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Abstract 

Chemical and biocatalytic synthesis of seven previously undescribed marchantin A ester 

derivatives has been presented. Chemical synthesis afforded three peresterified bisbibenzyl 

products (TE1-TE3), while enzymatic method, using lipase, produced regioselective monoester 

derivatives (ME1-ME4). The antiproliferative activities of all prepared derivatives of 

marchantin A were tested on MRC5 healthy human lung fibroblast, A549 human lung cancer, 

and MDA-MB-231 human breast cancer cell lines. All tested esters were less cytotoxic in 

comparison to marchantin A, but they also exhibited lower cytotoxicity against healthy cells. 

Monoesters displayed higher cytotoxic activities than the corresponding peresterified products, 

presumably due to the presence of free catechol group. Monohexanoyl ester ME3 displayed the 

same IC50 like marchantin A against MDA-MB-231 cells, but the selectivity was higher. In this 

way, regioselective enzymatic monoesterification enhanced selectivity of marchantin A. ME3 

was also the most active among all derivatives against lung cancer cells A549 with the slightly 

lower activity and selectivity in comparison to marchantin A. 
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1. Introduction  

Taxonomically positioned between algae and vascular plants, liverworts belong to an early-

diverging lineage of land plants, and are considered the simplest of terrestrial plants (Quang and 

Asakawa, 2010; Asakawa et al., 2013; Ludwiczuk and Asakawa, 2014; Tanaka et al., 2016). 

Within oil bodies, intracellular membrane-bound organelles, liverworts contain numerous 

terpenes and lipophyllic aromatics (Asakawa, 1982, 1995; Asakawa et al., 2013; He et al., 2013; 

Novakovic et al., 2019). Bisbibenenzyls are plant metabolites characteristically found in 

liverworts with a single exception represented by the isolation of Riccardin C from a different 

plant division, namely Primula macrocalyx Bge. (Primulaceae) (Kosenkova et al., 2007). Apart 

from their chemotaxonomic importance, bisbibenzyls display various biological activities. 

Among the known bisbibenzyls, Marchantin A is the most investigated, and has been reported to 

have cytotoxic (Gaweł-Bęben et al., 2019; Huang et al., 2010; Jensen et al., 2012; Osei-Safo et 

al., 2017), antiprotozoal (S. Jensen et al., 2012; Otoguro et al., 2012), vasorelaxant (Morita et al., 

2011), antibacterial (Asakawa 1990; Kámory et al., 1995), anti-influenza activity (Iwai et al., 

2011), as well as lipopolysaccharide- induced NOS (Harinantenaina et al., 2005), and 5-

lipoxygenase and cyclooxygenase inhibitory activity (Asakawa 1990; Schwartner et al., 1995).  

Lipophilicity is an important physicochemical property in drug discovery, affecting 

pharmaceutical, pharmacokinetic, and pharmacodynamic action of the active molecule. Namely, 

it influences several stages of drug action, including transport through cell membranes, binding 

to the target as well as ADMET (absorption, distribution, metabolism, excretion, toxicity) 

properties (Rutkowska et al., 2013). In accordance with this, it has been reported that increasing 

the lipophilicity of various target molecules (e.g. by acylation) results in an increase in hypo 

glycemic (LI et al., 2013), antioxidant (Candiracci et al., 2016), and antitumor activities 

(Facchetti et al., 1991; Maliepaard et al., 1992). 

In this work, we report a chemical and biocatalytic synthesis of seven new marchantin A 

esters. Additionally, the anti-proliferative activities of all of the prepared derivatives of 

marchantin A were tested on MRC-5 healthy human fibroblast, A549 human lung cancer, and 

MDA-MB-231 breast cancer cell lines.  

 

2. Results and discussion 

2.1. Synthesis 
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The conversion of marchantin A into corresponding esters of several aliphatic carboxylic acids 

was envisaged in order to investigate the effect of increased lipophilicity on cytotoxic activity. 

Firstly, a base-promoted transesterification employing three vinyl esters (Table 1) was 

undertaken. An excess of vinyl esters was used, in the presence of sodium carbonate, in 

acetonitrile, at 120 °C. The applied reaction conditions afforded exclusively triacylated 

derivatives of marchantin A (TE1-TE3) in good to excellent yields, requiring no further 

purification. Additionally, in order to test the outcome of an acid-promoted transesterification 

Amberlyst 15 and vinyl propionate were used in acetonitrile, at 120 ºC. A more complex reaction 

mixture was observed compared to the one performed in base-promoted conditions, and 

quantitative NMR analysis revealed that the corresponding triacylated product was obtained in 

40% yield (using methyl benzoate as a standard).    

 

Table 1. 

 

Since no regioselectivity was observed in the previously described conditions, a method allowing 

partial esterification of marchantin A was sought thereafter. A literature search concerned with 

regioselective acylation revealed lipases as promising catalysts. Namely, lipases (EC 3.1.1.3) 

catalyze the hydrolysis of triglycerides, and are classified as hydrolase enzymes. They are 

produced ubiquitously by plants, animals, insects and microbes, the last of which represents the 

most common source of lipase due to ease of culture handling, availability and scale-up scope 

(Sarmah et al., 2018).  Their applications range from oleochemistry (Abdelmoez and Mustafa, 

2014; Hama and Noda, 2018), detergent (Jurado et al., 2011; Soleimani et al., 2017) and food 

industries (Ferreira-Dias et al., 2013), to the preparation of chiral intermediates (de Miranda, 

2015; Seddigi et al., 2017). Relevant to the scope of this work, lipases were also demonstrated to 

perform regioselective acylation (Lee et al., 2019; Wang et al., 2018; Yang et al., 2014) as well 

as hydrolysis (Carey and McCann, 2019). As a catalyst of choice for the esterification of 

marchantin A, Novozym® 40086 was selected. The reaction was initially tested with the excess 

of vinyl propionate, in i-Pr2O at 45 ºC (Table 2, entry 1). After 24 h, complete consumption of 

the starting material was observed by thin-layer chromatography, along with the formation of the 

complex reaction mixture. NMR analysis of the crude reaction mixture confirmed the complete 

consumption of the starting material and revealed three signals corresponding to the H-3′, 
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suggesting that there may be three substituted marchantin A products (see supporting 

information). The dominant product was isolated and purified by preparative thin-layer 

chromatography, and structural analysis revealed that monosubstitution of marchantin A had 

taken place, on the 13-OH. Comparison of the 1H NMR spectra of the purified monoester and the 

crude reaction mixture confirmed that this product was indeed the dominant one. The separation 

of the other two products (probably different diesters) from the reaction mixture was not 

successful, and a mixture of inseparable products was obtained. The substrate scope of the 

described reaction was expanded with three more monoesters, all of them retaining the 

substitution in the C-13 position. Although low yields of corresponding marchantin A 

monoesters were obtained, compared to the base-promoted reaction, a notable selectivity was 

observed in the lipase-catalyzed reaction, in spite of the excess of vinyl esters employed in both 

conditions. The regioselective enzymatic esterification could be due to an intramolecular H-

bonding within the catechol moiety. Notably, the synthesis of corresponding marchantin A 

monoesters was accomplished by protecting-group-free strategy. Raising the temperature of the 

lipase-catalyzed reaction to 65 ºC and analyzing the crude reaction mixture by NMR 

spectroscopy showed that the C-13 monoester remained the major product (37% yield), and a 

peak corresponding to the H-3′ of the starting compound was found as well, perhaps due to 

partial enzyme deactivation. Replicating the reaction conditions outlined in Table 2, in the 

absence of lipase, led to no product formation.  

 

Table 2. 

 

2.2. Structural analysis 

Obtained esters were characterized using NMR data. In comparison to marchantin A the 

main differences in the 1H NMR spectra of monoester derivatives (M1-M4) were new signals of 

protons of ester aliphatic chains at δH  ̴ 0.8 and 1.25-1.35, as well as protons of α-methylene 

group (to carbonyl) at δH  ̴ 1.9 (Table 3, Figs. S8, S12, S16, and S20, Supporting Information). 

The positions of ester groups (13-OH) in all monoester derivatives were determined according to 

the shifted signals of H-10 (δH  ̴ 7.3) and H-12 (δH  ̴ 7.0) towards lower fields in comparison to 

marchantin A for 0.30-0.31 and 0.12 ppm (Tables 3 and S1,  Figs. S9, S13, S17, and S21, 
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Supporting Information), respectively, as it was expected according to the theoretical 

calculations after substitution of a hydroxyl group with an ester group (Pretch et al., 2008). 

Additionally, in all monoester derivatives signals of unesterified 3′-OH and 5′-OH groups were 

noticed (for ME1 at δH 5.30, for ME2 at δH 2.89 and 2.95, for ME3 at δH 5.29, and for ME4 at 

δH 5.30) contrary to marchantin A which possess three OH groups (δH 4.86 (13-OH) and 5.32 (3′-

OH and 5′-OH, Figs. S2, S8, S12, and S16, Supporting Information). In the 13C NMR spectra of 

all monoester derivatives novel signals in comparison to marchantin A appeared at δC  ̴ 171 ppm 

(ester carbonyl C) as well as below 30 ppm (aliphatic ester carbons) (Figs. S10, S11, S14, S15, 

S18, S19, S22, and S23, Supporting Information). The signals of C-10 and C-12 were shifted 

towards lower fields for  ̴ 6-7 ppm, while the signals of C-13 and C-14 were shifted to the higher 

fields for  ̴ 6 and 4 ppm, respectively (Table S2, Supporting Information).  

In comparison to marchantin A the main differences in the 1H NMR spectra of triesters 

(TE1-TE3) were new signals of protons of ester aliphatic chains at δH 0.8 and 1.25-1.35, as well 

as protons of α-methylene group (to carbonyl) at δH  ̴ 1.9, similarly to monoesters (Table 4, Figs. 

S24, S28, and S32, Supporting Information). The positions of esterified hydroxyl groups (1′-, 6′-, 

and 13-OH) in all derivatives were determined according to the shifted signals of H-3′ (δH  ̴ 5.6), 

H-5′ (δH  ̴ 6.6), H-10 (δH  ̴ 7.3), and H-12 (δH  ̴ 7.0) towards lower fields in comparison to 

marchantin A (Table 4). The signals of H-10 were shifted in all derivatives for 0.31, signal of H-

12 for 0.12, signal of H-5′ for 0.16-0.17, while that of H-3′ for 0.42-0.44 ppm (Table S1, 

Supporting Information). Again, these changes of chemical shifts caused by the esterification 

were in accordance with the theoretical calculations (Pretch et al., 2008). In the 13C NMR spectra 

of all triester derivatives novel signals in comparison to the 13C NMR spectrum of marchantin A 

appeared at δC  ̴ 170-172 ppm (ester carbonyls C) as well as below 40 ppm (aliphatic ester 

carbons) (Figs. S26, S27, S30, S31, S34, and S35, Supporting Information). The signals of C-2′, 

C-3′, C-4′ and C-5′ in all triester derivatives were shifted towards lower fields for 5-8 ppm 

confirming esterifications at C-1′ and C-6′ (Table S2, Supporting Information). Each position of 

the shifted carbons at the C-ring possess at least one ester moiety in ortho or para position, 

causing higher chemical shifts. 

 

Table 3. 
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Table 4. 

 

2.3. Cytotoxic effects 

The cytotoxic effect (anti-proliferative activity) of synthesized compounds was tested on MRC-5 

healthy human fibroblast, A549 human lung cancer, and MDA-MB-231 human breast cancer cell 

lines. The IC50 values were between 9 and 150 µM (Table 5). In general, monoesters displayed 

equal or slightly weaker activity than marchantin A, while cytotoxicity of pereserified products 

was negligible, presumably due to the blocked catechol group. Cytotoxicity of monoesters 

against healthy cells was also weaker, to the greater extent than against cancers cells, thus 

improving the selectivity of ME3 (marchantin mono hexanoate) against MDA-MB-231 cells in 

comparison to that of marchantin A by 1.5-fold.From all esters, ME3 derivative also showed the 

highest activity against lung cancer cell line A549 (Table 5). An interesting cytotoxic effect of 

TE1 was noticed, when compared to TE2 and TE3. Namely, it retained nearly the same activity 

in all three cell lines, and also a higher activity compared to other two peracylated products. To 

eliminate partial hydrolysis in the culture medium as the underlying cause of higher activity, 

TE1 was subjected to conditions of the antiproliferative assay. A 100 mM solution of TE1 in 

DMSO was added to the RPMI mediator and the mixture was kept at 37 ºC for 48 h, under 

constant shaking (100 rpm). The NMR analysis of the resulting mixture showed no traces of 

hydrolysis products, therefore ruling out the initial hypothesis of partial hydrolysis of TE1 in the 

culture medium.   

It has been shown previously that marchantin-type bisbibenzyls exhibit anticancer activity. 

Marchantin A was cytotoxic against A256 breast cancer and against KB (derivative of HeLa) cell 

lines with IC50 values of 5.5 μM and 3.7 μM, respectively (Jensen et al., 2012 and Asakawa and 

Ludwiczuk, 2013). Recently it’s cytotoxic effects against human melanoma cell line A375 were 

shown with IC50 values similar to ones obtained in our study (Gaweł-Bęben, K.,2019). 

 

Table 5. 

        

Despite the facts that neither synthesized derivatives showed significantly higher activity than 

marchantin A, nor there is a sufficient amount of data to establish firm conclusions, in order to 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



gain better insight in SAR of investigated compounds, we decided to calculate some of the 

physically significant molecular descriptors and pharmaceutically relevant properties. 

For that, we built all molecular structures using Maestro 11.9 from Schrödinger Suite 2019-1 

(Maestro, version 11.9, Schrödinger, LLC, New York, NY, 2019.). From the table of properties 

and descriptors and activities of synthesized compounds and marchantin A (Table S3, 

Supporting Information), it seems that some of properties are in correlation with activities that 

compounds showed in biological tests. Most of them are obviously connected with permeability 

and solubility of investigated compounds. Even though this kind of analysis is based on rather 

small sample, and no firm conclusions are possible we are rather convinced that those properties 

are the most probably ones that should be taken into the account, when designing a molecule 

based on this scaffold, possessing higher activity than compounds tested in this article.  

The table of calculated properties and descriptors correlated with activities and short description 

of significant properties has been given in Supporting Information as Table S3. 

 

3. Conclusion 

In summary, seven previously undescribed marchantin A esters were synthesized. Among these 

compounds, three peresterified bisbibenzyl products were obtained by chemical synthesis, while 

lipase-catalyzed regioselective synthesis afforded four monoester derivatives. In addition, the 

antiproliferative activities of all prepared derivatives of marchantin A were evaluated on MRC5 

healthy human lung fibroblast, A549 human lung cancer, and MDA-MB-231 human breast 

cancer cell lines. It is noteworthy that monoesters displayed higher cytotoxic activities than the 

corresponding peresterified products, presumably due to the presence of free catechol group. 

Monohexanoyl ester ME3 exhibited similar activity against MDA-MB-231 cells and lower 

cytotoxicity against healthy cells in comparison to marchantin A which makes ME3 more 

selective in this regard. This study provides strong evidence that marchantin A is a good 

structural platform for the further derivatization and finally possible application of its derivatives 

in the anticancer therapy. 

 

4. Experimental section 

4.1. General experimental procedures 
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Dry-flash chromatography was performed on SiO2 (0.018–0.032 mm). Reaction progress was 

monitored by thin-layer chromatography (TLC Silica gel 60 F254 (Merck, Darmstadt)). IR spectra 

were recorded on a Thermo-Scientific Nicolet 6700 FT-IR Diamond Crystal instrument. 1H and 

13C NMR spectra were recorded on a Bruker Ultrashield Avance III spectrometer (at 500 and 

125 MHz, respectively) using CDCl3 (unless stated otherwise) as the solvent and 

tetramethylsilane (TMS) as an internal standard. Chemical shifts are expressed in parts per 

million (ppm) on the (δ) scale. Chemical shifts were calibrated relative to those of the solvent.   

Optical rotations were measured on a Rudolph Research Analytical Autopol IV automatic 

polarimeter with methanol as solvent, and the compound concentration used was in the range of 

0.8–4.0 mg/mL. UV spectra were recorded on a GBC Cintra UV/vis spectrometer with methanol 

as solvent. HRMS spectra were data were obtained on an Agilent 6210 time-of-flight LC/MS 

system equipped with an ESI interface (ESI-TOF/MS). The solvent was methanol, and the 

mobile phase was 0.2% HCOOH(aq)/CH3CN, 1:1, 0.2 mL/min. The ESI was operated in a 

negative and a positive mode, and nitrogen was used as the drying gas (12 L/min) and nebulizing 

gas at 350 °C (45 psi). The OCT RF voltage was set to 250 V, and the capillary voltage was set 

to 4.0 kV. The voltages applied to the fragmentor and skimmer were 140 and 60 V, respectively. 

Scanning was performed from m/z 100 to 1500. All compounds used for biological assays are of 

≥95% purity based on HPLC. The HPLC purity of Marchantin A, ME1-ME4 and TE1-TE3 was 

determined by Agilent 1200 HPLC system fitted with Quat Pump (G1311B), Injector (G1329B) 

1260 ALS, TCC 1260 (G1316A) and Detector 1260 DAD VL+ (G1315C). Prior to purity 

determination and in vitro assays, the tested compounds were purified by semi-preparative 

HPLC. For this purpose a C18 reversed-phase column (Zorbax ODS Semi-Preparative 5 μm 9.4 

× 250 mm) was used. Gradient elution was performed, using 0.2% HCO2H(aq) (A)/CH3CN (B): 0-

12 min 70% A → 50% A, 12-14 min 50% A → 0% A, 14-19 min 0% A. The flow rate was set to 

4 mL/min. The purity of reported compounds was tested with two HPLC methods: 

Method A. The LC system was fitted with a C18 reversed-phase column (Poroshell 120 SB-C18, 

2.7 μm, 4.6 × 50 mm) and gradient elution was performed using H2O (A) and CH3CN (B) as 

solvents, in the following manner: 0-1 min 95% A, 1-6 min 95% A → 5% A, 6-22 min 5% A, 

22-25 min 5% A → 95% A. The flow rate was set to 0.7 mL/min. 

Method B is identical to Method A, apart from MeOH being used as solvent B. 
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4.2. Reagents and chemicals 

Marchantin A was isolated from Marchantia polymorpha by a previously reported procedure 

[Asakawa et al, 1983]. NovozymⓇ 40086 was a gift from Novozymes A/S (Bagsværd, 

Denmark). Unless stated otherwise, solvents and other reagents were obtained from commercial 

sources and used without further purification. 

 

4.3. Computational methods 

All molecular structures were built using Maestro 11.9 from Schrödinger Suite 2019-1 (Maestro, 

version 11.9, Schrödinger, LLC, New York, NY, 2019.).All structures were submitted to 

Conformational search from the MacroModel module (MacroModel, version 12.3, Schrödinger, 

LLC, New York, NY, 2019.). The OPLS_2005 force field, with water as the solvent were used. 

For the conformational search method we used mixed MCMM/low-mode [Kolossváry and 

Guida, 1999], were the set parameters. Conformations were minimized using the Polak–Ribiere 

conjugate gradient method [Polak and Ribiere, 1969], with 25000 maximum iterations or until a 

0.05 convergence threshold was obtained. Duplicates were removed and all structures within 

energy window of 10.5 kJ/mol were saved. Best conformers were selected and calculation of 

physically significant molecular descriptors and pharmaceutically relevant properties was 

performed using QikProp (QikProp, version 5.9, Schrödinger, LLC, New York, NY, 2019.). 

 

4.4. General procedure for the peracylation of marchantin A 

A previously reported procedure for the O-acylation of phenols was modified and employed in 

this work (Zhou and Chen, 2018). A reaction vial was charged with marchantin A (35 mM), 

Na2CO3 (4.8 mg, 45 mmol), and MeCN (1.3 mL). The appropriate vinyl-ester was added 

dropwise (final concentration 420 mM) to the reaction mixture under constant magnetic stirring. 

The vial was crimped and heated at 120 ºC for 24 h. The reaction mixture was filtered, washed 

with MeCN (5 mL) and the solvents were removed under reduced pressure. The crude product 

was dried under high-vacuum, and NMR analysis confirmed that no further purification was 

necessary. All products TE1, TE2, and TE3 were obtained in quantities of 26.4, 28.0, and 28.1 

mg, respectively and their HPLC purities were over 95%. 

 

4.5. General procedure for the lipase-catalyzed acylation of marchantin A 
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A reaction vial was charged with marchantin A (23 mM), NovozymⓇ 40086 (1.6 g/mmol of 

substrate), and i-Pr2O (44.4 mL/mmol of substrate). The appropriate vinyl-ester was added 

dropwise (final concentration 460 mM) to the reaction mixture under constant magnetic stirring. 

The vial was crimped and heated at 45 ºC for 24 h. The enzyme was separated from the reaction 

mixture by filtration and washed with CH2Cl2 (10 mL). The filtrate was collected and 

concentrated under reduced pressure. The crude products were purified by Dry-flash 

chromatography (SiO2, Hex/EtOAc 7:3 v/v) or preparative Thin-layer chromatogaphy (SiO2, 

CH2Cl2/MeOH 97:3 v/v). 

All products ME1, ME2, ME3, and ME4 were obtained in quantities of 8.1, 10.1, 32.0, and 1.5 

mg, respectively and their HPLC purities were over 95%. 

 

4.6. In vitro antiproliferative assays  

For the determination of cytotoxicity of synthesized compounds and Marchantin A, the MTT (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay was used. The 

compounds were tested against MRC-5, A549 lung cancer and MDA-MB-231 breast cancer cell 

lines. The cells were incubated for 24 h in an RPMI-1640 medium with 104 colonies per well. 

The assay was done in 96 well flat-bottom microtiter plates (Sarstedt, Germany). After 

incubation, cells were treated with marchantin A and corresponding esters (dissolved in DMSO 

((100 mM), filtered through a 0.2 µm filter, EMD Millipore, Billerica, USA) with final 

concentrations ranging from 0.5 – 250 µM. DMSO was used as a negative control. The cells 

were treated with the mentioned compounds for 48 h, and MTT (Sigma Aldrich, St. Louis, MO, 

USA) dissolved in RPMI medium (0.5 mg/mL) was added to each well subsequently. After an 

incubation time of 30 min at 37 ºC, the medium was carefully removed by pipetting and DMSO 

(50 µL, 100%) was added to the adherent cells with formazan crystals in order to dissolve the 

formazan crystals. The absorbance of resulting solutions was measured with a Tecan Infinite 200 

pro multiplate reader at a wavelength of 540 nm. The results were presented relative to the 

DMSO negative control. The cytotoxicity was presented as the IC50 value, the compound 

concentration value causing survival of 50% of the cells.  

 

1’,6’,13-n-tripropanoylmarchantin A (TE1)  
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Viscous colorless oil; [𝛼]D
22 +5.0 (c  1.0 , MeOH); UV (MeOH) λmax (log ε): 274 (3.23), 238 

(3.99), 229 (4.19) nm; IR (ATR) νmax: 2983, 2941, 1769, 1593, 1505, 1461, 1351, 1318, 1268, 

1213, 1187, 1138, 1079, 1040, 907, 859, 781, 736, 697; ESI-HRMS m/z 567.2741 [M+H] + 

(calcd. for C36H39O6 567.2747); 1H NMR (500 MHz, CDCl3) 7.34 (dd, J = 8.0, 1.5 Hz, 1H), 7.20 

(t, J = 8.0 Hz, 1H), 6.99 (dd, J = 8.0, 1.5 Hz, 1H), 6.93-6.97 (m, 3H), 6.64 (d, J = 1.5 Hz, 1H), 

6.59 (d, J = 8.5 Hz, 2H), 6.50 (dd, J = 8.0, 1.5 Hz, 1H), 6.43 (brs, 1H), 6.39 (brd, J = 8.0 Hz, 

1H), 5.58 (d, J = 1.5 Hz, 1H), 3.00-3.10 (m, 4H), 2.86-2.90 (m, 2H), 2.70-2.77 (m, 2H), 2.52-

2.56 (m, 4H), 1.91 (q, J = 7.5 Hz, 2H), 1.27 (t, J = 7.5 Hz, 3H), 1.22 (J = 7.5 Hz, 3H), 0.82 (t, J = 

7.5 Hz, 3H); 13C NMR (125 Hz, CDCl3) 171.9, 171.6, 171.4, 157.4, 152.9, 151.5, 143.9, 143.1, 

142.5, 141.5, 138.6, 138.4, 136.6, 129.6, 128.6, 128.1, 124.7, 122.3, 121.6, 121.3, 115.9, 115.1, 

114.0, 113.1, 36.1, 34.9, 34.3, 30.0, 27.5, 27.2, 27.0, 9.3, 9.2, 8.4.  

 

 1’,6’,13-n-tributanoylmarchantin A (TE2) 

Viscous colorless oil; [𝛼]D
22 +6.0 (c  0.8, MeOH); UV (MeOH) λmax (log ε): 274 (3.43), 238 

(4.10), 231 (4.33) nm; IR (ATR) νmax:  3510, 3033, 2966, 2934, 2875, 1767, 1594, 1505, 1463, 

1349, 1311, 1268, 1244, 1213, 1183, 1142, 1097, 1038, 915, 850, 777, 733, 695;  ESI-HRMS 

m/z 651.2954 [M+H] + (calcd. for C40H43O8 651.2958); 1H NMR (500 MHz, CDCl3) 7.33 (dd, J 

= 8.0, 1.5 Hz, 1H), 7.21 (t, J = 8.0 Hz, 1H), 6.99 (dd, J = 8.0, 1.5 Hz, 1H), 6.93-6.97 (m, 3H), 

6.65 (d, J = 1.5 Hz, 1H), 6.59 (d, J = 8.5 Hz, 2H), 6.50 (dd, J = 8.0, 1.5 Hz, 1H), 6.43 (brs, 1H), 

6.39 (brd, J = 8.0 Hz, 1H), 5.58 (d, J = 1.5 Hz, 1H), 3.01-3.10 (m, 4H), 2.87-2.91 (m, 2H), 2.73-

2.77 (m, 2H), 2.50-2.54 (m, 4H), 1.88 (t, J = 7.5 Hz, 2H), 1.76 (sext, 2H), 1.74 (sext, 2H), 1.33 

(sext, 2H), 1.04 (t, J = 7.5 Hz, 3H), 0.97 (t, J = 7.5 Hz, 3H), 0.76 (t, J = 7.5 Hz, 3H); 13C NMR 

(125 Hz, CDCl3) 171.1, 170.8, 170.6, 157.3, 152.8, 151.5, 143.9, 143.1, 142.5, 141.5, 138.6, 

138.4, 137.7, 130.0, 129.6, 128.6, 128.1, 124.7, 122.3, 121.6, 121.3, 115.9, 115.2, 114.0, 113.0, 

36.1, 35.9, 35.6, 35.4, 34.9, 34.3, 30.1, 18.5, 18.4, 17.7, 13.6, 13.5, 13.4.  

 

1’,6’,13-n-trihexanoylmarchantin A (TE3)  

Viscous colorless oil; [𝛼]D
22  +5.0 (c 1.0, MeOH); UV (MeOH) λmax (log ε): 271 (3.34), 238 

(4.05), 233 (4.01) nm; IR (ATR) νmax: 3472, 3033, 2957, 2931, 2864, 1768, 1593, 1505, 1463, 
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1348, 1315, 1268, 1212, 1140, 1098, 1041, 912, 851, 776, 733, 695; ESI-HRMS m/z 735.3892 

[M+H] + (calcd. for C46H55O8 735.3897);  1H NMR (500 MHz, CDCl3) 7.33 (dd, J = 8.0, 1.5 Hz, 

1H), 7.21 (t, J = 8.0 Hz, 1H), 6.99 (dd, J = 8.0, 1.5 Hz, 1H), 6.93-6.97 (m, 3H), 6.64 (d, J = 1.5 

Hz, 1H), 6.59 (d, J = 8.5 Hz, 2H), 6.48 (dd, J = 8.0, 1.5 Hz, 1H), 6.43 (brs, 1H), 6.37 (brd, J = 

8.0 Hz, 1H), 5.56 (d, J = 1.5 Hz, 1H), 3.02-3.09 (m, 4H),  2.85-2.89 (m, 2H), 2.73-2.78 (m, 2H), 

2.48-2.56 (m, 4H), 1.89 (t, J = 7.5 Hz, 2H), 1.69-1.79 (m, 4H), 1.24-1.41 (m, 10H), 1.06-1.20 

(m, 4H), 0.94 (t, J = 7.5 Hz, 3H), 0.78-0.87 (m, 6H); 13C NMR (125 Hz, CDCl3) 171.2, 171.0, 

170.8, 157.4, 152.8, 151.5, 143.9, 143.1, 142.6, 141.4, 138.6, 138.4, 136.7, 129.6, 128.5, 128.1, 

124.7, 122.4, 121.6, 121.3, 115.9, 115.1, 114.0, 113.0, 36.1, 35.0, 34.3, 34.0, 33.7, 33.6, 31.2, 

31.1, 31.0, 29.9, 24.7, 24.6, 23.8, 22.3, 22.2, 22.1, 13.9, 13.8, 13.7.  

 

13-n-propanoylmarchantin A (ME1) 

Viscous colorless oil; [𝛼]D
22 +4.5 (c  0.9, MeOH); UV (MeOH) λmax (log ε): 274 (3.26), 238 

(3.94), 231 (4.17) nm; IR (ATR) νmax: 3443, 3033, 2922, 2854, 1763, 1604, 1508, 1461, 1353, 

1268, 1213, 1140, 1077, 1027, 993, 961, 906, 847, 786, 735, 697, 458; HRESIMS m/z 495.1828 

[M - H] – (calcd. for C31H27O6 495.1808);  1H NMR (500 MHz, CDCl3) 7.33 (dd, J=8.0, 1.5 Hz, 

1H), 7.20 (t, J=8.0 Hz, 1H), 6.98 (m, 3H), 6.92 (t, J=7.5 Hz, 1H)), 6.59 (d, J=8.5 Hz, 2H), 6.48 

(dd, J=8.0, 1.5 Hz 2H), 6.46 (d, J=1.5 Hz, 1H), 6.38 (brd, J=7.5 Hz, 1H), 5.26-5.31 (m, 2H), 

5.21 (d, J=1.6 Hz, 1H), 3.02-3.10 (m, 4H), 2.72-2.82 (m, 4H), 1,90 (q, J=7.5 Hz, 2H), 0,82 (t, 

J=7.5 Hz, 3H); 13C NMR (125 Hz, CDCl3) δ: 171.6, 157.3, 152.9, 146.1, 144.1, 144.0, 142.4, 

142.2, 138.4, 136.5, 132.5, 130.6, 129.7, 128.3, 128.1, 124.6, 122.5, 121.7, 121.1, 115.3, 112.8, 

109.3, 107.8, 36.1, 35.4, 34.3, 30.1, 27.0, 8.4.  

 

13-n-butanoylmarchantin A (ME2) 

Viscous colorless oil; [𝛼]D
22 + 1.0 (c 4.0, MeOH); UV (MeOH) λmax (log ε): 282 (3.43), 272 

(3.55), 240 (4.01); IR (ATR) νmax: 3421, 2929, 2858, 2155, 1763, 1662, 1604, 1509, 1462, 1342, 

1268, 1246, 1215, 1141, 1099, 1031, 850, 772; ESI-HRMS m/z 509.1977 [M - H] – (calcd. for 

C32H29O6 509.1964); 1H NMR (500 MHz, CDCl3) 7.33 (dd, J=8.0, 1.5 Hz, 1H), 7.20 (t, J=8.0 

Hz, 1H), 6.98 (m, 3H), 6.92 (t, J=7.5 Hz, 1H), 6.59 (d, J=8.5 Hz, 2H), 6.43-6.48 (m, 3H), 6.38 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



(brd, J=7.5 Hz, 1H), 5.26-5.31 (m, 2H), 5.21 (d, J=1.5 Hz, 1H), 3.03-3.09 (m, 4H), 2.71-2.81 (m, 

4H), 1.87 (t, J=7.5 Hz, 2H), 1.30-1.33 (m, 2H), 0.76 (t, J=7.5 Hz, 3H); 13C NMR (125 Hz, 

CDCl3) 170.9, 157.3, 153.0, 146.2, 144.2, 144.0, 142.5, 142.3, 138.5, 136.6, 132.5, 130.7, 129.6, 

128.3, 128.1, 124.7, 122.5, 121.6, 121.1, 115.4, 112.8, 109.3, 107.9, 36.1, 35.5, 35.4, 34.3, 30.1, 

17.9, 13.5. 

 

13-n-hexanoylmarchantin A (ME3) 

Viscous colorless oil; [𝛼]D
22 +4.0 (c 1.0, MeOH); UV (MeOH) λmax (log ε): 280 (3.37), 274 

(3.48), 238 (4.16), 227 (3.98); IR (ATR) νmax:  3436, 3033, 2930, 2860, 1763, 1605, 1508, 1462, 

1343, 1268, 1214, 1142, 1101, 1028, 995, 961, 910, 848, 774, 733, 694; ESI-HRMS m/z 

539.2428 [M+H] + (calcd. for C34H35O6 539.2434); 1H NMR (500 MHz, CDCl3) 7.32 (brd, 

J=8.0Hz, 1H), 7.20 (t, J=8.0 Hz, 1H), 6.95-6.98 (m, 3H), 6.91 (t, J=7.5 Hz, 1H)), 6.59 (d, J=8.5 

Hz, 2H), 6.43-6.48 (m, 3H), 6.36 (brd, J=7.5 Hz, 1H), 5.26-5.31 (m, 2H), 5.18 (d, J=1.5 Hz, 1H), 

3.02-3.09 (m, 4H), 2.70-2.80 (m, 4H), 1.89 (t, J=7.5 Hz, 2H), 1.09-1.34 (m, 6H), 0.81 (t, J=7.5 

Hz, 3H); 13C NMR (125 Hz, CDCl3) 171.0, 157.3, 152.9, 146.1, 144.1, 144.0, 142.6, 142.2, 

138.5, 136.6, 132.5, 130.6, 129.6, 128.3, 128.1, 124.7, 122.5, 121.6, 121.2, 115.4, 112.7, 109.3, 

107.8, 36.1, 35.5, 34.4, 33.6, 31.1, 30.1, 23.8, 22.1, 13.8.  

 

13-n-octanoylmarchantin A (ME4) 

Viscous colorless oil; [𝛼]D
22 +3.0 (c 1.0, MeOH); UV (MeOH) λmax (log ε): 282 (3.46), 274 

(3.64), 238 (4.13), 233 (4.15); IR (ATR) νmax: 3433, 3033, 2927, 2856, 1764, 1606, 1506, 1463, 

1343, 1246, 1215, 1207, 1141, 1103, 1029, 960, 909, 847, 770, 730, 694; ESI-HRMS m/z 

567.2741 [M+H] + (calcd. for C36H39O6 567.2747); 1H NMR (500 MHz, CDCl3) 7.33 (dd, J=8.0, 

1.5 Hz, 1H), 7.21 (t, J=8.0 Hz, 1H), 6.99 (m, 3H), 6.92 (t, J=7.5 Hz, 1H), 6.59 (d, J=8.5 Hz, 2H), 

6.45-6.48 (m, 3H), 6.36 (brd, J=7.5 Hz, 1H), 5.30 (s, 2H), 5.18 (d, J=1.5 Hz, 1H), 3.03-3.09 (m, 

4H), 2.71-2.81 (m, 4H), 1.89 (t, J = 7.5 Hz, 2H), 1.09-1.28 (m, 10H), 0.86 (t, J = 7.5 Hz, 3H); 

13C NMR (125 Hz, CDCl3) 171.0, 157.3, 152.9, 146.2, 144.1, 144.0, 142.6, 142.2, 138.5, 136.6, 

132.5, 130.6, 129.7, 128.3, 128.1, 124.7, 122.5, 121.6, 121.2, 115.4, 112.8, 109.3, 107.8, 36.1, 
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35.5, 34.4, 33.7, 31.5, 28.9, 28.8, 24.2, 22.6, 14.0.  
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Table 1 

The peracylation of marchantin A. 

 

Entry Compound R Isolated yield (%) 

1 TE1 -CH2CH3 96 

2 TE2 -(CH2)2CH3 96 

3 TE3 -(CH2)4CH3 85 
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Table 2  

The lipase-catalyzed monoacylation of marchantin A. 

  

 
Entry Compound R Isolated yield (%) 

1 ME1 -CH2CH3 36 

2 ME2 -(CH2)2CH3 43 

3 ME3 -(CH2)4CH3 52 

4 ME4 -(CH2)6CH3 24 
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Table 3  

Comparison of 1H NMR data of marchantin A and its monoester derivatives ME1-ME4. 

Position 
MA 

δH 

ME1 

δH 

ME2 

δH 

ME3 

δH 

ME4 

δH 

1 - - - -  

2,6 6.58 d (8.5) 6.59 d (8.5) 6.59 d (8.5) 6.59 d (8.5) 6.59 d (8.0) 

 3,5 6.93 d (8.5) 6.98 d (8.5)a 6.97 d (8.5)a 6.97 d (8.5)a 6.97 d (8.0)a 

4 - - - -  

7,8 2.96-3.01 m 3.02-3.10 m 3.03-3.09 m 3.02-3.09 m 3.03-3.09 m 

9 - - - - - 

10 
7.02 dd  

(8.0; 1.5) 

7.33 dd 

(8.0; 1.5) 

7.33 dd 

(8.0; 1.5) 

7.32 brd 

(7.5) 

7.33 dd 

(8.0; 1.5) 

11 7.15 t (8.0)  7.20 t (8.0) 7.20 t (8.0) 7.20 t (8.0) 7.21 t (8.0) 

12 
6.87 dd   

(8.0; 1.5) 

6.98 dd 

(8.0; 1.5)a 

6.98 dd 

(8.0; 1.5)a 

6.95-7.00 ma 6.99 ma 

13 - - - - - 

14 - - - - - 

1' - - - - - 

2' - - - - - 

3' 5.13 d (2.0) 5.21 d (1.5) 5.21 d (1.5)  5.19 brs 5.18 d (1.5) 

4' - - - - - 

5' 6.47 d (2.0) 6.46 d (1.5)b 6.46 brsb 6.45 brsb 6.46 brsb 

6' - - - - - 

7',8' 2.72-2.78 m 2.70-2.82 m 2.71-2.81 m 2.70-2.80 m 2.71-2.81 m 

9' - - - - - 

10' 6.57 t (8.0) 6.44 mb  6.43 mb 6.43-6.48 mb 6.45-6.48 mb 

11' - - - - - 

12' 6.55 dd  6.48 dd 6.43 mb 6.43-6.48 mb 6.45-6.48 mb 
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(7.5; 1.5)   (8.0; 1.5)b 

13' 6.98 t (7.5) 6.92 t (7.5) 6.92 t (7.5) 6.91 t (7.5) 6.92 t (7.5) 

14' 6.41 brd (7.5) 6.38 brd (7.5) 6.38 brd (7.5) 6.37 brd (7.5) 6.36 brd (7.5) 

α-CH2 - 1.90 q (7.5) 1.87 t (7.5) 1.89 t (7.5) 1.89 t (7.5) 

(CH2)n - - 1.30-1.33 m 1.09-1.34 m 1.09-1.28 m 

CH3 - 0.82 t (7.5) 0.76 t (7.5) 0.81 t (7.5) 0.86 t (7.5) 

a,b - signals overlapped; α-CH2 - methylene group next to ester moiety; (CH2)n - other methylene 

groups of ester 

 

Table 4  

Comparison of 1H NMR data of marchantin A and its triester derivatives TE1-TE3.  

Position 
MA 

δH 

TE1 

δH 

TE2 

δH 

TE3 

δH 

1 - - - - 

2,6 6.58 d (8.5) 6.59 d (8.5) 6.59 d (8.5) 6.59 d (8.5) 

 3,5 6.93 d (8.5) 6.95 d (8.5)a 6.94 d (8.5)a 6.95 d (8.5)a 

4 - - - - 

7,8 2.96-3.01 m 3.00-3.10 m 3.01-3.10 m 3.02-3.09 m 

9 - - - - 

10 7.02 dd (8.0; 1.5) 7.34 dd (8.0; 1.5) 7.33 dd (8.0; 1.5) 7.33 dd (8.0; 1.5) 

11 7.15 t (8.0)  7.21 t (8.0) 7.20 t (8.0) 7.21 t (8.0) 

12 6.87 dd (8.0; 1.5) 6.99 dd (8.0; 1.5) 6.99 dd (8.0; 1.5) 6.99 dd (8.0; 1.5) 

13 - - - - 

14 - - - - 

1' - - - - 

2' - - - - 

3' 5.13 d (2.0) 5.58 d (1.5) 5.58 d (1.5)  5.56 d (1.5) 

4' - - - - 
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5' 6.47 d (2.0) 6.65 d (1.5) 6.64 d (1.5) 6.64 d (1.5) 

6' - - - - 

7',8' 2.72-2.78 m 2.70-2.90 m 2.73-2.91 m 2.73-2.89 m 

9' - - - - 

10' 6.57 t (8.0) 6.43 brs 6.43 brs 6.44 brs 

11' - - - - 

12' 6.55 dd (8.0; 1.5)  6.50 dd (8.0; 1.5) 6.50 d (8.0; 1.5) 6.48 d (8.0; 2.0) 

13' 6.98 t (8.0) 6.95 t (8.0)a 6.95 ma 6.95ma 

14' 6.41 brd (8.0) 6.39 brd (8.0) 6.39 brd (8.0) 6.37 brd (8.0) 

3xα-

CH2 
- 

1.91 q (7.5) 

2.56 q (7.5) 

2.56 q (7.5) 

1.88 t (7.5) 

2.52 t (7.5) 

2.53 t (7.5) 

1.89 t (7.5) 

2.52 t (7.5) 

2.53 t (7.5) 

(CH2)n - - 

1.33 sext 

1.74 sext 

1.76 sext 

1.07-1.42 m 

1.69-1.79 m 

3xCH3 - 

0.82 t (7.5) 

1.22 t (7.5) 

1.27 t (7.5) 

0.76 t (7.5) 

0.97 t (7.5) 

1.04 t (7.0) 

0.81 t (7.5) 

0.83 t (7.5) 

0.94 t (7.5) 

a - signals overlapped; α-CH2 - methylene group next to ester moiety; (CH2)n - other methylene 

groups of ester 
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Table 5  

In-vitro cytotoxicity of marchantin A and synthesized derivatives against three cell lines (MRC5, 

A549 and MDA-MB-231) following 48 h incubation time. 

Compound Cytotoxicity, IC50 (µM) 

 MRC5a A549b MDA-MB-231c 

MA 28±2d 12±1 9±1 

ME1 45±3 25±2 13±2 

TE1 45±5 40±4 40±6 

ME2 40±2 25±1 18±2 

TE2 80±7 90±5 40±6 

ME3 40±1 18±2 9±1 

TE3 150±5 90±3 65±4 

ME4 42±2 20±4 12±2 

a healthy human fibroblast 

b human lung cancer cell line 

c human breast cancer cell line 

d IC50 values are the mean of three independent repetitions ± SD 
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Highlights 

 Chemical and enzymatic synthesis of 7 marchantin A ester derivatives were presented 

 The antiproliferative activities of all prepared derivatives were tested 

 MonoC6 ester exhibited similar activity and better selectivity than marchantin A  

 Regioselective enzymatic monoesterification enhanced selectivity of marchantin A 
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