusions were later verified by Idris
et al. [29] in other geometries.

The strong coupling issue between the pore-scale and the
macroscale was addressed by Bourgeat et al. [28]. For a power-law 
fluid in particular, they showed, by means of numerical experiments, 
that the heuristic model commonly found in engineering is inappro-
priate , in general. For this reason, Fratrović and Marušić-Paloka [33]
suggested to use the Darcy-like equation for a power-law model with
the apparent permeability being the average of the solution of a quasi-
Newtonian auxiliary problem. The same approach was used in other 
works to study non-Newtonian and quasi-steady flow through thin [34,
35] and fractured [36,37] porous media. Götz and Parhusip [30] 
analyzed power-law and Carreau models under steady and creeping
flow conditions. They were able to derive a closed model in the 
former case, whereas, in the latter, their procedure was restricted to
flows that weakly depart from a Newtonian behavior. In that case,
their closure procedure resulted from a second power series expansion
with respect to the relaxation time parameter, yielding linear auxiliary
closure problems. After performing comparisons with pore-scale simu-
lations, they reported maximum errors of 5% for isotropic and 10% in
anisotropic geometries. More recently, formal nonlinear solutions have
been proposed for the flow problem corresponding to the zeroth-order 
power-series expansion [45,46], enabling the numerical solution of the
problem in a periodic unit cell. Predictions of the pressure, velocity
and viscosity were given through numerical simulations, however no
validation was reported.

Using the adjoint homogenization approach [47], Airiau and Bot-
taro [38] considered the steady creeping flow of a shear-thinning
incompressible fluid in the bulk of a porous medium. They proposed to 
first solve for the zeroth-order velocity in the power-series expansion
and then substitute this field into the viscosity term of the auxiliary
problem in order to avoid an iterative scheme. This also allowed them
to readily derive a Darcy-type model, with the apparent permeability 
being an intrinsic function of the microstructure, the macroscopic forc-
ing and the fluid properties. The philosophy of this work is continued 
here, albeit using a different upscaling approach and considering a
more complicated flow problem as detailed in the next sections.

Regarding applications of the volume averaging method, fewer
orks have been reported in the literature. Liu and Masliyah [39]
ostulated a macroscale model for unsteady and inertial flow that
 m
resembles the Navier–Stokes equations in which a Darcy term, a tortu-
osity factor and a macroscopic viscosity are involved. Following more
closely the classical volume averaging method [48], Tsakiroglou [40]
derived a non-local and nonlinear closure problem and postulated that
it should have a linear solution in terms of the average velocity. A
similar approach was later reported by Wang et al. [41] for a power-law
viscosity model in the creeping flow regime. Predictive capabilities of
the proposed macroscopic model compared to numerical simulations
and laboratory experiments were only qualitative. In essence, this
supports the conclusion made by Zami-Pierre et al. [42] (see Appendix
B therein), that the classical volume averaging approach cannot be used
to derive closed models for non-Newtonian flow in porous media, even
in the absence of inertia.

In most of the above mentioned derivations of upscaled models for
non-Newtonian flow in porous media, steady-state conditions were as-
sumed. Unsteadiness has been treated on an empirical basis, following
the heuristic approach employed for Newtonian flow. It consists in
modifying the empirical Darcy’s law extended to the non-Newtonian
case by the introduction of an accumulation term on the seepage
velocity, as a replicate of the time acceleration term in the Navier–
Stokes equation at the underlying pore-scale (see for instance [13,
49,50]). However, such heuristic approach has been shown to be, in
general, inadequate to model the seepage velocity dynamics in porous
media [51,52]. A formal derivation in that case is therefore still lacking.

The purpose of this work is to reconsider the upscaling of non-
ewtonian one-phase flow in homogeneous porous media in order to
erive the macroscopic mass and momentum balance equations valid
n the bulk of the medium (i.e., far enough from the macroscopic
oundaries) for unsteady, incompressible, laminar flow conditions, con-
idering slip at the solid–fluid interface. This is done by using a mod-
fied version of the classical volume averaging method that is briefer
s it benefits from elements of the adjoint homogenization method.
his simplified volume averaging approach relies on the formulation
nd formal solution of the flow problem in a unit cell of the porous
edium, the system being conceived as a periodic one, as routinely
one with the homogenization approach (see, for instance [53]). This
ethodology has been successfully applied recently to study unsteady
ewtonian flow in porous media under laminar and no-slip [51] as well

as slip conditions [52]. The non-linearity introduced by the rheology
represents a difficulty which, together with the slip effect, make it
impossible to infer the corresponding macroscopic flow model from the
derivation reported in these references, hence motivating the specific
analysis proposed here.

The work is organized as follows. In Section 2, the governing
equations at the pore scale are provided, together with the associated
supporting assumptions. In Section 3, the essential elements to carry
out the upscaling process using the volume averaging method and some
elements of the adjoint technique are summarized. More specifically,
the main definitions, theorems and expressions of Green’s formulas
are provided. These tools are employed in Section 4 to derive the
corresponding macroscopic model for mass and momentum balance.
The resulting macroscale model and its main features are summarized
in Section 5. Section 6 is dedicated to the illustration of the model
erformance with some results obtained from numerical simulations
arried out in a 2D model porous structure. First, predictions of the
ffective medium quantities involved in the macroscale momentum
ransport equation are reported and discussed. In a second step, the
ynamics of the seepage velocity predicted by the macroscopic model
s validated with pore-scale simulations. Finally, the corresponding
onclusions are presented in Section 7.

. Pore-scale model

Consider the single phase flow of a non-Newtonian fluid (i.e., the
-phase) through the void space of a rigid and homogeneous porous

edium (in the following the solid phase is denoted as the 𝜎-phase).
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Assuming incompressible flow, the total mass and momentum balance
equations at the pore-scale are given by

∇ ⋅ 𝐯 = 0, in the 𝛽-phase, (1a)
𝜕𝐯
𝜕𝑡

+ 𝜌𝐯 ⋅ ∇𝐯 = −∇𝑝 + 𝜌𝐠

+ ∇ ⋅
[

𝜇(𝛤 )
(

∇𝐯 + ∇𝐯𝑇
)]

, in the 𝛽-phase. (1b)

In the above equations, v and p represent the fluid velocity and pres-
sure, respectively, whereas 𝜌 and g are the fluid density and the gravity
acceleration vector. Finally, a generalized Newton’s law of viscosity is
used for the viscous stress tensor, so that the apparent viscosity, 𝜇(𝛤 ),
depends on the strain-rate modulus (see, for example Chapter 2 in [54])

𝛤 =
√

2 (𝗗 ∶ 𝗗). (2)

ere, D is the strain-rate (or rate of deformation) tensor, defined as

= 1
2
(

∇𝐯 + ∇𝐯𝑇
)

. (3)

his formalism allows studying a variety of non-Newtonian flows such
s the power-law model or the Carreau model and, in order to keep
enerality in modeling, it is convenient to not substitute any partic-
lar model for 𝜇 at the moment. Moreover, generality is also kept
y considering that slip effects may be significant at the solid–fluid
nterface. This condition is relevant when, for instance, a significant
oughness is present at the solid boundary so that an effective slip
oundary condition can be derived and applied at an equivalent smooth
urface. This type of approach was employed for Newtonian flow in the
reeping [55] and, more generally, in the laminar regime [56] leading,
t the first order of the roughness to macroscopic characteristic length-
cale ratio, to a generalized Navier-type (or Maxwell) slip boundary
ondition (see [57,58]). Carrying out a formal development of such an
ffective boundary condition in the case of a non-Newtonian flow is out
f the scope of the present work. However, for non-Newtonian flow, a
imilar first-order slip condition shall be adopted as justified in [59,60],
amely

= −𝑆𝗣 ⋅
(

𝐧 ⋅
(

∇𝐯 + ∇𝐯𝑇
))

, at 𝒜𝛽𝜎 . (4)

ere, n is the unit normal vector directed from the fluid phase towards
he solid phase and 𝗣 denotes the projection tensor onto the tangential
lane at the solid–fluid interface 𝒜𝛽𝜎 , given by

= I − 𝐧𝐧, (5)

being the identity tensor. As in the rest of the article, two juxtaposed
ectors or tensors denote the outer product between these two quanti-
ies, which means, here, that 𝐧𝐧 ≡ 𝐧 ⊗ 𝐧 is the dyadic formed with 𝐧
nd 𝐧. In addition, 𝑆 is the slip length, i.e., the fictitious penetration
istance in the solid phase beneath 𝒜𝛽𝜎 where the no-slip condition
ould be applicable (see, for example [61]). As far as generalized
ewtonian fluid flow is concerned, this parameter is expected to be
function, yet to be made explicit, of the local value of 𝗗, and this

s compliant with the fact that the viscosity solely depends on this
arameter [59]. Moreover, 𝑆 should also depend on the characteristic
eight of the asperities, 𝛿𝑠, i.e., 𝑆 = 𝑆(𝗗, 𝛿𝑠). The above formal
lip velocity expression contains all the expected dependence on the
hysical features of the flow. As will be clear in the developments that
ollow, it is unnecessary to explicitly specify this dependence for the
est of the derivations. Finally, notice that equation Eq. (4) implies that
o mass transport takes place between the solid and fluid phases since
he normal projection of the velocity at the interface is zero.

The pore-scale problem statement is completed with boundary con-
itions at the macroscopic boundaries and by the initial condition.
ince the analysis is focused on the porous medium bulk, the former
re not necessary whereas the latter is assumed to be known and can
e written as follows
= 𝐯0, when 𝑡 = 0. (6)
Fig. 1. a) Sketch of a porous medium saturated by a single fluid phase and of an
averaging domain, including the main length scales. b) Position vectors locating the
centroid of the averaging domain (x) and points in the fluid phase relative to a fixed
coordinate system (r) and relative to x (y).

3. Essential elements for upscaling

For the developments that follow, it is convenient to list the main
elements useful for the derivation of the upscaled mass and momentum
balance equations. To this end, consider an averaging domain 𝒱 (of
measure 𝑉 ), such as the one sketched in Fig. 1a), that contains portions
of the solid and fluid phases. The averaging domain is assumed to be
representative, in the sense that it contains all the essential structural
information of the pore space that allows defining average quantities
of interest to describe flow at the macroscopic scale. In particular,
this implies that its characteristic size, 𝑟0, is much larger than the
maximum characteristic length associated to transport at the pore-scale
(i.e., 𝓁𝜇 = max(𝓁𝛽 ,𝓁𝜎 ); see Fig. 1a) and, at the same time, it is much
smaller than the minimum length scale, 𝐿, associated to the macroscale.
This is expressed as,

𝓁𝜇 ≪ 𝑟0 ≪ 𝐿. (7)

Macroscopic quantities over 𝒱 can be expressed in terms of the superfi-
cial averaging operator. For a piece-wise continuous quantity, 𝜓 , defined
everywhere in the fluid phase, it is given by [48]

⟨𝜓⟩ = 1
𝑉 ∫𝒱𝛽

𝜓 𝑑𝑉 , (8a)

𝒱𝛽 , of measure 𝑉𝛽 , being the domain occupied by the 𝛽-phase within
𝒱 . This averaging operator is the preferred one for the macroscale fluid
velocity (also known as the Darcy or seepage velocity). However, for
the pressure it is more convenient to use the intrinsic averaging operator,
defined as follows

⟨𝜓⟩𝛽 = 1 𝜓 𝑑𝑉 . (8b)

𝑉𝛽 ∫𝒱𝛽



Journal of Non-Newtonian Fluid Mechanics 306 (2022) 104840

⟨

t
p

𝜓

S
c
c

⟨

p
a
e
u

i
p

v
e
m
S
d
i

p
T
i
p
v
N
n
r
I
o
r
i
t
t
r

∇

𝜌

o
u

The two averaging operators are related by

𝜓⟩ = 𝜀⟨𝜓⟩𝛽 , (8c)

where 𝜀 = 𝑉𝛽∕𝑉 is the volume fraction of the fluid phase in the
averaging domain, corresponding, in the present case, to the porosity.
Moreover, since the porous medium geometry is assumed to be rigid
and spatially homogeneous, it follows that 𝜀 can be treated as a constant
in the developments that follow.

At this point, it is pertinent to direct the attention to the position
vectors depicted in Fig. 1b), which are used to locate the centroid of
the averaging domain, x, and points in the fluid phase relative to a
fixed system of coordinates, r, and to x, namely, y. Since 𝐫 = 𝐱 + 𝐲, it
follows that the integrands in the averaging operators are evaluated at
r, while the integration step is performed over y so that the resulting
average quantities are evaluated at x. The explicit spatial dependence
of pore-scale and average quantities is omitted in the rest of the text
for the sake of simplicity in presentation.

Another element of the volume averaging method is the spatial
averaging theorem (see, for instance, [62]), which allows interchanging
spatial differentiation and integration. For the divergence operator of
a continuous differentiable vectorial or tensorial function, 𝜓 , it can be
written as

⟨∇ ⋅ 𝜓⟩ = ∇ ⋅ ⟨𝜓⟩ + 1
𝑉 ∫𝒜𝛽𝜎

𝐧 ⋅ 𝜓 𝑑𝐴. (9)

Furthermore, the spatial decomposition of pore-scale quantities into
heir corresponding intrinsic average and spatial deviations, as pro-
osed in [63], is also of interest and is defined as follows

= ⟨𝜓⟩𝛽 + 𝜓̃ . (10)

ince ⟨𝜓⟩𝛽 is evaluated at x this allows treating average quantities as
onstants within 𝒱 and leads, as a corollary, to the following average
onstraint for the spatial deviations

𝜓̃⟩𝛽 = 0. (11)

As shown below, the derivation of the upscaled momentum trans-
ort equation deviates from the classical volume averaging method
nd borrows elements of the adjoint homogenization approach (see,
.g., [47]). In particular, the following versions of Green’s formulas are
seful

∫𝒱𝛽

[

𝐚 ⋅
(

𝑑𝐜 ⋅ ∇𝗕 − ∇𝐛 + ∇ ⋅
[

𝑐
(

∇𝗕 + ∇𝗕𝑇 1
)])

−
(

−𝑑𝐜 ⋅ ∇𝐚 − ∇𝑎 + ∇ ⋅
[

𝑐
(

∇𝐚 + ∇𝐚𝑇
)])

⋅ 𝗕
]

𝑑𝑉

− ∫𝒱𝛽
(∇ ⋅ 𝐚𝐛 − 𝑑∇ ⋅ 𝐜𝐚 ⋅ 𝗕 − 𝑎∇ ⋅ 𝗕) 𝑑𝑉

= ∫𝒜𝛽

[

𝐚 ⋅
(

𝐧 ⋅
(

−I𝐛 + 𝑐
(

∇𝗕 + ∇𝗕𝑇 1
)))

−𝐧 ⋅
(

−𝑑𝐜𝐚 − I𝑎 + 𝑐
(

∇𝐚 + ∇𝐚𝑇
))

⋅ 𝗕
]

𝑑𝐴, (12a)

∫𝒱𝛽

[

𝗔𝑇 ⋅
(

𝑑𝐜 ⋅ ∇𝗕 − ∇𝐛 + ∇ ⋅
[

𝑐
(

∇𝗕 + ∇𝗕𝑇 1
)])

−
(

−𝑑𝐜 ⋅ ∇𝗔 − ∇𝐚 + ∇ ⋅
[

𝑐
(

∇𝗔 + ∇𝗔𝑇 1
)])𝑇

⋅ 𝗕
]

𝑑𝑉

+ ∫𝒱𝛽

(

𝑑∇ ⋅ 𝐜𝗔𝑇 ⋅ 𝗕 − ∇ ⋅ 𝗔𝐛 + 𝐚∇ ⋅ 𝗕
)

𝑑𝑉

= ∫𝒜𝛽

[

𝗔𝑇 ⋅
(

𝐧 ⋅
(

−I𝐛 + 𝑐
(

∇𝗕 + ∇𝗕𝑇 1
)))

−
(

𝐧 ⋅
(

−𝑑𝐜𝗔 − I𝐚 + 𝑐
(

∇𝗔 + ∇𝗔𝑇 1
)))𝑇

⋅ 𝗕
]

𝑑𝐴, (12b)

∫𝒱𝛽

[

𝐚 ⋅
(

𝑑𝐜 ⋅ ∇𝐛 − ∇𝑏 + ∇ ⋅ 𝑐
(

∇𝐛 + ∇𝐛𝑇
))

−
(

−𝑑𝐜 ⋅ ∇𝐚 − ∇𝑎 + ∇ ⋅ 𝑐
(

∇𝐚 + ∇𝐚𝑇
))

⋅ 𝐛
]

𝑑𝑉
 i
− ∫𝒱𝛽
(𝑏∇ ⋅ 𝐚 − 𝑑∇ ⋅ 𝐜𝐚 ⋅ 𝐛 − 𝑎∇ ⋅ 𝐛) 𝑑𝑉

= ∫𝒜𝛽

[

𝐚 ⋅
(

𝐧 ⋅
(

𝑑𝐜𝐛 − I𝑏 + 𝑐
(

∇𝐛 + ∇𝐛𝑇
)))

−
(

𝐧 ⋅
(

−I𝑎 + 𝑐
(

∇𝐚 + ∇𝐚𝑇
)))

⋅ 𝐛
]

𝑑𝐴. (12c)

In the above equations, 𝒜𝛽 denotes the bounding surfaces enclosing 𝒱𝛽 .
In addition, 𝑎, 𝑏 and 𝑐 are scalar fields, 𝑑 is a constant scalar, whereas
𝐚, 𝐛 and c are vector fields and, finally, 𝗔 and B are second-order tensor
fields. All these quantities are arbitrary and are supposed to have the
appropriate required regularities. In addition, the superscript 𝑇 1 is used
to indicate the permutation of the first two indices of a third-order
tensor. Proofs of these formulas are provided in Appendix A.

4. Upscaling

In this section, the derivation of the macroscopic momentum bal-
ance equation is detailed by departing from the pore-scale formulation.
For mass conservation, the classical volume averaging approach can be
followed. The steps are identical to those reported in [51], leading to
the following macroscopic mass balance equation

∇ ⋅ ⟨𝐯⟩ = 0. (13)

This is possible because, despite the presence of interfacial slip, it is
nevertheless true that 𝐧 ⋅ 𝐯 = 0 at 𝒜𝛽𝜎 since the solid phase is assumed
mmobile and there is no mass transport between the fluid and solid
hases (see [52,64]).

The macroscopic momentum balance is derived using a simplified
ersion of the volume averaging method that makes use of some
lements of the adjoint method reported above. This contrasts with the
ethodology used in [51] as it relies on Green’s functions formalism.

ince both, the pore-scale flow problem and the upscaling approach are
ifferent from previous works, it is pertinent to present the derivations
n full detail. This is done in the following paragraphs.

To begin the derivations, it is convenient to consider that the
orous medium can be represented by a spatially periodic structure.
his assumption is classical in many upscaling techniques. Whereas

t is usually a prerequisite adopted while formulating the pore-scale
roblem in the homogenization method [53], it is part of the de-
elopment at the closure level while using volume averaging [48].
evertheless, a periodic unit cell representative of the process does
ot necessarily have to correspond to the smallest one required to
econstruct the geometrical structure (i.e., the geometrical unit cell).
ndeed, in order to not artificially constrain the physical behavior
f the system with periodic conditions, a representative domain may
equire several geometrically periodic unit cells. This is the case, for
nstance, for (Newtonian) inertial flow at a Reynolds number larger
han that characteristic of the first Hopf bifurcation [65]. Retaining
his periodicity hypothesis, the flow problem in a periodic unit cell
epresentative of the process can be written as follows

⋅ 𝐯 = 0, in 𝒱𝛽 , (14a)
𝜕𝐯
𝜕𝑡

+ 𝜌𝐯 ⋅ ∇𝐯 = −∇𝑝̃ − ∇⟨𝑝⟩𝛽 + 𝜌𝐠

+ ∇ ⋅
[

𝜇(𝛤 )
(

∇𝐯 + ∇𝐯𝑇
)]

, in 𝒱𝛽 , (14b)

𝐯 = −𝑆𝗣 ⋅
(

𝐧 ⋅
(

∇𝐯 + ∇𝐯𝑇
))

, at 𝒜𝛽𝜎 , (14c)

𝜓(𝐫 + 𝐥𝑖) = 𝜓(𝐫), 𝑖 = 1, 2, 3; 𝜓 = 𝐯, 𝑝̃, (14d)

⟨𝑝̃⟩𝛽 = 0, (14e)

𝐯 = 𝐯0, when 𝑡 = 0. (14f)

In the above equations, 𝒱𝛽 and 𝒜𝛽𝜎 now represent the domain
ccupied by the fluid phase and the solid–fluid interface in a periodic
nit cell, respectively. Note that the spatial decomposition defined
n Eq. (9) was used for the fluid pressure in Eq. (14b). This is done
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because 𝑝 cannot be assumed to be periodic in the unit cell. However,
he pressure deviations, as well as the fluid velocity, can reasonably
e considered as periodic fields, as indicated in Eq. (14d). Finally, 
he average constraint expressed in Eq. (11) and given in Eq. (14e) 
s necessary in order to have a well-posed problem. Certainly, the 
act that Gray’s decomposition is only used for the pressure and not
or the velocity is a noticeable difference with respect to the classical
olume averaging method as described in Chapter 4 in [48]. In the cited
pproach, the pore-scale momentum balance equation is averaged and, 
ith the aid of the spatial averaging theorem and Gray’s decomposition
n unclosed model is derived, which is later redefined after a closure
olution is found. In this work, a simplified version of the volume 
veraging method is used that only requires the flow problem solution
n a periodic unit cell in terms of the physical sources. This solution
an be subsequently averaged in order to obtain the corresponding 
acroscopic model as it is shown below.

Although the derivations can be performed in the time domain, it 
s convenient to continue working in the Laplace or in the Fourier
omain. The use of the Laplace transform is a modeling choice that

is made as it is slightly lighter in terms of notation and formalism in
the direct and inverse transforms than the Fourier transform. However,
either approach leads to the same equations after returning to the time
omain. Certainly, the first obstacle in the application of the Laplace

transform is the presence of nonlinear terms in the momentum trans-
ort equation, which is also an obstacle in the time domain analysis as

discussed in [51]. Following the idea put forth in this work to overcome
this issue, it is assumed that the velocity at any given time 𝑡 appearing 
in the convective term, in the apparent viscosity coefficient and in the
slip length, is available at a time 𝑡 − 𝛥𝑡. Since 𝛥𝑡 can be as small as 
required, it is reasonable to propose that 𝐯|𝑡 ≈ 𝐯|𝑡−𝛥𝑡 ≡ 𝐯𝛥 from a 0th 
rder Taylor expansion. In this way, a linearization can be performed

in an explicit manner by taking 𝐯 = 𝐯𝛥 for the convective velocity
n the momentum equation and in the evaluation of 𝛤 . Consequently,
qs. (14b) and (14c) can be written as follows

𝜌 𝜕𝐯
𝜕𝑡

+ 𝜌𝐯𝛥 ⋅ ∇𝐯 = −∇𝑝 + 𝜌𝐠

+ ∇ ⋅
[

𝜇(𝛤𝛥)
(

∇𝐯 + ∇𝐯𝑇
)]

, in 𝒱𝛽 , (15a)

= −𝑆𝛥𝗣 ⋅
(

𝐧 ⋅
(

∇𝐯 + ∇𝐯𝑇
))

, at 𝒜𝛽𝜎 . (15b)

Here, 𝛤𝛥 =
√

2(𝗗𝛥 ∶ 𝗗𝛥), with 𝗗𝛥 = (∇𝐯𝛥 +∇𝐯𝑇𝛥 )∕2 and 𝑆𝛥 = 𝑆(𝗗𝛥, 𝛿𝑠).
ote that quantities with the subscript 𝛥 can be treated as known
uantities independent of 𝑡. In this way, the flow problem in a unit
ell can be written in the Laplace domain as follows

⋅ 𝐯̂ = 0, in 𝒱𝛽 , (16a)

𝑠𝐯̂ + 𝜌𝐯𝛥 ⋅ ∇𝐯̂ = −∇ ̂̃𝑝 −
(

∇⟨𝑝̂⟩𝛽 −
𝜌
𝑠
𝐠 − 𝜌𝐯0

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑠𝑜𝑢𝑟𝑐𝑒

+ ∇ ⋅
[

𝜇(𝛤𝛥)
(

∇𝐯̂ + ∇𝐯̂𝑇
)]

, in 𝒱𝛽 , (16b)

̂ = −𝑆𝛥𝗣 ⋅
(

𝐧 ⋅
(

∇𝐯̂ + ∇𝐯̂𝑇
))

, at 𝒜𝛽𝜎 , (16c)

(𝐫 + 𝐥𝑖) = 𝜓(𝐫), 𝑖 = 1, 2, 3; 𝜓 = 𝐯̂, ̂̃𝑝, (16d)
⟨ ̂̃𝑝

⟩𝛽 = 0, (16e)

in which 𝐯̂, 𝑝̂ and ̂̃𝑝 represent the Laplace transform of 𝐯, 𝑝 and 𝑝̃,
respectively, while 𝑠 is the frequency parameter.

At this point, one may follow the approach reported in [51] and
propose a solution to the above problem. Nevertheless, due to the
non linearity of the problem, it is beneficial to follow a more formal
approach that relies upon Green’s functions formalism. To this end, it
is convenient to introduce the adjoint velocity pair of Green’s func-
tions in the Laplace domain, 𝗚̂𝑎 and 𝐠̂𝑎, which solve the following
boundary-problem

∇ ⋅ 𝗚̂ = 𝟎, in 𝒱 , (17a)
𝑎 𝛽 p
𝜌𝑠𝗚̂𝑎 − 𝜌𝐯𝛥 ⋅ ∇𝗚̂𝑎 = −∇𝐠̂𝑎 + ∇ ⋅
[

𝜇(𝛤𝛥)
(

∇𝗚̂𝑎 + ∇𝗚̂𝑇 1
𝑎

)]

+ 𝛿(𝐫 − 𝐫0)I, in 𝒱𝛽 , (17b)
̂
𝑎 = −𝑆𝛥𝗣 ⋅

(

𝐧 ⋅
(

∇𝗚̂𝑎 + ∇𝗚̂𝑇 1
𝑎

))

, at 𝒜𝛽𝜎 , (17c)

(𝐫 + 𝐥𝑖) = 𝜓(𝐫), 𝑖 = 1, 2, 3; 𝜓 = 𝗚̂𝑎, 𝐠̂𝑎, (17d)

̂𝑎 = 𝟎, at r = r𝑎. (17e)

In Eq. (17b), 𝛿(𝐫 − 𝐫0) is the Dirac delta function concentrated at 𝐫0,
which is a position vector within the same domain as r. In addition, in
Eq. (17e), r𝑎 is an arbitrary position vector located in the fluid phase.

It is now possible to find the relationship between 𝐯̂ and the source
terms. This can be accomplished by using Green’s formula in the form
given in Eq. (12a). Setting 𝐚 = 𝐯̂, 𝐜 = 𝐯𝛥, 𝑎 = ̂̃𝑝, 𝐛 = 𝐠̂𝑎, 𝗕 = 𝗚̂𝑎, 𝑐 = 𝜇(𝛤𝛥)
and 𝑑 = 𝜌 and taking into account the solenoidal nature of 𝐯̂, 𝐯𝛥 and
𝗚̂𝑎, leads to

∫𝒱𝛽

[

𝐯̂ ⋅
(

𝜌𝐯𝛥 ⋅ ∇𝗚̂𝑎 − ∇𝐠̂𝑎 + ∇ ⋅
[

𝜇(𝛤𝛥)
(

∇𝗚̂𝑎 + ∇𝗚̂𝑇 1
𝑎

)])

−
(

−𝜌𝐯𝛥 ⋅ ∇𝐯̂ − ∇ ̂̃𝑝 + ∇ ⋅
[

𝜇(𝛤𝛥)
(

∇𝐯̂ + ∇𝐯̂𝑇
)])

⋅ 𝗚̂𝑎

]

𝑑𝑉

= ∫𝒜𝛽

[

𝐯̂ ⋅
(

𝐧 ⋅
(

−I𝐠̂𝑎 + 𝜇(𝛤𝛥)
(

∇𝗚̂𝑎 + ∇𝗚̂𝑇 1
𝑎

)))

−𝐧 ⋅
(

−𝜌𝐯𝛥𝐯̂ − I ̂̃𝑝 + 𝜇(𝛤𝛥)
(

∇𝐯̂ + ∇𝐯̂𝑇
))

⋅ 𝗚̂𝑎

]

𝑑𝐴. (18)

After substitution of equivalent expressions extracted from the momen-
tum Eqs. (16b) and (17b) in the volume integral, this gives

∫𝒱𝛽

[

𝐯̂ ⋅
(

𝜌𝑠𝗚̂𝑎 − 𝛿(𝐫 − 𝐫0)I
)

−
(

𝜌𝑠𝐯̂ + ∇⟨𝑝̂⟩𝛽 −
𝜌
𝑠
𝐠 − 𝜌𝐯0

)

⋅ 𝗚̂𝑎

]

𝑑𝑉 =

− ∫𝒜𝛽𝜎
𝐧 ⋅ 𝐯̂𝐠̂𝑎 𝑑𝐴 + ∫𝒜𝛽𝜎

𝐧 ⋅
(

𝜌𝐯𝛥𝐯̂ + ̂̃𝑝I
)

⋅ 𝗚̂𝑎 𝑑𝐴

+ ∫𝒜𝛽𝜎
𝜇
(

𝛤𝛥
)

𝐧 ⋅
(

𝐯̂ ⋅
(

∇𝗚̂𝑎 + ∇𝗚̂𝑇 1
𝑎

)

−
(

∇𝐯̂ + ∇𝐯̂𝑇
)

⋅ 𝗚̂𝑎

)

𝑑𝐴. (19)

ote that, due to periodicity, the area integral reduces to the one
ver 𝒜𝛽𝜎 . Taking into account the boundary conditions in Eqs. (16c)
nd (17c), the two first integrals on the right hand side of the above
elationship are zero due to the tangential character of 𝐯̂, 𝐯𝛥 and 𝗚̂𝑎 at
𝛽𝜎 . Moreover, the last area integral is also zero; the proof is provided

n Appendix A in [52]. After little rearrangement, the above equation
ence leads to the following result

̂ = −∫𝒱𝛽
𝗚̂𝑇
𝑎 𝑑𝑉 ⋅

(

∇⟨𝑝̂⟩𝛽 −
𝜌
𝑠
𝐠
)

+ 𝜌∫𝒱𝛽
𝗚̂𝑇
𝑎 ⋅ 𝐯0 𝑑𝑉 . (20)

At this point, it is convenient to introduce another Green’s functions
air 𝗚̂𝑣 and 𝐠̂𝑣, which solves the following boundary-value problem in
he Laplace domain

⋅ 𝗚̂𝑣 = 𝟎, in 𝒱𝛽 , (21a)

𝑠𝗚̂𝑣 + 𝜌𝐯𝛥 ⋅ ∇𝗚̂𝑣 = −∇𝐠̂𝑣 + ∇ ⋅
[

𝜇(𝛤𝛥)
(

∇𝗚̂𝑣 + ∇𝗚̂𝑇 1
𝑣

)]

+ 𝛿(𝐫 − 𝐫0)I, in 𝒱𝛽 , (21b)
̂
𝑣 = −𝑆𝛥𝗣 ⋅

(

𝐧 ⋅
(

∇𝗚̂𝑣 + ∇𝗚̂𝑇 1
𝑣

))

, at 𝒜𝛽𝜎 , (21c)

(𝐫 + 𝐥𝑖) = 𝜓(𝐫), 𝑖 = 1, 2, 3; 𝜓 = 𝗚̂𝑣, 𝐠̂𝑣, (21d)

̂𝑣 = 𝟎, at r = r𝑎. (21e)

Note that the above problem on 𝗚̂𝑣 and 𝐠̂𝑣 only differs from the
djoint problem given in Eqs. (17) by the sign on the convective-
ike acceleration term in the momentum equation. This sign change is
onvenient, because standard Navier Stokes solvers can be used for its
olution. Basically, 𝑔𝑣𝑖 and 𝐺𝑣𝑖𝑗 can be respectively interpreted as the
ressure deviations and the velocity in the 𝑗-direction at a field point
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located at 𝐫, resulting from a singular force (a Stokeslet) placed at a
source point 𝐫0 in the 𝑖-direction.

It is now of interest to determine the relationship between the
djoint and the new Green’s functions pairs for the velocity. With this
bjective in mind, Green’s formula in the form given in Eq. (12b) is

applied, setting 𝐚 = 𝐠̂𝑣, 𝐜 = 𝐯𝛥, 𝗔 = 𝗚̂𝑣, 𝐛 = 𝐠̂𝑎, 𝗕 = 𝗚̂𝑎, 𝑐 = 𝜇(𝛤𝛥) and
= 𝜌. Taking into account the solenoidal nature of 𝐯𝛥, 𝗚̂𝑣 and 𝗚̂𝑎, this

yields

∫𝒱𝛽

[

𝗚̂𝑇
𝑣 ⋅

(

𝜌𝐯𝛥 ⋅ ∇𝗚̂𝑎 − ∇𝐠̂𝑎

+∇ ⋅
[

𝜇(𝛤𝛥)
(

∇𝗚̂𝑎 + ∇𝗚̂𝑇 1
𝑎

)])

−
(

−𝜌𝐯𝛥 ⋅ ∇𝗚̂𝑣 − ∇𝐠̂𝑣

+∇ ⋅
[

𝜇(𝛤𝛥)
(

∇𝗚̂𝑣 + ∇𝗚̂𝑇 1
𝑣

)])𝑇
⋅ 𝗚̂𝑎

]

𝑑𝑉

= ∫𝒜𝛽𝜎

[

𝗚̂𝑇
𝑣 ⋅

(

𝐧 ⋅
(

−I𝐠̂𝑎 + 𝜇(𝛤𝛥)
(

∇𝗚̂𝑎 + ∇𝗚̂𝑇 1
𝑎

)))

−
(

𝐧 ⋅
(

−𝜌𝐯𝛥𝗚̂𝑣 − I𝐠̂𝑣

+𝜇(𝛤𝛥)
(

∇𝗚̂𝑣 + ∇𝗚̂𝑇 1
𝑣

)))𝑇
⋅ 𝗚̂𝑎

]

𝑑𝐴, (22)

in which the periodicity condition was considered, reducing the area
integral to 𝒜𝛽𝜎 . Substituting the corresponding expressions from the
momentum-like Eqs. (17b) and (21b) in the volume integral, the above
equation leads to the following relationship

− 𝗚̂𝑇
𝑣 + 𝗚̂𝑎 = ∫𝒜𝛽𝜎

(

−
(

𝐠̂𝑎𝐧 ⋅ 𝗚̂𝑣

)𝑇

+ 𝜌𝐧 ⋅ 𝐯𝛥𝗚̂𝑇
𝑣 ⋅ 𝗚̂𝑎 − 𝐠̂𝑣𝐧 ⋅ 𝗚̂𝑎

)

𝑑𝐴. (23)

To arrive at this result, expressions of 𝗚̂𝑎 and 𝗚̂𝑣 at the interface,
given by Eqs. (17c) and (21c), were introduced in the area integral
nvolving

(

∇𝗚̂𝑎 + ∇𝗚̂𝑇 1
𝑎

)

and
(

∇𝗚̂𝑣 + ∇𝗚̂𝑇 1
𝑣

)

, showing that this part of
he integral is zero. Taking into account the tangential character of 𝗚̂𝑣,
𝛥 and 𝗚̂𝑣 at 𝒜𝛽𝜎 , it clearly appears that all the terms on the right-hand
ide of Eq. (23) are also zero, finally yielding

̂ 𝑇
𝑎 = 𝗚̂𝑣. (24)

onsequently, the formal solution for 𝐯̂ given in Eq. (20) can now be
expressed as

𝐯̂ = −∫𝒱𝛽
𝗚̂𝑣 𝑑𝑉 ⋅

(

∇⟨𝑝̂⟩𝛽 −
𝜌
𝑠
𝐠
)

+ 𝜌∫𝒱𝛽
𝗚̂𝑣 ⋅ 𝐯0 𝑑𝑉 . (25a)

For completeness, it is of interest to provide the formal solution for
̂̃𝑝. Using a procedure similar to the one employed for 𝐯̂, the following
result is obtained for the fluid pressure deviations in the Laplace
domain (see details in Appendix B)

̂̃𝑝 = −∫𝒱𝛽
𝐠̂𝑣 𝑑𝑉 ⋅

(

∇⟨𝑝̂⟩𝛽 −
𝜌
𝑠
𝐠
)

+ 𝜌∫𝒱𝛽
𝐠̂𝑣 ⋅ 𝐯0 𝑑𝑉 + 𝜑. (25b)

Clearly, only the Green’s function problem given for 𝗚̂𝑣 and 𝐠̂𝑣
or 𝗚𝑣 and 𝐠𝑣 in the time domain

)

is required to be solved in order to
btain 𝐯̂ and ̂̃𝑝 (or 𝐯 and 𝑝̃). However, it is worth noting that the solution
f this problem would imply the numerical solution of a Stokes-like
roblem with an infinite concentrated source located at 𝐫0 ∈ 𝒱𝛽 . To
void having to deal with this difficulty, it is convenient to define the
ollowing pair of closure variables

𝑠𝗙̂
𝜇ref

= ∫𝒱𝛽
𝗚̂𝑣 𝑑𝑉 , (26a)

𝐟 = ∫𝒱𝛽
𝐠̂𝑣 𝑑𝑉 , (26b)

with 𝜇ref being a reference viscosity. In the above equations, 𝐟 and
̂
𝗙 were conveniently defined in order for the macroscopic velocity to w
take the form of Darcy’s law, under steady-state conditions as shown in
the following section. Note that the closure variables 𝗙̂ and 𝐟 are only
functions of r since the 𝐫0 dependence is filtered out by the integration
step. In this way, applying the volumetric integration operator with
respect to 𝐫0 to Eqs. (21), taking into account the definitions given in
Eqs. (26), leads to the following closure problem in the Laplace domain

∇ ⋅ 𝗙̂ = 𝟎, in 𝒱𝛽 , (27a)
𝜌
𝜇ref

𝑠𝗙̂ +
𝜌
𝜇ref

𝐯𝛥 ⋅ ∇𝗙̂ = −∇𝐟

+ ∇ ⋅

[

𝜇(𝛤𝛥)
𝜇ref

(

∇𝗙̂ + ∇𝗙̂𝑇 1
)

]

+ I
𝑠
, in 𝒱𝛽 , (27b)

𝗙̂ = −𝑆𝛥𝗣 ⋅
(

𝐧 ⋅
(

∇𝗙̂ + ∇𝗙̂𝑇 1
))

, at 𝒜𝛽𝜎 , (27c)

(𝐫 + 𝐥𝑖) = 𝜓(𝐫), 𝑖 = 1, 2, 3; 𝜓 = 𝗙̂, 𝐟 , (27d)
̂ = 𝟎, at r = r𝑎. (27e)

It should be pointed out that to arrive at the formulation of the above
roblem, integration and spatial derivation were permuted since the
atter is with respect to 𝐫.

The macroscopic momentum balance equation results from applying
he superficial averaging operator on both sides of Eq. (25a) and this
ields

𝐯̂⟩ = −
𝑠𝗛̂𝜇
𝜇ref

⋅
(

∇⟨𝑝̂⟩𝛽 −
𝜌
𝑠
𝐠
)

+
𝜌
𝜇ref

⟨

𝑠𝗙̂ ⋅ 𝐯0
⟩

. (28)

Here, the apparent permeability tensor in the Laplace domain is
efined as

̂
𝜇 =

⟨

𝗙̂
⟩

. (29)

As a final step in the derivations, the inverse Laplace transform is
pplied on both sides of Eq. (28) to obtain the macroscopic momentum
quation in the time domain that is given by

𝐯⟩ = − 1
𝜇ref ∫

𝑡0=𝑡

𝑡0=0

𝑑𝗛𝜇
𝑑𝑡

|

|

|

|

|𝑡−𝑡0

⋅
(

∇⟨𝑝⟩𝛽 − 𝜌𝐠
)

|

|

|𝑡0
𝑑𝑡0

+
𝜌
𝜇ref

⟨ 𝜕𝗙
𝜕𝑡

⋅ 𝐯0
⟩

. (30)

ertainly, the above equation could have been reported in terms of an
ffective coefficient that represents 𝑑𝗛𝜇∕𝑑𝑡 (see, for example, equation
4.42) in [47]). However, it is convenient to present it in its current
orm so that 𝗛𝜇 has the units of permeability and can lead to Darcy’s
aw under steady and non-inertial Newtonian flow conditions. The
bove is possible because of the definitions adopted in Eqs. (26). In
ddition, the corresponding closure problem in the time domain results
rom applying the inverse Laplace transform to Eqs. (27). This leads to

⋅ 𝗙 = 𝟎, in 𝒱𝛽 , (31a)
𝜌
𝜇ref

𝜕𝗙
𝜕𝑡

+
𝜌
𝜇ref

𝐯 ⋅ ∇𝗙 = −∇𝐟

+ ∇ ⋅

[

𝜇(𝛤 )
𝜇ref

(

∇𝗙 + ∇𝗙𝑇 1
)

]

+ I, in 𝒱𝛽 , (31b)

𝗙 = −𝑆𝗣 ⋅
(

𝐧 ⋅
(

∇𝗙 + ∇𝗙𝑇 1
))

, at 𝒜𝛽𝜎 , (31c)

𝜓(𝐫 + 𝐥𝑖) = 𝜓(𝐫), 𝑖 = 1, 2, 3; 𝜓 = 𝗙, 𝐟 , (31d)

= 𝟎, at r = r𝑎, (31e)

= 𝟎, when 𝑡 = 0. (31f)

Here, it must be emphasized that in Eqs. (31b) and (31c), the limit
𝑡 → 0 was taken so that 𝐯𝛥 → 𝐯, 𝜇(𝛤𝛥) → 𝜇(𝛤 ) and 𝑆𝛥 → 𝑆. In addition,
he initial condition was chosen to be in the form given in Eq. (31f),
hich is consistent with previous works (cf. [51,53]). Performing the
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projection of the above problem onto each of the base vectors of the
system of coordinates indicates that the corresponding projections of

 and 𝐟 respectively represent the velocity and pressure deviations 
resulting from a unit macroscopic pressure gradient in this direction.
This is an agreement with the interpretation of (𝗚𝑣, 𝐠𝑣) given above.
It is pertinent to remark that, due to the closure variables definitions
iven in Eqs. (26), the source term in Eq. (27b) is I∕𝑠, which, in turn, 

leads to the source term I in the time domain version (see Eq. (31b)). 
This observation is relevant because it allows for the closure problem
defined in Eqs. (31) to reduce, under non-inertial and steady-state
onditions, to the one reported in Section 3 in [38].

It should be noted that the above closure problem could be written 
n a fully closed and nonlinear form, i.e., in a version in which the 

pore-scale velocity no longer appears and is not required to be known
a priori. This could be performed by introducing the formal solution
or 𝐯 deriving from Eq. (25a). However, this would be at the cost of
 tremendously complicated problem to solve, and, from a practical

point of view, it is more convenient to first solve the flow problem in 
a unit cell and then use the solution for 𝐯 to solve the closure problem
given in Eqs. (31). At this point, it is worth emphasizing the advantage 
of introducing the Green’s function problem for 𝗚𝑣 and 𝐠𝑣. Indeed, this 
leads to the above closure problem in which the convective acceleration
term has a positive sign, hence allowing the use of standard Navier–
Stokes solvers. In the adjoint homogenization method, only the adjoint
velocity Green’s function pair is considered (see section 4.2 in [47]). As
a consequence, the apparent permeability tensor is defined in terms of
he transpose of the closure variable in this reference. In addition, it is
orth mentioning that in the current formulation it is necessary to solve
nly one closure problem in order to predict the two effective-medium

quantities involved in the macroscopic momentum equation. This is an
dvantage with respect to previous works (see, for example, [51]), in

which two closure problems were required.
Finally, note that the non-Newtonian fluid rheology information

ontained in the original flow model is captured in the closure vari-
bles through v, 𝜇(𝛤 ) and 𝑆. This information is later passed through 

spatial integration filters to compute the effective-medium quantities
in Eq. (30). This passing of rheology information is analogous to the
approach reported in [38] under steady-state conditions.

5. Macroscale model summary

In the previous sections, a macroscopic model for unsteady general-
zed Newtonian fluid flow in a rigid and homogeneous porous medium
as derived. The assumptions on which it relies can be listed as follows.
o mass transport takes place at the solid–fluid interface, whereas slip
ay occur that can be represented by a first-order (Navier-type) bound-

ry condition. The flow is assumed incompressible and laminar, while
he solid is seen as immobile. A unit cell, representative of the structure
an be identified as part of an infinite periodic equivalent structure,
hat is used to determine the effective coefficients. In addition, the
ecessary disparity of characteristic length scales is assumed to exist
etween the pore-scale and the macroscale. On the basis of the above
ssumptions, the closed form of the macroscale model is composed of
he following mass conservation equation

⋅ ⟨𝐯⟩ = 0, (32a)

hereas, the momentum transport equation is non-local in time and
an be written as

𝐯⟩ = 1
𝜇ref

(

−
𝑑𝗛𝜇
𝑑𝑡

∗ ⋅
(

∇⟨𝑝⟩𝛽 − 𝜌𝐠
)

+ 𝜌𝜶0

)

. (32b)

Here, ∗ ⋅ stands for the combined convolution and inner product. In
this expression, the apparent permeability tensor in the time domain is
defined as

𝗛 = ⟨𝗙⟩ , (32c)
𝜇
and, for compactness, the memory vector, 𝜶0, is defined as

𝜶0 =
⟨ 𝜕𝗙
𝜕𝑡

⋅ 𝐯0
⟩

. (32d)

he first term on the right-hand side of the upscaled momentum equa-
ion, involving the convolution product between the time derivative of
he apparent permeability tensor and the macroscopic forcing, accounts
or viscous resistance with a memory effect on the macroscopic pressure
radient. The second term accounts for the memory effect of the initial
low condition. It should be mentioned that, since the closure problem
olution contains information of the initial velocity field, the apparent
ermeability tensor also depends on the initial condition. Note that
he structure of the macroscopic momentum balance equation is in
greement with those reported for Newtonian unsteady flow in rigid
nd homogeneous porous media in the creeping regime with interfacial
lip [52], and with inertial effects but without slip [51,53].

The algorithm to compute the effective quantities 𝗛𝜇 and 𝜶0 is the
ollowing: (i) solve the flow problem (Eqs. (14)) in the unit cell to
btain both the viscosity and velocity fields; (ii) use these fields to solve
he closure problem (Eqs. (31)) yielding the field of 𝗙; (iii) compute 𝗛𝜇
nd 𝜶0 from Eqs. (32c) and (32d), respectively.

Finally, an analysis of symmetry and positiveness of 𝗛𝜇 can be
erformed in a way similar to that followed in section 3.3 of the work
y Lasseux et al. [51] and Appendix C of [52]. A summary is provided
n Appendix C. The result is that this tensor is, in general, not symmetric
see also [66]) and can be decomposed into its irreducible parts. In
his way, the skew-symmetric contribution is shown to only result
rom inertia (i.e., convective acceleration), while temporal acceleration
nd viscous effects contribute to the symmetric part. Moreover, 𝗛̂𝜇 is
ositive semi-definite. In particular, the apparent permeability tensor
n steady-state conditions is positive semi-definite. Furthermore, since
he closure problem depends on the macroscropic pressure gradient,
he apparent permeability tensor is a non-trivial function of this driving
orce and consequently, Eq. (32b) is nonlinear with respect to ∇⟨𝑝⟩𝛽 .

It is worth mentioning that, under steady and creeping flow con-
itions, the left-hand side of Eq. (31b) can be omitted. Nevertheless,
he closure variables still depend on the velocity field through the
iscosity coefficient. Moreover, using the final value theorem (see, for
xample, Appendix D in [52]), it can be demonstrated that the dynamic
omentum balance Eq. (32b) reduces to

lim
→∞

⟨𝐯⟩ = − 1
𝜇ref

𝗛𝜇 ⋅
(

∇⟨𝑝⟩𝛽 − 𝜌𝐠
)

, (33)

when the forcing is steady after a given time, and this corresponds to
the seepage velocity in Eq. (17) of the work by Airiau and Bottaro [38]
in which 𝗞𝐶 identifies as 𝗛𝜇 . In addition, it should be noted that once
inertia and slip effects are disregarded in Eqs. (31), the ensuing closure
problem, whose solution yields 𝗛𝜇 , reduces to Eqs. (10) (and associate
oundary conditions) of the latter reference. This is consistent with the
act that the scale ratio 𝜖 = 𝓁𝜇∕𝐿, as defined in the homogenization
pproach, is supposed to be vanishingly small in the context of an
nfinitely periodic medium assumed in the present development. As a
esult, the model obtained here reduces to that reported in [38] for the
orresponding flow conditions.

For practical purposes, it may be of interest to combine the macro-
copic mass and momentum balance Eqs. (32a) and (32b) yielding the
ollowing equation for the macroscopic pressure
𝑑𝗛𝜇
𝑑𝑡

∗∶ ∇∇⟨𝑝⟩𝛽 = 0. (34)

Here, ∗∶ denotes the combined temporal convolution and double dot
product. Note that in the above expression, the initial condition mem-
ory effect is filtered out. Nevertheless, the effect of 𝐯0 is still contained
in 𝗛𝜇 . This equation may be used to determine the macroscopic pres-
sure field ⟨𝑝⟩𝛽 when appropriate macroscopic boundary conditions
are specified. Subsequently, the macroscopic velocity field may be
computed using Eq. (32b).
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6. Results

The purpose of this section is twofold. First, the dynamics of the
components of the apparent permeability tensor, 𝗛𝜇 , and of the mem-
ory vector, 𝜶0, are analyzed under creeping and laminar flow condi-
tions at a moderate Reynolds number value that remains smaller than
the critical value corresponding to the first Hopf bifurcation [65]. Slip
effects are not considered here (i.e., in the following 𝑆 is taken to be 0)
to reduce the number of degrees of freedom. Such an analysis has been
investigated in [52] in the Newtonian case. It is worth pointing out that
the accuracy of the macroscale model derived here is not conditioned
by the interfacial slip effects. This is due to the fact that no assumptions
about them were invoked in the model derivation. Hence, for the sake
of brevity in presentation, the analysis of slip effects is relegated to
a separate study. Second, the macroscopic model predictions of the
dynamics of the seepage velocity are validated by comparison with
pore-scale simulations.

6.1. Dimensionless formulation

To commence the analysis, it is convenient to reformulate the
microscale and macroscale models, as well as the closure problem, in a
dimensionless form. To this end, the following definitions are adopted
(the superscript ∗ denotes dimensionless quantities)

∗ = 𝐯
𝑣ref

, 𝐯∗0 =
𝐯0
𝑣ref

, 𝑝∗ =
𝑝𝓁

𝑣ref 𝜇ref
, 𝐫∗ = 𝐫

𝓁
,

∗ = 𝑡
𝑡ref

, 𝗙∗ = 𝗙
𝓁2
, 𝐟∗ = 𝐟

𝓁
,

𝛤 ∗ =
𝜇ref

𝓁‖∇𝒫 ‖𝑡=0
𝛤 , (35)

where 𝓁 represents the unit cell side length (see Fig. 2). In addition, the
reference time is chosen to be 𝑡ref = 𝜌𝓁2∕𝜇ref and the reference velocity
is defined as

𝑣ref =
𝓁2

‖∇𝒫 ‖𝑡=0
𝜇ref

. (36)

Here, ∇𝒫 |𝑡 = ∇⟨𝑝⟩𝛽 |
|𝑡 − 𝜌𝐠 is the modified macroscopic pressure

radient, which, at 𝑡 = 0, is the forcing of the initial flow that obeys
he following dimensionless boundary-value problem in a periodic unit
ell
∗ ⋅ 𝐯∗0 = 0, in 𝒱𝛽 , (37a)
𝑒𝐯∗0 ⋅ ∇

∗𝐯∗0 = −∇∗𝑝̃∗0 − ∇∗𝒫 ∗
0

+ ∇∗ ⋅

[

𝜇(𝛤 ∗
0 )

𝜇ref

(

∇∗𝐯∗0 + ∇∗𝐯∗𝑇0
)

]

, in 𝒱𝛽 , (37b)

∗
0 = 𝟎, at 𝒜𝛽𝜎 , (37c)

(𝐫∗ + 𝐥∗𝑖 ) = 𝜓(𝐫∗), 𝑖 = 1, 2, 3; 𝜓 = 𝐯∗0 , 𝑝̃
∗
0 , (37d)

⟨

𝑝̃∗0
⟩𝛽 = 0. (37e)

In the above equations, the subscript 0 was included to make it explicit
hat the dependent variables are evaluated at 𝑡 = 0. In addition, adopt-

ing a two-dimensional unit cell, the initial dimensionless macroscopic
pressure gradient is given by

∇∗𝒫 ∗
0 = −cos 𝜃𝐞𝑥 − sin 𝜃𝐞𝑦. (38)

In Eq. (37b), the cell Reynolds number, resulting from the scaling
choices is given by

𝑅𝑒 =
𝜌𝑣ref 𝓁
𝜇ref

. (39)

Note that this definition is not compliant with the typical one found in
engineering applications that usually relies upon an effective viscosity,
and requires assuming the classical 1D form of Darcy’s law. As pointed
out in [38], such an approach is not compatible with the formal
upscaling method used in this work, which does not calls upon data
fitting to predict the effective medium coefficients.

Furthermore, the dimensionless flow model in a periodic unit cell,
according to Eqs. (14), is given by

∇∗ ⋅ 𝐯∗ = 0, in 𝒱𝛽 , (40a)
𝜕𝐯∗
𝜕𝑡∗

+ 𝑅𝑒𝐯∗ ⋅ ∇∗𝐯∗ = −∇∗𝑝̃∗ − ∇∗𝒫 ∗

+ ∇∗ ⋅

[

𝜇(𝛤 ∗)
𝜇ref

(

∇∗𝐯∗ + ∇∗𝐯∗𝑇
)

]

, in 𝒱𝛽 , (40b)

𝐯∗ = 𝟎, at 𝒜𝛽𝜎 , (40c)

(𝐫∗ + 𝐥∗𝑖 ) = 𝜓(𝐫), 𝑖 = 1, 2, 3; 𝜓 = 𝐯∗, 𝑝̃∗, (40d)

⟨𝑝̃∗⟩𝛽 = 0, (40e)
∗ = 𝐯∗0 , when 𝑡∗ = 0. (40f)

In the developments that follow, ∇∗𝒫 ∗ in Eq. (40b) is regarded as a
nown function of time, that is specified later on. Clearly, this problem
priori requires the solution of Eqs. (37) in order to account for the

initial velocity. Once the above problem is solved, the velocity field is
substituted into the dimensionless form of the closure problem given in
Eqs. (31), which can be written as

∇∗ ⋅ 𝗙∗ = 𝟎, in 𝒱𝛽 , (41a)
𝜕𝗙∗

𝜕𝑡∗
+ 𝑅𝑒𝐯∗ ⋅ ∇∗𝗙∗ = −∇∗𝐟∗

+ ∇∗ ⋅

[

𝜇(𝛤 ∗)
𝜇ref

(

∇∗𝗙∗ + ∇∗𝗙∗𝑇 1
)

]

+ I, in 𝒱𝛽 , (41b)

𝗙∗ = 𝟎, at 𝒜𝛽𝜎 , (41c)

𝜓(𝐫∗ + 𝐥∗𝑖 ) = 𝜓(𝐫∗), 𝑖 = 1, 2, 3; 𝜓 = 𝗙∗, 𝐟∗, (41d)

𝐟∗ = 𝟎, at r∗ = r∗𝑎 , (41e)
∗ = 𝟎, when 𝑡∗ = 0. (41f)

Once this problem is solved, the field of 𝗙∗ is used to compute the
ollowing dimensionless macroscopic quantities

∗
𝜇 ≡

𝗛𝜇

𝓁2
= ⟨𝗙∗⟩ , (42a)

𝜶∗
0 ≡

𝜌𝜶0
𝜇ref𝑣ref

=
⟨

𝜕𝗙∗

𝜕𝑡∗
⋅ 𝐯∗0

⟩

. (42b)

They are subsequently substituted into the following dimensionless
ersion of the macroscopic momentum balance equation

𝐯∗⟩ = −
𝑑𝗛∗

𝜇

𝑑𝑡∗
∗ ⋅∇∗𝒫 ∗ + 𝜶∗

0 , (43)

o compute the values of the macroscale velocity. At this point, it is
orth recalling that, due to the non-linearities induced by the non-
ewtonian nature of the fluid flow and by the inertial effects, 𝗛∗

𝜇 and
∗
0, depend on the macroscopic pressure gradients ∇∗𝒫 ∗

0 and ∇∗𝒫 ∗.
In the following paragraphs the analysis is focused on Carreau

luids, which obey the following constitutive equation

(𝛤 ) = 𝜇∞ + (𝜇0 − 𝜇∞)
[

1 + (𝜆𝛤 )2
](𝑛−1)∕2 . (44a)

ere, 𝜇0, 𝜇∞, 𝜆 and 𝑛 represent the zero- and infinite shear-rate
iscosity coefficients, the relaxation time and the power-law index,
espectively. As suggested in previously reported works [38,67,68], it
s assumed that 𝜇ref = 𝜇0 and 𝜇∞ = 0. Consequently,

∗(𝛤 ∗) =
𝜇(𝛤 )
𝜇0

= [1 + (𝜆∗𝛤 ∗)2](𝑛−1)∕2. (44b)

Hence, only two rheological parameters need to be fixed, which are
𝜆∗ = 𝜆𝓁‖∇𝒫 ‖𝑡=0∕𝜇ref and 𝑛. Following Airiau and Bottaro [38], the

∗
analysis is carried out fixing 𝜆 = 5 and 𝑛 = 0.5.
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Fig. 2. Sketch of a periodic unit cell, of side length 𝓁, for a model porous medium
structure consisting of an array of inline cylinders of diameter 𝓁𝜎 . 𝐞𝑥 and 𝐞𝑦 are the
nit vectors in the horizontal and vertical directions, respectively.

.2. Analysis for hydrostatic initial condition

As a first set of numerical experiments, consider the situation in
hich the fluid is initially at rest, i.e., ∇𝒫0 = 𝟎, so that 𝐯∗0 = 𝟎. In
ddition, let ∇∗𝒫 ∗ be constant in time and equal to the expression
iven in Eq. (38). Under these conditions, 𝜶∗

0 = 𝟎 and 𝗛∗
𝜇 is a full tensor,

whose components evolve over time.
The flow problem given in Eqs. (40) and the closure problem in

Eqs. (41) were solved in the simple unit cell geometry depicted in Fig. 2,
or 0 ≤ 𝜃 ≤ 90◦, using the commercial finite element software Comsol
ultiphysics 5.6. A direct solution scheme was employed making use

f the PARDISO solver included in the software to numerically solve
he initial flow, the unsteady flow and the closure problem. Through
oupling solution steps, it was possible to save the dynamic information
f the flow problem and use it in the closure problem solution. In
ddition, standard triangular mesh refinement techniques were used in
rder to ensure that the numerical solutions are independent of this
umerical degree of freedom. It was found that using a dimensionless
aximum element size of 0.025 for the fluid domain and of 0.01 at the

oundaries, was sufficient in order to achieve mesh convergence.
In Fig. 3, the predictions of the dynamics of the components of the

pparent permeability tensor are reported for creeping flow conditions
𝑅𝑒 ≪ 1) taking a porosity value of 0.9. Note that, under these condi-

ions, 𝗛∗
𝜇 is symmetric. These transport conditions correspond to those

tudied by Airiau and Bottaro [38] for steady-state flow. The results
re presented normalized by the 𝑥𝑥-component of the dimensionless
ntrinsic permeability tensor (i.e., 𝐾∗

𝑥𝑥), which is obtained by solving
qs. (41) fixing 𝜇(𝛤 ) = 𝜇ref under steady and non-inertial conditions.
learly, the results from the work by Airiau and Bottaro [38] are
etrieved for 𝑡∗ > 1 for all values of 𝜃, and this constitutes a first set
f validation. As expected, the components of 𝗛∗

𝜇 start from zero and
volve over time until reaching a single steady-state value. Interest-
ngly, the apparent permeability tensor is not spherical, despite the fact
hat the intrinsic permeability is indeed a spherical tensor, for this unit
ell geometry. This is the consequence of the non-linear character of the
arreau model. Nevertheless, the off-diagonal components of the tensor
re equal, which evidences that the tensor is symmetric as anticipated
bove. Note that the off-diagonal components start acquiring non-zero
alues at a time that is an order of magnitude larger than for their
iagonal counterparts. Moreover, for this geometry, the off-diagonal
omponents remain one order of magnitude smaller than the diagonal
erms for the whole range of pressure gradient angles.

As a second case study, the predictions of the dynamics of the
omponents of the apparent permeability tensor are reported for lam-

nar flow (𝑅𝑒 = 1000) in Fig. 4. The numerical simulations were
Fig. 3. Dynamics of the a) 𝑥𝑥, b) 𝑦𝑥 and c) 𝑦𝑦-components of the apparent permeability
tensor (normalized by the 𝑥𝑥-component of the intrinsic permeability tensor) under
creeping flow conditions vs. the macroscopic pressure gradient angle 𝜃 for 𝜀 = 0.9. Red
dots correspond to the values reported in figure 3b of Airiau and Bottaro [38].

performed in the same model structure used for 𝑅𝑒 ≪ 1. As in Fig. 3,
all the components of 𝗛∗

𝜇 increase over time, until reaching steady
state for all angles. In contrast with the creeping flow regime, here,
the apparent permeability tensor shows non-symmetrical properties, as
expected. This is evidenced by the completely different values reported
in Figs. 4b and 4c of the off-diagonal terms at all times. Moreover, the
iagonally-opposite components of the tensor display specular values,
.e.,𝐻𝑥𝑥(𝜃) = 𝐻𝑦𝑦(90◦−𝜃) (see Figs. 4a and 4d) and𝐻𝑥𝑦(𝜃) = 𝐻𝑦𝑥(90◦−𝜃)
(see Figs. 4b and 4c). This is a consequence of the orthotropic character
of the unit cell. Also, in contrast to the creeping regime, the diagonal



Journal of Non-Newtonian Fluid Mechanics 306 (2022) 104840
Fig. 4. Dynamics of the a) 𝑥𝑥, b) 𝑦𝑥, c) 𝑥𝑦 and d) 𝑦𝑦-components of the apparent permeability tensor (normalized by the 𝑥𝑥-component of the intrinsic permeability tensor) under
laminar flow conditions (𝑅𝑒 = 1000) vs. the macroscopic pressure gradient angle, 𝜃, for 𝜀 = 0.9.
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components exhibit important variations in magnitude with respect to
the pressure gradient orientation while approaching steady state. This
is attributed to the streamlines deformation induced by both inertia
and viscous effects translating into a strong reduction of the values of
the components of 𝗛𝜇 . In accordance with this, all components of the
apparent permeability tensor are of the same order of magnitude for
pressure gradient angles between 15◦ and 75◦, despite the simplicity
of the geometry under consideration. Furthermore, the off-diagonal
components of the apparent permeability tensor exhibit a symmetry
breakdown with respect to 45◦ over time. This symmetry breakdown is
attributed to inertial effects, whose influence over the effective-medium
coefficients are noticeable only after sufficient time has passed, as
evidenced in figure 3 of [51]. This further indicates, as proved by the
symmetry analysis, that under inertial non-Newtonian flow conditions,
the non-symmetry of the tensor 𝗛∗

𝜇 is related to the physics regardless
the geometry in the unit cell. This extends similar conclusions reached
in the case of a Newtonian fluid [69].

6.3. Analysis for a non-zero initial flow condition

As a final case study, consider the situation in which the macro-
scopic pressure gradient has only one non-zero component in the
horizontal direction and is time-dependent in an oscillatory manner
according to the following expression

−𝑑𝒫
∗

𝑑𝑥∗
=

⎧

⎪

⎨

⎪

−
𝑑𝒫 ∗

0
𝑑𝑥∗ = 0.1, 𝑡∗ ≤ 0,

−
𝑑𝒫 ∗

0 + 0.5 (1 − cos(𝜔∗𝑡∗)) , 𝑡∗ > 0.
(45)
⎩
𝑑𝑥∗
With this expression, it is meant that the initial flow results from a
constant pressure gradient in the 𝑥-direction at 𝑡 = 0, which is then
oscillatory at 𝑡 > 0. This particular form of the macroscopic pressure
gradient has been used in previous works [51,52], and in the remainder
of this section, the dimensionless frequency 𝜔∗ is set to 100 for the sake
of brevity in the analysis, which could certainly be extended to other
frequency values.

Since now the initial pressure gradient is non-zero, it is necessary
to solve the initial flow problem in a unit cell, as given in Eqs. (37), in
order to compute the field of 𝐯∗0. This solution is the initial condition
f the flow problem defined in Eqs. (40), which is solved to obtain
he dynamic dimensionless velocity field 𝐯∗. Indeed, due to the nature
f the macroscopic pressure gradient considered here, it is natural
o expect that 𝐯∗ is an oscillatory function of time that reaches a
ermanent, albeit unsteady state at sufficiently long times. Finally,
he time-dependent velocity field is used in Eqs. (41) to compute the
losure variable 𝗙∗. With these elements available, it is possible to use
qs. (42) to predict the effective-medium quantities 𝗛∗

𝜇 and 𝜶∗
0. Since

the macroscopic pressure gradient is horizontal, corresponding to a
symmetry axis of the unit cell, the macroscopic velocity is aligned with
∇∗𝒫 ∗. Consequently, it is only necessary to compute the values of the
𝑥𝑥-component of 𝗛∗

𝜇 and the 𝑥-component of 𝜶∗
0 in order to predict

the horizontal component of the macroscale velocity vector as defined
in Eq. (43).

In Fig. 5, the dynamics of 𝐻∗
𝜇𝑥𝑥 and 𝛼∗0𝑥 are reported for two

Reynolds number values considering both non-Newtonian and Newto-

nian flow conditions. In the latter case, 𝜇 was taken equal to 𝜇0 (i.e.,
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Fig. 5. Example of the Reynolds number influence on the dynamics of the dimensionless a), c) 𝑥𝑥-component of the apparent permeability tensor (𝐻∗
𝜇𝑥𝑥) and b), d) the 𝑥-component

of the memory vector 𝛼∗0𝑥 for both non-Newtonian and Newtonian flows. Results in a) and b) correspond to 𝑅𝑒 ≤ 100, whereas results in c) and d) are obtained for 𝑅𝑒 = 103. All
the simulations result from solving the associated closure problem together with Eqs. (37) and (40) in the unit cell depicted in Fig. 2 for a porosity of 0.9.
Fig. 6. Fields of 𝜇(𝛤 ∗)∕𝜇ref at 𝑡∗ = 1 corresponding to the simulations reported in Fig. 5 for a) 𝑅𝑒 ≪ 1, b) 𝑅𝑒 = 100 and c) 𝑅𝑒 = 1000.
𝜇∗ = 1). These simulations were performed in the unit cell depicted
in Fig. 2, taking a porosity value of 0.9. Regarding these results, the
following comments are in order.

• Results on 𝐻∗
𝜇𝑥𝑥 and 𝛼∗0𝑥 are not noticeably modified when the

Reynolds number is increased up to 100. Inertial effects remain
weak in the interval 0 ≤ 𝑅𝑒 ≤ 100 and do not significantly
impact the field of 𝗙 which is mainly viscosity-dependent. In
particular, the local viscosity does not seem to be markedly
affected by the convective acceleration in this range of 𝑅𝑒. This is
evidenced in the dimensionless viscosity field examples reported
in Fig. 6 for 𝑡∗ = 1 where no real contrast between the two
fields at 𝑅𝑒 ≪ 1 and 𝑅𝑒 = 100 is noticeable whereas a clear
difference in the field of 𝜇(𝛤 ∗)∕𝜇0 is observable for 𝑅𝑒 = 1000.

It must be noted that the apparent permeability is larger at any
time in the non-Newtonian case. This is consistent with the fact
that this coefficient is viscosity-dependent and the shear-thinning
character of the fluid under consideration.

• The increase over time of 𝐻∗
𝜇𝑥𝑥 (and the decrease over time

of 𝛼∗0𝑥) does not allow distinguishing the non-Newtonian from
the Newtonian flow case up until a threshold time, which is
roughly equal to 𝑡∗0 ≃ 0.04 in the configuration under study. This
is to be expected since the closure problem initial condition is
homogeneous for both non-Newtonian and Newtonian flows.

• For Reynolds number values smaller than or equal to 100, the re-
sults in Fig. 5a) show that the apparent permeability is oscillatory
in the non-Newtonian case despite the vanishingly small influence
of inertial effects. This is clearly the signature of the dependence
of the viscosity on the velocity gradients and the impact of this
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Fig. 7. Comparison of the predictions of the seepage velocity dynamics resulting
from pore-scale simulations (PSS) and the upscaled model (UM) derived here. Results
correspond to flow conditions reported in Fig. 5 taking a) 𝑅𝑒 ≤ 102 and b) 𝑅𝑒 = 103.

interplay on the viscous term in a periodic unit cell. Conversely,
in the Newtonian case no oscillations are observed, as expected,
since the viscosity is constant in that case. These observations are
also applicable to the results in Fig. 5b) for the dynamics of 𝛼∗0𝑥.

• As the Reynolds number increases, the amplitude of the apparent
permeability oscillations in the non-Newtonian case are damp-
ened but remain in phase compared to the case where inertia is
insensitive. Dampening is clearly due to inertia, confirming that,
in this range of 𝑅𝑒, inertia and viscous effects are competing
in the dynamics of the apparent permeability. Conversely, in
the Newtonian case, inertia favors oscillations on the apparent
permeability. Moreover, it should be noted that the oscillations
are roughly out of phase with respect to the non-Newtonian case.
Furthermore, for the memory term, 𝛼∗0𝑥, the oscillations in the
permanent regime are practically the same (in amplitude and
phase) for the two flow regimes considered here in the non-
Newtonian case. This further illustrates the complex combined
effects of inertia and viscosity in that case. As for the apparent
permeability, oscillations are amplified by inertia in the Newto-
nian case and are out of phase compared to the non-Newtonian
case. Note that in both situations, 𝛼∗0𝑥 is centered on zero in the
permanent regime. This is in agreement with the fact that, at
sufficiently long time, the initial flow memory is lost.

With the above effective quantities at hand, it is now possible to
provide predictions of the seepage velocity dynamics resulting from
the upscaled model given in Eq. (43) and compare them with pore-
scale simulations. The latter results from solving the flow problems
 t
given in Eqs. (37) and (40) in a horizontal array of unit cells, each one
subject to the same macroscopic pressure gradient given in Eq. (45).
The macroscopic velocity is then computed by taking the superficial
average of the pore-scale velocity field over a unit cell positioned at
the geometric center of the array. It is noted that an array of ten unit
cells yields the same predictions as systems with larger sizes.

Results obtained by following this procedure are reported in Fig. 7
for both non-Newtonian and Newtonian flows. It may be noted from
this figure that the characteristic time, 𝑡∗0, corresponds to the oscil-
ations onset of the macroscopic velocity. Moreover, the dynamics of
he average velocities are perfectly in phase for both Newtonian and
on-Newtonian flows. The velocity, in the latter case, is larger, at any
ime, than in the Newtonian case, the physical reason lying, as observed
or the apparent permeabilities, in the shear-thinning character of the
on-Newtonian flow. The comparison between pore-scale simulations
nd the predictions from the upscaled model show excellent agreement
or both types of flows, proving that the upscaled model accurately
eproduces the physics over time for the two Reynolds number values
onsidered here. This serves as a validation of the model albeit this does
ot replace, by any means, the need for experimental validation. These
imulations simply show that, as long as the assumptions that support
he derivation of the upscaled model are met, the model performs
atisfactorily.

The above results provide an illustrative application of the model
erived here for a particular fluid flow (Carreau model) in a simple
eometry. Undeniably, a variety of other generalized Newtonian fluid
lows, porous media geometries and configurations could be investi-
ated. However, this remains beyond the scope of the present work.
evertheless, the same type of agreement with pore-scale simulations

s expected for other types of non-Newtonian fluids and homogeneous
edia that comply with the constraints and assumptions involved in

he upscaling process.

. Discussion and conclusions

In this work, a macroscopic model for generalized Newtonian fluid
low under non-steady and inertial conditions in rigid and homoge-
eous porous media was derived considering an effective slip boundary
ondition at the solid–fluid interface. Since the analysis is restricted to
ncompressible flow and no mass transfer takes place between the fluid
nd solid phases, the upscaled mass conservation equation, obtained
y making use of the classical volume averaging method, simply states
hat the seepage velocity is solenoidal. The macroscopic momentum
ransport equation resulted from a combination of a simplified version
f the volume averaging method and the adjoint technique. The result-
ng expression has a Darcy-like structure that is non-local in time as
t involves the convolution product between the temporal derivative
f the apparent permeability tensor with the macroscopic pressure
radient. In addition, the macroscopic momentum balance equation
ncorporates a memory term of the initial condition. Both the apparent
ermeability tensor and the effective memory term are obtained from
he solution of a single closure problem in a unit cell representative
f the process. They depend on the magnitude and orientation of the
acroscopic forcing. The apparent permeability tensor is not symmet-

ic, in general, when inertia is present. However, it is symmetric in the
reeping regime.

The model keeps a certain degree of generality as it can be used for
ny viscosity model that is compliant with generalized Newton’s law.
ndeed, the macroscopic model structure is identical to the one reported
or Newtonian flow [51–53]. In addition, under creeping steady-state
onditions and no slip effect at the solid–fluid interface, the model
educes to that reported in [38]. Numerical results of the components
f the apparent permeability tensor under unsteady conditions, and for
simple 2D model structure, are in agreement with those reported in

his reference after reaching steady state. Moreover, the dynamics of
he apparent permeability components were shown to be quite sensitive

o the flow regime. In fact, the off-diagonal components of the apparent
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permeability tensor yield a contribution to the flow of comparable 
importance with respect to their diagonal counterparts for almost all
the macroscopic pressure gradient orientations under consideration.

The performance of the model to predict the flow dynamics was 
validated by comparison of the seepage velocity with the results from
pore-scale simulations in a simple periodic representation of the porous
medium structure considering an oscillatory macroscopic pressure gra-
dient. Excellent agreement was found between the two approaches. 
Contrary to the Newtonian case, the apparent permeability is influ-
enced by the oscillatory nature of the forcing, even under creeping flow
conditions, during the permanent regime. The numerical validation
achieved in this work does not replace comparison with experimental
results and calls upon more experimental test of non-Newtonian flow
in porous media in various conditions.

It must be emphasized that the validations reported here do not
cover all the degrees of freedom presented in the model. For instance, a
detailed analysis of the effect of geometrical anisotropy, its interaction
with the fluid rheology and the resulting effective-medium quantities is
certainly interesting. Nevertheless, the model performance should not
be compromised by the unit cell geometry, since no assumption is made
regarding this feature in the derivations. Another point of discussion is
the interfacial slip. Again, since no particular assumptions were made 
during the upscaling process, while employing this condition, there 
is no reason to doubt about the predictive capabilities of the model
in this regard as it was investigated in the Newtonian case (see, for
example, [52]). Nevertheless, for the non-Newtonian case, it would be
interesting to investigate the impact of slip on the effective-medium
quantities. However, such an analysis must only be made within the
range of validity of the slip boundary condition. These investigations
deserve a more exhaustive set of simulations and will be addressed in 
a future work.

Finally, the model derived here is a generalization of previous
approaches, showing the versatility of the upscaling method used in this
work. Extensions to other flow and transport situations are certainly
desirable and will be the subject of future investigations.
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ppendix A. Green’s formulas

In this appendix, proofs of Green’s formulas given in Eqs. (12a),
(12b) and (12c) are provided. To begin with, attention is focused on
Eq. (12a).

The starting point is Green’s formula given in equation (A1) of
ppendix A in [52], which can be written in an alternative form as

∫𝒱𝛽

[

𝐚 ⋅
(

∇ ⋅
(

𝑐
(

∇𝗕 + ∇𝗕𝑇 1
)))

−
(

∇ ⋅
(

𝑐
(

∇𝐚 + ∇𝐚𝑇
)))

⋅ 𝗕
]

𝑑𝑉

= ∫𝒜𝛽

[

𝐚 ⋅
(

𝐧 ⋅ 𝑐
(

∇𝗕 + ∇𝗕𝑇 1
))

( 𝑇 ) ]
−𝐧 ⋅ 𝑐 ∇𝐚 + ∇𝐚 ⋅ 𝗕 𝑑𝐴. (A.1)
he procedure to reach this expression is the same as in the cited
eference, in which, however, 𝐮 is identified to 𝐚, 𝗪 to 𝑐

(

∇𝗕 + ∇𝗕𝑇 1
)

n equation (A2a), 𝗨 to 𝑐
(

∇𝐚 + ∇𝐚𝑇
)

and 𝗩 to 𝗕 in equation (A2b). In
ddition, the fact that 𝐧 ⋅

[

𝐚 ⋅ 𝑐
(

∇𝗕 + ∇𝗕𝑇 1
)]

= 𝐚 ⋅
[

𝐧 ⋅ 𝑐
(

∇𝗕 + ∇𝗕𝑇 1
)]

as taken into account.
Next, consider the identity

⋅ (𝐜𝐚 ⋅ 𝗕) = ∇ ⋅ (𝐜𝐚) ⋅ 𝗕 + (𝐜𝐚)𝑇 ∶ ∇𝗕

= (∇ ⋅ 𝐜𝐚 + 𝐜 ⋅ ∇𝐚) ⋅ 𝗕 + 𝐚 ⋅ (𝐜 ⋅ ∇𝗕) . (A.2a)

Upon integration over 𝒱𝛽 , and making use of the divergence theorem,
t gives

∫𝒱𝛽
[𝐚 ⋅ (𝐜 ⋅ ∇𝗕) + 𝐜 ⋅ ∇𝐚 ⋅ 𝗕 + ∇ ⋅ 𝐜𝐚 ⋅ 𝗕] 𝑑𝑉 =

∫𝒜𝛽
𝐧 ⋅ 𝐜𝐚 ⋅ 𝗕 𝑑𝐴. (A.2b)

dditionally, the following identities can be considered

⋅ (𝐚𝐛) = ∇ ⋅ 𝐚𝐛 + 𝐚 ⋅ ∇𝐛, (A.3a)

⋅ (𝑎𝗕) = ∇𝑎 ⋅ 𝗕 + 𝑎∇ ⋅ 𝗕, (A.3b)

nd can also be integrated over 𝒱𝛽 , which, by making use of the
ivergence theorem, yield

∫𝒱𝛽
(∇ ⋅ 𝐚𝐛 + 𝐚 ⋅ ∇𝐛) 𝑑𝑉 = ∫𝒜𝛽

𝐧 ⋅ 𝐚𝐛 𝑑𝐴

= ∫𝒜𝛽
𝐚 ⋅

[

𝐧 ⋅ (I𝐛)
]

𝑑𝐴, (A.3c)

𝒱𝛽

(∇𝑎 ⋅ 𝗕 + 𝑎∇ ⋅ 𝗕) 𝑑𝑉 = ∫𝒜𝛽
𝐧 ⋅ 𝑎𝗕 𝑑𝐴

= ∫𝒜𝛽
𝐧 ⋅ (I𝑎) ⋅ 𝗕 𝑑𝐴. (A.3d)

Adding Eqs. (A.1), (A.2b) and (A.3d) pre-multiplied by a constant
𝑑, and finally subtracting Eq. (A.3c) to the resulting expression leads
to

∫𝒱𝛽

[

𝐚 ⋅
(

𝑑𝐜 ⋅ ∇𝗕 − ∇𝐛 + ∇ ⋅
[

𝑐
(

∇𝗕 + ∇𝗕𝑇 1
)])

−
(

−𝑑𝐜 ⋅ ∇𝐚 − ∇𝑎 + ∇ ⋅
[

𝑐
(

∇𝐚 + ∇𝐚𝑇
)])

⋅ 𝗕
]

𝑑𝑉

− ∫𝒱𝛽
(∇ ⋅ 𝐚𝐛 − 𝑑∇ ⋅ 𝐜𝐚 ⋅ 𝗕 − 𝑎∇ ⋅ 𝗕) 𝑑𝑉

= ∫𝒜𝛽

[

𝐚 ⋅
(

𝐧 ⋅
(

−I𝐛 + 𝑐(∇𝗕 + ∇𝗕𝑇 1)
))

−𝐧 ⋅
(

−𝑑𝐜𝐚 − I𝑎 + 𝑐
(

∇𝐚 + ∇𝐚𝑇
))

⋅ 𝗕
]

𝑑𝐴, (A.4)

which is Eq. (12a), hence completing the proof of this Green’s formula.
To demonstrate the formula in Eq. (12b), it is convenient to consider

he above result and form the left dyadic product of this equality by a
onstant arbitrary vector, denoted 𝝀. Keeping in mind that 𝝀 is indeed
onstant, the following identities are to be considered

𝝀𝐜 ⋅ ∇𝐚 = (𝐜 ⋅ ∇𝐚𝝀)𝑇 = (𝐜 ⋅ ∇ (𝐚𝝀))𝑇 , (A.5a)

𝝀∇𝑎 = (∇𝑎𝝀)𝑇 = (∇ (𝑎𝝀))𝑇 , (A.5b)

𝝀∇ ⋅
(

∇𝐚 + ∇𝐚𝑇
)

=
(

∇ ⋅
(

∇𝐚 + ∇𝐚𝑇
)

𝝀
)𝑇

=
(

∇ ⋅
(

∇ (𝐚𝝀) + (∇ (𝐚𝝀))𝑇 1
))𝑇 , (A.5c)

𝝀∇ ⋅ 𝐚𝐛 = ∇ ⋅ (𝐚𝝀)𝐛, (A.5d)

𝝀𝐧 ⋅ 𝐜𝐚 = 𝐧 ⋅ 𝐜𝝀𝐚 = (𝐧 ⋅ 𝐜𝐚𝝀)𝑇 , (A.5e)

𝝀𝐧𝑎 = (𝐧𝝀𝑎)𝑇 , (A.5f)

𝝀𝐧 ⋅
(

∇𝐚 + ∇𝐚𝑇
)

=
(

𝐧 ⋅
(

∇𝐚 + ∇𝐚𝑇
)

𝝀
)𝑇

=
(

𝐧 ⋅
(

∇ (𝐚𝝀) + (∇ (𝐚𝝀))𝑇 1
))𝑇 . (A.5g)
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Once these identities are used in the outer product between
and Eq. (A.4), and after identifying 𝐚𝝀 ≡ 𝗔 and 𝑎𝝀 ≡ 𝐚, the following

result is obtained

∫𝒱𝛽

[

𝗔𝑇 ⋅
(

𝑑𝐜 ⋅ ∇𝗕 − ∇𝐛 + ∇ ⋅
[

𝑐
(

∇𝗕 + ∇𝗕𝑇 1
)])

−
(

−𝑑𝐜 ⋅ ∇𝗔 − ∇𝐚 + ∇ ⋅
[

𝑐
(

∇𝗔 + ∇𝗔𝑇 1
)])𝑇

⋅ 𝗕
]

𝑑𝑉

+ ∫𝒱𝛽

(

𝑑∇ ⋅ 𝐜𝗔𝑇 ⋅ 𝗕 − ∇ ⋅ 𝗔𝐛 + 𝐚∇ ⋅ 𝗕
)

𝑑𝑉

= ∫𝒜𝛽

[

𝗔𝑇 ⋅
(

𝐧 ⋅
(

−I𝐛 + 𝑐
(

∇𝗕 + ∇𝗕𝑇 1
)))

−
(

𝐧 ⋅
(

−𝑑𝐜𝗔 − I𝐚 + 𝑐
(

∇𝗔 + ∇𝗔𝑇 1
)))𝑇

⋅ 𝗕
]

𝑑𝐴, (A.6)

which corresponds to Green’s formula given in Eq. (12b), hence
completing its proof.

Turning the attention to Eq. (12c), it is convenient to use the
substitutions 𝗕 = 𝐛𝝀 and 𝐛 = 𝑏𝝀, considering 𝝀 as a constant arbitrary
unit vector, and introduce them into the formula given in Eq. (A.4).
Once this is done and the right inner product of the result is formed
with 𝝀, the following relationship is obtained

∫𝒱𝛽

[

𝐚 ⋅
(

𝑑𝐜 ⋅ ∇𝐛 − ∇𝑏 + ∇ ⋅ 𝑐
(

∇𝐛 + ∇𝐛𝑇
))

−
(

−𝑑𝐜 ⋅ ∇𝐚 − ∇𝑎 + ∇ ⋅ 𝑐
(

∇𝐚 + ∇𝐚𝑇
))

⋅ 𝐛
]

𝑑𝑉

− ∫𝒱𝛽
(𝑏∇ ⋅ 𝐚 − 𝑑∇ ⋅ 𝐜𝐚 ⋅ 𝐛 − 𝑎∇ ⋅ 𝐛) 𝑑𝑉

= ∫𝒜𝛽

[

𝐚 ⋅
(

𝐧 ⋅
(

𝑑𝐜𝐛 − I𝑏 + 𝑐
(

∇𝐛 + ∇𝐛𝑇
)))

−
(

𝐧 ⋅
(

−I𝑎 + 𝑐
(

∇𝐚 + ∇𝐚𝑇
)))

⋅ 𝐛
]

𝑑𝐴, (A.7)

which is Green’s formula given in Eq. (12c), thus concluding the proof.

Appendix B. Fluid pressure deviations solution in the Laplace
domain

The purpose of this appendix is the derivation of a formal solution
for ̂̃𝑝 by making use of Green’s formulas in a way similar to that adopted
to obtain 𝐯̂ in Section 4. To this end, let the adjoint Green’s function
pair for the fluid pressure deviations in the Laplace domain be 𝑔̂𝑎 and
𝐠̂𝑝. They are the solution of the following boundary-value problem

∇ ⋅ 𝐠̂𝑝 = 𝛿(𝐫 − 𝐫0) −
1
𝑉𝛽
, in 𝒱𝛽 , (B.1a)

+ 𝜌𝑠𝐠̂𝑝 − 𝜌𝐯𝛥 ⋅ ∇𝐠̂𝑝 = −∇𝑔̂𝑎

+ ∇ ⋅
[

𝜇(𝛤𝛥)
(

∇𝐠̂𝑝 + ∇𝐠̂𝑇𝑝
)]

, in 𝒱𝛽 , (B.1b)

𝐠̂𝑝 = −𝑆𝛥𝗣 ⋅
(

𝐧 ⋅
(

∇𝐠̂𝑝 + ∇𝐠̂𝑇𝑝
))

, at 𝒜𝛽𝜎 , (B.1c)

𝜓(𝐫 + 𝐥𝑖) = 𝜓(𝐫), 𝑖 = 1, 2, 3; 𝜓 = 𝐠̂𝑝, 𝑔̂𝑎, (B.1d)

𝑔̂𝑎 = 0, at r = r𝑎. (B.1e)

In equation Eq. (B.1b), 𝜷 is a function of r. In order to find the rela-
tionship between these Green’s functions and the pressure deviations,
Green’s formula in the form given in Eq. (12c) can be used. Setting
𝑎 = ̂̃𝑝, 𝐚 = 𝐯̂, 𝐜 = 𝐯𝛥, 𝑏 = 𝑔̂𝑎, 𝐛 = 𝐠̂𝑝, 𝑐 = 𝜇(𝛤𝛥) and 𝑑 = 𝜌, and taking into
account that 𝐯̂ and 𝐯𝛥 are solenoidal fields, along with periodicity that
allows reducing the area integral to 𝒜𝛽𝜎 only, it results that

∫𝒱𝛽

[

𝐯̂ ⋅
(

𝜌𝐯𝛥 ⋅ ∇𝐠̂𝑝 − ∇𝑔̂𝑎 + ∇ ⋅ 𝜇(𝛤𝛥)
(

∇𝐠̂𝑝 + ∇𝐠̂𝑇𝑝
))

− 𝐠̂𝑝 ⋅
(

−𝜌𝐯𝛥 ⋅ ∇𝐯̂ − ∇ ̂̃𝑝 + ∇ ⋅ 𝜇(𝛤𝛥)
(

∇𝐯̂ + ∇𝐯̂𝑇
))

]

𝑑𝑉

+ ∫𝒱𝛽
∇ ⋅ 𝐠̂𝑝 ̂̃𝑝 𝑑𝑉 = ∫𝒜𝛽𝜎

𝐧 ⋅
[

𝐯𝛥𝜌𝐯̂ ⋅ 𝐠̂𝑝 − 𝐯̂𝑔̂𝑎 + 𝐠̂𝑝 ̂̃𝑝
]

𝑑𝐴

+ 𝜇
(

𝛤𝛥
)

𝐧 ⋅
[(

∇𝐠̂𝑝 + ∇𝐠̂𝑇𝑝
)

⋅ 𝐯̂
∫𝒜𝛽𝜎
−
(

∇𝐯̂ + ∇𝐯̂𝑇
)

⋅ 𝐠̂𝑝
]

𝑑𝐴. (B.2)

The first area integral term on the right-hand side of this relationship is
zero due to the tangential character of 𝐯𝛥, 𝐯̂ and 𝐠̂𝑝 at 𝒜𝛽𝜎 . In addition,
substituting the boundary conditions for 𝐯̂ and 𝐠̂𝑝 given in Eqs. (16c)
and (B.1c) into the second interfacial term, and using the nomenclature
𝗔 ≡ ∇𝐠̂𝑝 + ∇𝐠̂𝑝 and 𝗕 ≡ ∇𝐯̂ + ∇𝐯̂𝑇 yields

∫𝒜𝛽𝜎
𝜇
(

𝛤𝛥
)

𝐧 ⋅
[

𝗔 ⋅ 𝐯̂ − 𝗔 ⋅ 𝐠̂𝑝
]

𝑑𝐴 =

− ∫𝒜𝛽𝜎
𝜇
(

𝛤𝛥
)

𝑆𝛥
[

𝐧 ⋅ 𝗔 ⋅ 𝗣 ⋅ (𝐧 ⋅ 𝗕)

− 𝐧 ⋅ 𝗕 ⋅ 𝗣 ⋅ (𝐧 ⋅ 𝗔)
]

𝑑𝐴. (B.3)

Since 𝗣 is a symmetric tensor, the first term inside the integral on the
right-hand side of this last expression can equivalently be written as
𝐧 ⋅ 𝗔 ⋅ 𝗣 ⋅ (𝐧 ⋅ 𝗕) = 𝗣 ⋅ (𝐧 ⋅ 𝗔) ⋅ (𝐧 ⋅ 𝗕) = 𝐧 ⋅ 𝗕 ⋅ 𝗣 ⋅ (𝐧 ⋅ 𝗔). This proves that
the second area integral term on the right-hand side of Eq. (B.2) is also
ero. Substitution of the corresponding expressions extracted from the
omentum-like Eqs. (16b) and (B.1b) in the remaining volume integral

erm of Eq. (B.2) leads to

̂̃ = ∫𝒱𝛽
𝐠̂𝑝 𝑑𝑉 ⋅

(

∇⟨𝑝̂⟩𝛽 −
𝜌
𝑠
𝐠
)

− 𝜌∫𝒱𝛽
𝐠̂𝑝 ⋅ 𝐯0 𝑑𝑉 + 𝜑̂. (B.4)

In the above equation 𝜑̂ is a constant in space. As a final step, it is now
f interest to determine the relationship between the adjoint Green’s
unction pair for the pressure and the Green’s function pair (𝗚𝑣, 𝐠𝑣) for
he velocity in the Laplace domain. To this end, consider the expression
f Green’s formula given in Eq. (12a). Setting, 𝑎 = 𝑔̂𝑎, 𝐚 = 𝐠̂𝑝, 𝐜 = 𝐯𝛥,
= 𝐠̂𝑣, 𝗕 = 𝗚̂𝑣, 𝑐 = 𝜇(𝛤𝛥) and 𝑑 = −𝜌, taking into account that 𝐯𝛥

nd 𝗚̂𝑣 are divergence-free fields, as well as the periodicity condition
hat allows reducing the area integral to 𝒜𝛽𝜎 , this formula takes the
ollowing expression

∫𝒱𝛽

[

𝐠̂𝑝 ⋅
(

−𝜌𝐯𝛥 ⋅ ∇𝗚̂𝑣 − ∇𝐠̂𝑣

+∇ ⋅
[

𝜇(𝛤𝛥)
(

∇𝗚̂𝑣 + ∇𝗚̂𝑇 1
𝑣

)])

−
(

𝜌𝐯𝛥 ⋅ ∇𝐠̂𝑝 − ∇𝑔̂𝑎

+∇ ⋅
[

𝜇(𝛤𝛥)
(

∇𝐠̂𝑝 + ∇𝐠̂𝑇𝑝
)] )

⋅𝗚̂𝑣

]

𝑑𝑉

− ∫𝒱𝛽
∇ ⋅ 𝐠̂𝑝𝐠̂𝑣 𝑑𝑉

= ∫𝒜𝛽𝜎
𝐧 ⋅

(

𝐠̂𝑝𝐠̂𝑣 − 𝜌𝐯𝛥𝐠̂𝑝 ⋅ 𝗚̂𝑣 + 𝑔̂𝑎𝗚̂𝑣

)

𝑑𝐴

+ ∫𝒜𝛽𝜎
𝜇
(

𝛤𝛥
)

𝐧 ⋅
[

𝐠̂𝑝 ⋅
(

∇𝗚̂𝑣 + ∇𝗚̂𝑇 1
𝑣

)

−
(

∇𝐠̂𝑝 + ∇𝐠̂𝑇𝑝
)

⋅ 𝗚̂𝑣

]

𝑑𝐴. (B.5)

Because 𝐠̂𝑝, 𝐯𝛥 and 𝗚̂𝑣 are all tangential at 𝒜𝛽𝜎 , the first area integral
erm on the right-hand side of the above expression is zero. Moreover,
nce the expressions of 𝐠̂𝑝 and 𝗚̂𝑣 at the solid–fluid interface given in
qs. (21c) and (B.1c) are considered, and following the development
eported in Appendix A in [52], the second area integral term is also
ero. After substitution of the corresponding expressions taken from the
omentum-like Eqs. (21b) and (B.1b) into the volume integral terms on

he left-hand side, and after some algebraic steps, the following result
s obtained

̂𝑝 = −𝐠̂𝑣. (B.6)

Substitution of this expression into Eq. (B.4) leads to Eq. (25b).

ppendix C. Symmetry and positiveness of 𝗛𝝁

In this appendix, symmetry and positiveness of the apparent per-
meability tensor, 𝗛𝜇, are analyzed, following the same steps as in [51]
(section 3.3) and [52] (Appendix C).
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Forming the left dot product of Eq. (27b) with 𝑠𝗙̂ and applying the
superficial averaging operator to the result, while taking into account
the solenoidal nature of 𝗙̂ and periodicity, yields

𝗛̂𝑇𝜇 =
𝜌
𝜇ref

𝑠2
⟨

𝗙̂𝑇 ⋅ 𝗙̂
⟩

+
𝜌
𝜇ref

𝑠
⟨

𝗙̂𝑇 ⋅
(

𝐯𝛥 ⋅ ∇𝗙̂
)⟩

− 𝑠

⟨

𝗙̂𝑇 ⋅

[

∇ ⋅

(

𝜇
𝜇ref

(

∇𝗙̂ + ∇𝗙̂𝑇 1
)

)]⟩

. (C.1)

The first term on the right-hand side of the above equation is symmet-
ric, whereas the second one is skew-symmetric (see the proof in [66],
section II.A). Moreover, using the nomenclature 𝗕̂ = 𝜇

𝜇ref

(

∇𝗙̂ + ∇𝗙̂𝑇 1
)

,
the third term (divided by 𝑠) can be equivalently rewritten as (see 
corresponding algebraic steps in [52], Appendix C)
⟨

𝗙̂𝑇 ⋅
(

∇ ⋅ 𝗕̂
)⟩

= −
⟨

∇𝗙̂𝑇 3 ∶ 𝗕̂
⟩

− ∫𝒜𝛽𝜎
𝑆𝛥
𝜇ref
𝜇

𝗔 ⋅ 𝗔𝑇 𝑑𝐴, (C.2)

where 𝗔 = 𝐧 ⋅ 𝗕̂𝑇 2 ⋅ 𝗣 and ∶ is the double dot product in the nested 
onvention sense. Here, the superscripts 𝑇 2 and 𝑇 3 respectively denote
he transposes defined as 𝐵𝑇𝑖𝑗

2
𝑘 = 𝐵𝑖𝑘𝑗 and 𝐵𝑇𝑖𝑗

3
𝑘 = 𝐵𝑘𝑗𝑖. The last term 

n the right-hand side of this last expression is obviously symmetric.
oreover, it can be shown (see [52], Appendix C) that the first is also a

ymmetric tensor. Consequently, it can be deduced that Eq. (C.1)
erforms a decomposition of 𝗛̂𝜇 in its principal parts showing that this

tensor is not symmetric, in general, and that the skew symmetric part 
originates from inertial effects only. Since the Laplace transform does
not alter symmetry properties, the same conclusions apply to 𝗛𝜇 .

At this point, positiveness can be analyzed, and to do so, it is
convenient to substitute Eq. (C.2) into Eq. (C.1) and add the result to
its transpose to obtain
1
2

(

𝗛̂𝜇 + 𝗛̂𝑇𝜇

)

=
𝜌
𝜇ref

𝑠2
⟨

𝗙̂𝑇 ⋅ 𝗙̂
⟩

+ 𝑠
⟨

∇𝗙̂𝑇 3 ∶ 𝗕̂
⟩

+ 𝑠∫𝒜𝛽𝜎
𝑆𝛥
𝜇ref
𝜇

𝗔 ⋅ 𝗔𝑇 𝑑𝐴. (C.3)

Forming the left and right dot products of this equation with an arbi-
rary constant vector, 𝝀, and following steps reported in [51] (equations
3.25) to (3.29)), leads to

⋅ 𝗛̂𝜇 ⋅ 𝝀 =
𝜌
𝜇ref

𝑠2
⟨

(

𝗙̂ ⋅ 𝝀
)2

⟩

+ 𝑠
⟨

𝝀 ⋅
(

∇𝗙̂𝑇 3 ∶ 𝗕̂
)

⋅ 𝝀
⟩

+ 𝑠∫𝒜𝛽𝜎
𝑆𝛥
𝜇ref
𝜇

(𝝀 ⋅ 𝗔)2 𝑑𝐴. (C.4)

The tensor ∇𝗙̂𝑇 3 ∶ 𝗕̂ represents the viscous dissipation of 𝗙̂ and
is hence positive. The two other terms on the right-hand side of the
above expression being also both positive, it results that 𝗛̂𝜇 is positive
semi-definite.
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