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ABSTRACT 

Alanazi, Sami Saad. An ensemble machine learning approach to causal inference in high-

dimensional settings. Published Doctor of Philosophy dissertation, University of 

Northern Colorado, 2022. 

 

 

 The machine-learning algorithms have gained popularity and have gotten the attention of 

many researchers in the fields of statistics and computer sciences in recent decades. Due to their 

computational capabilities in big data, many researchers have been attempting to incorporate 

machine-learning in prediction and inference problems. One of the recent methods that got a lot 

of attentions was referred to as the double machine learning method (DML). This method 

attempts to estimate the effect of the treatment variable in the presence of high-dimensional 

nuisance function by incorporating machine-learning algorithms. Previous studies have shown 

that the DML method is able to reduce the bias in estimating the targeted parameter when many 

covariates are present in the dataset. In this dissertation, a method was proposed that is referred 

to as the double super learner method (DSL). Since there are many machine-learning algorithms 

in existence today that are different in their searching strategy, there is no way to know which 

algorithm performs best for a given dataset. The proposed DSL method was developed in 

parallel with the DML method and works by incorporating several machine-learning algorithms 

via the super learner function. Numerical simulation was performed across various data settings 

in terms of the sample, the number of associated covariates, and the type of treatment variable. In 

comparison with the original DML method, numerical simulation showed that the proposed 

method achieved reduction in bias and provided valid confidence intervals in situations where 
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the original method did not. A package called DoubleSL was then developed and made public 

for those who desire to use this method in their research. In addition, real-data examples were 

included in the package to demonstrate the use of this method.  
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CHAPTER I 

INTRODUCTION 

According to a report published, 90% of the data on the globe were generated in the last 

two years (Marr, 2018). This high percentage is unsurprising, given the increased use of 

information technology, alongside the rise of the social network that resulted in automatically 

generating vast and complex datasets with thousands of subjects being measured on thousands of 

different metrics. Data influx has led to revolutions in several fields, such as machine learning 

and artificial intelligence.  

Learning from complex datasets can be approached from a variety of perspectives. The 

problem with these kinds of vast and complex datasets for data mining is analogous to trying to 

find a needle in a haystack. In a semi-automated data-driven method, data mining detects 

patterns and relationships (Grossman et al., 1999). Johnstone and Titterington (2009), on the 

other hand, emphasized that most statistical approaches for complex datasets tend to address the 

complexity from the perspective of the number of participants or cases (n) under a smaller 

number of attributes (p), whereas recent applications such as image analysis usually work the 

other way around.  

Consider the following scenario as an illustrative example. Assume a researcher is 

interested in the effect of a student being at least bilingual on their GPA score. In addition, 

assume there is a large number of other predictors being included in the research such as age, 

race, sex, level of education, working experience, citizenship, etc. If some of these predictors 
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might have a confounding effect on the response on the targeted parameter, what statistical 

models can be incorporated in such a setting? 

Many statisticians, including Bickel (1982), Newey (1994), and others, have viewed 

semi-parametric models as an effective approach to search through high-dimensional data while 

focusing on specific effects of interest to the researcher. The semi-parametric model, loosely 

speaking, can be defined as a hybrid form of model constructed using parametric and 

nonparametric components. In addition, the semi-parametric models can be employed when the 

targeted parameter is characterized as dimensionally finite, in the presence of infinitely 

dimensional nuisance function (Powell, 1994). To illustrate the difference between the 

parametric, nonparametric, and semi-parametric models, assume the following continuous 

outcome model on the finite number of predictors x: 

𝑦 = 𝑥′𝛽0 + 휀,       (1) 

 The estimator for this model can be viewed as parametric, nonparametric, and semi-

parametric estimators depending on the restriction placed on the model. If the response 𝑦 is 

conditioned on the regressor 𝑥, and the errors 휀 are normally distributed independently of the 

regressor 𝑥 with a mean of 0, then �̂� is considered as a parametric solution for the model (1). On 

the other hand, if the model assumes that the error terms have the density which unconditionally 

satisfies the following restriction: 

𝐸[휀 ∙ 𝑥] = 0,      (2) 

then the estimation of 𝛽0 in this scenario is considered as a nonparametric solution for model (1). 

Finally, if the model (1) places a further restriction where the error terms are distributed 

conditionally such as: 

𝐸[휀𝑖  | 𝑥𝑖] = 0,      (3) 
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then, the model in (1) would be considered as a semi-parametric model due to this particular 

model restriction (Powell, 1994). Examples of popular semi-parametric models are restricted 

moment model and the proportional hazards model viewed in Tsiatis (2006).  

The advantage of using this approach is that the effect of unrelated variables can be 

blocked while concentrating on finding an efficient estimator for the effect of the treatment 

variable. Despite the fact that it took a long time to gain popularity and faced numerous 

challenges, semi-parametric modeling have seen several breakthroughs and advancements in 

recent years, allowing it to become a very efficient method. The efficiency comes into play when 

attempting to obtain an accurate estimate for the treatment of interest that allows for causal 

inference, which has become a hot topic in statistics and data analysis in recent years due to the 

large number of applications that can be used. 

Methods have been developed based on the concept of semi-parametric models in such a 

way that they account for the confounders effect, or controls, that have been observed in the 

resultant data sets via the variable selection process. Urminsky et al. (2019) and Chernozhukov et 

al. (2018), for example, focused on using Robinson's semi-parametric model and applying a 

double selection for those variables that affect both the response and the treatment effect of 

interest. Modern estimation methods that can handle a large number of collected controls are 

required for these double-stage selection techniques. 

In recent years, machine learning algorithms have emerged as a very powerful tool for 

handling large and complex datasets for both prediction and inference. Classic statistical 

approaches fail to achieve meaningful estimates for the effect of the treatment of interest in the 

presence of a large number of controls, according to Chernozhukov et al. (2017) and 

Chernozhukov et al. (2018), especially when the number of variables in the data set exceeds the 
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number of collected cases (i.e., when n < p). This is a common issue in many situations, such as 

when scientists are studying the genomes of a small number of patients in biomedical studies, 

where the researcher may be dealing with thousands of parameters (Wang et al., 2020). Another 

evident example of this type of dataset arises from image analysis, where the number of 

associated variables can exceed hundreds, such as variables concerns with wavelength, mass, 

polarization, electron energy, and so on (Wise & Geladi, 2000).  

There is a major difference between statistical and machine learning. In statistical 

learning, a causal inference can be drawn about a treatment of interest from a relatively small 

sample, but machine learning is able to reliably predict from more complex data using relatively 

large and complex datasets (Bzdok et al., 2018). By developing sophisticated estimation 

methods, such as those proposed by Chernozhukov et al. (2017) and Chernozhukov et al. (2018), 

machine learning algorithms were able to provide an unbiased estimator for the targeted 

parameter that outperformed traditional statistical methods when a large number of covariates are 

present during the data collection process. In this dissertation, I proposed an estimation method 

for the targeted parameter in the presence of high dimensional nuisance function, which I called 

the double super learner (DSL) method. The goal from this method, the DSL, was to improve 

estimation by achieving a reduction in the bias resulting from estimating the targeted parameter. 

Furthermore, it is critical to comprehend how this method compares to the existing double or 

debiased machine learning (DML) method. This DSL method as proposed in the methodology 

section is used in the context of semi-parametric modeling such as the partial linear model 

introduced by Robinson (1988), and it employs the orthogonalization technique such as the one 

introduced by Neyman (1959). Examples also include the super learner algorithm introduced by 

Van der Laan et al. (2007), and the DML introduced by Chernozhukov et al. (2017) and 
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Chernozhukov et al. (2018), while taking advantage of sample splitting, cross-fitting, and cross-

validation techniques during the analysis. 

Motivation 

A semi-parametric model can provide good estimates of treatment effects because it 

combines the advantages of parametric and nonparametric models. With the explosion in the 

number and size of datasets available today, it is more important than ever to employ a new 

technique that can keep up with the data's complexity. Aside from that, the rise of machine 

learning algorithms and the constant development in recent years in advancing more learner 

algorithms has opened a door for researchers to make more discoveries in the field. In recent 

years, the potentials for employing machine learning algorithms have greatly increased due to the 

improved computing capabilities, such that computers nowadays can handle larger data and 

perform very intensive computational procedures more efficiently than they could 30, 20, or 

even 2 years ago. 

The ordinary least squares (OLS) estimation method has dominated other methods in 

regression applications for decades, thanks to its strong theoretical foundations and obvious 

inferential advantages. The OLS estimation method for regression and classification problems, 

however, has its own set of drawbacks. Multicollinearity among the independent variables is 

common in real data, such as economic and medical datasets, which makes calculating (XTX)-1 

required for OLS estimation nearly impossible, resulting in very unstable solutions (O'Driscoll & 

Ramirez, 2016). The benefit of advanced machine learning can be seen in terms of model 

constraints. In contrast to linear regression, ridge regression does not require the full rank of the 

design matrix, nor the distributional or independence assumptions that are common in OLS 

models. These more relaxed conditions can help ridge regression handle datasets that are more 
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complex, which are more like real-world data as in situations where the number of confounders 

affecting both the response and the predictors of interest increase the dataset's dimensionality. 

Given the undeniable importance of statistical inference in drawing causal conclusions 

and quantifying uncertainty in high-dimensional settings, using machine-learning algorithms in 

double selection methods such as the DML has shown to be very promising in terms of 

estimation and causal inference (Chernozhukov et al., 2018). Although there is limited literature 

on this concept due to its novelty, the DML method proposed by Chernozhukov et al. (2017) and 

Chernozhukov et al. (2018) has shown great promise in a wide range of applications, overcoming 

many of the issues faced by classical methods that seek to make casual inference on the 

treatment of interest. When compared to traditional semi-parametric method approaches, what 

makes DML such a powerful tool is that there is no need to set a number of regularity conditions, 

allowing it to be applied to a wide range of complex datasets. 

Purpose of Study 

It is hard to not to argue that the DML method Chernozhukov et al. (2017) is considered 

quite revolutionary when it comes to obtaining unbiased estimates in the presence of high 

dimensional nuisance parameters that this dissertation attempts to build on his work. The method 

proposed in this dissertation attempts to integrate the DML concept with a powerful machine-

learning algorithm known as the super learner introduced by Van der Laan et al. (2007). Since 

the super learner algorithm ensembles a number of machine-learning algorithms and present their 

predictions as a linear model to predict the response, this strategy has proven to reduce prediction 

cross-validation risk (Van der Laan et al., 2007). Some researchers, when working on prediction 

problems, might find themselves arguing about which machine-learning algorithm to incorporate 

into the analysis where personal favorites toward learners might affect their decision. The super 
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learner can be a solution to this dilemma since it can incorporate all the machine-learning 

algorithms at once and results in lowering of the prediction cross-validation risk more than any 

other machine-learning algorithm that is implemented separately.   

The method proposed in this dissertation, referred to as the double super learner (DSL), 

will integrate the DML method with the super learner algorithm. Because the DML method can 

perform only one machine-learning algorithm at a time, the researcher might find himself risking 

being biased towards which machine learning algorithm to incorporate in the analysis for 

estimating the targeted parameter in the DML context. To minimize the impact of the 

researcher’s personal favorites among machine-learning algorithms, the purpose of this 

dissertation was to provide a modern framework via the inclusion of a number of machine 

learning algorithms in a single estimation procedure. In particular, the goal of this dissertation 

was to propose an estimation method in the context of semi-parametric modeling for the targeted 

parameter in the presence of high dimensional nuisance function with the aim of achieving an 

improvement in the resultant estimates of the targeted parameter when it comes to the resultant 

bias in comparison with the original DML method developed by Chernozhukov et al. (2017) and 

Chernozhukov et al. (2018) 

Research Questions 

Throughout this dissertation, I sought to investigate the following research questions in 

order to assess the DSL method.  

Q1 How can the estimator of the targeted parameter in presence of high-dimensional 

nuisance functions be constructed using the DSL method, given the conceptual 

differences between the DML method and the super learner algorithm that the DSL 

method is trying to integrate? 

 

Q2 How will the DSL perform in terms of bias reduction for the estimated targeted 

parameter in the presence of high-dimensional nuisance functions in comparison 

with the original DML method, and whether the respective confidence intervals 
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contain the true values of the targeted parameter under varying number of 

predictors and sample sizes? 

 

Q3 What criteria can be used to select the best machine learning algorithm among those 

incorporated in the DSL method in order to improve computational efficiency, and 

how does the reduction of candidate learners impact the estimation bias in 

comparison with the DML method and the DSL method when considering all 

candidate learners.  

 

Q4 How can the algorithm of the proposed DSL method be developed using R, and 

what settings needed for implementation so the estimates of the targeted parameter 

and its associated confidence interval can be numerically calculated?   

 

Abbreviation and Terminology Definitions 

Complex settings are used to describe the complex structure of a dataset and the relationships 

between the features found in the data. The complex settings referred to in this 

dissertation are the types of data structural complexity that results from many covariates, 

some of which have confounding effects both on the treatment and the response 

variables, where ignoring them would lead to poor and biased estimation.  

Double machine learning (DML) is a statistical machine learning method developed by 

Chernozhukov el at. (2017) and Chernozhukov et al. (2018). In the method, an estimator 

for the treatment, policy, and effect was constructed using the semi-parametric approach 

with Neyman (1959) orthogonality and sample splitting using machine learning 

algorithms. 

Double super learner (DSL) is the new method proposed in this dissertation that aims to 

construct an estimator for the targeted parameter in the presence of high-dimensional 

setting. The double super learner method is the result of integrating the DML with the 

super learner (SL) concepts. 
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High-dimensional data are produced when the number of features, or variables, collected in the 

dataset is extremely large. In high-dimensional data, the observed features may 

outnumber the observations (i.e., p > n).  

Machine learning (ML) is a type of nonparametric components are estimated with the new 

generation of nonparametric statistical methods, branded as “machine learning” methods. 

ML is efficient artificial intelligence computation that consists of data-driven algorithms 

built on statistical foundations that train data in order to obtain predictions that mimic 

human decisions. Examples of machine learning algorithms will be discussed throughout 

this dissertation, including lasso, random forests, and boosting. 

Nuisance functions are functions that express the effect of independent variables that are not of 

interest but must be accounted for so that inference can be made about the targeted 

parameter in a specific context. These variables in the datasets can be tagged as irrelevant 

variables and confounders, or controls, which are variables that have some sort of 

relationship with both the independent variable of interest and the response.  

Ordinary least squares (OLS) estimation is a statistical method that can be used in a variety of 

applications when p < n, including simple and multiple regression, to estimate the 

relationship between the response variable and the predictors by minimizing the sum of 

squares based on the difference between the response variable and its predicted values.  

Semi-parametric models are models with a parametric and nonparametric component. The 

parametric component is finite dimensional and nonparametric component is infinite 

dimensional. The term nonparametric is typically reserved for models with only infinite-

dimensional components or for statistical procedures that do not require knowledge of 

underlying distributions. In semiparametric models, the parametric part is for scientific 
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interpretability, while the nonparametric part is for flexibility. A main question for 

semiparametric models is how to conduct efficient inference which requires 

semiparametric inference. The non-parametric portion is made up of variables that are not 

necessarily of interest but must be taken into account. The partially linear regression 

model (PLR) introduced by Robinson (1988), which will be discussed later in this 

dissertation, is one of the most popular semi-parametric models. 

Super learner (SL), developed by Van der Laan et al. (2007), is a machine learning algorithm 

that can be employed for both regression and classification cases. A great advantage of 

this algorithm is that it can be constructed using a variety of machine learning algorithms 

that the researcher can choose. The methodology section of this dissertation will go into 

greater detail about the construction of the super learner algorithm. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Semi-parametric models can be simply defined as models that include both a parametric 

part, which is a parameterization of the treatment effect, and a non-parametric part, which can be 

characterized by a nuisance function for the irrelevant covariates and confounders present in the 

dataset (Tsiatis, 2006). Given the enormous potentials of this approach, several researchers have 

set out to estimate a parameter of interest in the presence of a high-dimensional (nuisance) 

parameter.  

Classical Semi-Parametric Modeling 

 When the dimension of the parameter space is large, semi-parametric modeling has 

become a hot topic that has appeared regularly in various types of literature that concerns 

understanding the influence of specific treatments or policies. The misspecification of the 

nuisance function would lead the estimation of the targeted parameter to be inconsistent 

(Robinson, 1988). Many early statisticians focused on addressing this issue by defining sets of 

regulatory conditions and introducing frameworks of adaptation or orthogonalization in order to 

construct sophisticated estimators that are root-N consistent and asymptotically normal, allowing 

for valid and causal inference conclusions. These attempts can be seen in publications such as 

those of Bickel (1982), Robinson (1988), Andrews (1994), Newey (1994), and van der Vaart 

(1998). 
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Take, for example, Bickel (1982), who provided a series of empirical results on 

developing adaptive estimators, drawing on the work of Charles Stein. Stein’s embodiment of 

semi-parametric modeling sense started when he wondered how one might estimate the 

parameter of interest in Euclidean distance in his case asymptotically in the presence of an 

unknown nuisance shaped parameter, G, as if G were known (Stein, 1956). Stein introduced a 

condition that holds when the true parameter is regular and the estimator is adaptive. Bickel 

(1982) considered Stein's concept of adaptable estimators as problematic since it is difficult to 

mathematically verify as well as the lack of a clear approach on how to design an adaptive 

estimator based on these concepts. 

In semi-parametric modeling, the adaptation concept can be described as whether a 

parameter of interest, such as the treatment effect, can be approximated without knowing the true 

nuisance function. Take the mean of a normal population (𝜇) as an example to understand 

adaptation, where the unbiased estimator (�̅�) is called an adaptable estimator because we do not 

need to know the actual population variance in order to generate a reasonable estimation for the 

mean. 

Bickel (1982) introduced a set of regularity conditions for the estimator of interest, 

including the existence of a Fisher information matrix, the differentiability of the log likelihood 

function and square root likelihood, and root-N consistency. Despite the fact that these regularity 

conditions paved the way for adaptable estimators, they still had severe drawbacks, such as in 

cases where adaptation is impossible similar to the case found in the Neyman-Scott example 

(Schmetterer, 1960), where the estimation of the score functions was inconsistent. They also 

ignore the case where the Fisher information matrix is singular, despite the importance of 

obtaining the inverse of the Fisher information matrix for determining the limiting distribution 
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within which the adaptive estimator is meant to be confined. Another limitation of these adaptive 

estimators which was highlighted by Bickel (1982) is that they lack natural invariance properties 

due to the use of discretization in constructing the adaptive estimators. 

Because the goal of this dissertation was to estimate a single treatment effect in the 

presence of many confounders, I also considered Robinson's (1988) partial least squares model, 

which is a semi-parametric model and can be represented as the following set of structural 

equations: 

𝑌 = 𝐷𝜃0 + 𝑔0(𝑿) + 𝑈,    𝐸[𝑈|𝑿, 𝐷] = 0,       (4) 

𝐷 = 𝑚0(𝑿) + 𝑉,   𝐸[𝑉|𝑿] = 0,        (5) 

where,  

Y  represents the response (outcome) variable,  

D  represents the treatment variable of interest,  

X  represents the confounders such as X = {x1, x2, …, xp} where p represents the 

number of extraneous variables to be included in the model,   

U  represents the model error in (4), 

V  represents the model error in (5), 

𝜃0  represents the treatment effect which is the targeted parameter, 

g0(𝐗)  represents the effect of the confounders of X, where X influences the outcome 

variable Y throughout the function 𝑔0, 

m0(𝐗) represents the effect of the confounders of X, where X influences the treatment 

variable D throughout the function 𝑚0.  

Using (4) and (5), Robinson (1988) was able to show, with the assumption of other 10 regularity 

conditions to be met, the condition that the following matrix: 
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𝚽 ≡ 𝐸[{𝐷 − 𝐸(𝐷|𝑿)}{𝐷 − 𝐸(𝐷|𝑿)}′],    (6) 

is being a positive definite is sufficient enough to conclude that the estimator 𝜃0 is root-N 

consistent and that √𝑁(𝜃0 − 𝜃0) converges in distribution to normal with 0 mean and some 

variance.  

 The lack of the invariance property problem raised by Bickel (1982) has prompted 

academics to go back and use data from previous studies to address the issue. Andrews (1994), 

Newey (1994), and a host of others have improved on Robinson's (1988) work by combining the 

Donsker requirements (Donsker, 1951) with Neyman's orthogonality scores (Neyman, 1959) in 

an attempt to constrain the space of the nuisance function. 

 The Donsker theorem, named for American mathematician Monroe D. Donsker, extends 

the well-known central limit theorem (CLT) approach to a class of functions as an index set to 

tackle the empirical distribution's invariance property. To simplify, let’s say X1, X2, …, Xn ,… 

are identically and independently distributed random variables with some mean (m) and variance 

(v). Furthermore, let �̅� be the sample mean of sample size (n) which is an estimate of the true 

population mean (m). Then it can be shown that the scaled estimation error of √𝑛(�̅� − 𝑚) on the 

class of functions weakly converges to a Gaussian process. As a result, a confidence intervals 

can be constructed using only information about the mean and the variance, and a valid causal 

inference can be drawn. For Neyman orthogonality, on the other hand, it is highly advantageous 

to use the orthogonalization idea in semi-parametric models, where orthogonalization was 

demonstrated to play a substantial role in eliminating estimation bias in the partial least squares 

model (Robinson, 1988). The idea of Neyman orthogonality is to introduce a set of orthogonal 

moment conditions such that the treatment effect can be estimated without being affected by the 

nuisance non-parametric function. 
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Andrews (1994) developed a comprehensive framework for a large number of alternative 

estimators that are constructed to be root-N consistent and asymptotically normal. Andrews' 

estimators were all in the form of MINimizing a criterion function that may be based on a 

Preliminary Infinite dimensional Nuisance parameter estimator (MINPIN). These estimators 

have been proved to be extremely efficient under regularity assumptions, including consistency, 

Neyman orthogonality, and stochastic equicontinuity as well as the weak law of large numbers 

and the well-known CLT. Andrews demonstrated in his article that the distribution of the scaled 

estimating error, √𝑁(𝜃0 − 𝜃0), will follow the normal distribution with 0 mean and some 

variance v under a certain set of regularity conditions. Although this method has its own limits, it 

was thought to be a very beneficial option in order to address the issue of convergence rate. The 

primary ones that Andrews (1994) has expressed explicitly are that not all estimators can be 

derived without additional conditions, such as smoothness condition, and that non-parametric 

function estimators have more trimming limits. Furthermore, even if the root-N consistency and 

asymptotic normality assumptions are met, finding the estimator may not be appropriate in some 

scenarios. Newey (1994) and Van der Vaart (1998) developed comparable work with similar 

challenges, where primitive regularity conditions were incorporated to obtain estimators that 

were proved to be root-N consistent and asymptotically normal. 

The Rise of Machine Learning 

Many advancements have taken place in the last decade as a result of major 

developments in statistical software in a brand-new class of nonparametric estimating 

approaches known as machine learning. Unlike statistical learning that arose from the field of 

statistics, machine learning estimation is derived from the field of artificial intelligence 

(Mitchell, 1997). Machine learning estimators like LASSO, Random Forest, and Boosting, 
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among others, offer the advantage of being more flexible and capable of handling complex 

situations like highly dimensional data (as cited in James et al., 2013).  

A comparison between OLS regression and Ridge regression can be very helpful in 

illustrating the distinctions between classical statistical methods and machine learning methods. 

Remember the OLS regression model as follows: 

𝑌 = 𝑿𝛽 + 𝜖,      (7) 

where the error terms of 𝜖 are assumed to be normally distributed, have a constant variance, and 

are not being correlated with each other. This is also assuming that the design matrix, X, is full 

rank matrix. Given these assumptions, the OLS method works by obtaining the coefficient 

solutions that minimize the RSS such as: 

𝑅𝑆𝑆 =  ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 )𝑛

𝑖=1

2
,    (8) 

which leads the OLS solution for the estimated parameters to be as the following: 

�̂�𝑂𝐿𝑆 = (𝑿
′𝑿)−1𝑿′𝑌,      (9) 

 The problem with the preceding OLS approach is that multicollinearity exists in real data, 

such as in the economic and medical domains, where two or more predictors are correlated with 

each other. This issue of multicollinearity among the predictors will make the computation of 

(𝑿′𝑿)−1 difficult, causing the OLS solution, �̂�𝑂𝐿𝑆, to be inconsistent, resulting in an increase in 

the variance of these estimators (Yu et al., 2015). 

Hoerl and Kennard (1970) proposed what is now known as the ridge regression concept, 

in which some bias is accepted as a trade-off in exchange for a large reduction in the estimators' 

variance. Compared to the OLS estimators provided earlier, the ridge regression estimators are 

more stable due to this bias-variance trade-off. Although various model selection strategies, such 

as backward and stepwise selection, can be used in the traditional OLS selection to cope with 
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collinearity and eliminate irrelevant predictors from the model to enhance the model fit, these 

techniques are computationally intensive. When the dimension of the design matrix is relatively 

large (i.e., when the number of observed predictors is significant), overfitting bias occurs, which 

increases the variance of the coefficient estimates (James et al., 2013).  

 Unlike traditional methods, which utilize least squares to fit a small number of predictors, 

ridge regression uses a shrinkage technique to fit a larger number of predictors. The ridge 

regression's goal is to reduce variance by including all predictors in the model and then shrinking 

their effect towards 0 (James et al., 2013). What makes ridge regression estimates differ from the 

OLS regression estimates is that the ridge regression has a penalty term that helps to shrink the 

influence of the estimates. The ridge regression estimates, to be more explicit, are the values that 

minimize  

 ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 )𝑛

𝑖=1

2
+ 𝜆∑ 𝛽𝑗

2𝑝
𝑗=1  = 𝑅𝑆𝑆 + 𝜆∑ 𝛽𝑗

2𝑝
𝑗=1  ,  (10) 

The first part of the minimization is the same as the OLS regression for the estimated 

effect, while the second part is related to the penalty term. The penalized term has a tuning 

parameter, λ ≥ 0 that can be selected by introducing a grid of values and using cross-validation to 

find the best value. As a result, the estimated parameters for the ridge regression predictors will 

be as follows: 

�̂�𝑅𝑖𝑑𝑔𝑒 = (𝑿
′𝑿 + 𝜆𝑰𝒏)

−1𝑿′𝑌,     (11) 

where 𝐼𝑛 represents the identity matrix. Ridge regression estimates have been shown to have a 

smaller mean square error than OLS regression estimates; for example, 𝑀𝑆𝐸(�̂�𝑅𝑖𝑑𝑔𝑒) ≤

𝑀𝑆𝐸(�̂�𝑂𝐿𝑆), for some value of 𝜆 (Hoerl & Kennard, 1970).  
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 A recent form of regularized estimation known as LASSO, introduced by Tibshirani 

(1996), is another machine learning method. The LASSO is constructed in a similar way to the 

ridge regression, using in L1 penalty rather in L2 penalty such as: 

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 )𝑛

𝑖=1

2
+ 𝜆∑ 𝛽𝑗

2𝑝
𝑗=1  = 𝑅𝑆𝑆 + 𝜆∑ |𝛽𝑗|

𝑝
𝑗=1 ,  (12) 

 LASSO has an advantage over ridge regression using L2 penalty in that, unlike ridge 

regression, which decreases the estimated parameters to values towards to 0, LASSO can reduce 

the estimated effect to the exact 0, improving interpretability and prediction accuracy at the same 

time (James et al., 2013). With that in mind, it's worth noting that the LASSO conducts both 

shrinkage and model selection approaches, which is why Tibshirani coined the acronym LASSO 

(Least Absolute Shrinkage and Selection Operator).  

Machine learning algorithms diverge from statistical methods in their development, such 

as decision trees algorithms, which many believe are a better reflection of human decision-

making (James et al., 2013). The advantage of decision trees is that they may be easily explained 

and illustrated for audiences without a statistical background, as well as can be graphically 

displayed. The main principle behind decision trees is to divide the predictor space into multiple 

distinct regions, then make the same prediction for responses with predictors in the same region. 

The leaves, or terminal nodes, are the regions that come from the decision tree analysis, whereas 

the internal nodes are the decision-breaking points. The resulted decision tree would eventually 

look just like a normal tree that is drawn upside down, where the leaves are shown in the bottom 

of the resulted tree. The optimal decision is being made by finding the regions that minimize the 

RSS, which is given by: 

∑ ∑ (𝑦𝑖 − �̂�𝑅𝑗)
2

𝑖𝜖𝑅𝑗
𝐽
𝑗=1 ,    (13) 
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where �̂�𝑅𝑗 is the mean response for the training data within the jth region. The decision trees have 

long been used in a wide range of industrial applications (Mittal et al., 2017), with Wald using 

them in game theory in 1950. 

 Many researchers have built on the concept of decision tree, such as Mansour (1997), 

who introduced the concept of tree pruning, which involved removing part of the tree's leaves to 

enhance prediction accuracy since a tree with many leaves can overfit the training data. While 

pruning a fully developed tree can improve prediction accuracy for fresh datasets, it often comes 

at the expense of training dataset accuracy (Ho, 1995). Ho (1995) was inspired by this apparent 

constraint of pruning to take a different method, mixing numerous small trees instead of pruning 

them, resulting in random decision forests as we know them today. 

 Many machine-learning algorithms have been developed over the years as a result of the 

advancements in information technology and statistical computing. This prompted statisticians 

like Van der Laan to develop what is now known as the super leaner (Van der Laan et al., 2007). 

The super learner (SL) is an ensemble machine learning method that uses a linear model to 

weight a number of machine learning algorithms based on their cross-validation risk. In his 

study, Van der Laan et al. (2007) demonstrated that SL asymptotic performance is on par with, if 

not better than, any other machine learning algorithm. The SL generates a prediction that uses 

the probabilistic weights of each machine learning method as model parameters, and the 

predictors in the model are the predicted response values for weighted parameters. As a result, 

the SL has the following structure: 

𝑦𝑖 = 𝛽1𝑧1𝑖 +⋯+ 𝛽𝑘𝑧𝑘𝑖 + 𝜖𝑖,     (14) 

where  

 𝑦𝑖 represents the response of the ith case, 
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𝛽𝑘 represents the weight of the kth machine learning algorithm, 

𝑧𝑘𝑖 represents the predicted value of the ith case using kth machine learning algorithm, 

𝜖𝑖 represents the error of predicting the ith case.   

The Double Selection Methods 

Previous research on the causal inference of the average treatment effect has prompted 

researchers like Robins et al. (1994) to develop methods for estimating the treatment of interest 

when some of the regressors are not seen when using the inverse probability weighted (IPW) 

approach. He proposed a method for obtaining consistent estimators when some of the data are 

missing at random, using missingness probabilities that are known or can be represented in a 

parametric sense. This work was later adopted by Funk et al. (2011) to develop what is now 

known as the doubly robust (DR) estimators in which the researchers attempted to find a 

framework to account for the relationship between confounders and response in subjects who 

received treatment and those who did not separately. In their study, Funk et al. (2011) combined 

the propensity scores (PS) model with the outcome regression model for the response given the 

confounders and the treatment of interest to represent the link between the treatment variable and 

the confounders, such as PS = E[Treated| Observed Confounders]. Funk et al. (2011) claimed 

that correct specification of at least one of these models would be sufficient to obtain an unbiased 

estimator for the average treatment effect using the DR estimation approach.   

To illustrate the method proposed by Funk et al. (2011), we can assume that the observed 

data are structured as (Y, D, X), where Y represents the collected response, D represents the 

treatment in a study, which is a binary variable with values of 1 and 0, and X represents a set of 

confounders collected in the dataset. As a result, we get PS = E[D=1| X]. The logistic and probit 

models are typical methods for calculating PS estimations. The following model can be used: 
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𝐿𝑜𝑔𝑖𝑡[𝑃(𝐷 = 1| 𝑿)] = 𝛽0 + 𝛽1𝑋1 +⋯+ 𝛽𝑘𝑋𝑘,    (15) 

 On the other hand, the outcome regression model might be used to explain the model that 

specifies the link between the response and the treatment as well as the confounders. This model 

can be described as follows:  

𝐸(𝑌| 𝐷, 𝑿) = 𝛼0 + 𝛼1𝐷 + 𝛼2𝑋1 +⋯+ 𝛼𝑘+1𝑋𝑘,    (16) 

where 𝛼1 is targeted parameter the DR method is seeking to estimate, which takes the 

interpretation of the average treatment effect (ATE).  

 The DR method is used to estimates the PS and outcome mean separately for individuals 

who received treatment in one group and those who did not in the other, utilizing both treatment 

groups for the ATE. As a result, the DR estimators would have the following two equations. 

𝐷𝑅1 =
𝑌(𝐷=1)𝐷

𝑃�̂�
−
�̂�(𝐷=1)(𝐷−𝑃�̂�)

𝑃�̂�
,     (17) 

𝐷𝑅0 =
𝑌(𝐷=0)(1−𝐷)

1−𝑃�̂�
+
�̂�(𝐷=0)(𝐷−𝑃�̂�)

1−𝑃�̂�
,     (18) 

After calculating the DR estimator for those who received the treatment, 𝐷𝑅1, and those who 

didn’t, 𝐷𝑅0, the average for the entire population would be implemented and the difference 

between those estimators would describe the ATE such as: 

�̂�𝐷𝑅 = 𝑁
−1 (

𝑌𝑖 (𝐷=1)𝐷𝑖

𝑃�̂�𝑖
−
�̂�𝑖 (𝐷=1)(𝐷𝑖−𝑃�̂�𝑖)

𝑃�̂�𝑖
) − 𝑁−1 (

𝑌𝑖 (𝐷=0)(1−𝐷𝑖)

1−𝑃�̂�𝑖
+
�̂�𝑖 (𝐷=0)(𝐷𝑖−𝑃�̂�𝑖)

1−𝑃�̂�𝑖
) (19) 

Using the DR estimator obtained in (19), Funk et al.’s (2011) argument was that the 

correct specification for at least one model would result in an unbiased estimator. To illustrate 

Funk et al.’s argument briefly, take the first part of (19) when the treatment is received, i.e., 

when D = 1. This first part of the model consists of two smaller components: the first of which 

represents the average response for those who received the treatment; the second component is 

referred to as the augmentation part. This augmentation part constructed by multiplying two 
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biased terms: one results from the outcome model (16), and the second results from the PS model 

in (15), respectively. If at least one of these models is correctly specified, then a bias of 0 or 

close to it would cancel the other by multiplication process. For more details, please refer to 

Appendix A (Funk et al., 2011). Similar work being conducted by Luedtke et al. (2017), and Li 

and Shen (2019).  

Belloni et al. (2014) introduced the post double selection approach, which is another 

prominent double stage selection method. Extension of this concept can be also found in studies 

by Urminsky et al. (2019) and Wang (2020). The key to this method is to use LASSO regression 

to perform model selection for confounders in both sub-models. The idea behind this method is 

that removing confounders that are irrelevant to the response but have significant effect in the 

case of the treatment variable (i.e., the average treatment effect) can lead to a decrease in the bias 

of the omitted variables. Assume we have data for the structure (Y, D, X), where Y and D 

represent the response and treatment, respectively, and X represents the confounders discovered 

throughout the data collection process. As a result, there are three essential steps to implementing 

the post double selection method. The first step is to fit the response to the data using the 

associated covariates including the confounders such as: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑘𝑋𝑖𝑘 + 𝜖𝑖     (20) 

using LASSO regression and keeping track of confounders in predicting the response Y. The 

second step in the post double selection method is to fit the confounders that predict the 

independent variable of interest in the same way as the first step implemented earlier: 

𝐷𝑖 = 𝛼0 + 𝛼1𝑋𝑖1 +⋯+ 𝛼𝑘𝑋𝑖𝑘 + 𝜖𝑖     (21) 

Just as before, it is important to maintain tracking of those confounders that have been 

shown to be important in predicting the independent variable D. The final stage is to create a set 
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named G that includes every confounder that showed significance in predicting either Y or D. As 

a result, the following is how the final prediction model should be fitted: 

𝑌𝑖 = 𝛿0 + 𝛿1𝐷𝑖 + ∑ 𝛿𝑘𝑋𝑖𝑘𝑘∈𝐺 + 𝜖𝑖     (22) 

 After obtaining the estimated effect for the variable of interest, 𝛿1, simulation and 

empirical examples have shown that the resulting estimator is unbiased, root-N consistent, and 

asymptotically normal around 0 when the scaled estimation error is considered; for example,  

√𝑁(𝛿1 − 𝛿1). This method made machine learning, such as LASSO, a valid tool for making a 

causal inference as well. 

 Advanced machine learning algorithms and sample splitting techniques have paved the 

way for further development in constructing efficient and root-N consistent estimators. The 

concept of DML, in which a new class estimator was developed to make an inference about a 

low dimensional parameter of interest in the presence of a high-dimensional nuisance function, is 

one of the most popular concepts that has been attracting a lot of attention. (Chernozhukov et al., 

2018). 

In this novel approach, Chernozhukov et al. (2018) looked at a variety of sophisticated 

machine learning algorithms for estimating the ATE, in the presence of a high-dimensional 

nuisance function, and found that they all produced consistent results that were root-N 

consistent. The Frisch-Waugh-Lovell style (Frisch & Waugh, 1933) was incorporated in this 

method, which used a two-step estimation procedure. The Neyman orthogonality condition, 

proposed by Neyman (1959), guarantees a very low bias resulted from employing regularization 

at the expense of a significant reduction of variance, while sample splitting and cross fitting are 

used to improve the efficiency and stability of the resulting estimator (Chernozhukov et al., 

2018). When compared to classical semi-parametric methods, which have limitations when the 
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number of predictors is large, this DML method has proved to produce a clean and reliable 

estimator with fewer restrictions and regularity conditions. Another advantage of using the DML 

method is that one can construct a confidence interval so that inference can be meaningful using 

a variety of semi-parametric models, including the partially linear model introduced earlier, (4) 

and (5), and the partially linear instrumental variables model, since the resulted estimator is root-

N consistent. Other related literature worth mentioning on the DML can be found in studies by 

Knaus (2021), Yang et al. (2020), and Bach et al. (2021). 
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CHAPTER III 

METHODOLOGY 

In this chapter of the dissertation, I will be proposing an estimation method that is designed 

to handle high-dimensional and complex data. The goal from using this method was to be able to 

make causal inference on the targeted parameter in the presence of high-dimensional nuisance 

function. Assume that each observation has the following data structure: 

𝑂𝑖 = (𝑌𝑖, 𝐷𝑖 , 𝑿𝑖), 𝑖 = 1,… ,𝑁, 

where,  

𝑌𝑖 represents the observed response for the 𝑖𝑡ℎ case,  

𝐷𝑖 represents the observed treatment or independent variable for the 𝑖𝑡ℎ case,  

𝑿𝑖 represents a matrix of all the observed confounders for the 𝑖𝑡ℎ case.  

The term high-dimensional refers to the dataset contains a large number of variables, 

including treatment variable, alongside many confounders. On the other hand, the complexity 

emphasizes the interrelationships between these variables. The presence of confounders, or 

controls, usually indicates the presence of some kind of relationship among them and between 

confounders the response and treatment variable of interest. When such confounders are present, 

accounting for them is critical for making meaningful inferences about the treatment of 

independent variable of interest (Skelly et al., 2012). Figure 1 is a directed acyclic graph (DAG) 

that depicts the relationship that confounders have with the response and the treatment or 

independent variable of interest. 
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Figure 1 

Directed Acyclic Graph of the Variables  

 

 

Typically, datasets with this kind of relationship between the variables presented in 

Figure 1 with high-dimensional X poses a number of difficulties. Some examples include, but are 

not limited to, the following: 

• The curse of dimensionality: while it may appear that having a large number of 

features in a dataset reduces uncertainty and improves prediction and inference, 

modeling a large number of features that aren't proven to be relevant to the response 

can result in a significant decrease in prediction power due to an increase in the test 

error, besides can lead to the issue of over-fitting (James et al., 2013). 

• The multicollinearity issue: this issue can arise when the predictors have a high 

degree of correlation among each other. Multicollinearity can cause a number of 

issues, including standard error inflation, which reduces the statistical power of fitted 

model, making it difficult to understand the role and contribution of each predictor in 

explaining the response (Yu et al., 2015). 

• The presence of missing values: because this type of data is typically collected over a 

large number of cases and measured across a large number of features, the likelihood 
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of missing values is extremely high. This issue can be problematic in a number of 

ways, including a reduction in statistical power and bias in the resulting estimates, 

both of which can jeopardize the validity of any conclusions drawn (Kang, 2013). 

Many studies, such as those of Bickel (1982), Robinson (1988), Andrews (1994), Newey 

(1994), Robins et al. (1994), to name a few, have attempted to model this type of data using the 

classic semi-parametric modeling approach, as shown in equations (4) and (5). All of these 

attempts have aimed to create unbiased estimators that are root-N consistent, allowing for valid 

causal inference. These attempts all have one thing in common: they are constructed by 

introducing large sets of regularity conditions to constrain the space of the nuisance function that 

explains the dataset's confounders. Although, the recent double machine learning method 

proposed by Chernozhukov et al. (2018) has shown great promises in the sense of being simple 

and easy to implement as well as in the ability to produce consistent estimators without the need 

for setting the number of complex regularity conditions. 

The method in this research is incorporating the concept of double machine learning 

introduced by Chernozhukov et al. (2018), using the super learner algorithm of Van der Laan et 

al. (2007). It aims to obtain an efficient and robust root-N consistent estimator using a number of 

ML algorithms, which is referred to as the DSL. For the exposition of the proposed method, this 

section is presented in five sections. In order to set the stage for the proposed method, the first 

two subsections will cover the DML and the SL algorithm. The proposed method, the DSL, will 

be described in the third subsection. Simple simulated results will be presented in the fourth 

subsection of this section of the paper to demonstrate the potential of the proposed method in 

obtaining an accurate estimator for the effect for the independent variable of interest that are 

unbiased and root-N consistent. The last subsection will investigate an attempt to improve the 
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computational efficiency by looking into the analysis of the weighted effects of the incorporated 

ML algorithms for predicting the response and the causal variable in the presence of confounder 

matrix. 

Double Machine Learning 

To demonstrate the advantages the double machine learning has over classical methods, 

the steps outlined by Chernozhukov et al. (2018) will be followed, beginning with what is called 

the naive approach. The partial linear model introduced by Robinson (1988), which is made up 

of two parts: parametric and nonparametric, as presented earlier in the literature review chapter 

as model (4). It is preferable to begin with the regular, naive, machine learning approach to 

obtain an estimate for the targeted parameter, denoted as 𝜃0. The data were divided into two 

halves in this approach: the first half represents the testing set (T) of size 𝑛, and the second half 

represents the training set (Tr). The nuisance function, 𝑔0, is estimated using the training set 

based on the split in the overall data and retain �̂�0. After that, �̂�0 can be plugged into the PLR 

model equation (4). Finally, the naive estimator, denoted earlier as 𝜃0, can be constructed using 

the testing set as the following: 

𝜃0 = (
1

𝑛
 ∑ 𝐷𝑖

2
𝑖𝜖 𝑇 )

−1 1

𝑛
∑ 𝐷𝑖(𝑌𝑖 − �̂�0(𝑿𝑖))𝑖𝜖 𝑇 ,       (23) 

Although the above resulted estimator in (23) may seem quite sophisticated in the way 

it’s constructed, it has an obvious bias. The expectation 𝐸(𝜃0 − 𝜃0) can be decomposed into two 

terms, as shown in the study by Chernozhukov et al. (2018). The term "regularization bias" has 

issues, and it is expected to have a form of: 

𝐸 (𝑚0(𝑿𝑖)(𝑔0(𝑿𝑖) − �̂�0(𝑿𝑖))),    (24) 
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 The above term cannot diminish to 0, since 𝑚0(𝑿𝑖) keeps track of the effect of 

confounders on the variable D via the function 𝑚0, which is not centered around 0 (i.e., 

𝑚0(𝑿𝑖) ≠ 0). If the second model, (5), is ignored when constructing the estimator 𝜃0, the 

resulting estimator for the effect of the treatment variable of interest 𝜃0 will be biased. The rate 

of convergence of the scaled estimation error would go to infinity due to this 

neglection: √𝑁(𝜃0 − 𝜃0) →  ∞. Since the ultimate goal of incorporating ML into a semi-

parametric model is to be able to construct valid confidence intervals that allow for causal 

inference, the resultant estimator should satisfy the root-N consistency criteria. This is in order to 

achieve the required rate of convergence, which the naive ML estimator approach, introduced 

earlier, fails to do. 

A brand-new statistical concept called DML was developed to overcome those two key 

issues in the field of semi-parametric modeling (Chernozhukov et al., 2018). The construction of 

the DML estimator is based on two key strategies: the first is the use of orthogonalization to 

overcome regularization bias; the second crucial step is to use sample splitting to achieve the 

required rate of convergence.    

 The orthogonalization introduced by Neyman (1959) plays an important role in 

producing debiased estimates for the effect of the independent variable, or the treatment, using 

the Frisch-Waugh-Lovell style (Frisch & Waugh, 1933) for the first key construction of the 

DML estimator. Consider the second construction in equation (5). The effect of the confounders, 

which are presented throughout the function 𝑚0(𝑿), is partially removed from the treatment or 

independent variable of interest (D) by orthogonalization. It is specifically intended to obtain the 

estimated error shown in equation (25) below:  

�̂� = 𝐷 − �̂�0(𝑿),       (25) 
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 The second step now is to return to the main model (4), but this time, patrial out the effect 

of the confounder from the response Y using the function 𝑔0(𝑿) without adding the term 

concerning the treatment or independent variable D using the training sample, such as: 

�̂� = 𝑌 − �̂�0(𝑿),       (26) 

Once the estimated error terms are obtained, regress �̂� on �̂� in the Frisch-Waugh-Lovell style to 

obtain the following DML estimator using the testing set such as: 

�̌�0
𝑇 = (

1

𝑛
 ∑ �̂�𝑖�̂�𝑖𝑖𝜖 𝑇 )

−1 1

𝑛
∑ �̂�𝑖(𝑌𝑖 − �̂�0(𝑿𝑖))𝑖𝜖 𝑇 ,    (27) 

 The second key element of the construction of the DML estimator is achieved by 

switching the role of the training, or auxiliary, set with that of the main, or testing, set. The 

resulting estimators can then be averaged to produce an efficient estimator such as: 

�̌�0 =
(�̌�0
𝑇+�̌�0

𝑇𝑟)

2
,      (28) 

 The advantage of using DML is that it eliminates regularization bias. The scaled 

estimation error, √𝑁(�̌�0 − 𝜃0), can be decomposed into three parts using the steps described by 

Chernozhukov et al. (2018). The expectation of estimation error, 𝐸(�̌�0 − 𝜃0), can be 

decomposed as the following: 

𝐸(�̌�0 − 𝜃0) =
𝐸(𝑈𝑖𝑉𝑖)

𝐸(𝑉𝑖
2)⏟  

𝑎

+
𝐸((�̂�0(𝑿𝑖)−𝑚0(𝑿𝑖))(�̂�0(𝑿𝑖)−𝑔0(𝑿𝑖)))

𝐸(𝑉𝑖
2)⏟                  

𝑏

+ 𝐸 (𝑉𝑖(�̂�0(𝑿𝑖) − 𝑔0(𝑿𝑖)))⏟                
𝑐

,  (29) 

The first part of the decomposition, part a, will vanish to 0 if  𝐸(�̂�𝑖�̂�𝑖) = 0, which is the case if 

the two terms are independent, and both are expected to have 0 mean. Following the 

decomposition, the second term, b, expressing the regularization bias will also vanish to 0 if: 

𝐸 ((�̂�0(𝑿𝑖) − 𝑚0(𝑿𝑖))(�̂�0(𝑿𝑖) − 𝑔0(𝑿𝑖))) = 0,   (30) 
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This can occur if the two components are uncorrelated, which is the case when using the 

machine learning estimation to approximate the data generating process for D via �̂�0(𝑿𝑖) −

𝑚0(𝑿𝑖), and in Y via �̂�0(𝑿𝑖) − 𝑔0(𝑿𝑖), The final term resulting from 𝐸(�̌�0 − 𝜃0) is supposed to 

be something like: 

𝑐 = 𝐸 (𝑉𝑖(�̂�0(𝑿𝑖) − 𝑔0(𝑿𝑖))),    (31) 

 This term also vanishes in probability since 𝑉𝑖 and �̂�0(𝑿𝑖) are uncorrelated and obtained 

from different samples, the training set and the test set, respectively. Thanks to the incorporation 

of the sample splitting technique, the last term which represents the over-fitting bias is 

eliminated. Figure 2 compares the distribution of the estimated targeted parameter and their 

biases using three methods: the OLS method, the naive ML method described previously, and the 

DML proposed by Chernozhukov et al. (2018) using Random Forests.  
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Figure 2 

Comparisons of the Estimation Method for 500 Simulated Data with (n = 500, p = 20) 
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 Figure 2 displays the simulated estimators of the OLS, the naive ML estimator from 

equation (23), and the double ML estimator from equation (28) to showcase the performance of 

the DML method in comparison with classical methods in terms of estimation bias. The data-

generating process follows the partially regression model presented in model (23) and (24). Both 

error terms, 𝑈𝑖 and 𝑉𝑖, are assumed to have a standard normal distribution. Further details about 

the analysis can be found in the preliminary results section later in this chapter. As it appears in 

Figure 2, it is not too hard to notice that the distribution of (𝜃0 − 𝜃0) from the two estimation 

methods, OLS and NML, are shown to be biased and not centered around 0. On the other hand, 

the last plot is simulated using the DML method, where the distribution of (�̌�0 − 𝜃0) appears to 

be unbiased, centered around 0, and aligns with the theoretical distribution.  

Calculating the associated estimated variance is required to draw conclusions about the 

resultant DML estimator obtained in (28). The associated estimated variance for the first sample 

can take the formula followed by Yang et al (2020) for the DML estimator introduced in this 

section where cross fitting is used: 

�̌�𝑇
2 = (

1

𝑛
∑ �̂�𝑖

2
𝑖𝜖 𝑇 )

−1

(
1

𝑛
∑ �̂�𝑖

2�̂�𝑖
2

𝑖𝜖 𝑇 ) (
1

𝑛
∑ �̂�𝑖

2
𝑖𝜖 𝑇 )

−1

    (32) 

Similarly to what has been done previously when the DML estimator, �̌�0, was 

constructed, it is necessary to switch the role of the training and testing set to obtain another 

estimate for constructing the estimated variance such as: 

�̌�𝑇𝑟
2 = (

1

𝑛
∑ �̂�𝑖

2
𝑖𝜖 𝑇𝑟 )

−1

(
1

𝑛
∑ �̂�𝑖

2�̂�𝑖
2

𝑖𝜖 𝑇𝑟 ) (
1

𝑛
∑ �̂�𝑖

2
𝑖𝜖 𝑇𝑟 )

−1

   (33) 

Hence, the estimated variance of the DML estimator can be then calculated as follows: 

�̌�0
2 =

1

2
[(�̌�𝑇

2 + �̌�𝑇𝑟
2 ) + (�̌�𝑇 − �̌�0)

2
+ (�̌�𝑇𝑟 − �̌�0)

2
]    (34) 



34 

 

The construction of a valid confidence interval became feasible once the variance 

associated with the DML estimator was estimated. The asymptotic confidence interval for the 

DML estimator for the casual variable, according to Chernozhukov et al. (2018), is calculated as 

follows: 

�̌�0 ±Φ(1−𝛼
2
)

−1 �̌�0 √𝑁⁄ ,     (35) 

where Φ
(1−

𝛼

2
)

−1  is the corresponding z score for the confidence interval and �̌�0 √𝑁⁄  is the standard 

error for estimating the DML estimator of �̌�0. 

The Super Learner 

The issue with the DML approach, as provided in recent studies by Belloni et al. (2014), 

Chernozhukov et al. (2018), Wang (2020), and Yang (2020), is that the researcher must choose 

which ML algorithm to use in a particular double selection process. Since the performance of the 

ML algorithms rely on the success of finding the optimal predictor, the performance of a certain 

ML will depend on knowing the true distribution from which the dataset was generated. This 

would lead to the conclusion that predicting which ML algorithm will work best for a given 

dataset is nearly impossible (Van der Laan et al., 2007). 

 The aim of the existing papers on DML was to deal with the regularization bias that 

resulted from the model selection process, and it did so in a very efficient way by using sample 

splitting across a variety of ML algorithms. However, one might think of the issue on what I 

would like to call "researcher bias." Which ML algorithm should be incorporated in the analysis? 

Which learner would be the most effective for given data? Is LASSO a better learner than 

random forest or support vector machine for estimating the true effect of the independent or 

treatment variable of interest? 
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 When Van der Laan et al. (2007) proposed the concept of the super learner (SL), they 

suggested one solution that could help answer these questions. Why not use all of the ML 

algorithms together at once, rather than debating which one to use? The SL algorithm is an 

ensemble ML method that employs multiple ML algorithms simultaneously and assigns each one 

a weight, with the higher weights being assigned to the ML algorithms having the lowest cross-

validation risk and vice versa. When it comes to its asymptotic performance, the SL is proven to 

be as good as, if not better than, any other proposed ML algorithm, according to Van der Laan et 

al. (2007).  

The steps outlined in Van der Laan et al. (2007) and Polley (2010) will be followed to 

show how the SL algorithm is constructed. In this section, the construction of the SL is 

conceptually broken down into nine steps for the sake of making the concept of this ML easier to 

grasp. Before going over these nine steps for constructing the SL algorithm, assume for the sake 

of simplicity that we are only looking at five different ML algorithms, as Van der Laan et al. 

(2007) did, denoted as 𝑀𝐿1, …, 𝑀𝐿5. It's worth noting that incorporating a larger set machine is 

a possibility, though doing so would increase the computational intensity.  

The SL employs the technique of cross-validation in addition to the five ML algorithms. 

For the sake of simplicity and based on empirical studies that favor this cross-validation rate due 

to the bias-variance trade-off, this section will use v-fold cross-validation (James et al., 2013). 

Finally, the data are assumed to be typical multiple regression datasets with a large number of 

predictors, such as: 

𝑂𝑖 = (𝑌𝑖, 𝑿𝑖), 𝑖 = 1,… ,𝑁,   

where: 

𝑌𝑖 represents the observed response for the 𝑖𝑡ℎ case,  
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𝑿𝑖 represents a matrix of predictors over the 𝑖𝑡ℎ case.  

 After defining the parameters for performing the SL in terms of the number of ML 

algorithms, the v-fold cross-validation specification, and the data structure type, the following 

nine steps are carried out to obtain super learner predictions.: 

1. Input the data alongside the five candidate ML algorithms, 𝑀𝐿1, …, 𝑀𝐿5, which are 

being considered in constructing the SL analysis. Note that the SL algorithm can 

incorporate more or less than five learners, but for the sake of clarity, I will limit the 

analysis to only five.   

2. Split the data set into 10 cross-validation blocks such as 𝐵1, 𝐵2, …, 𝐵10. In this step, 

consider the first block of data (i.e., 𝐵1) as a testing set, while treating the remaining 

nine blocks (i.e., 𝐵2, … , 𝐵10) as the training sets.  

3. For each of the ML algorithms considered in the analysis, 𝑀𝐿1, …, 𝑀𝐿5, perform a 

model fitting using the remaining training sets considered in the blocks 𝐵2, … , 𝐵10. 

4. Use the first block considered as a testing set, 𝐵1, to predict the response, 𝑌𝑖, and then 

return sets of predicted values, denoted as Z, for each machine algorithms such as 

𝑍𝑖∈𝐵1
𝑀𝐿1 , … , 𝑍𝑖∈𝐵1

𝑀𝐿5 . 

5. Switch the role of testing and training set 10 times. Consider a different testing and 

training blocks for each iteration. For example, consider 𝐵2 as a testing block in the 

second rotation, 𝐵3 in the third rotation, and so on, with the remaining blocks in each 

rotation serving as training blocks.  

6. For each rotation of the blocks’ roles, repeat the Steps 3-4 and return sets of predicted 

values, Z, for each machine algorithms.  

7. Construct a matrix of predicted values using all blocks such as: 
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[

𝑍𝑖∈𝐵1
𝑀𝐿1 ⋯ 𝑍𝑖∈𝐵1

𝑀𝐿5

⋮ ⋱ ⋮

𝑍𝑖∈𝐵10
𝑀𝐿1 ⋯ 𝑍𝑖∈𝐵10

𝑀𝐿5

]      (36) 

8. Fit the matrix of predicted values obtained from the previous step against the 

response Y to propose a family of weights 𝛼1, …, 𝛼5 for each candidate ML 

algorithms and obtain their estimated values such as: 

𝑌𝑖 = �̂�1𝑍𝑖
𝑀𝐿1 +⋯+ �̂�5𝑍𝑖

𝑀𝐿5 + 𝜖𝑖      (37) 

9. Fit the entire data set using the five ML algorithms, then combine the results with the 

previous step to generate the SL.  

The flow diagram in Figure 3, from Polley et al. (2011) ,illustrates how the SL is constructed in 

nine steps using 10-fold cross-validation and a variety of classical statistical methods and ML 

algorithms.  
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Figure 3 

Flow Diagram of the Super Learner Algorithm  

 

Note. From “Targeted learning” by Polley, E. C., Rose, S., & van der Laan, Mark J, (p. 51), 

2011, Springer New York (https://doi.org/10.1007/978-1-4419-9782-1_3). Reprinted with 

permission.  

 

The Proposed Method: Double Super Learner 

So far, two concepts have been introduced in the previous two sections of the 

dissertation: the DML method (Chernozhukov et al., 2018) and the ensemble ML algorithm 

known as the super learner (Van der Laan et al., 2007). The use ML algorithms is proven to be 

extremely effective in terms of prediction accuracy. Although a ML algorithm's strong 

performance in the prediction context does not always imply a similar performance in the 

estimation context, in fact, ML methods can perform poorly in comparison with statistical 

methods when it comes to making good causal inferences, whereas the opposite is true when the 

https://doi.org/10.1007/978-1-4419-9782-1_3
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goal is to make accurate predictions (Bzdok et al, 2018). The issue is that as the model becomes 

more complex, the statistical method's inferential performance will become less precise as a large 

number of nuisance confounders are present in the data set. 

Once the DML concept was introduced, comparing the capabilities between ML methods 

and classical statistical methods in high-dimensional data settings in terms of prediction and 

estimation became less relevant. The advantage of using the DML method has shown great 

potentials not only in terms of prediction, where ML methods already have an advantage over 

statistical methods, but also in terms of estimation performance. In the presence of a high-

dimensional nuisance parameter, it is possible to obtain a valid causal inference about the low-

dimensional parameter of interest, which could be a causal parameter or treatment effect, using 

the DML method. Based on theoretical results, empirical examples, and simulations, the resultant 

estimators of the causal or treatment effect parameter are shown to be approximately unbiased, 

stable, and root-N consistent, implying that drawing causal conclusions about the targeted 

parameter via the construction of an associated confidence interval has a high degree of validity. 

The second concept introduced in the previous section is the SL, which is an ensemble 

ML algorithm developed by Van der Laan et al. (2007). The SL is a flexible ML algorithm that 

can use a multitude of candidate learners to improve prediction accuracy across a wide range of 

data-generating distributions. Because of the way cross-validation is used, the SL algorithm has 

the property of being a data-adaptive algorithm, which means that there is no need to restrict the 

SL to a specific parametric regression fit, as I did in Step 8 of the previous section on the SL 

algorithm's construction. To put it another way, one can use more data-adaptive ML methods 

like LASSO or Random Forest to generate the predicted values of each ML algorithm, or even 
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use the SL itself to complete this step. The heavy use of cross-validation is proven to be an 

effective way of protecting the final ensemble fit from over-fitting (Polley, 2010). 

This section of the dissertation proposes a new method called the DSL method that takes 

into account the marriage of those two concepts, the DML method and the SL algorithm. The 

strategy used by Chernozhukov et al. (2018) in constructing the DML estimator by employing 

the orthogonalization technique using the Frisch-Waugh-Lovell style (Frisch & Waugh, 1933) 

alongside the cross-fitting technique were incorporated in the DSL method. Furthermore, using a 

linear weighted functional of different machine-learnings, the super learning algorithm is 

employed for estimating the nuisance functions 𝑔0(𝑿𝑖) and 𝑚0(𝑿𝑖) which express the 

confounding effects of 𝑿𝑖 on the outcome variable 𝑌𝑖 and the independent or treatment variable 

of interest 𝐷𝑖, respectively. By integrating the two approaches, the DML method and the SL 

algorithm, the goal of the DSL method to take advantage of the potentials described earlier in 

producing more accurate estimators of the targeted parameter. In this dissertation, a framework 

of the DSL method is presented for making a valid causal inference on a low-dimensional 

targeted parameter, such as the causal or treatment parameter, in the presence of a high-

dimensional nuisance parameter, with good performance in terms of estimation accuracy, 

unbiasedness, and root-N consistency of the produced estimators.   

 The steps for constructing the targeted parameter estimator using the DSL method will be 

presented in this section of the dissertation. The data structure assumptions for the DSL method 

are similar to those used to describe the data structure in the DML method. Furthermore, I used 

the partial linear regression model of Robinson (1988) introduced earlier in (4) and (5). To make 

a distinction between the two models used in this section, where the notation used in the DML 
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method for estimating the functions 𝑔0(𝑿𝑖) and 𝑚0(𝑿𝑖) and their associated respective errors 𝑈𝑖 

and 𝑉𝑖, I used the following notations:  

𝑌 = 𝐷𝜃0 + 𝑔0
∗(𝑿) + 𝑈∗,    𝐸[𝑈∗|𝑿, 𝐷] = 0,       (38) 

𝐷 = 𝑚0
∗(𝑿) + 𝑉∗,   𝐸[𝑉∗|𝑿] = 0,        (39) 

where,  

Y  represents the response (outcome) variable,  

D  represents the treatment variable of interest,  

X  represents a matrix of confounders such as X = {x1, x2, …, xp} where p represents 

the number of associated covariates to be included in the model,   

𝜃0  represents the treatment effect which is the targeted parameter, 

g0
∗(𝐗)  represents the nuisance super learner function for the confounders, where X 

influences the outcome variable Y throughout the super learner function 𝑔0
∗, 

m0
∗(𝐗) represents the nuisance super learner function for the confounders, where X 

influences the treatment variable D throughout the super learner function 𝑚0
∗ ,  

𝑈∗  represents the model error in (38), 

𝑉∗  represents the model error in (39). 

In addition to the model assumptions, similar steps used in the SL section with respect to 

ML candidates were used along with the use of cross-validation folds, which involve using five 

algorithms and a 10-fold cross-validation approach. With these considerations in mind, the 

following are the steps of the proposed DSL algorithm for estimating the causal or treatment 

effect parameter:  

1. Split the dataset into two parts as in the DML method, with a testing set denoted as T, 

and a training set which denoted as Tr.  
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2. Consider model (39), apply the nine steps the SL algorithm introduced earlier using 

the sample assigned for the training set to obtain the following predictive linear 

model as follows: 

 𝐷𝑖∈𝑇𝑟 = �̂�1𝑊𝑖∈𝑇𝑟
𝑀𝐿1 +⋯+ �̂�5𝑊𝑖∈𝑇𝑟

𝑀𝐿5 + �̂�𝑖∈𝑇𝑟
∗ = ∑ (�̂�𝑘𝑊𝑖∈𝑇𝑟

𝑀𝐿𝑘)5
𝑘=1 + �̂�𝑖∈𝑇𝑟

∗ ,   (40) 

where: 

�̂�𝑘 represents the estimated weight of the 𝑘𝑡ℎML algorithm using the training set, 

𝑊𝑖∈𝑇𝑟
𝑀𝐿𝑘   represents the predicted values of the independent or treatment variable D 

using the 𝑘𝑡ℎ ML algorithm based on the training set, 

�̂�𝑖∈𝑇𝑟
∗   represents estimated errors from predicting the independent or treatment 

variable using the super learner method.  

3. Partial out the effect of 𝑊𝑖∈𝑇𝑟
𝑀𝐿𝑘  from the independent or treatment variable 𝐷𝑖∈𝑇𝑟 based 

on the training sample to obtain the orthogonalized estimated error such as:  

�̂�𝑖∈𝑇𝑟
∗ = 𝐷𝑖∈𝑇𝑟 − ∑ (�̂�𝑘𝑊𝑖∈𝑇𝑟

𝑀𝐿𝑘)5
𝑘=1 ,      (41) 

4. Now consider model (38), which is concerned with the response, and apply the nine 

steps of the SL algorithm introduced earlier based on the training sample to obtain the 

following predictive linear model: 

 𝑌𝑖∈𝑇𝑟 = �̂�1𝑍𝑖∈𝑇𝑟
𝑀𝐿1 +⋯+ �̂�5𝑍𝑖∈𝑇𝑟

𝑀𝐿5 + �̂�𝑖∈𝑇𝑟
∗ = ∑ (�̂�𝑘𝑍𝑖∈𝑇𝑟

𝑀𝐿𝑘 )5
𝑘=1 + �̂�𝑖∈𝑇𝑟

∗  ,   (42) 

where: 

�̂�𝑘  represents the estimated weight of the 𝑘𝑡ℎ ML algorithm using the training 

set, 

𝑍𝑖∈𝑇𝑟
𝑀𝐿𝑘   represents the predicted values of the outcome variable Y using the 𝑘𝑡ℎ ML 

algorithm based on the training set, 
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�̂�𝑖∈𝑇𝑟
∗   represents the estimated errors from predicting the response using the super 

learner method.  

5. Partial out the effect of 𝑍𝑖∈𝑇𝑟
𝑀𝐿𝑘  from the observed response 𝑌𝑖∈𝑇𝑟 based on the training 

sample to obtain the orthogonalized estimated error such as:  

�̂�𝑖∈𝑇𝑟
∗ = 𝑌𝑖∈𝑇𝑟 − ∑ (�̂�𝑘𝑍𝑖∈𝑇𝑟

𝑀𝐿𝑘 )5
𝑘=1 ,      (43) 

6. After obtaining �̂�𝑖∈𝑇𝑟
∗  and �̂�𝑖∈𝑇𝑟

∗  using the training sample, it is the time to apply the 

Frisch-Waugh-Lovell style by regressing �̂�𝑖∈𝑇𝑟
∗  on �̂�𝑖∈𝑇𝑟

∗  using the testing set this time 

and obtain the following DSL estimator such as: 

�̃�0
𝑇 = (

1

𝑛
 ∑ �̂�𝑖

∗�̂�𝑖
∗

𝑖𝜖 𝑇 )
−1 1

𝑛
∑ �̂�𝑖

∗�̂�𝑖
∗

𝑖𝜖 𝑇 ,    (44) 

7. After obtaining the first DSL estimator based on the testing set, switch the role of the 

training and testing sets and repeat the previous steps to get a second DSL estimator 

such as: 

�̃�0
𝑇𝑟 = (

1

𝑛
 ∑ �̂�𝑖

∗�̂�𝑖
∗

𝑖𝜖𝑇𝑟 )
−1 1

𝑛
∑ �̂�𝑖

∗�̂�𝑖
∗

𝑖𝜖 𝑇𝑟 ,    (45) 

8. As a result, perform cross-fitting by averaging the two resulted DSL estimators to 

obtain the final estimator of the causal or treatment effect parameter, as described 

previously in the DML method: 

�̃�0 =
(�̃�0
𝑇+�̃�0

𝑇𝑟)

2
,     (46) 

9. Finally, calculating the estimated variance is critical in order to be able to draw a 

causal conclusion by constructing a confidence interval for the resulted DSL 

estimator, �̃�0, the estimated variance resulting from the first sample, like the DML 

method, is of the white-type estimator: 
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�̃�𝑇
2 = (

1

𝑁𝑇
∑ �̂�𝑖

∗2
𝑖𝜖 𝑇 )

−1

(
1

𝑛
∑ �̂�𝑖

∗2�̂�𝑖
∗2

𝑖𝜖 𝑇 ) (
1

𝑛
∑ �̂�𝑖

∗2
𝑖𝜖 𝑇 )

−1

,  (47) 

The variance estimator can then be obtained by switching the role of the training and 

the testing sets and computing the variance of the second sample, �̃�𝑇𝑟
2 , as follows: 

�̃�0
2 =

1

2
[(�̃�𝑇

2 + �̃�𝑇𝑟
2 ) + (�̃�𝑇 − �̃�0)

2
+ (�̃�𝑇𝑟 − �̃�0)

2
]   (48) 

After applying the previous nine steps and obtaining the resultant DSL estimator and its 

estimated variance, the classical confidence interval can be constructed as follows to draw causal 

conclusions about the estimated targeted parameter, �̃�0, such as: 

�̃�0 ±Φ(1−𝛼
2
)

−1 �̃�0 √𝑁⁄      (49) 

The distribution of (�̃�0 − 𝜃0), as shown in Figure 4, displays the distributional behavior 

of the resultant causal effect estimates using the DSL approach. This estimator is shown to 

behave well, in that it is approximately unbiased and aligns with the theoretical asymptotic 

normal distribution, the blue curve, which is centered on 0 and diverges according to the DSL 

estimator's variance.  

 

Figure 4 

The Distribution of (�̃�0 − 𝜃0) Using the Double Super Learner Method (n = 500, p = 20) 
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Figure 5 was next created to compare the performance of the four candidate estimation 

methods discussed in this dissertation. It can be seen that estimators based on the DML and DSL 

methods outperformed estimators based on the OLS method and naive ML method approaches. 

 

Figure 5 

Comparison of the Distribution Density of (𝜃0 − 𝜃0) for All Methods (n = 500, p = 20) 

 

 

From Figure 5, it is clear that the DML estimator, in red, and the DSL estimator, in blue, 

have outperformed the OLS, in black, and the naive machine learning (NML) estimator, in green. 

Both of the latter estimators, OLS and NML, are shown to be biased and deviated significantly 

from the true value of the parameter 𝜃0 which was set to 0.5. On the other hand, the resultant 

estimates from applying the DML and DSL were shown to be unbiased, and that 𝜃0 − 𝜃0 is 

centered around the 0, and that the DSL method yields a set of estimates that are as good, if not 

slightly better, as the ones that resulted from applying the DML method. 
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Improving the Computational Efficiency of  

the Double Super Learner Algorithm 

 

When comparing the computational intensity of the DML method to the proposed 

method, the DSL, the DML method is more efficient computationally. This difference in 

computational efficiency between the DML and DSL methods is due to the DSL method's use of 

multiple ML algorithms. The selection property can be employed when performing the DSL 

method to reduce the effect of the computational intensity caused by the incorporation of 

multiple ML algorithms. This can be achieved by applying the DSL method to a subset of the 

sample, and then selecting the best performing ML algorithm based on the size of the weights 

that correspond to each ML algorithm. Empirical simulations performed by Polley (2010) show 

that when running the SL function for a given data dataset on a set of candidate ML algorithms, 

the algorithm associated with the highest weight in the prediction model will always have the 

lowest cross-validated risk, indicating that it is the best candidate learners for the given dataset. 

To apply the selection concept of the best performing learner in the DSL method, the following 

steps can be followed: 

1. Apply the DSL method on a small sample of the dataset, Steps 1-9 in the previous 

section of the DSL algorithm, using all of the candidate learners.  

2. Use the information obtain in Steps 2 and 4 by selecting the learners with the highest 

weights. Specifically, select the learner with the largest �̂�𝑘 in (40) that predicts the 

treatment variable D, and the largest �̂�𝑘 in (42) that predicts the response Y.  

3. Apply the DSL method on the entire dataset using only the best performing learners 

selected in the previous step.  

To apply the selection concept on the DSL method with the aim of improving the 

computational efficiency, the results from the previous DSL simulation were incorporated since 
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there were 500 replications using the DSL method, and with each replication, the values of the 

candidate machine-learnings weights were saved and then averaged for each learner to have the 

overall weight. Table 1 shows the results of the weights of the five machine-learnings 

incorporated in the SL function from the previous section for predicting the response in training 

and testing sets, denoted as 𝑌𝑡 and 𝑌𝑡𝑟, as well as the treatment variable, denoted as 𝐷𝑡 and 𝐷𝑡𝑟.  

 

Table 1 

The Average of Estimated Weights for the Response and the Treatment Variables across Five 

Machine Learnings in the Super Learner Given the Training and Testing Sets  

Nuisance 

 

LASSO GLM 

 

KNN 
Random 

Forest 
Boosting 

�̂�𝟎(𝑿𝒊∈𝑻) 0.77119529 0.08508627 0.03579099 0.06164191 0.04628554 

�̂�𝟎(𝑿𝒊∈𝑻𝒓) 0.76543355 0.09002393 0.03938016 0.06071164 0.04445072 

�̂�𝟎(𝑿𝒊∈𝑻) 0.79465935 0.07550397 0.03251870 0.04963991 0.04767807 

�̂�𝟎(𝑿𝒊∈𝑻𝒓) 0.81401576 0.06839084 0.03225440 0.04177494 0.04356406 

 

It is not too hard to notice that the LASSO learner had the highest weight, indicating that 

using LASSO to predict the response and treatment variables has the lowest cross-validation risk. 

As a result, given the simulated datasets, it is safe to assume that LASSO is the best ML 

algorithm to use in the DSL method. To test this theory, the simulation is reiterated using only 

LASSO for the DSL method to see if the resultant estimates for the targeted parameter were 

influenced by the selection. 
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Figure 6 displays the distribution of the targeted parameter estimates, �̃�0, obtained using 

the DSL method when LASSO is used only as a machine-learning algorithm in the super learner 

function. 

 

Figure 6 

The Distribution of (�̃�0 − 𝜃0) Using for DSL Method Using Only LASSO 

 

 

The resultant estimates appear to be unbiased and follow the theoretical distribution, as 

shown in the Figure 6, indicating that the SL function-based selection was able to improve the 

computational efficiency of the DSL method by 80% while still producing valid estimators. The 

summary results in Table 2 tell the story about which method was closest to the true value of the 

targeted parameter by taking the average of all resulted estimators from the 500 replications in 

the simulated data.  
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Table 2 

The Average of Estimated Targeted Parameter for 500 Replicates  

Method OLS NML DML DSL DSL LASSO 

�̂�𝟎 0.6429 0.3640 0.5061 0.5001 0.4988 

 

 

The results displayed in Table 2 clearly show that the average estimates yield a smaller 

difference from the real value of 𝜃0 = 0.5 when using the DML, DSL, and DSL LASSO in 

comparison with the OLS and NML methods, with a difference that favors DSL LASSO, DSL, and 

DML methods, respectively. More specifically, the improvement applied to the proposed DSL 

methods has resulted in a more accurate estimator in comparison with the original DML 

estimator when considering the difference from the real value.  

Table 3 provides more statistical insight into the performance between the three methods. 

In Table 3, the estimates of the targeted parameter, the bias, the variance, and the corresponding 

95% confidence intervals across the tree methods are reported. In viewing Table 3, it is not too 

had to notice that the proposed method that DSL method, is shown to be the best performing 

method in terms of the bias size. The selected DSL method, DSL LASSO, that only incorporates 

LASSO in its estimation comes second, and the DML method comes last among the three 

methods. In terms of variance, on the other hand, the simulation results show that the original 

DML method yielded the lowest variance, then comes the DSL LASSO and DSL methods, 

respectively.  
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Table 3 

The Average of Estimated Weights for the Response and the Treatment Variables Across Five 

Machine Learnings in the Super Learner Given the Training and Testing Sets  

Method Estimate Bias Variance 95% CI 

DML 0.5061 0.0061 0.0020 0.4179 0.5944 

DSL 0.5001 0.0001 0.0023 0.4071 0.5932 

DSL LASSO 0.4988 0.0012 0.0022 0.4060 0.5917 

Note. Number of replications is 500, p=20, and N=500.  
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CHAPTER IV 

RESULTS 

 In this chapter of the dissertation, I will be performing analytical simulation in order to 

investigate the theory behind the proposed DSL method and to be able answer the four research 

questions introduced in Chapter I. The numerical analyses will be implemented using R software 

using both simulated and real datasets.  

 In this chapter, the content will be split into six sections. The first section will present the 

simulation scheme which includes the data-generating process, the ML algorithms, estimation 

methods, the dimensions of the simulated datasets, the type of treatments, etc. The second 

section of this chapter will be looking at numerical results of the proposed method when the 

treatment variable is considered to be continuous across a grid of values regarding the sample 

size and the number of predictors included in the analysis. Similar to the second section, the third 

section of this chapter will explore various simulated datasets in the case where the treatment 

variable is considered to be binary.  

 The fourth section of this chapter will introduce a new R package that was created 

specifically for this dissertation in order to make it is easier for others to perform the analysis 

needed using the DSL method. The fifth section of this chapter will consider an empirical 

example of a real-life dataset which aims to demonstrate the application of the DSL method and 

to show the case of using the DoubleSL package that was developed specifically for the 
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proposed method in this dissertation. Finally, the sixth section will present findings of the 

analysis and answers for the research questions.  

Simulation Scheme 

 

In this section of the chapter, I will introduce a simulation scheme to help me navigate 

through the analysis in this chapter. In order to explore the proposed DSL method performance 

under a variety of settings, I investigated the true effect of treatment using two scenarios: when 

the treatment variable is continuous, and when the treatment variable is binary.  

For the datasets to be simulated in this chapter, I assumed the following data structure 

similar to one introduced earlier in the methodology chapter:  

𝑶𝑖 = (𝑌𝑖, 𝐷𝑖 , 𝑿𝑖), 𝑖 = 1,… ,500    

whereas before, the response is represented via the variable 𝑌𝑖, the treatment is represented via 

the variable 𝐷𝑖, and the matrix 𝑿𝑖 represents the set of covariates. Since the DML method is the 

benchmark method that I compared with the proposed DSL method, I followed the same 

simulation procedure followed by Chernozhukov et al. (2018). For each observation in 𝑶𝑖, the 

following data-generating process was used to generate the data: 

𝑌𝑖 = 𝐷𝑖𝜃0 + 𝑔0(𝑿𝑖) + 𝑈𝑖,    𝑈𝑖~𝑁(0, 1)        (50) 

𝐷𝑖 = 𝑚0(𝑿𝑖) + 𝑉𝑖,   𝑉𝑖~𝑁(0, 1)         (51) 

In addition, the matrix of covariates is simulated from a multivariate normal density such 

as 𝑿𝑖~𝑁𝑝(0, 𝚺), where 𝑝 represents the number of covariates in 𝑿𝑖. For 𝑗 = 1, 2, … , 𝑝; the 

covariance matrix, 𝚺, was simulated as follows: 

𝚺 = toeplitz(0. 7𝑝) = (
0. 71 … 0. 7𝑝

⋮ ⋱ ⋮
0. 7𝑝 ⋯ 0. 71

),      (52) 
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Furthermore, assume that the nuisance functions 𝑔0(𝑿𝑖) and 𝑚0(𝑿𝑖), which describe the 

relationships of the confounders on the response and the treatment variable, respectively, can be 

simulated as follows:  

𝑔0(𝑿𝑖) = 𝑒𝑥𝑝𝑖𝑡(𝛽1𝑿𝑖)  + 0.25 𝛽2𝑿𝑖     (53) 

𝑚0(𝑿𝑖) = 𝛽3𝑿𝑖1 + 0.25 𝑒𝑥𝑝𝑖𝑡(𝛽4𝑿𝑖3)    (54) 

where the parameters associated in the data generating process are as follows:  

𝛽1 = 𝛽3 = {1, 0, 0, … },        𝛽2 = 𝛽4 = {0, 0, 1, 0, … },     𝜃0 = 0.5         

Obviously, the above data-generating process will return a dataset that has a continuous 

treatment variable. In order to create a dataset with a binary treatment variable, the above data-

generated process was slightly adjusted; mainly, equation (51) will be changed to:   

𝐷𝑖~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛 = 1, 𝑝 =
1

1+exp(𝑚0(𝑿𝑖))
 ),        (55) 

To compensate for the error term 𝑉𝑖 in equation (51) when considering the case of the treatment 

variable as being binary, the approach followed in Yang et al. (2020) was considered to return 

the necessary values to construct the DML and DSL estimators such as: 

𝑉𝑖 = {
1 − 𝑝, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝        
−𝑝, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝

 ,    (56)  

where 𝑝 = 1 (1 + exp(𝑚0(𝑿𝑖)))⁄  as noted in (55).  

Furthermore, the DML estimator and the DSL estimators were constructed using the 

orthogonal method introduced in equations (27) and (44), respectively, when considering the 

treatment variable to be continuous. When the case of the treatment variable is binary, on the 

other hand, an additional estimator is introduced as suggested by Chernozhukov et al. (2018). 

The additional estimator using the DML method when the nuisance function is estimated using 

the testing set was constructed as follows: 
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�̌�0
𝑇 = (

1

𝑛
 ∑ �̂�𝑖𝐷𝑖𝑖𝜖 𝑇 )

−1 1

𝑛
∑ �̂�𝑖(𝑌𝑖 − �̂�0(𝑿𝑖))𝑖𝜖 𝑇 ,    (57) 

 After the first estimator is obtained, the role of the testing and training sets will switch as 

before and obtain a second estimator �̌�0
𝑇𝑟, which is then averaged with �̌�0

𝑇𝑟 and the estimator �̌�0 

retained as in (28). A similar framework was followed to obtain the DSL estimators. It is 

important to point out that the estimation using equations (27) and (44), which were incorporated 

in estimating the effect of continuous treatment variables, were also implemented in estimating 

the effect of binary treatment variables where the analysis results are retained (Appendix B). 

When implementing the DML method, the Random Forest ML algorithm was used to 

estimate the targeted parameter. As for the DSL method, a set of five candidate learners were 

incorporated: (a) the general linear model (GLM); (b) the kernel KNN; (c) the LASSO; (d) the 

Random Forests; and (e) the boosting. The main reason for selecting these candidate algorithms 

was to have a set of various learners in terms of their constructions and their searching strategy. 

In addition, the number of 5-fold cross-validation was considered when implementing the DSL 

methods.  

For each of those two types of treatment variables, 16 different data settings were 

simulated using the data-generating processes described earlier, each of which was replicated 

over 500 times, and the targeted parameter was investigated using a grid of values for the sample 

size and the number of extraneous variables (n and p) (Table 4). Using two types of treatment 

variables alongside four different sample sizes and number of associated covariates, the 

simulation investigated 32 different datasets that differed in their settings.  
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Table 4 

Settings for Sample Size and Number of Extraneous Variables under Investigation 

 

Number of 

covariates 

n1=100 n2=500 n3=1,000 n4=5,000 

p1=20 Simulation 1 Simulation 2 Simulation 3 Simulation 4 

p2=100 Simulation 5 Simulation 6 Simulation 7 Simulation 8 

p3=1,000 Simulation 9 Simulation 10 Simulation 11 Simulation 12 

p4=10,000 Simulation 13 Simulation 14 Simulation 15 Simulation 16 

 

For each dataset, three methods investigated the performance of estimating the targeted 

parameter: the DML method, the DSL method, and the DSL method using the selection criteria. 

For each of these three methods, a number of statistics were reported and compared: the 

estimated targeted parameter, the variance, the bias, and the associated upper and lower 

confidence limits. In addition, a histogram of the estimated targeted parameter is presented to 

display the behavior for the simulated estimated effects. 

Simulation Analysis for Continuous Case Treatment 

In this section, I explore the results from applying the DSL method on 16 different 

settings to simulate datasets that vary in their number of associated covariates and sample sizes. 

These datasets were simulated using the data-generating process explained in the previous 

simulation scheme section of this chapter, equations (50) through (54). In addition, the DSL 

method is compared with the existing DML method as well as with the improved DSL version 
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proposed in the previous chapter, the selected DSL method. The information about selecting the 

best ML algorithm was obtained using the SL function that is incorporated in the DSL algorithm.  

In this simulation, I considered four different numbers of associated covariates (p) in the 

datasets: 20, 100, 1000, and 10000. For each different p, four different sample sizes (N) were 

considered: 100, 500, 1000, and 5000. The number of replications considered in the analysis was 

originally 500 replications, but due to the implementation of the analysis across multiple nodes, 

the number of replications applied in the analysis was 504 replications for the majority of the 

datasets. In addition, the number of replications considered for analyzing the largest datasets, 

sample sizes (N) of 5,000 and the number of associated covariates (p) of 10,000, was limited to 

264 due to the computational intensity when analyzing such large datasets.  

When the simulation analysis for the three estimation methods was implemented, the 

histograms for the density of the targeted parameters’ estimates using each estimation method 

were retained in order to observe and compare their normal densities and its alignment with the 

theoretical distribution. To investigate performance of estimating the targeted parameter in the 

presence of 20 associated covariates, a simulation using 504 replications with different simulated 

datasets was performed, and the results are displayed in Figure 7.  
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Figure 7 

The Distribution of (�̃�0 − 𝜃0) when p = 20 when the Treatment Variable is Continuous 
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The results displayed in Figure 7 show the distribution of the estimated targeted 

parameter of each method subtracted by the true value of the targeted parameter (𝜃0=0.5) when 

the number of associated covariates is fixed at 20 and the sample size number is variant, which is 

considered a typical case of low-dimensional datasets, p < N. Figure 7 shows that by applying 

the proposed DSL method as well as the selected DSL method, a similar distributional behavior 

of the existing DML method can be achieved judging by the alignment between the density of 

the results from each estimation method and the blue curve which represents the theoretical 

normal distribution of 0 mean and the estimates’ variance. Furthermore, the red line displayed in 

Figure 7, which refers to the bias that resulted from each estimation method, clearly shows that 

the DSL method as well as the selected DSL method have lower bias in comparison with the 

original DML method proposed by Chernozhukov et al. (2018). The bias was calculated by 

taking the mean of all estimates subtracted by the true parameter 𝜃0.  

To assess the performance of the candidate ML algorithms that are considered in the DSL 

method, Table 5 was produced. The information that Table 5 presents is also crucial in order to 

know which ML algorithm should be considered when implementing the selected DSL method 

using two indicators: frequency and ratio. For example, when considering the sample size of 100, 

LASSO was the best performing learner when estimating the nuisance function �̂�0 using the 

testing set, �̂�0(𝑿𝑖∈𝑇), 246 times out of 504 and 266 times when �̂�0 is estimated using the training 

set, �̂�0(𝑿𝑖∈𝑇𝑟). In addition, LASSO has the largest weight of 0.452 and 0.451 when estimating 

�̂�0(𝑿𝑖∈𝑇) and �̂�0(𝑿𝑖∈𝑇𝑟), respectively, in comparison with the other ML algorithms. It is clear 

that the choice of LASSO is obvious as the sample size grow large.  
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Table 5 

Performance of Each Candidate Learner in the Super Learner Analysis for p = 20 when the 

Treatment Variable is Continuous 

Sample N Nuisance Best Candidate LASSO GLM KNN RF Boosting 

100 �̂�0(𝑋𝑖∈𝑇) Frequency 246 23 84 117 34 

Ratio 0.452 0.093 0.161 0.192 0.102 

�̂�0(𝑋𝑖∈𝑇𝑟) Frequency 266 19 87 104 28 

Ratio 0.451 0.092 0.161 0.192 0.104 

�̂�0(𝑋𝑖∈𝑇) Frequency 374 25 23 52 30 

Ratio 0.637 0.084 0.065 0.112 0.103 

�̂�0(𝑋𝑖∈𝑇𝑟) Frequency 372 16 22 63 31 

Ratio 0.634 0.089 0.069 0.107 0.101 

500 �̂�0(𝑋𝑖∈𝑇) Frequency 458 18 2 25 1 

Ratio 0.749 0.082 0.042 0.085 0.041 

�̂�0(𝑋𝑖∈𝑇𝑟) Frequency 458 19 0 24 3 

Ratio 0.749 0.084 0.042 0.074 0.050 

�̂�0(𝑋𝑖∈𝑇) Frequency 490. 7 0 6 1 

Ratio 0.831 0.056 0.032 0.040 0.041 

�̂�0(𝑋𝑖∈𝑇𝑟) Frequency 494. 9 0 0 1 

Ratio 0.825 0.063 0.035 0.035 0.042 

1,000 �̂�0(𝑋𝑖∈𝑇) Frequency 481. 18 0 5 0 

Ratio 0.798 0.083 0.025 0.062 0.031 

�̂�0(𝑋𝑖∈𝑇𝑟) Frequency 480. 18 0 6 0 

Ratio 0.818 0.076 0.024 0.052 0.031 

�̂�0(𝑋𝑖∈𝑇) Frequency 500. 4 0 0 0 

Ratio 0.848 0.058 0.027 0.038 0.028 

�̂�0(𝑋𝑖∈𝑇𝑟) Frequency 493. 11 0 0 0 

Ratio 0.847 0.060 0.027 0.035 0.031 

5,000 �̂�0(𝑋𝑖∈𝑇) Frequency 496. 8 0 0 0 

Ratio 0.858 0.078 0.013 0.033 0.017 

�̂�0(𝑋𝑖∈𝑇𝑟) Frequency 494. 10 0 0 0 

Ratio 0.847 0.088 0.013 0.035 0.017 

�̂�0(𝑋𝑖∈𝑇) Frequency 493. 11 0 0 0 

Ratio 0.871 0.068 0.016 0.031 0.014 

�̂�0(𝑋𝑖∈𝑇𝑟) Frequency 497. 7 0 0 0 

Ratio 0.876 0.067 0.018 0.024 0.015 

 

To complete the investigation comparing the performance of the proposed methods with 

the original DML method when the number of associated covariates is set to 20, Table 6 

provides summary statistics across the three methods for different sample sizes. For each 
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method, the overall estimates of the targeted parameter, bias, variance and 95% confidence 

intervals are reported.  

 

Table 6 

Summary Statistics for Datasets with p = 20 when the Treatment Variable is Continuous 

N Method Estimates Bias Variance 95% CI 

 

100 

 

DML 

 

0.5316 

 

0.0316 

 

0.0112 

 

0.3246 

 

0.7386 

DSL 0.5043 0.0043 0.0148 0.2659 0.7427 

Selected DSL  0.4964 0.0036 0.0150 0.2560 0.7368 

500 DML 0.5061 0.0061 0.0020 0.4179 0.5944 

DSL 0.5001 0.0001 0.0023 0.4071 0.5932 

Selected DSL  0.4988 0.0012 0.0022 0.4060 0.5917 

1,000 DML 0.5069 0.0069 0.0013 0.4372 0.5766 

DSL 0.5037 0.0037 0.0012 0.4365 0.5708 

Selected DSL  0.5036 0.0036 0.0012 0.4361 0.5711 

5,000 DML 0.5011 0.0011 0.0002 0.4734 0.5287 

DSL 0.5000 0.0000 0.0002 0.4734 0.5267 

Selected DSL  0.5002 0.0002 0.0002 0.4735 0.5268 

Note. Number of replications is 504. 

As displayed in Table 6, the summary statistics show that the DSL method and the 

selected DSL method, which only incorporated LASSO in the estimation process, have lower 

bias than that of the DML method across different sample sizes. In addition, the associated 

variances of the proposed methods are fairly close to that of the original DML method, and 

approach it as the sample size increases, resulting in more competitive and valid confidence 

intervals.  

 The following analysis considered applying the proposed DSL methods when the number 

of associated covariates is set to 100, where it contains a case p = N. Figure 8 displays the 

distribution of (�̃�0 − 𝜃0) using the three methods for comparing their normal densities across four 

different sample sizes. For the most part, the distribution of (�̃�0 − 𝜃0) was shown to be 
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asymptotically normal in a way that is similar to previous cases when the number of associated 

covariates was set to be equal to 20. However, it is not too hard to notice that one of these cases 

behaved differently, which is the histogram that displays the distribution of (�̃�0 − 𝜃0) using the 

DSL method when the sample size was set to 100. When investigating the reason why the 

histogram looks this way, it appears that the DSL method has returned some values for the 

estimated targeted parameter that are unusual for what is expected. For example, the 64th 

replication returned an estimate for the targeted parameter of 138.08, which was far from what is 

expected when the true value of the targeted parameter is set to 0.5. It is worth mentioning that 

the 64th replication was the only instance that resulted in an inflated estimate, but it was enough 

to cause the bias, and the variance significantly increased in comparison with other methods and 

across other sample sizes. Outliers’ detection analysis can be found in Appendix A for this and 

other cases. 
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Figure 8 

The Distribution of (�̃�0 − 𝜃0) when p = 100 and when the Treatment Variable is Continuous 
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 To overcome this issue, a natural solution was to trim the resulted estimates by only 1%, 

and then calculate the mean and the variance for the trimmed set of estimates. This trick was 

shown to be very effective in solving this issue, as Figure 9 displays, where the density of (�̃�0 −

𝜃0) using the DSL method when the sample size is 100; after trimming, of the density of the 

estimates is shown to be asymptotically normal just like the others. The trimming trick was 

employed when the sets of estimated targeted parameters retained over replications are deemed 

to contain inflated or out of place estimates.  

 In addition, by observing the red line that represents the bias in Figure 9, it is easy to 

notice that the DSL method and the selected DSL method have lower bias than that of the DML 

method, and that bias approaches the 0 as the sample size increases. This was also the case when 

the number of associated covariates was set to 20, which indicates that even when p was 

increased to 100, the resulting bias from applying the proposed DSL method is still better than 

that of the original DML method. 
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Figure 9  

The Distribution of (�̃�0 − 𝜃0) for p = 100 when the Treatment Variable is Continuous after 

Applying the Necessary Trimming 

 

Note: The sign ** indicates that trimming was applied  
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Table 7 

Performance of Each Candidate Learner in the Super Learner Analysis for p = 100 when the 

Treatment Variable is Continuous 

Sample N Nuisance Best Candidate LASSO GLM KNN RF Boosting 

100 �̂�0(𝑿𝑖∈𝑇) Frequency 281 0 54 87 82 

Ratio 0.523 0.004 0.113 0.174 0.185 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 285 0 64 67 88 

Ratio 0.526 0.004 0.126 0.142 0.201 

�̂�0(𝑿𝑖∈𝑇) Frequency 395 0 12 29 68 

Ratio 0.721 0.003 0.053 0.054 0.168 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 406 0 10 30 58 

Ratio  0.738 0.004 0.044 0.063 0.149 

500 �̂�0(𝑿𝑖∈𝑇) Frequency 495 0 0 2 7 

Ratio 0.861 0.027 0.015 0.021 0.076 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 499 0 0 3 2 

Ratio 0.865 0.028 0.015 0.022 0.070 

�̂�0(𝑿𝑖∈𝑇) Frequency 502 0 0 1 1 

Ratio 0.881 0.022 0.023 0.027 0.049 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 503 0 0 1 0 

Ratio  0.876 0.022 0.027 0.029 0.047 

1,000 �̂�0(𝑿𝑖∈𝑇) Frequency 504 0 0 0 0 

Ratio 0.892 0.033 0.009 0.018 0.049 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 503 0 0 1 0 

Ratio 0.894 0.032 0.008 0.017 0.049 

�̂�0(𝑿𝑖∈𝑇) Frequency 504 0 0 0 0 

Ratio 0.894 0.023 0.022 0.030 0.032 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 504 0 0 0 0 

Ratio  0.887 0.024 0.022 0.033 0.035 

5,000 �̂�0(𝑿𝑖∈𝑇) Frequency 504 0 0 0 0 

Ratio 0.936 0.027 0.004 0.010 0.023 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 504 0 0 0 0 

Ratio 0.931 0.032 0.004 0.010 0.023 

�̂�0(𝑿𝑖∈𝑇) Frequency 504 0 0 0 0 

Ratio 0.920 0.020 0.016 0.030 0.015 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 504 0 0 0 0 

Ratio 0.916 0.024 0.015 0.028 0.017 

 

As I did when analyzing the datasets that involved 20 covariates previously, Table 7 

displays the results on the performance of the candidate machine-learning algorithms in 

estimating the nuisance functions �̂�0 and �̂�0. As before, the super learner algorithm indicates 
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that LASSO was the best performing learner given these datasets. Furthermore, Table 8 shows 

the summary statistics which compares the three methods across different sample sizes. It is not 

too hard to notice the effect of applying trimming treatment on the DSL method when a sample 

size of 100 in Table 8. The results shows that when trimming was considered, significant drop in 

bias and variance was achieved, leading to a much narrower confidence interval in comparison 

when trimming was not applied.  

 

Table 8 

Summary Statistics for Datasets with p = 100 when the Treatment Variable is Continuous 

N Method Estimates Bias Variance 95% CI 

100 DML 0.5684 0.0684 0.0097 0.3757 0.7610 

DSL 0.7961 0.2961 37.5717 -11.2178 12.8101 

DSL * 0.5270 0.0270 0.0147 0.2889 0.7650 

Selected DSL  0.5276 0.0276 0.0142 0.2940 0.7613 

500 DML 0.5197 0.0197 0.0019 0.4350 0.6045 

DSL 0.5055 0.0055 0.0020 0.4170 0.5940 

Selected DSL  0.5054 0.0054 0.0020 0.4174 0.5935 

1,000 DML 0.5113 0.0113 0.0010 0.4496 0.5730 

DSL 0.5023 0.0023 0.0010 0.4395 0.5652 

Selected DSL  0.5027 0.0027 0.0010 0.4399 0.5654 

5,000 DML 0.5034 0.0034 0.0002 0.4759 0.5309 

DSL 0.5003 0.0003 0.0002 0.4737 0.5270 

Selected DSL  0.5007 0.0007 0.0002 0.4740 0.5274 

Note: Number of replications is 504. 

*1% trimming has been applied. 

 

 In general, the results show that both the DSL and the selected DSL methods have an 

improvement in bias reduction and produce competitive standard errors in comparison with the 

DML method. The following analysis will consider the number of covariates of 1,000 and 

10,000, respectively, and apply trimming when necessary.   
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Figure 10  

The Distribution of (�̃�0 − 𝜃0) for p = 1,000 when the Treatment Variable is Continuous 

 

  



68 

 

Figure 11 

The Distribution of (�̃�0 − 𝜃0) for p = 1,000 when the Treatment Variable is Continuous after 

Applying the Necessary Trimming 

 

Note: The sign ** indicates that trimming was applied  
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Table 9 

Performance of Each Candidate Learner in the Super Learner Analysis when p = 1,000 

Sample N Nuisance Best Candidate LASSO GLM KNN RF Boosting 

100 �̂�0(𝑋𝑖∈𝑇) Frequency 231 0 88 91 94 

Ratio 0.437 0.005 0.168 0.170 0.215 

�̂�0(𝑋𝑖∈𝑇𝑟) Frequency 247 1 73 85 98 

Ratio 0.476 0.008 0.145 0.152 0.218 

�̂�0(𝑋𝑖∈𝑇) Frequency 376 6 36 15 71 

Ratio 0.682 0.018 0.080 0.032 0.184 

�̂�0(𝑋𝑖∈𝑇𝑟) Frequency 380 7 22 15 80 

Ratio  0.678 0.022 0.062 0.030 0.205 

500 �̂�0(𝑋𝑖∈𝑇) Frequency 500 0 0 0 4 

Ratio 0.885 0.001 0.006 0.000 0.108 

�̂�0(𝑋𝑖∈𝑇𝑟) Frequency 498 0 0 0 6 

Ratio 0.884 0.001 0.005 0.001 0.109 

�̂�0(𝑋𝑖∈𝑇) Frequency 501 0 0 3 0 

Ratio 0.872 0.001 0.022 0.028 0.078 

�̂�0(𝑋𝑖∈𝑇𝑟) Frequency 500 0 0 1 3 

Ratio  0.880 0.001 0.027 0.018 0.075 

1,000 �̂�0(𝑋𝑖∈𝑇) Frequency 504 0 0 0 0 

Ratio 0.934 0.000 0.002 0.000 0.064 

�̂�0(𝑋𝑖∈𝑇𝑟) Frequency 504 0 0 0 0 

Ratio 0.928 0.000 0.002 0.000 0.069 

�̂�0(𝑋𝑖∈𝑇) Frequency 503 0 0 0 1 

Ratio 0.906 0.000 0.020 0.022 0.053 

�̂�0(𝑋𝑖∈𝑇𝑟) Frequency 504 0 0 0 0 

Ratio  0.900 0.000 0.020 0.020 0.059 

5,000 �̂�0(𝑋𝑖∈𝑇) Frequency 504 0 0 0 0 

Ratio 0.964 0.008 0.000 0.000 0.028 

�̂�0(𝑋𝑖∈𝑇𝑟) Frequency 504 0 0 0 0 

Ratio 0.963 0.009 0.000 0.000 0.028 

�̂�0(𝑋𝑖∈𝑇) Frequency 504 0 0 0 0 

Ratio 0.923 0.008 0.011 0.038 0.020 

�̂�0(𝑋𝑖∈𝑇𝑟) Frequency 504 0 0 0 0 

Ratio  0.919 0.006 0.013 0.037 0.024 
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Table 10 

Summary Statistics for Datasets with p = 1,000 when the Treatment Variable is Continuous 

N Method Estimates Bias Variance 95% CI 

100 DML 0.6186 0.1186 0.0081 0.4426 0.7946 

DSL 0.6056 0.1056 1.7359 -1.9767 3.1880 

DSL* 0.5479 0.0479 0.0177 0.2873 0.8085 

Selected DSL 0.5616 0.0616 0.0215 0.2743 0.8489 

Selected DSL*  0.5649 0.0649 0.0128 0.3435 0.7862 

500 DML 0.5393 0.0393 0.0019 0.4533 0.6253 

DSL 0.5119 0.0119 0.0030 0.4049 0.6190 

Selected DSL  0.5159 0.0159 0.0021 0.4265 0.6053 

1,000 DML 0.5263 0.0263 0.0009 0.4667 0.5860 

DSL 0.5127 0.0127 0.0064 0.3554 0.6699 

DSL * 0.5081 0.0081 0.0010 0.4459 0.5703 

Selected DSL  0.5090 0.0090 0.0010 0.4468 0.5711 

5,000 DML 0.5083 0.0083 0.0002 0.4827 0.5338 

DSL 0.5017 0.0017 0.0002 0.4759 0.5276 

Selected DSL 0.5026 0.0026 0.0002 0.4767 0.5284 

Note: Number of replications is 504. 

*1% trimming has been applied. 
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Figure 12   

The Distribution of (�̃�0 − 𝜃0) for p = 10,000 when the Treatment Variable is Continuous 
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Figure 13 

The Distribution of (�̃�0 − 𝜃0) for p = 10,000 when the Treatment Variable is Continuous after Applying 

the Necessary Trimming 

 

Note: The sign ** indicates that trimming was applied.  
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Table 11 

Performance of Each Candidate Learner in the Super Learner Analysis for Datasets 

 with p = 10,000 when the Treatment Variable is Continuous 

Sample N Nuisance Best Candidate LASSO GLM KNN RF Boosting 

100 �̂�0(𝑿𝑖∈𝑇) Frequency 173 2 78 92 87 

Ratio 0.378 0.013 0.185 0.209 0.214 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 170 2 90 92 78 

Ratio 0.377 0.011 0.201 0.209 0.202 

�̂�0(𝑿𝑖∈𝑇) Frequency 317 9 41 15 50 

Ratio 0.644 0.028 0.110 0.037 0.159 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 299 13 37 16 67 

Ratio  0.622 0.036 0.108 0.037 0.181 

500 �̂�0(𝑿𝑖∈𝑇) Frequency 177 3 72 106 74 

Ratio 0.371 0.014 0.178 0.235 0.195 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 166 0 101 87 78 

Ratio 0.387 0.007 0.218 0.195 0.193 

�̂�0(𝑿𝑖∈𝑇) Frequency 295 11 40 21 65 

Ratio 0.618 0.031 0.112 0.046 0.179 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 299 7 46 22 58 

Ratio  0.604 0.025 0.122 0.054 0.174 

1,000 �̂�0(𝑿𝑖∈𝑇) Frequency 432 0 0 0 0 

Ratio 0.917 0.000 0.001 0.000 0.082 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 432 0 0 0 0 

Ratio 0.927 0.000 0.000 0.000 0.072 

�̂�0(𝑿𝑖∈𝑇) Frequency 431 0 0 1 0 

Ratio 0.907 0.000 0.021 0.012 0.060 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 431 0 0 1 0 

Ratio  0.911 0.000 0.019 0.015 0.055 

5,000 �̂�0(𝑿𝑖∈𝑇) Frequency 264 0 0 0 0 

Ratio 0.963 0.000 0.000 0.000 0.037 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 264 0 0 0 0 

Ratio 0.966 0.000 0.000 0.000 0.034 

�̂�0(𝑿𝑖∈𝑇) Frequency 264 0 0 0 0 

Ratio 0.937 0.000 0.011 0.020 0.032 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 264 0 0 0 0 

Ratio 0.945 0.000 0.011 0.016 0.027 
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Table 12  

Summary Statistics for Datasets with p = 10,000 when the Treatment Variable is Continuous 

N Method Estimates Bias Variance 95% CI 

100 DML 0.6418 0.1418 0.0071 0.4768 0.8067 

DSL 0.5768 0.0768 0.0663 0.0722 1.0814 

DSL* 0.5790 0.0790 0.0195 0.3049 0.8530 

Selected DSL 0.5980 0.0980 0.0153 0.3557 0.8403 

Selected DSL*  0.6005 0.1005 0.0109 0.3955 0.8056 

500 DML 0.6420 0.1420 0.0072 0.4762 0.8078 

DSL 0.5975 0.0975 0.2230 -0.3280 1.5231 

DSL* 0.5745 0.0745 0.0229 0.2777 0.8714 

Selected DSL  0.6009 0.1009 0.0122 0.3841 0.8177 

1,000 DML 0.5351 0.0351 0.0009 0.4761 0.5942 

DSL 0.5106 0.0106 0.0011 0.4468 0.5745 

Selected DSL  0.5134 0.0134 0.0010 0.4530 0.5739 

5,000 DML 0.5126 0.0126 0.0002 0.4873 0.5380 

DSL 0.5083 0.0083 0.0059 0.3572 0.6593 

DSL * 0.5037 0.0037 0.0002 0.4752 0.5321 

Selected DSL  0.5045 0.0045 0.0002 0.4782 0.5308 

Note: Number of replications is 264 when N is 5,000, and 504 otherwise. 

*1% trimming has been applied. 

 

From the results displayed in Figures 10-13 and Tables 11-16, when the three estimation 

methods are applied on the simulated datasets that involved 1,000 and 10,000 associated number 

of covariates, respectively, and when the treatment variable is continuous, it can be seen that the 

DSL methods are producing better estimates in terms of lower bias compared with the DML 

method. Although it is fair to say that the DML method did not require applying any trimming 

treatment as for the DSL methods, which could be due to the incorporation of multiple ML 

algorithms in the DSL method that results in the curse of dimensionality issue.  

Now that I have examined the performance of the three estimation methods for different 

numbers of associated covariates across different sample sizes, it would be interesting to 

understand how the three methods would perform, in terms of bias and variance, when the 
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sample size is kept fixed while the number of associated covariates varies. In other words, for a 

certain sample size, how would the three estimation methods perform as the number of 

associated covariates increases. The following figure assesses the performance of the three 

estimation methods for different sample sizes as the number of associated covariates increases.  

 

Figure 14 

Assessing the Bias across Different Sample Sizes as p Increases when the Treatment Variable is 

Continuous  

 

 

 From Figure 14, the results show that the DSL method, which is represented via the red 

line, always produced lower bias as p increased given different sample sizes compared with the 

DML method (displayed by the blue line) and the selected DSL method (displayed by the black 

line). On the other hand, the performance of variance was assessed in a similar manner as the 

bias was in Figure 14, and is displayed in Figure 15.  
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Figure 15 

Assessing the Variance across Different Sample Sizes as p Increases when the Treatment 

Variable is Continuous 

 

 

 It can be seen in Figure 15 that the resultant estimates, when the DML method was 

applied, had a slightly lower variance compared with the DSL method, especially for smaller 

sample sizes. In addition, it is not too hard to notice that as the sample size increases, the 

estimates’ variance of the three methods nearly matches for any given number of associated 

covariates.  

 These results obtained in this section indicate that the proposed DSL methods can 

significantly reduce the bias compared to the DML method without significantly causing 

inflation in variance, which is considered a very positive and desired conclusion. The next 

section investigates the performance of the three estimation methods when the treatment variable 

is considered a binary.  
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Simulation Analysis for Binary Case Treatment 

 After performing the DML and the DSL methods on various datasets that considered the 

cases having a continuous treatment variable discussed in the previous section, it is appropriate 

to consider the cases where the treatment variable is binary in this part of the dissertation. The 

analysis in this section was carried out in a similar manner to that in the previous section. There 

were 16 different settings for the simulated datasets that were created using the data-generating 

process explained in the simulation scheme section where the treatment variable was binary. In 

addition, a grid of values for the number of associated covariates and the sample sizes considered 

in this section was the same as in the previous section when the data simulated used a continuous 

treatment variable.  

When analyzing these simulated datasets, the DML and DSL methods were implemented 

using two different estimation equations for the targeted parameter. The first analysis used the 

estimator introduced in equation (57), and the results and outputs are presented in this section. 

The second analysis (results are included in Appendix B), on the other hand, incorporated the 

estimation equations (27) and (44) as previously implemented in continuous case treatments. 

Furthermore, the use of a trimming treatment on the resulted estimates were incorporated, when 

necessary, just as previously done. The following figures and tables illustrate the results of the 

investigation of the three methods using 504 replications when the number of associated 

covariates was fixed at 20 for the case of binary treatment variables.  
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Figure 16 

The Distribution of (�̃�0 − 𝜃0) for p = 20 when the Treatment Variable is Binary 
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Table 13 

Performance of Each Candidate Learner in the Super Learner Analysis for Datasets with p = 20 

when the Treatment Variable is Binary 

Sample Nuisance Best Candidate LASSO GLM KNN RF Boosting 

N=100 �̂�0(𝑿𝑖∈𝑇) Frequency 193 14 154 119 24 

Ratio 0.362 0.074 0.274 0.204 0.086 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 221 9 133 116 25 

Ratio 0.405 0.064 0.238 0.215 0.078 

�̂�0(𝑿𝑖∈𝑇) Frequency 108 6 58 105 227 

Ratio 0.190 0.075 0.118 0.202 0.415 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 116 3 57 108 220 

Ratio 

 

0.202 0.080 0.110 0.207 0.402 

N=500 �̂�0(𝑿𝑖∈𝑇) Frequency 394 13 25 71 1 

Ratio 0.642 0.086 0.097 0.140 0.034 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 388 19 23 72 2 

Ratio 0.635 0.098 0.090 0.144 0.034 

�̂�0(𝑿𝑖∈𝑇) Frequency 450 12 9 33 0 

Ratio 0.738 0.083 0.052 0.080 0.047 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 449 15 5 33 2 

Ratio 

 

0.742 0.079 0.046 0.088 0.044 

N=1,000 �̂�0(𝑿𝑖∈𝑇) Frequency 445 19 5 34 1 

Ratio 0.715 0.096 0.055 0.106 0.028 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 457 17 4 26 0 

Ratio 0.745 0.087 0.050 0.090 0.028 

�̂�0(𝑿𝑖∈𝑇) Frequency 486 8 1 9 0 

Ratio 0.808 0.087 0.029 0.050 0.026 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 484 10 0 10 0 

Ratio 

 

0.810 0.082 0.028 0.044 0.036 

N=5,000 �̂�0(𝑿𝑖∈𝑇) Frequency 489 15 0 0 0 

Ratio 0.829 0.089 0.017 0.046 0.019 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 481 22 0 1 0 

Ratio 0.818 0.106 0.021 0.042 0.013 

�̂�0(𝑿𝑖∈𝑇) Frequency 496 8 0 0 0 

Ratio 0.870 0.080 0.014 0.017 0.019 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 499 5 0 0 0 

Ratio 0.865 0.082 0.014 0.020 0.019 

 

 The results presented in Figure 16 show the normal distribution of the estimated 

parameters’ density, depicted via histograms, when the process is replicated 504 times. The 

densities of these estimates aligned with the outputs presented in Table 14. In addition, Table 13 
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assessed the performance of the candidate ML algorithms that were incorporated in the DSL 

method, where the SL function suggested that LASSO was the best performing algorithm in 

terms of ratio and frequency. However, when the sample size was set to 100, the boosting 

algorithms were shown to be more powerful in estimating the nuisance function �̂�0(𝑿).  

 Table 14 shows the overall performance of the three methods in estimating the targeted 

parameter when the analysis was replicated 504 times. Based on the findings displayed in Table 

14, the three estimation methods were shown to be competitive in terms of bias and variance 

with slight superiority to the DML method in terms of bias when the sample size was set to 100.  

 

Table 14  

Summary Statistics for Datasets with p = 20 when the Treatment Variable is Binary 

N Method Estimates Bias Variance 95% CI 

100 DML 0.4937 0.0063 0.0711 -0.0288 1.0162 

DSL 0.4744 0.0256 0.0724 -0.0528 1.0016 

Selected DSL  0.4530 0.0470 0.0694 -0.0633 0.9692 

500 DML 0.4814 0.0186 0.0116 0.2704 0.6924 

DSL 0.4817 0.0183 0.0105 0.2808 0.6825 

Selected DSL  0.4772 0.0228 0.0106 0.2755 0.6789 

1,000 DML 0.4869 0.0131 0.0052 0.3453 0.6284 

DSL 0.4869 0.0131 0.0046 0.3536 0.6202 

Selected DSL  0.4854 0.0146 0.0046 0.3519 0.6190 

5,000 DML 0.4900 0.0100 0.0010 0.4289 0.5512 

DSL 0.4953 0.0047 0.0009 0.4363 0.5543 

Selected DSL  0.4946 0.0054 0.0009 0.4358 0.5533 

Note. Number of replications is 504. 

 

 After investigating the estimated targeted parameter of the binary treatment variable 

when the number of associated covariates was set to 20, I followed the same steps to investigate 

the performance of the three methods when the number of associated covariates was fixed at 100. 
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To follow-up on investigating the performance of the three estimation methods, the analysis was 

replicated 504 times. The results are displayed in Figures 17 and 18 and Tables 15 and 16.  
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Figure 17 

The Distribution of (�̃�0 − 𝜃0) for p = 100 when the Treatment Variable is Binary 
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Figure 18 

The Distribution of (�̃�0 − 𝜃0) for p = 100 when the Treatment Variable is Binary after Applying 

the Necessary Trimming 

 
Note: The sign ** indicates that trimming was applied.  
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Table 15 

Performance of Each Candidate Learner in the Super earner Analysis for Datasets with p = 100 

when the Treatment Variable is Binary 

Sample N Nuisance Best Candidate LASSO GLM KNN RF Boosting 

N=100 �̂�0(𝑿𝑖∈𝑇) Frequency 177 0 130 150 47 

Ratio 0.345 0.004 0.235 0.286 0.129 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 183 0 124 145 52 

Ratio 0.350 0.005 0.252 0.265 0.128 

�̂�0(𝑿𝑖∈𝑇) Frequency 108 1 58 80 257 

Ratio 0.198 0.065 0.115 0.162 0.460 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 113 3 65 75 248 

Ratio 

 

0.197 0.064 0.126 0.155 0.458 

N=500 �̂�0(𝑿𝑖∈𝑇) Frequency 363 0 12 120 9 

Ratio 0.625 0.031 0.071 0.213 0.060 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 347 0 19 134 4 

Ratio 0.596 0.030 0.082 0.235 0.057 

�̂�0(𝑿𝑖∈𝑇) Frequency 486 0 6 11 1 

Ratio 0.846 0.023 0.035 0.040 0.056 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 487 0 1 13 3 

Ratio 

 

0.851 0.022 0.028 0.042 0.058 

N=1,000 �̂�0(𝑿𝑖∈𝑇) Frequency 446 0 1 57 0 

Ratio 0.754 0.036 0.042 0.127 0.041 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 454 0 0 49 1 

Ratio 0.761 0.036 0.037 0.123 0.043 

�̂�0(𝑿𝑖∈𝑇) Frequency 504 0 0 0 0 

Ratio 0.909 0.027 0.012 0.010 0.042 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 501 0 0 3 0 

Ratio 

 

0.890 0.035 0.015 0.016 0.044 

N=5,000 �̂�0(𝑿𝑖∈𝑇) Frequency 503 0 0 1 0 

Ratio 0.897 0.047 0.009 0.026 0.021 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 503 0 0 1 0 

Ratio 0.896 0.045 0.011 0.029 0.019 

�̂�0(𝑿𝑖∈𝑇) Frequency 504 0 0 0 0 

Ratio 0.941 0.030 0.003 0.002 0.024 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 504 0 0 0 0 

Ratio 

 

0.934 0.035 0.004 0.002 0.025 
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Table 16  

Summary Statistics for Datasets with p = 100 when the Treatment Variable is Binary  

N Method Estimates Bias Variance 95% CI 

100 DML 0.3812 0.1188 0.0646 -0.1170 0.8793 

DSL 0.4111 0.0889 0.9901 -1.5391 2.3614 

DSL * 0.3784 0.1216 0.0599 -0.1014 0.8581 

Selected DSL  0.3743 0.1257 0.0704 -0.1456 0.8942 

500 DML 0.4258 0.0742 0.0097 0.2324 0.6191 

DSL 0.4587 0.0413 0.0099 0.2641 0.6533 

Selected DSL  0.4524 0.0476 0.0097 0.2597 0.6451 

1,000 DML 0.4370 0.0630 0.0049 0.3000 0.5741 

DSL 0.4683 0.0317 0.0051 0.3280 0.6087 

Selected DSL  0.4660 0.0340 0.0048 0.3298 0.6022 

5,000 DML 0.4618 0.0382 0.0009 0.4045 0.5192 

DSL 0.4920 0.0080 0.0009 0.4325 0.5516 

Selected DSL  0.4910 0.0090 0.0009 0.4323 0.5497 

Note. Number of replications is 504. 

*1% trimming has been applied. 

 

 Judging by the results displayed in Figures 17 and 18, it became clear that the DSL 

methods had better alignment with the theoretical distribution compared with the DML method. 

In particular, the center of the DML estimates tended to shift to the left as the sample size 

increased. In addition, these two figures show that when the sample size was set to 100, the use 

of trimming on the DSL estimates improved the estimates’ density. 

Furthermore, Table 15 shows similar results in assessing the performance of the five-

candidate ML algorithms incorporated in the DSL method as in the previous analysis when p 

was set to 20. In addition, Table 16 shows that the DSL method resulted in bias reduction 

compared to the other methods. Table 16 also shows that the bias using the DSL method 

approaches the 0 as the sample size increase. The same applies to the selected DSL and the DML 

methods, respectively. On the other hand, the variance of the estimates across the three methods 

remained competitive. 
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The outputs presented next were produced to investigate the performance of the three 

estimation methods in estimating the targeted parameter in the presence of 1,000 and 10,000 

associated covariates, respectively, across different sample sizes. The analysis of results is 

organized and presented in the same manner as done previously in this dissertation.   
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Figure 19 

 

The Distribution of (�̃�0 − 𝜃0) for p = 1,000 when the Treatment Variable is Binary 
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Table 17  

Performance of Each Candidate Learner in the Super Learner Analysis for Datasets with p = 

1,000 when the Treatment Variable is Binary 

Sample 

N Nuisance Best Candidate LASSO GLM KNN RF Boosting 

100 �̂�0(𝑿𝑖∈𝑇) Frequency 141 0 97 184 82 

Ratio 0.276 0.004 0.211 0.337 0.171 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 141 0 103 196 64 

Ratio 0.277 0.004 0.208 0.358 0.153 

�̂�0(𝑿𝑖∈𝑇) Frequency 73 2 77 31 321 

Ratio 0.128 0.072 0.152 0.061 0.588 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 70 2 65 41 326 

Ratio 

 

0.132 0.067 0.132 0.075 0.594 

500 �̂�0(𝑿𝑖∈𝑇) Frequency 289 0 22 174 19 

Ratio 0.515 0.001 0.088 0.298 0.099 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 300 0 18 172 14 

Ratio 0.543 0.001 0.076 0.287 0.093 

�̂�0(𝑿𝑖∈𝑇) Frequency 481 0 0 13 10 

Ratio 0.824 0.020 0.022 0.026 0.108 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 476 0 1 16 11 

Ratio 

 

0.827 0.018 0.023 0.036 0.095 

1,000 �̂�0(𝑿𝑖∈𝑇) Frequency 449 0 1 50 4 

Ratio 0.793 0.000 0.037 0.088 0.081 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 442 0 2 58 2 

Ratio 0.773 0.000 0.036 0.108 0.084 

�̂�0(𝑿𝑖∈𝑇) Frequency 504 0 0 0 0 

Ratio 0.916 0.008 0.005 0.001 0.070 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 503 0 1 0 0 

Ratio 

 

0.918 0.009 0.005 0.001 0.067 

5,000 �̂�0(𝑿𝑖∈𝑇) Frequency 503 0 0 1 0 

Ratio 0.960 0.010 0.002 0.002 0.026 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 503 0 0 1 0 

Ratio 0.954 0.010 0.004 0.002 0.030 

�̂�0(𝑿𝑖∈𝑇) Frequency 504 0 0 0 0 

Ratio 0.950 0.004 0.001 0.000 0.045 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 503 0 0 1 0 

Ratio 

 

0.946 0.005 0.001 0.001 0.047 

 

  



89 

 

Table 18 

Summary Statistics for Datasets with p = 1,000 when the Treatment Variable is Binary 

N Method Estimates Bias Variance 95% CI 

100 DML 0.3286 0.1714 0.0602 -0.1523 0.8094 

DSL 0.3363 0.1637 0.0667 -0.1699 0.8426 

Selected DSL  0.3303 0.1697 0.0670 -0.1769 0.8375 

500 DML 0.3427 0.1573 0.0093 0.1532 0.5321 

DSL 0.4230 0.0770 0.0104 0.2233 0.6227 

Selected DSL  0.4169 0.0831 0.0100 0.2208 0.6130 

1,000 DML 0.3689 0.1311 0.0045 0.2374 0.5003 

DSL 0.4530 0.0470 0.0049 0.3151 0.5908 

Selected DSL  0.4508 0.0492 0.0047 0.3170 0.5846 

5,000 DML 0.4127 0.0873 0.0008 0.3560 0.4693 

DSL 0.4843 0.0157 0.0010 0.4232 0.5454 

Selected DSL  0.4821 0.0179 0.0010 0.4216 0.5425 

Note. Number of replications is 504. 
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Figure 20 

The Distribution of (�̃�0 − 𝜃0) for p = 10,000 when the Treatment Variable is Binary 
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Table 19 

Performance of Each Candidate Learner in the Super Learner Analysis for Datasets with p = 

10,000 when the Treatment Variable is Binary 

Sample N Nuisance Best Candidate LASSO GLM KNN RF Boosting 

100 �̂�0(𝑿𝑖∈𝑇) Frequency 139 0 100 189 76 

Ratio 0.269 0.005 0.202 0.356 0.168 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 122 0 118 195 69 

Ratio 0.234 0.005 0.230 0.371 0.159 

�̂�0(𝑿𝑖∈𝑇) Frequency 49 1 74 24 356 

Ratio 0.102 0.074 0.141 0.039 0.645 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 52 1 94 18 339 

Ratio 

 

0.098 0.076 0.177 0.034 0.615 

500 �̂�0(𝑿𝑖∈𝑇) Frequency 251 0 8 219 26 

Ratio 0.435 0.001 0.085 0.363 0.116 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 246 0 23 210 25 

Ratio 0.439 0.001 0.094 0.362 0.105 

�̂�0(𝑿𝑖∈𝑇) Frequency 453 0 3 24 24 

Ratio 0.771 0.023 0.029 0.048 0.129 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 454 0 2 24 24 

Ratio 

 

0.771 0.022 0.027 0.043 0.137 

1,000 �̂�0(𝑿𝑖∈𝑇) Frequency 422 0 0 70 12 

Ratio 0.720 0.000 0.049 0.131 0.100 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 436 0 1 62 5 

Ratio 0.745 0.000 0.045 0.115 0.094 

�̂�0(𝑿𝑖∈𝑇) Frequency 504 0 0 0 0 

Ratio 0.878 0.009 0.006 0.001 0.107 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 503 0 0 0 1 

Ratio 

 

0.873 0.009 0.005 0.001 0.112 

5,000 �̂�0(𝑿𝑖∈𝑇) Frequency 264 0 0 0 0 

Ratio 0.960 0.000 0.001 0.000 0.039 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 264 0 0 0 0 

Ratio 0.967 0.000 0.002 0.000 0.031 

�̂�0(𝑿𝑖∈𝑇) Frequency 264 0 0 0 0 

Ratio 0.924 0.002 0.000 0.000 0.073 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 264 0 0 0 0 

Ratio 0.928 0.002 0.000 0.000 0.070 
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Table 20 

Summary Statistics for Datasets with p = 10,000 when the Treatment Variable is Binary 

N Method Estimates Bias Variance 95% CI 

100 DML 0.2902 0.2098 0.0573 -0.1791 0.7596 

DSL 0.3014 0.1986 0.0996 -0.3172 0.9200 

Selected DSL  0.2920 0.2080 0.0637 -0.2027 0.7866 

500 DML 0.3092 0.1908 0.0081 0.1329 0.4855 

DSL 0.3928 0.1072 0.0089 0.2084 0.5772 

Selected DSL  0.3909 0.1091 0.0091 0.2035 0.5782 

1,000 DML 0.3194 0.1806 0.0042 0.1928 0.4460 

DSL 0.4286 0.0714 0.0043 0.3000 0.5573 

Selected DSL  0.4242 0.0758 0.0043 0.2959 0.5525 

5,000 DML 0.3851 0.1149 0.0009 0.3260 0.4442 

DSL 0.4838 0.0162 0.0011 0.4182 0.5493 

Selected DSL  0.4795 0.0205 0.0010 0.4171 0.5418 

Note. Number of replications is 264 when N equals to 5,000, and 504 otherwise. 

 

 

 In reviewing the simulation analysis results (displayed in Figures 19 and 20 and Tables 

17-20) that investigated the performance of the three methods used in estimating the effect of a 

binary treatment variable in the presence of 1,000 and 10,000 covariates, respectively, across 

different sample sizes, few interesting findings can be concluded. Unlike in the previous analysis 

for datasets with continuous treatment variables, the DML method failed to produce valid 

confidence intervals when the dimension of the datasets increased for datasets with binary 

treatment variables. More specifically, when replicating the DML method over 500 times, there 

were 4 occasions where the associated confidence intervals failed to include the true value of the 

targeted parameter: once, when p = 1,000 and N = 5,000; and three times, when p = 10,000 and 

N = {500, 1,000, 5,000}. These shortcomings of the DML method, at least when incorporating 

Random Forests in these datasets, can be observed in Tables 18 and 20. These results are also 

supported by Figures 19 and 20, where the densities of the DML estimates shifted toward the left 

as the sample size increased and were not centered around the 0 as they should.  
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On the other hand, the DSL methods showed great performance in terms of bias 

reduction while providing valid confidence intervals where the true value of the targeted 

parameter was always contained within the confidence limits. Furthermore, the densities of the 

estimated parameters (Figures 19 and 20) clearly showed that the DSL methods had better 

performance in terms of bias and distribution of estimates’ densities compared with the DML 

method. The following figure compares the three estimation methods in term of bias as the 

number of associated covariates increased across different sample sizes. 

 

Figure 21  

Assessing the Bias of the Three Methods Across Different Sample Sizes as p Increases when the 

Treatment Variable is Binary  
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 The results presented in Figure 21 show that the DSL methods (DSL in red line and 

selected DSL in black line) produced lower bias in every setting compared to the DML method 

(the blue line) by a fair margin. These results aligned with the previous analysis when the 

treatment variable was considered continuous. Furthermore, Figure 22 shows that the associated 

variance of the estimated targeted parameter using the three methods almost matched as the 

sample size increased.  

 

Figure 22 

Assessing the Variance of the Three Methods across Different Sample Sizes as p Increases when 

the Treatment Variable is Binary 
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Implementing the Double Super Learner  

Function Using R package 

Now that the DML, DSL, and the selected DSL methods have been introduced, it is 

appropriate to introduce a function in R that can perform the analysis without the need for 

creating long syntax in order to perform the analysis. After testing the algorithms of these 

estimation methods in the previous simulation sections, I compacted them into a package that I 

named DoubleSL, which is hosted on my Github account, SamiSaadAlanazi. The idea behind 

building an R package was to allow others to be able use the method correctly and to allow the 

analysis to be replicated easily.  

The DoubleSL package carries many advantages that makes it very useful, the first of 

which is that there is no need to install the necessary packages to implement these proposed 

estimation methods as with the packages related to the ML algorithms discussed earlier, the 

packages needed for the data generating process, or the packages needed for performing parallel 

computations. Another advantage when using the DoubleSL package is that it provides 

complementary functions for performing the DML method and for simulating datasets according 

to the data-generating process described earlier in the simulation scheme section. In addition, the 

DoubleSL package includes two datasets, used in later sections to serve as empirical examples 

when performing the DSL estimation method. Finally, the use of the DoubleSL package provides 

a neat and short syntax in R, making it easier for researchers to use and build on. The following 

table gives a summary about the available functions and datasets that are included in the 

DoubleSL package.  
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Table 21  

 

Summary of Functions and Datasets Included in the DoubleSL Package 

Function Description 

DATA1 Data generating process: Simulates data set that can used in DML and DSL 

analysis when the treatment variable is considered to be continuous. 

 

DATA2 

 

Data generating process: Simulates data set that can used in DML and DSL 

analysis when the treatment variable is considered to be binary. 

 

DML1 

 

The double machine-learning method (DML): Estimates the treatment effect 

using the DML method using Random Forests when the treatment variable 

is considered to be continuous. 

 

DML2 

 

The double machine-learning method (DML): Estimates the treatment effect 

using the DML method using Random Forests when the treatment variable 

is considered to be binary. 

 

DSL1 

 

The double super learner method (DSL): Estimates the treatment effect using 

the DSL method when the treatment variable is considered to be 

continuous. 

 

DSL2 

 

The double super learner method (DSL): Estimates the treatment effect using 

the DSL method when the treatment variable is considered to be binary. 

 

S.DSL1 

 

The selected double super learner method (SDSL): Estimates the treatment 

effect using the selected DSL method when the treatment variable is 

considered to be continuous. 

 

S.DSL2 

 

The selected double super learner method (SDSL): Estimates the treatment 

effect using the selected DSL method when the treatment variable is 

considered to be binary. 

Dataset Description 

 

Example1 

 

Student's Math and Portuguese Scores Dataset: A dataset for low-dimensional 

example with 382 rows and 36 variables to perform the DML and DSL 

methods. 

 

Example2 

 

Communities and Crime Dataset: A dataset for high-dimensional example 

with 123 rows and 127 variables to perform the DML and DSL methods. 

 



97 

 

Empirical Example: Student's  

Performance Dataset 

In previous sections, the DSL method was applied on 32 different settings for datasets 

that were simulated using the data-generating process explained in the simulation scheme 

section. In this section, however, the DSL method is applied on a real-life dataset that is 

available in the public domain. The dataset selected for this demonstration is about the student 

performance, which was originally obtained from UCI Machine Learning Repository. This 

dataset is also included in the DoubleSL package introduced in the previous section under the 

Example1 dataset.  

The student performance dataset was collected for 382 secondary school students in 

Portugal. In this dataset, 36 variables were recorded for each student including school name, sex, 

family size, grades in mathematics and Portuguese, and so many other attributes. Full 

information about the associated variables can be found in the DoubleSL package under the 

Example1 dataset. The literature associated with this dataset can be found in the study by Cortez 

and Silva (2008), where business intelligence and data mining techniques were incorporated to 

predict a student’s performance in mathematics and Portuguese based on relative variables.  

The goal of using this dataset was to demonstrate the application of the proposed DSL 

method on real-life datasets using the DoubleSL package. For this reason, the analysis of the 

student performance dataset had a different research objective compared to that of Cortez and 

Silva (2008). In this analysis, the objective was to investigate the effect of school on students’ 

performance in Portuguese in the presence of other relevant variables. The school variable was a 

binary variable coded as follows: 0 for students in the Gabriel Pereira school, and 1 for students 

in the Mousinho da Silveira school. The response variable, on the other hand, the Portuguese 

final grade, is a numerical variable that ranged between 0 and 20. Descriptive analysis found that 
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final Portuguese scores had a mean of 12.52 and a standard deviation of 2.94. Moreover, 342 

students studying at the Gabriel Pereira school, while only 40 students in the sample studying at 

the Mousinho da Silveira school. The following figure presents the descriptive statistics of those 

two variables that are of interest in this analysis.  

 

Figure 23 

Descriptive Statistics of School and Final Portuguese Scores Variables 

 

 

 To investigate the research objective, which was to estimate the true effect of school on 

students’ final Portuguese scores while accounting for the presence of the remaining variables, 

three methods were implemented: (a) the double machine learning method (DML); (b) the 

double super learner method (DSL); and (c) the selected DSL method. By using the functions 

provided in the DoubleSL package for the case of binary treatment variables, the estimated 

effects of the treatment variable are reported in Table 22 for the three methods along with their 

estimated variance and the respective confidence intervals. The same DSL settings used in the 
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previous analysis in terms of candidate ML algorithms and the cross-validation folds were also 

applied in this analysis.  

 

Table 22 

Summary Statistics of School Effect on Students’ Final Portuguese Scores  

Method Estimates Variance 95% CI 

 

DML 

 

-0.3960 

 

47.5004 

 

-1.0872 

 

0.2951 

 

DSL -0.5586 34.6672 -1.1490 0.0319 

 

Selected DSL -0.4775 38.6778 -1.1012 0.1462 

 

 

 The results displayed in Table 22 show that the estimated effect of school is around -0.5. 

Specifically, the DML method estimated the school effect to be -0.39 point in students’ final 

Portuguese scores, while the effect of the school is estimated to be -0.55 and -0.47 using the DSL 

and the selected DSL methods, respectively. This indicates that when a student chose to attend 

the Mousinho da Silveira school, which was coded as 1, his performance in the Portuguese final 

was expected to be lower by roughly half a point. In addition, it appears that the DSL method 

resulted in the lowest estimated variance of 34.66, which leads to the narrower confidence 

interval for the estimated effect of school. However, since the confidence intervals of the 

estimated targeted parameter using the three estimation methods included the 0, it is fair to say 

that effect of school was not statistically significant. It is worth mentioning that the best 

performing ML algorithms are shown to be LASSO and Random Forests as it appears in Table 

23. 
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Table 23  

 

Candidate Machine-Learning Algorithms’ Performance in Estimating Nuisance Functions 

Nuisance LASSO GLM KNN RF Boosting 

�̂�0(𝑿𝑖∈𝑇)  
0.716 0.171 0.000 0.000 0.113 

 

�̂�0(𝑿𝑖∈𝑇𝑟)  
0.964 0.000 0.000 0.000 0.036 

 

�̂�0(𝑿𝑖∈𝑇)  
0.000 0.000 0.000 1.000 0.000 

 

�̂�0(𝑿𝑖∈𝑇𝑟)  
 

0.133 09a.048 0.000 0.819 0.000 

 

Findings 

 In this dissertation, four research questions regarding the proposed DSL method were 

investigated. These research questions were concerned with how the estimators of the proposed 

DSL method were constructed, how the proposed method would perform in terms of bias 

reduction, how the proposed method could be improved in terms of computational efficiency, 

and, finally, how the proposed method could be implemented using R software.  

 To answer the first research question, nine steps were introduced in Chapter III that 

showed how the estimator of the targeted parameter could be constructed along with the 

estimated variance. More specifically, several equations were introduced within these nine steps, 

equations (38)–(49) and (56)-(57). These sets of equations were developed theoretically in 

parallel with the partially linear model of Robinson (1988) and the double ML approach of 

Chernozhukov et al. (2018). By following these nine steps and applying the equations mentioned 

using R, the DSL estimator of the targeted parameter can be numerically calculated, which has 

been verified using simulation. 

 Constructing the DSL estimator of the targeted parameter is one thing, but assessing the 

performance of the resultant estimates in terms of bias reduction and the validity of their 
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respective confidence intervals is another, which leads to the second research question of this 

dissertation. Since the DSL method was developed theoretically in parallel with the DML 

method, it was logical to compare the two methods in terms of bias and confidence intervals to 

see if the proposed method achieved any improvements in these areas. To do so, simulation was 

performed to investigate whether the proposed method led to improvements in the sense of bias 

reduction and whether the associated confidence intervals contained the true value of the targeted 

parameter. In the process of verifying the performance of the proposed method, 32 different 

settings for datasets were introduced based on the three distinctions: the number of associated 

covariates in the dataset, p = {20, 100, 1,000, 10,000}; the sample size in the dataset, N = {100, 

500, 1,000, 5,000}; and the type of the treatment variable D as continuous or binary. Each of 

these datasets were created using the data-generating process using the partially linear model 

approach as in the study by Chernozhukov et al. (2018). Over 500 replications were then 

performed for each setting, and the resultant estimates of the targeted parameter using the DML 

and DSL were retained. The results showed that the DSL methods achieved improvement in bias 

reduction over the DML method in each setting. In addition, the associated confidence interval 

always contained the true value of the targeted parameter when using the DSL method, while this 

was not the case for the DML, at least when Random Forests algorithm was incorporated, when 

the treatment variable was binary, especially once the number of the associated covariates (p) in 

the datasets grew large.  

 Since the DSL method incorporates a set of ML algorithms, the computational intensity 

issue when using this method was present in the third research question. Three steps were 

introduced in the methodology chapter to choose the best performing algorithm, and a variant of 

the DSL method was introduced under the term selected DSL method. In short, this method used 
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the information retained by the SL function on a small sample to learn about the best performing 

ML algorithm, and then incorporated it alone in the DSL method. Simulation showed that when 

selecting only the best performing ML algorithm using the SL function, the estimation bias was 

always lower than when using the DML method. In addition, the respective confidence intervals 

using the selected DSL method always remained valid since the true value of the targeted 

parameter continued to fall within the confidence limits.  

 Finally, the fourth research question investigated the implementation of the proposed 

DSL method in R. For this purpose, a package named DoubleSL was created to perform the DSL 

method and to make analysis in this dissertation easy to replicate and verify. The package was 

made available in the public domain hosted by Githup.com under my profile name 

SamiSaadAlanazi. This package includes several functions for the DSL and selected DSL 

methods as well as a number of other complimentary functions for the DML method and the 

data-generating process used to simulate datasets based on the sample size, the number of 

associated covariates, and the type of treatment variable. In addition, the DoubleSL package 

contains two real-life datasets to serve as empirical examples for the use of the DSL method. To 

install the DoubleSL package, one can simply use the following command in R: 

install_github('SamiSaadAlanazi/DoubleSL') 
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CHAPTER V 

DISCUSSION AND CONCLUSIONS 

 So far in this dissertation, the concept of the proposed DSL algorithm has been 

introduced with the goal of reducing estimation bias and allowing causal inference to be drawn 

using confidence intervals. Earlier than that, the semi-parametric modeling concepts, which the 

proposed DSL method is based on, were visited as well as a review of the historic developments 

of the ML algorithms, which the DSL method incorporates. After that, the formulas for 

estimating the targeted parameter and the variance using the DSL method were introduced. In 

addition, another version of the DSL method was introduced to improve the computational 

efficiency of the DSL algorithm, which is referred to as the selected DSL method. The DSL 

method was compared with the existing concept, the DML, which was introduced by 

Chernozhukov et al. (2018), in terms of bias, variance, and the validity of the associated 

confidence intervals.  

 To investigate the performance of the proposed DSL methods in comparison with the 

DML method, 32 different simulation settings for datasets were introduced according to the data-

generating process described earlier. These simulated datasets were varied in terms of their 

dimensions by using a grid of values for the number of associated covariates (p) and the sample 

sizes (N) as well as varied in terms of the type of the treatment variable, continuous and binary. 

Once the simulation analysis was concluded, an R package was created and made available on 

Githup that includes functions of the DSL methods as well as several other complementary 

functions so the analysis can be replicated easily by others. In addition, an empirical analysis of 
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real-life data was performed to demonstrate the application of employing the DSL method using 

the developed package.  

 In this chapter, I will be concluding this dissertation under two sections. The first section 

addresses the limitations that were observed during the analysis and during the development of 

the proposed method. In addition, the first section of this chapter includes some suggestions 

about future studies where there is room for further development and research. Finally, the last 

section of this chapter summarizes the overall conclusions found in this dissertation.  

Limitations and Future Studies 

 The concept of the DSL method highlights a number of advantages over the DML 

method in terms of bias reduction and valid confidence intervals, but was not without its 

limitations. These limitations may seem as such, but they could also be viewed as opportunities 

for future research. In this section, some of the limitations are listed in this dissertation and a few 

research problems are proposed to be investigated by researchers for future research of the DSL 

method.  

 The first obvious limitation when using the DSL method is the computational intensity 

that this method requires. Since the DSL method requires the incorporation of multiple ML 

algorithms, it requires larger computing capabilities and consumes more time for execution in 

comparison with the DML. The lack of computational efficiency could be related to the 

algorithm engineering in the way the SL function was created. In addition, the SL function in R 

does not support data with missing values, which is also a clear disadvantage since missing 

values are present in most real-life data. One area for future research could be to attempt to 

reengineer the SL function by using tools and functions that are more efficient to help improve 

the computational efficiency and allow for data with missing values.  
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 The second limitation of the DSL method when running the analysis over a number of 

replications is the phenomenon of producing a set of estimates with outliers, which was not the 

case with using the DML method. Although trimming treatment at a 1% level was found to be an 

effective solution for this issue, this phenomenon could inspire other researchers to investigate 

why it happened in the first place. Another limitation found in the DML and the DSL methods is 

that estimation is not stable. Since this dissertation was limited to the cross-fitting technique, 

where the samples are split equally and randomly into testing and training sets, this led to 

receiving different estimates every time these methods were replicated. One area of research 

could be invested in investigating these methods under a larger number of splits. Although there 

is literature on the DML method with multiple splits, the idea of investigating the number of 

splits using the DSL methods to improve estimation stability is worth looking into.  

 It is worth pointing out that the DSL method presented in this dissertation was limited to 

certain types of variables in terms of the response and the treatment variable. The response 

variable investigated in the simulation was continuous, while the treatment variables were 

limited to continuous and binary cases. Investigating the performance of the DSL method using 

other forms of variables could be an interesting research topic.  

Conclusion 

 Earlier in this dissertation, a new proposed method I referred to as the DSL was 

introduced. This method was developed in parallel with the well-known method of 

Chernozhukov et al. (2018) called the DML. The DML method with Random Forests is used to 

make causal inference about the targeted parameter in the presence of high-dimensional nuisance 

function. The rationale behind proposing the DSL method was that instead of using a single ML 

algorithm to estimate the targeted parameter, the incorporation of multiple learners can not only 
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reduce the risk of selecting an inappropriate ML algorithm, but also can result in bias reduction 

and valid confidence intervals for the targeted parameter. The foundations of the proposed 

method were introduced and investigated using numerical simulation, and the estimates of the 

proposed method were compared with the DML approach across various data settings. The 

results showed that the use of the DSL method produced estimates of the targeted parameter that 

were better in terms of bias reduction compared with the DML method using Random Forests. 

Furthermore, the corresponding confident intervals of the DSL method remained valid over all 

the different settings for the simulated datasets, unlike those using the DML method with 

Random Forests where the respective confidence intervals failed in four occasions when the 

dimension of the simulated datasets grew dimensionally large. A new variant of the DSL method 

referred to as the selected DSL was then introduced, which is based on a single ML algorithm 

chosen by the SL function. Numerical analysis also showed that this new variant of the DSL 

method produced better results compared with the DML method in terms of bias and confidence 

intervals, but not in comparison with the DSL method that incorporates multiple ML algorithms. 

A package that contains the DSL functions was then introduced and made publicly available for 

researchers who are interested in using the proposed method and to help in replicating the results 

presented in this dissertation.  
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OUTLIERS DETECTION 
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Outliers Detection 

Figure 24 

Outliers for Estimating the Targeted Parameter when the Treatment D is Continuous 
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APPENDIX B 

 

ESTIMATION OF BINARY TREATMENT EFFECTS  

USING EQUATIONS (44) – (46) 
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Estimation of Binary Treatment Effects Using  

Equations (44) – (46) 

Figure 25 

The Distribution of (�̃�0 − 𝜃0) for p = 20 when the Treatment Variable is Binary 
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Table 24  

Performance of Each Candidate Learner in the Super Learner Analysis for Datasets with p = 20 

when the Treatment Variable is Binary 

Sample N Nuisance Best Candidate LASSO GLM KNN RF Boosting 

N=100 �̂�0(𝑿𝑖∈𝑇) Frequency 187 6 169 117 25 

Ratio 0.333 0.072 0.298 0.206 0.091 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 192 10 162 115 25 

Ratio 0.347 0.068 0.291 0.208 0.086 

�̂�0(𝑿𝑖∈𝑇) Frequency 120 5 50 99 230 

Ratio 0.214 0.076 0.105 0.185 0.419 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 115 4 56 103 226 

Ratio 

 

0.195 0.068 0.106 0.197 0.434 

N=500 �̂�0(𝑿𝑖∈𝑇) Frequency 407 11 23 60 3 

Ratio 0.655 0.077 0.096 0.134 0.038 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 380 28 26 68 2 

Ratio 0.616 0.100 0.100 0.146 0.038 

�̂�0(𝑿𝑖∈𝑇) Frequency 452 9 8 30 5 

Ratio 0.738 0.081 0.044 0.085 0.053 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 451 13 5 33 2 

Ratio 

 

0.727 0.082 0.041 0.093 0.057 

N=1,000 �̂�0(𝑿𝑖∈𝑇) Frequency 448 17 1 38 0 

Ratio 0.711 0.097 0.060 0.106 0.026 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 451 17 3 33 0 

Ratio 0.720 0.091 0.053 0.107 0.030 

�̂�0(𝑿𝑖∈𝑇) Frequency 481 15 1 7 0 

Ratio 0.801 0.085 0.031 0.050 0.033 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 485 12 0 6 1 

Ratio 

 

0.814 0.080 0.028 0.045 0.033 

N=5,000 �̂�0(𝑿𝑖∈𝑇) Frequency 495 9 0 0 0 

Ratio 0.836 0.094 0.018 0.039 0.013 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 484 17 0 3 0 

Ratio 0.822 0.098 0.020 0.047 0.014 

�̂�0(𝑿𝑖∈𝑇) Frequency 494 10 0 0 0 

Ratio 0.860 0.090 0.012 0.020 0.018 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 495 9 0 0 0 

Ratio 0.875 0.079 0.012 0.016 0.018 
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Table 25   

Summary Statistics for Datasets with p = 20 when the Treatment Variable is Binary 

N Method Estimates Bias Variance 95% CI 

100 DML 0.4350 0.0650 0.0559 -0.0283 0.8982 

DSL 0.4153 0.0847 0.0565 -0.0507 0.8813 

Selected DSL  0.3966 0.1034 0.0555 -0.0650 0.8582 

500 DML 0.4771 0.0229 0.0112 0.2702 0.6841 

DSL 0.4904 0.0096 0.0109 0.2857 0.6952 

Selected DSL  0.4820 0.0180 0.0107 0.2788 0.6852 

1,000 DML 0.4707 0.0293 0.0047 0.3364 0.6050 

DSL 0.4824 0.0176 0.0046 0.3501 0.6148 

Selected DSL  0.4826 0.0174 0.0046 0.3498 0.6153 

5,000 DML 0.4879 0.0121 0.0009 0.4281 0.5477 

DSL 0.4990 0.0010 0.0009 0.4414 0.5566 

Selected DSL 0.4990 0.0010 0.0009 0.4414 0.5567 
 

Note. Number of replications is 504. 
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Figure 26  

The Distribution of (�̃�0 − 𝜃0) for p = 100 when the Treatment Variable is Binary 
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Figure 27 

The Distribution of (�̃�0 − 𝜃0) for p = 100 when the Treatment Variable is Binary after Applying 

the Necessary Trimming 

 

**trimming was applied.  
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Table 26 

Performance of Each Candidate Learner in the Super Learner Analysis for Datasets with p = 

100 when the Treatment Variable is Binary 

Sample N Nuisance Best Candidate LASSO GLM KNN RF Boosting 

100 �̂�0(𝑿𝑖∈𝑇) Frequency 186 0 117 157 44 

Ratio 0.350 0.004 0.232 0.295 0.118 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 173 0 127 154 50 

Ratio 0.341 0.005 0.248 0.290 0.115 

�̂�0(𝑿𝑖∈𝑇) Frequency 88 3 62 86 265 

Ratio 0.181 0.053 0.129 0.151 0.487 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 110 2 59 88 245 

Ratio 

 

0.201 0.068 0.121 0.165 0.446 

500 �̂�0(𝑿𝑖∈𝑇) Frequency 338 0 21 135 10 

Ratio 0.583 0.026 0.083 0.250 0.058 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 354 0 16 128 6 

Ratio 0.599 0.027 0.083 0.230 0.061 

�̂�0(𝑿𝑖∈𝑇) Frequency 487 0 2 14 1 

Ratio 0.847 0.025 0.028 0.041 0.059 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 489 0 2 12 1 

Ratio 

 

0.852 0.021 0.032 0.039 0.056 

1,000 �̂�0(𝑿𝑖∈𝑇) Frequency 448 0 0 55 1 

Ratio 0.758 0.034 0.040 0.128 0.040 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 439 0 0 64 1 

Ratio 0.734 0.032 0.046 0.144 0.043 

�̂�0(𝑿𝑖∈𝑇) Frequency 503 0 0 1 0 

Ratio 0.901 0.028 0.013 0.014 0.044 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 503 0 0 1 0 

Ratio 

 

0.901 0.030 0.014 0.014 0.042 

5,000 �̂�0(𝑿𝑖∈𝑇) Frequency 502 0 0 2 0 

Ratio 0.902 0.042 0.009 0.028 0.019 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 502 0 0 2 0 

Ratio 0.893 0.041 0.012 0.035 0.020 

�̂�0(𝑿𝑖∈𝑇) Frequency 504 0 0 0 0 

Ratio 0.935 0.035 0.004 0.002 0.025 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 504 0 0 0 0 

Ratio 0.937 0.031 0.004 0.002 0.026 
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Table 27  

 

Summary Statistics for Datasets with p = 100 when the Treatment Variable is Binary  

N Method Estimates Bias Variance 95% CI 

100 DML 0.3583 0.1417 0.0507 -0.0832 0.7998 

DSL 0.2731 0.2269 5.7159 -4.4129 4.9590 

DSL * 0.3560 0.1440 0.0491 -0.0783 0.7902 

Selected DSL  0.3370 0.1630 0.0493 -0.0980 0.7720 

500 DML 0.4207 0.0793 0.0089 0.2354 0.6061 

DSL 0.4553 0.0447 0.0098 0.2612 0.6493 

Selected DSL  0.4529 0.0471 0.0096 0.2606 0.6451 

1,000 DML 0.4466 0.0534 0.0046 0.3141 0.5791 

DSL 0.4787 0.0213 0.0049 0.3417 0.6158 

Selected DSL 
 

0.4783 0.0217 0.0049 0.3418 0.6149 

5,000 DML 0.4676 0.0324 0.0008 0.4117 0.5235 

DSL 0.4950 0.0050 0.0008 0.4387 0.5512 

Selected DSL 0.4947 0.0053 0.0008 0.4380 0.5515 

Note: Number of replications is 504. 

*1% trimming has been applied. 
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Figure 28  

The Distribution of (�̃�0 − 𝜃0) for p = 1,000 when the Treatment Variable is Binary 
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Figure 29 

The Distribution of (�̃�0 − 𝜃0) for p = 1,000 when the Treatment Variable is Binary after 

Applying the Necessary Trimming 

 

**trimming was applied.  
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Table 28 

Performance of Each Candidate Learner in the Super Learner Analysis for Datasets with p = 

1,000 when the Treatment Variable is Binary 

Sample N Nuisance Best Candidate LASSO GLM KNN RF Boosting 

N=100 �̂�0(𝑿𝑖∈𝑇) Frequency 160 0 126 167 51 

Ratio 0.301 0.005 0.237 0.327 0.130 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 165 0 95 181 63 

Ratio 0.325 0.005 0.194 0.328 0.148 

�̂�0(𝑿𝑖∈𝑇) Frequency 58 4 70 44 328 

Ratio 0.106 0.066 0.143 0.079 0.606 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 54 0 81 43 326 

Ratio 

 

0.103 0.060 0.160 0.082 0.595 

N=500 �̂�0(𝑿𝑖∈𝑇) Frequency 314 0 9 155 26 

Ratio 0.534 0.001 0.075 0.275 0.115 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 304 0 16 162 22 

Ratio 0.536 0.001 0.085 0.277 0.101 

�̂�0(𝑿𝑖∈𝑇) Frequency 470 0 4 18 12 

Ratio 0.820 0.018 0.026 0.032 0.104 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 472 0 3 20 9 

Ratio 

 

0.815 0.019 0.025 0.041 0.101 

N=1,000 �̂�0(𝑿𝑖∈𝑇) Frequency 451 0 4 46 3 

Ratio 0.781 0.000 0.044 0.093 0.081 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 454 0 1 44 5 

Ratio 0.788 0.000 0.038 0.091 0.083 

�̂�0(𝑿𝑖∈𝑇) Frequency 504 0 0 0 0 

Ratio 0.915 0.008 0.007 0.002 0.068 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 504 0 0 0 0 

Ratio 

 

0.916 0.008 0.004 0.001 0.070 

N=5,000 �̂�0(𝑿𝑖∈𝑇) Frequency 503 0 0 1 0 

Ratio 0.961 0.010 0.004 0.002 0.024 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 503 0 0 1 0 

Ratio 0.952 0.010 0.004 0.002 0.033 

�̂�0(𝑿𝑖∈𝑇) Frequency 504 0 0 0 0 

Ratio 0.952 0.005 0.001 0.000 0.043 

�̂�0(𝑿𝑖∈𝑇𝑟) Frequency 504 0 0 0 0 

Ratio 0.952 0.005 0.000 0.000 0.043 
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Table 29  

 

Summary Statistics for Datasets with p = 1,000 when the Treatment Variable is Binary 

N Method Estimates Bias Variance 95% CI 

100 DML 0.2837 0.2163 0.0487 -0.1489 0.7163 

DSL 0.3396 0.1604 1.3974 -1.9773 2.6565 

DSL * 0.2916 0.2084 0.0519 -0.1548 0.7380 

Selected DSL  0.2816 0.2184 0.0527 -0.1682 0.7313 

500 DML 0.3380 0.1620 0.0084 0.1584 0.5176 

DSL 0.4195 0.0805 0.0099 0.2241 0.6150 

Selected DSL  0.4189 0.0811 0.0095 0.2281 0.6096 

1,000 DML 0.3678 0.1322 0.0038 0.2463 0.4893 

DSL 0.4559 0.0441 0.0043 0.3273 0.5844 

Selected DSL  0.4544 0.0456 0.0045 0.3235 0.5852 

5,000 DML 0.4191 0.0809 0.0008 0.3651 0.4731 

DSL 0.4908 0.0092 0.0008 0.4343 0.5473 

Selected DSL 0.4895 0.0105 0.0008 0.4331 0.5460 

Note: Number of replications is 504. 

*1% trimming has been applied. 
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APPENDIX C 

 

EMPIRICAL EXAMPLE: COMMUNITIES AND  

CRIMES DATASET 
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Empirical Example: Communities and  

Crimes Dataset 

 An application of the DSL method using the dataset Example2 dataset under the 

DoubleSL package. The response variable is the total number of violent crimes per 100K 

population, while the treatment variable is percentage of people in the labor force, and 

unemployed. The sample size of this data set is 123 neighborhoods measured on 127 variables 

(high-dimensional dataset). The following are the results using the three methods: 

 

Table 30 

Summary Statistics about the Employment Effect on the Total Number of Violent Crimes   

Method Estimates Variance 95% CI 

DML 0.3733 2.8694 0.0740 0.6727 

DSL 0.4948 3.3267 0.1725 0.8172 

Selected DSL 0.4346 4.3620 0.0655 0.8037 

 

Table 31  

Candidate Machine-Learning Algorithms’ Performance in Estimating Nuisance Functions 

Nuisance LASSO GLM KNN RF Boosting 

�̂�0(𝑿𝑖∈𝑇)  0.663 0.010 0.000 0.181 0.147 

�̂�0(𝑿𝑖∈𝑇𝑟)  0.211 0.000 0.000 0.569 0.221 

�̂�0(𝑿𝑖∈𝑇)  0.940 0.015 0.000 0.000 0.045 

�̂�0(𝑿𝑖∈𝑇𝑟)  0.920 0.000 0.000 0.000 0.080 
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APPENDIX D 

R SYNTAX 

  



129 

 

R Syntax 

This section of the appendix includes directions about how to import the DoubleSL R 

package that was created for applying the DSL method. The package is hosted on Github.com 

under my profile name SamiSaadAlanazi. To install the package, use the following R syntax 

example: 

 
 
install_github('SamiSaadAlanazi/DoubleSL') 
library(DoubleSL) 
Dat = DATA1(500, 20, 0.5) 
DML1(Dat, 1, 2) 
# Specify a library of candidate machine learning algorithms # 
SL.library <- c("SL.biglasso", "SL.glm", "SL.kernelKnn", "SL.ranger", 
"SL.xgboost") 
DSL1(Dat, 1, 2, SL.library, 5L) 
 

 

For more details, refer to chapter IV on page 95.  
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APPENDIX E 

PERMISSION TO REPRODUCE FIGURE 3 
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Permission to Reproduce Figure 3 
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