
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Community & Environmental Health Faculty 
Publications Community & Environmental Health 

2021 

Influence of the Inherent Safety Principles on Quantitative Risk in Influence of the Inherent Safety Principles on Quantitative Risk in 

Process Industry: Application of Genetic Algorithm Process Process Industry: Application of Genetic Algorithm Process 

Optimization (GAPO) Optimization (GAPO) 

Mehdi Jahangiri 

Abolfazl Moghadasi 

Mojtaba Kamalinia 

Farid Sadeghianjahromi 

Sean Banaee 
Old Dominion University, sbanaee@odu.edu 

Follow this and additional works at: https://digitalcommons.odu.edu/commhealth_fac_pubs 

 Part of the Energy Policy Commons, Occupational Health and Industrial Hygiene Commons, Other 

Operations Research, Systems Engineering and Industrial Engineering Commons, Risk Analysis 

Commons, and the Systems Engineering and Multidisciplinary Design Optimization Commons 

Original Publication Citation Original Publication Citation 
Jahangiri, M., Moghadasi, A., Kamalinia, M., Sadeghianjahromi, F., & Banaee, S. (2021). Influence of the 
inherent safety principles on quantitative risk in process industry: Application of genetic algorithm 
process optimization (GAPO). Mathematical Problems in Engineering, 2021, 1-11, Article 5557320. 
https://doi.org/10.1155/2021/5557320 

This Article is brought to you for free and open access by the Community & Environmental Health at ODU Digital 
Commons. It has been accepted for inclusion in Community & Environmental Health Faculty Publications by an 
authorized administrator of ODU Digital Commons. For more information, please contact 
digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/commhealth_fac_pubs
https://digitalcommons.odu.edu/commhealth_fac_pubs
https://digitalcommons.odu.edu/commhealth
https://digitalcommons.odu.edu/commhealth_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcommhealth_fac_pubs%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1065?utm_source=digitalcommons.odu.edu%2Fcommhealth_fac_pubs%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/742?utm_source=digitalcommons.odu.edu%2Fcommhealth_fac_pubs%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=digitalcommons.odu.edu%2Fcommhealth_fac_pubs%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=digitalcommons.odu.edu%2Fcommhealth_fac_pubs%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1199?utm_source=digitalcommons.odu.edu%2Fcommhealth_fac_pubs%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1199?utm_source=digitalcommons.odu.edu%2Fcommhealth_fac_pubs%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/221?utm_source=digitalcommons.odu.edu%2Fcommhealth_fac_pubs%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1155/2021/5557320
mailto:digitalcommons@odu.edu


Research Article
Influence of the Inherent Safety Principles onQuantitative Risk in
Process Industry: Application of Genetic Algorithm Process
Optimization (GAPO)

Mehdi Jahangiri,1 AbolfazlMoghadasi ,2MojtabaKamalinia,3 Farid Sadeghianjahromi,4

and Sean Banaee5

1Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences Occupational Health,
Shiraz, Iran
2Student Research Committee, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
3School of Health, Department of Occupational Health, Shiraz University of Medical Sciences, Shiraz, Iran
4Department of Chemical Engineering, University of Isfahan, Isfahan, Iran
5College of Health Sciences, Old Dominion University, Norfolk, VA, USA

Correspondence should be addressed to Abolfazl Moghadasi; a_moghadasi@sums.ac.ir

Received 20 February 2021; Revised 21 April 2021; Accepted 27 April 2021; Published 8 May 2021

Academic Editor: Mohammad Yazdi

Copyright © 2021 Mehdi Jahangiri et al. (is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Inherent safety (IS) refers to a set of measures that enhance the safety level of processes and equipment, rendering additional
equipment and/or add-ons. (e early design phase of processes is suited best for implementation of IS strategies as some of such
strategies either are impossible to be implemented at the operation phase or substantially increase costs. (e purpose of this study
is to present a new approach called genetic algorithm process optimization (GAPO), by which processes can be made inherently
safer even at the operation phase. (is study simulates the IS principle, assessing its impact on quantitative risk and the possible
consequences of process incidents identified by Hazard and Operation Study (HAZOP). (e principle of intensification was
simulated through GAPO, and feasibility of implementation was approved by HYSYS. Moreover, the integrated inherent safety
index (I2SI) was used to evaluate and quantify the level of IS following implementation of GAPO compared to the initial design.
Our result shows that GAPO substantially reduced the risk of consequences and quantitative risks and concomitantly improved
the I2SI. (e proposed GAPO can be applied to process operation as an approach to enhance IS at no cost and without decrease
in production.

1. Introduction

Engineers and safety activists have always tried to optimize
and increase the level of safety in industry through utilizing
knowledge and advanced technologies to reduce the prob-
ability and severity of human and financial consequences
[1–3]. Meanwhile, given the inherent nature of processes,
reactions, raw materials, and products, process industries
contribute a special role in the occurrence of incidents [4–6].
In process industries including petrochemical facilities, raw
materials are converted into intermediate or final products

using a physical and/or chemical chain of circumstances. In
such industries, production, storage, transportation, use,
and disposal of chemicals are inherently dangerous, and the
potential for catastrophic accidents is a significant concern.
Since simple negligence in these industries may lead to loss
of life, damage to equipment, economic losses, and envi-
ronmental pollution, great efforts have been made to
minimize the chance for occurrence of such incidents.

In a general classification, approaches towards achieving
higher levels of safety can be divided into two groups:
conventional and inherent [7–10]. Conventional approaches
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include control of hazards by safety add-ons such as active or
passive engineering strategies, procedural corrective actions,
and preventive laws and regulations [3]. In passive safety
systems, hazards are controlled through process or equip-
ment design features without additional active functioning
of any device. Active safety systems include process controls,
safety instrumented systems (SIS), and mitigation systems.
Such preventative measures mitigate hazards through
controls and systems designed to monitor and maintain
specific conditions, which may be triggered by an event.
Procedural safety systems use personnel education and
management, including standard operating procedures
(SOPs), safety rules and procedures, training, emergency
response plans, and management systems to control the
hazards [10].

Many safety activists applied the inherent safety prin-
ciples to reduce or eliminate risks and make processes or
plants safer without knowing or categorizing the techniques
as inherent safety [3, 11, 12]. In 1970, Klets came up with the
idea that “What you do not have, cannot leak, or burn” [11].
Ten years after the explosion of Flixborough, and just a few
weeks before the Bhopal tragedy, Klets introduced the four
basic principles for inherent safety including intensification,
substitution, attenuation, and limitation of the effects of
failures. During the following years, these principles were
reviewed and modified by various researchers [11]. For
example, the I2SI described the inherent safety principles
(ISPs) in five elements as limitation of effects, minimization,
substitution, attenuation, and simplification [3].

Inherent safety refers to a set of measures that enhance the
processes and equipment safety level without the need for
further equipment and/or add-ons and prevents or reduces
the severity of possible incidents [13]. Inherent safety seeks to
eliminate the risk with different approaches rather than ig-
noring or controlling them [14, 15]. Inherent safety design
strategies eliminate or reduce hazards to avoid or mitigate the
consequences of incidents through principles such as sub-
stitution, moderation, and simplification of conventional
safety approach. Although implementation of ISPs seems
logical, simple, and obvious at first glance, it is challenging
because of the required modification in process design, tools,
and layouts. Moreover, enforcement of ISPs in a simple
process is more difficult due to limited options for achieving
inherent safety. For instance, chemicals may not be toxic, and
processes are not complicated. (ese challenges are greater
when the process is at the operation stage of the lifecycle,
because any modification in the process must be logically
feasible, justifiable, and cost-effective [16]. Many studies have
emphasized that implementation of ISPs in the early stages of
the system lifecycle is more economical and practical due to
the lack of need to change the equipment and process layout
[17–19].

In the 1970s, quantitative risk assessment (QRA) was
initially introduced to the nuclear industry and then inte-
grated into the process industry as legal criteria. During the
last four decades, substantial emphasis has been placed on
QRA [20]. QRA can be used to numerically quantify the
existing risks, determine the unacceptable risks according to
a numerical criterion, and prioritize the risk control

measures [21]. QRA is based on identifying the incident
scenarios and evaluating the risk by defining the probability
of failure, the prospect of various consequences, and the
potential impact of those consequences. (e QRA risk is
defined as a function of probability, frequency, and con-
sequence of a particular incident scenario. (e QRA is
commonly presented as individual and societal risk. (e
individual risk expresses the likelihood of experiencing fatal
effects at a given location and is not affected by the distri-
bution of population in the area. In other words, the term
“individual risk” is used to calculate the risk of fatality for
someone at a specific location, assuming an employee is
always present at the location [22, 23]. (e societal risk is a
measure of the risk that the incidents pose to the population
and takes into account population distribution in the area.
(e societal risk is expressed in terms of the likelihood of
incident outcomes that affects a given number of people in a
single incident. Societal risk is expressed using an F-N curve,
which indicates that the expected frequency (F) of incident
scenarios resulted in the number of N or more fatalities. (e
x-axis of the F-N curve represents the number of fatalities
(N), which is depicted on a logarithmic axis with a minimum
value of 1. (e y-axis of the F-N curve represents the cu-
mulative frequency of events with the number of fatalities
equal to N or more [6, 9, 20]. PHAST software package is a
tool that helps in calculating QRA. In 2020, Wu et al. used
PHAST to study quantitative analysis of ground flare [24].
Also, Wang and Ma (2021) applied PHAST to calculate
quantitative risk for hydrogen refueling station [25]. In 2019,
Shuang et al. used QRA to conduct fire and explosion risk
assessment in urban natural gas pipeline [26]. In 2016, Tong
et al. studied long-distance oil and gas pipelines [23].
However, PHAST software can be used to develop conse-
quence modeling and draw out valid data on QRA.

Genetic Algorithm is an approach, in which the machine
can simulate the natural selection mechanism. (is is done
by searching the problem space to find the better answer, not
necessarily the optimal one [27–30]. GA is widely used in
studies, in which the stochastic search algorithms are applied
to find the optimal or the most immediate answer. In such
algorithms, optimization strategies are defined by mixed
continuous discrete variables and discontinuous and/or
nonconvex system spaces [30]. As with early random gen-
erations, initial responses produced randomized generations
of children by modifying and combining initial parent
answers [31, 32]. (is cycle will continue until the full
recognition of specified process conditions. Approaching the
optimal solution is a necessary condition for the process
completion [30]. In optimization problems with various
processes, variables, and conditions, GA can be used to find
the best/optimum operating conditions for equipment and
process to enhance inherent safety without reducing the
production of final product (s) at industries.

Numerous studies have been conducted into the as-
sessment of ISPs in reducing both the frequency (more
influenced by the vessels construction material) and severity
(mostly affected by nature and volume of chemical and
process condition) [2–5, 7–10]. Most of these studies reach
the conclusion that the best chance to make process
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inherently safer is at the design phase of process life cycle.
Implementation of these approaches in operation phase
would be costly or, in the best situation, need to change the
design layout that is not practically applicable in all processes.
For instance, Chen (2011) cited the purpose of the Explosion-
Proof Technology in Oil Storage and Transportation Devices
[5]; Palaniappan et al. (2004) suggested that layout design is
playing a key role on making process inherently safer [15];
Rathnayaka et al. (2014), Tugnoli et al. (2008), and Kossoy
et al. (2012) suggested the same point of view as Palaniappan
[7, 8, 18]. Also, Syaza et al. (2016) purposed a graphical
approach to make process inherently safer through research
and development phase of process design. Although the
earlier phase of process design is the greater opportunity to
make the process inherently safer, there is a chance to im-
plement the inherent safety in other phases of process life
cycle. (e present study aims to simulate the genetic algo-
rithm process optimization (GAPO) and evaluate its effects
on quantitative risk and inherent safety status at the operation
phase of a methane recovery unit.

2. Methodology

(e present study was carried out at the methane recovery
unit of a petrochemical plant in the south of Iran to simulate
the GAPO and evaluate its effects on quantitative risk. In
GAPO, the level of produced methane was kept constant
compared to the existing state, providing a higher level of
safety without reducing methane separation or any add-on.
(e study was carried out in the following steps (Figure 1).

Figure 2 represents the process flow diagram of the
studied methane recovery unit. (e process consists of two
drums for the refrigeration cycle, a feeding drum, a
demethanizer tower, and two heat exchangers. First, the
solid particles and the natural gas moisture are removed by
filters and dryers. (e feed gas (with the composition listed
in Table 1) is then cooled to −94°C by the propane refrig-
eration (blue in Figure 2) and pumped into different parts of
the demethanizer unit. (e demethanizer tower is heated
with a reboiler, which is embedded at the bottom (first tray)
of the tower. Eventually, methane is separated from natural
gas based on its bubble point and is exhausted from the top
of the tower. (e liquid gas, which is known as C2+, is
exhausted from the bottom of the tower.

In this study, GAPO was used to optimize propane
refrigerant consumption. For this purpose, the initial pro-
cess was optimized using the GA Module in MATLAB. (e
implementation feasibility was investigated in terms of
compatibility of the stability and energy equilibrium
equations with fluids and thermodynamics rules using
Aspen HYSYS (Figure 3) process simulator. (e statistical
population in GA was 10, and calculations are completed for
10 generations.

(e role of 8 variables in reducing propane refrigerant
consumption was investigated in this study. (e initial value
and the range of their changes are presented in Table 2.

(e intended range of variables for optimization of
propane consumption was determined according to the
sensitivity analysis performed in the PHAST-Risk software for

quantitative risk reduction, as well as variables changes versus
the objective function.(e objective function of the study was
to reduce the propane refrigerant consumption and modify
operational conditions to reduce the quantitative risk.
(erefore, the optimal answer with minimum quantitative
risk has been achieved. In addition, during the initial
demethanizer process, the temperature of lines 22–26 (Fig-
ure 1), which plays the role of a reboiler in the system, was
changed so that the LP steam consumption is approaching
zero.(e constraints of the problem are shown in Table 3; the
objective function has been defined as the ratio of final to
initial propane mass flow (kg/hr).

Next, the feasibility of GAPO was confirmed by Aspen
HYSYS simulation to check whether the initial process was
simulated for Aspen-HYSYS validation. (e equation of the
state of mixture fluid was PRSV.

(e HAZOP method was used to identify the process
hazards in the studied process unit. To this end, the process
and equipment were divided into separate sections and
nodes according to the nature of operation, including
process lines, process vessels, process equipment, offsite
systems, emergency shutdown systems, isolation at battery
limits, and interface with other facilities. Members of the

Initial process

Process simulation (Aspen-HYSYS)

Hazard identification
(HAZOP)

Consequence modeling

Quantitative risk assessment

Inherent safety evaluation
(I2SI)

Process
optimization

(GA)

Figure 1: Overview of the procedure used in this study.
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HAZOP team, consisting of 17 process, safety, and me-
chanical engineers, identified the hazards and possible in-
cident scenarios for each node (Table 4).

(e consequences of possible scenarios in the studied
process unit were modeled using the PHAST software
package. (e information needed for consequence modeling
was derived from the HAZOP study and the operational
conditions contained in the P and IDs and PFDs (Table 5).
Leakage size and their frequencies were selected based on the

Figure 2: Process flow diagram for initial process of studied methane recovery.

Table 1: Feed composition in a studied methane recovery unit.

Composition Mole fraction
Nitrogen 0.0356
CO2 0.0102
Methane 0.8677
Ethane 0.0553
Propane 0.0209
i-Butane 0.0038
n-Butane 0.0055
i-Pentane 0.0004
n-Pentane 0.0003
n-Hexane 0.0001
n-Heptane 0.0001
n-Octane 0.0001

GA

Optimizations

VLE & enthalpy

MATLAB HYSIS

Math & energy balance

Figure 3: Implemented architecture links between Genetic algo-
rithm, MATLAB, and HYSYS (GA: Algorithm Genetic–VLE:
Vapor-liquid equilibrium).

Table 2: Designed parameters applied for process optimization
with genetic algorithm.

Input variable Value
X1: temperature of stream 22-3 (°C) −59.94
X2: molar flow of stream 22-8 (Kgmol/h)∗ 293306
X3: molar flow of stream 22-15 (Kgmol/h)∗∗ 129306
X4: temperature of stream 22–31 (°C) −17.22
X5: temperature of stream 22–34 (°C) −49.75
X6: boil up ratio 0.8012
X7: outlet pressure of expender 32.01
X8: pressure of top stage of column 31.51
∗Expander is assumed to work in the range of 95%∼105% of its normal
capacity. ∗∗Reflux Ratio is considered to be in the range of 65%∼110% of its
normal flow rate.

Table 3: Constraints of genetic algorithm.

Constrains Base
case

C1 recovery % (from demethanizer (T-2211))> 80 82
Minimum approach temperature of 10-E-2211 A-F> 4.1°C 4.3
Minimum approach temperature of 10-E-2212 A-
F> 0.54°C 0.54

4 Mathematical Problems in Engineering



guidelines of OGP (Risk Assessment Data Directory, Release
Failure Frequency, 2010) and DNV. (e required climatic
information was obtained from the hourly records during
the last five consecutive years by the Meteorological Or-
ganization (Table 6). Due to weather difference, consequence

modeling was carried out in two climatic conditions of
spring/summer (Weather 1) and fall/winter (Weather 2).

In this stage, quantitative risks (societal and individual)
were calculated using PHAST-Risk software for the initial
process design (IPD) and proposed GAPO. (e quantitative

Table 4: Identified scenarios for consequence modeling extracted from HAZOP study in the studied methane recovery unit.

Scenario Composition Description Leak size
(mm)

Frequency
(occurrence/year)

Phase to
release

Outcome
consequence

Sc01-T01-S Composition from
Table 1 Small leak of demethanizer tower 25 1.38E− 0.03 Gas

Jet fire
flash fire

vapor cloud

Sc02-T01-
M

Composition from
Table 1

Medium leak of demethanizer
tower 100 5.4E− 5 Gas

Jet fire
flash fire

vapor cloud

Sc03-T01-
CR

Composition from
Table 1 Large leak of demethanizer tower 609 4.8E− 5 Gas

Jet fire
flash fire

vapor cloud

Sc04-D32-S C3H8 (propane)
Small leak of MP REFR

circulation drum 25 1.38E− 0.03 Liquid
Jet fire
flash fire

vapor cloud

Sc05-D32-
M C3H8 (propane)

Medium leak of MP REFR
circulation drum 100 5.4E− 5 Liquid

Jet fire
flash fire
pool fire

vapor cloud

Sc06-D32-
CR C3H8 (propane)

Large leak of MP REFR
circulation drum 609 4.8E− 5 Liquid

Fireball
flash fire

vapor cloud
jet fire
pool fire

Sc07-D31-S Composition from
Table 1 Small leak of feed HP separator 25 1.38E− 0.03 2 phase

Jet fire
flash fire

vapor cloud

Sc08-D31-
M

Composition from
Table 1

Medium leak of feed HP
separator 100 5.4E− 5 2 phase

Jet fire
flash fire

vapor cloud

Sc09-D31-
CR

Composition from
Table 1 Large leak of feed HP separator 609 4.8E− 5 2 phase

Jet fire
fireball
flash fire

vapor cloud

Sc010-D33-
S C3H8 (propane)

Small leak of LP REFR.
Circulation drum 25 1.38E− 0.03 Liquid

Jet fire
flash fire
pool fire

vapor cloud

Sc011-D33-
M C3H8 (propane)

Medium leak of LP REFR.
Circulation drum 100 5.4E− 5 Liquid

Jet fire
flash fire
pool fire

vapor cloud

Sc012-D33-
CR C3H8 (propane)

Large leak of LP REFR.
Circulation drum 609 4.8E− 5 Liquid

Jet fire
flash fire
pool fire

vapor cloud

Table 5: Process information for the initial process design of the studied methane recovery unit.

Equipment Capacity (m3) Tem. (°C) Pressure (bar) Inventory (kg)
Demethanizer 1137 −94.6 33.5 84250
MP REFR circulation drum 49.1 −13.5 3.8 26840
LP REFR circulation drum 54.4 −43.8 1.2 31800
Feed HP separator 82.6 −60 55.6 8119
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risk was assessed based on process information derived from
simulated processes (Aspen-HYSYS), consequence model-
ing, and population dispersion. (e aim was to assess the
effectiveness of GAPO in reducing the risks.

(is study implemented I2SI, presented by Faisal Khan
et al. (2004), to assess the process inherent safety status in
GAPO compared to IPD. I2SI is calculated by dividing the
inherent safety potential index (ISPI) to the hazard index
(HI) for each subset or equipment (equation 1)), and finally,
for the entire system (equation (2)). An increase in the score
of I2SI reflects the improvement of the inherent safety status
[33].

I2SI �
ISPI
HI

, (1)

I2SIsystem � 
B

i�1
I2SIi

⎛⎝ ⎞⎠

0.5

. (2)

In this study, after determining the scenario and iden-
tifying the high-risk equipment in the process, I2SI was
calculated for optimized process with GA compared to the
IPD. Inherent safety status of process and equipment was
calculated through I2SI approach according to the field
expert’s opinion and information from consequences
modeling (for each equipment and for the whole system).

3. Results and Discussion

3.1. GAPO and Aspen-HYSYS. Figure 4 shows mean GA
fitness generation for 10 populations in each module
compared to the best fitness. Best fitness refers to the fitness
of the best individual in the population compare to the goal
and condition of study. Each generation provides a new
average population fitness that is called mean fitness. In this
study, as can be seen, after 10 generations, the mean fitness
approached the best fitness. Meanwhile, not only the dif-
ference between the mean fitness and best fitness is as low as
acceptable (about 0.017934), but also the mean fitness after
seven generations has been stabilized, showing that the
obtained final objective function is optimum.

(e optimized values of the parameters selected as ge-
netic algorithm generations are shown in Table 7. As in-
dicated, by increasing the temperature of stream 22–31
(variable X4) from −17.22°C to −5.25°C, the required pro-
pane refrigerant mass flow rate increased due to refrigera-
tion reduction in 10-E-2211 cold box. Finally, the refrigerant
mass flow rate was decreased by increasing propane tem-
perature in stream 22–26. As the temperature of stream 22–3
(inlet stream to 10-D-2231) (variable X1) increased from
−59.94°C to −56°C, propane refrigeration decreased due to

increasing conversion of liquid to gas. (e increase in gas
was caused partly by the stream entering into the 10-TE-
2271 expander. Since the pressure drop in the expander
caused a cool down, the streams also reduced propane re-
frigeration flow rate. (e pressure drops at the tower from
31.51 barg to 29 barg caused a reduction in the propane
refrigeration flow rate. By reducing both the tower pressure
(variable X8) and boil-up ratio (variable X6), the temper-
ature of the outlet methane stream decreased, and conse-
quently, the required cooling reduction was achieved. As the
boil-up ratio dropped from 0.8012 to 0.7900, the gas flow in
the tower also declined, which resulted in a flow rate re-
duction at tower side streams.(e decrease in the rate at side
streams eventually reduced the amount of propane
refrigeration.

Table 8 shows the process information of methane re-
covery unit after simulation with genetic algorithm. As can
be seen, after implementing the GAPO model, vessels have
been changed to the lowest volume and safest status. (e
drop-in values of all parameters shown in Table 7 indicate a
reduction in energy consumption. In other words, while the
percentage of methane separation (production of methane
and C2+) remained constant, the amount of propane
consumption was reduced by 20٪, which reduces the volume
of vessel, thereby reducing quantitative risk and increasing
inherent safety of the process. (erefore, a feasible approach
to improve inherent safety at no cost and without decrease in
production would be the application of the proposed genetic
algorithm process optimization.

Table 6: Meteorological data used for quantitative risk assessment.

Period Average temperature (°C) Relative humidity (%) Wind velocity (m/s) Prevailing wind direction Stability class
Weather 1 31.75 46.83 2.71 WNW A
Weather 2 21.13 52.25 2.69 WNW B

0 1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

1.2

1.4

1.6

Generation
Fi

tn
es

s v
al

ue

Best: 0.790362 mean: 0.808296

Best fitness
Mean fitness

Figure 4: Fitness of generation versus best fitness.
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3.2. Hazard Identification and Consequence Modeling.
Table 4 presents the identified scenarios for consequence
modeling extracted from HAZOP study. (is table reveals a
total of 12 scenarios and details about the 4 most hazardous
equipment devices including demethanizer, MP REFR cir-
culation drum, Feed HP separator, and LP REFR. (e cir-
culation drum was extracted from HAZAOP study.

Table 9 represents the various consequences of scenarios
in the process optimized with GA and the IPD. As can be
seen, the vapor cloud radius decreased in all scenarios re-
lated to the demethanizer tower (scenarios 1 to 3). (e
highest reduction was observed in scenario 1, where the
vapor cloud radius dropped to 44% at 23780 ppm in GAPO.
(is reduction is related to the 23% and 20% related to
scenarios 2 and 3, respectively. But in scenarios 4 and 5, due

to constant temperature and pressure in the drum, there is
no decrease in the vapor cloud. However, in the worst-case
scenario for this drum (Scenario 6), there is a 22% reduction
in the vapor cloud radius. (e radius of the vapor cloud in
the feed drum is not significantly different due to a similar
reason. In LP drum, due to reduction in the temperature and

Table 7: Main properties and results of genetic algorithm opti-
mization applied in this study.

Properties Amount
Population size 10

Selection method Stochastic
uniform

Probability of crossover 0.8
Number of generations 10
Input variable Optimized values

X1: temperature of stream 22-3 (°C) −56

X2: molar flow of stream 22-8
(Kgmol/h) ∗ 260000

X3: molar flow of stream 22-15
(Kgmol/h) ∗∗ 85000

X4: temperature of stream 22–31 (°C) −15.25

X5: temperature of stream 22–34 (°C) −48

X6: boil-up ratio 0.79

X7: outlet pressure of expender 29.3

X8: pressure of top stage of column 29.00

Objective function 0.8

∗Increase decrease (changing from main amount).

Table 9: Results of consequence modeling for GAPO compared to
IPD for average annual weather conditions.

Scenario Consequence IPD GAPO

Sc01-T01-S
Vapor cloud-23780 ppm (m2) 55 31
Jet fire-lethality of 100% (m) 23 21

Flash fire radius (m) 12–32 10–26

Sc02-T01-M
Vapor cloud-23780 ppm (m2) 4093 3141
Jet fire-lethality of 100% (m) 82 75

Flash fire radius (m) 125–186 110–168

Sc03-T01-
CR

Vapor cloud-23780 ppm (m2) 160756 129135
Jet fire-lethality of 100% (m) 410 373

Flash fire radius (m) 668–850 625–784

Sc04-D32-S
Vapor cloud-10000 ppm (m2) 179 174
Jet fire-lethality of 100% (m) 31 31

Flash fire radius (m) 21–37 20–36

Sc05-D32-M

Vapor cloud-10000 ppm (m2) 5028 5049
Jet fire-lethality of 100% (m) 106 106

Flash fire radius (m) 99–138 99–138
Pool fire zone-lethality of

100% (m2) 5028 5028

Sc06-D32-
CR

Vapor cloud-10000 ppm (m2) 80759 62686
Jet fire-lethality of 100% (m) 478 426

Flash fire radius (m) 353–480 313–426
Pool fire zone-lethality of

100% (m2) 20601 15386

Fireball zone-lethality of 100%
(m2) 13677 11304

Sc07-D31-S
Vapor cloud-22370 ppm (m2) 118 106
Jet fire-lethality of 100%(m) 28 27

Flash fire radius (m) 17–44 16–42

Sc08-D31-M
Vapor cloud-22370 ppm (m2) 6161 5863
Jet fire-lethality of 100% (m) 96 94

Flash fire radius (m) 152–220 148–218

Sc09-D31-
CR

Vapor cloud-22370 ppm (m2) 43481 37566
Jet fire-lethality of 100% (m) 480 468

Flash fire radius (m) 406–496 390–467
Fireball zone-lethality of 100%

(m2) 40049 34618

Sc010-D33-S

Vapor cloud-10000 ppm (m2) 75 52
Jet fire-lethality of 100% (m) 20 16

Flash fire radius (m) 11–20 9–17
Pool fire zone-lethality of

100% (m2) 452 254

Sc011-D33-
M

Vapor cloud-10000 ppm (m2) 1195 939
Jet fire-lethality of 100% (m) 40 33

Flash fire radius (m) 28–46 25–42
Pool fire zone-lethality of

100% (m2) 3215 1962

Sc012-D33-
CR

Vapor cloud-10000 ppm (m2) 6800 4961
Jet fire-lethality of 100% (m) 141 133

Flash fire radius (m) 76–117 68–104
Pool fire zone-lethality of

100% (m2) 5805 3419

Table 8: Process information of methane recovery unit after
simulation with genetic algorithm.

Involved
equipment

Capacity
(m3)

Tem.
(°C)

Pressure
(bar)

Inventory
(kg)

Demethanizer 1 1043 −96.37 29 29220
MP REFR
circulation drum 42.1 −13.5 3.8 23020

LP REFR.
Circulation drum 27.85 −43.8 1.2 16280

Feed HP separator 70.81 −56 55.6 6352
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Figure 5: Individual risks contours (1pmpy) for GAPO compared to IPD (IPD: Initial Process Design; GAPO: Genetic Algorithm Process
Optimization).
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Figure 6: Calculated individual risk for GAPO compared to IPD (IPD: Initial Process Design; GAPO: Genetic Algorithm Process
Optimization).
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inventory, the vapor cloud radius decreased from 21% to
31% (Scenarios 10 to 12) in GAPO approach compared to
the initial process.

After optimization of the studied methane process, the
operating process of equipment was not significantly
changed, and therefore, intensity of jet fire was not highly
different. For example, in all three scenarios related to the
demethanizer tower in GAPO, the jet fire was reduced by
9%. In scenarios for MR drum and feed drum, the amount of
jet fire was almost identical. But in the LP drum scenarios,
the jet fire dropped from 6% to 20% due to the reduction of
temperature and inventory in GAPO. For the other fire
scenarios, the intensity of incidents has decreased; for in-
stance, intensity of pool fire decreased by 44% for LP drum
(Scenario 11). Finally, implementing GAPO, it can reduce
both the hazardous materials in the process and the capacity
of the vessels while keeping production constant.

3.3. Cumulative Quantitative Risk Assessment. (e indi-
vidual risk contour of 1 pmpy, for GAPO compared to the
IPD, is shown in Figure 5. As illustrated, implementation of
GAPO was associated with reduction in 1 pmpy individual
risk from 726473.54m2 in IPD to 596901.44m2 in GAPO.
(is decrease was more tangible in the downwind, due to the
vapor cloud tending to spread in the wind direction;
therefore, the individual risk was higher in the downwind
incidents.

Figure 6 shows the individual risk transect for GAPO
compared to the IPD in 200m from the incident location,
where the workers are resting. As can be seen, the individual
risk at the employee’s resting place reduced from 69.5E− 05/
Avgeyear in IPD to 03.5E− 05/Avgeyear in GAPO.

In Figure 7, the results of societal risks are presented in
GAPO and supported by Aspen HYSYS, compared to the
IPD, which exists in the operation phase. As shown, the
frequency of deaths is not significantly different in GAPO
from the existing process. (is uniformity is because the
present study focused on the severity of incident conse-
quences. As indicated, in the IPD, the number of deaths is
200 in almost frequency of 105/Avgeyear, which is reduced
to 107/Avgeyear in GAPO. (e number of deaths in inte-
grated consequences of 12 scenarios in the IPD reduced
from 600 to 400 in GAPO, which shows a 33٪ decrease.

3.4. Inherent Safety Assessment. Results of assessing process
for inherent safety by I2SI for IPD and GAPO are present in
Table 10. As the tables show, reducing hazard index for

demethanizer tower has great impact on total inherent safety
of initial process. Since the demethanizer tower is the most
hazardous equipment on the process, implementing in-
herent safety into the process will improve the safety of the
whole operation. (is table also shows that the total I2SI of
process increased significantly in the optimized process
without a need to add safety equipment or use conventional
safety methods and procedures.

4. Conclusion

(e aim of this study was to investigate the effect of genetic
algorithm process optimization on inherent safety en-
hancement and reduction of quantitative risks in operation
phase of process. (e results showed that, after optimizing
the process with the genetic algorithm, the number of deaths
decreased by one-third without reducing the amount of
methane production. In addition, process optimization led
to reduced energy consumption and improved efficiency. In
conclusion, genetic algorithms can be implemented at no
extra cost in all phases of the process life cycle to optimize
processes and equipment, especially during the operation
phase.

Abbreviations

GAPO: Genetic algorithm process optimization
HYSYS: Hyprotech system
PFD: Process flow diagram
NG: Natural gas
PHAST: Process hazard analysis software tools
I2SI: Integrated inherent safety index
IS: Inherent safety
HI: Hazard index
ISPI: Inherent safety potential index
IPD: Initial process design
ISP: Inherent safety principle
P and ID: Piping and instrumentation diagram
GA: Genetic algorithm
RCY: Recycle operator
TEE: Flow splitter
FB: Fire ball
MC: Maximum concentration
QRA: Quantitative risk assessment
HAZOP: Hazard and operability study
ESDV: Emergency shut down valve
NRV: None return valve
VLE: Vapor-liquid equilibrium

Table 10: Result of I2SI for initial Process Design (IPD) compared to Genetic Algorithm Process Optimization (GAPO).

Equipment
Hazard index (HI)

Inherent safety
potential index

(ISPI)

Integrated
inherent safety
index (I2SI)

Total I2SI of
process

IPD GAPO IPD GAPO IPD GAPO IPD GAPO
Demethanizer tower 3.13 2.00 1.20 2.26 0.38 1.13

0.23 0.79MP REFR circulation drum 1.47 1.75 0.53 1.18 0.32 0.68
Feed HP separator 2.00 2.40 0.49 1.45 0.25 0.60
LP REFR. circulation drum 1.32 1.85 2.39 2.50 1.81 1.35
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ISDS: Inherently safer design strategy
D-2232: MP refrigerant circulation drum
D-2231: FEED HP-separator
D-2233: LP refrigerant circulation
Pmpy: Part million per year
VLE: Vapor-liquid equilibrium
PRSV: Peng–Robinson-Stryjek-Vera equations of state
SIS: Safety instrument system
SOP: Standard operation procedure
DNV: Det Norske veritas
OGP: Oil and gas producers
P and ID: Piping and instrumentation diagram.
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