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COVID-19 Vaccination and Alcohol Consumption: Justification
of Risks
Pavel A. Solopov

Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA;
psolopov@odu.edu; Tel.: +1-757-683-2416

Abstract: Since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) pandemic, pharmaceutical companies and research institutions have been actively working to
develop vaccines, and the mass roll-out of vaccinations against COVID-19 began in January 2021.
At the same time, during lockdowns, the consumption of alcoholic beverages increased. During the
peak of vaccination, consumption remained at high levels around the world, despite the gradual
relaxation of quarantine restrictions. Two of the popular queries on search engines were whether
it is safe to drink alcohol after vaccination and whether this will affect the effectiveness of vaccines.
Over the past two years, many studies have been published suggesting that excessive drinking not
only worsens the course of an acute respiratory distress syndrome caused by the SARS-CoV-2 virus
but can also exacerbate post-COVID-19 syndrome. Despite all sorts of online speculation, there is
no specific scientific data on alcohol-induced complications after vaccination in the literature. Most
of the published vaccine clinical trials do not include groups of patients with a history of alcohol-
use disorders. This review analyzed the well-known and new mechanisms of action of COVID-19
vaccines on the immune system and the effects of alcohol and its metabolites on these mechanisms.
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1. Introduction

Alcohol consumption, especially chronic heavy drinking, has an impact on human
health, particularly on the components of both innate and adaptive immunity [1,2]. A
large number of early and recent studies have demonstrated that both short- and long-
term alcohol consumption leads to a severe decrease in lymphocytes [3,4]. Alterations
in immunoglobulins IgA and IgM have been observed in men and women who drink
alcohol [5,6]. Ethanol dose- and time-dependently modulates the functions of monocytes
and dendritic cells, thereby affecting phagocytosis and inflammatory cytokine produc-
tion [7]. Interactions between alcohol and the immune system may also influence the
development and progression of some types of cancer [8]. It is generally accepted that
moderate alcohol consumption, unlike chronic alcohol intoxication, enhances the response
to classical vaccines [1]. Tragic events are taking place in the modern world, and they are
affecting mental health and increasing global alcohol consumption. However, the same
events are stimulating the development of biotechnology and the production of vaccines.

The new coronavirus disease outbreak first identified in China was officially reported
on 31 December 2019, and within two weeks, researchers had published the DNA sequence
of SARS-CoV-2, the virus that causes COVID-19. By February, the first COVID-19 vac-
cine candidate (mRNA-1273) had been designed and manufactured by a company called
Moderna [9]. Immediately after the lockdown was announced, there was a significant
increase in the retail sales of alcohol, with a simultaneous decrease in the retail sales of
food, indicating an increase in domestic alcohol consumption during this period [10]. Some
countries completely prohibited the sale of liquor, while others reported an increase in
activity in the alcohol black market [11,12]. It is known that people who have problems
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with alcohol experience strong anxiety and drink more to cope with it [13]. Mass methanol
poisoning occurred in Iran and led to the deaths of more than 700 people in March 2020
after a rumor circulated in the country that drinking alcohol can prevent being infected by
the new virus [14].

In December 2020, the first two COVID-19 vaccines, Pfizer/BioNTech (New York, NY,
USA) and Moderna (Cambridge, MA, USA), received the US Food and Drug Adminis-
tration (FDA) and European Medicines Agency (EMA) Emergency Use Authorization [9].
Mental health researchers reported that the news about the developed vaccines and their
“emergency use” status created an additional feeling of anxiety and fear and that people
had great doubts about the vaccines’ efficiency and safety [15–18]. The clinical trials of
COVID-19 vaccines, approved in the USA, did not explicitly include individuals with
alcohol-use disorders [19]. Our published study indicating that the SARS-CoV-2 spike
protein alone may cause acute lung injury in mice caused a great resonance in the press and
resulted in questions about whether the new vaccines are safe [20]. We later published a
study showing that alcohol exposure exacerbates spike-protein-induced lung damage [21].
The aim of this review article is to determine the link between the immune response to
COVID-19 vaccines and the modulation of the immune system by alcohol consumption.

2. The Impacts of Alcohol Consumption on the Immune System

Alcohol modulates both innate and adaptive immunity. Several lines of evidence
suggest that epithelial cells, macrophages, and dendritic cells, as the first lines of immune
defense, are the most susceptible to high doses of alcohol. Ethanol weakens the ability
of leucocytes to migrate to sites of infection; induces functional abnormalities in T and B
lymphocytes, natural killer cells, and macrophages; and alters cytokine expression [22].
Elevated serum levels of tumor necrosis factor α (TNFα) and interleukin (IL-6), together
with decreased IL-10, interferon γ (IFN-γ), and IL-2 levels, are the usual parameters of
patients with chronic alcoholic liver disease [23,24].

Many published articles suggest that alcohol consumption has a dose-dependent effect
on the response to infection. Those with alcohol disorders are 3–7 times more susceptible
to bacterial pneumonia and tuberculosis, and they are prone to the progression of chronic
viral infections, such as human immunodeficiency virus (HIV) and hepatitis C [7]. Alcohol
metabolism varies from person to person. It depends not only on the sex and constitution
of the person but also on the content of metabolizing enzymes in the liver [25]. The liver, an
important component of the innate immune system, when damaged due to chronic alcohol
abuse, results in the decreased production of antibacterial proteins, thereby increasing the
susceptibility to bacterial or viral infection. Patients with alcohol disorders also have an
increased susceptibility to respiratory pathogens and an increased risk of acute respiratory
distress syndrome (ARDS) [26]. Awaya et al., in their review suggested avoiding alcohol
during COVID-19 vaccination [27].

Not only chronic alcohol use can lead to negative effects on the immune system [2]. In
fact, studies show that heavy drinking also affects the immune system. It has been reported
that patients with acute alcohol intoxication are more prone to peritonitis development
following penetrating abdominal trauma [28]. In experimental models, acute alcohol
intoxication has been demonstrated to impair the mucociliary defense of airways against
invading pathogens [29].

However, some animal and clinical studies suggest that moderate alcohol consumption
reinforces the immune response to infection and vaccination. In a clinical study that
included 391 patients with a cold who were exposed to different respiratory viruses, Co-
hen et al., found that consuming a large number of alcoholic drinks (3–4/day) decreased the
risk of developing colds that were confirmed by clinical symptoms and specific antibody
titers [30]. Some of the health benefits of moderate beer consumption may be due to its
ability to interfere with pro-inflammatory cytokine cascades [31].

It should be remembered that the severity of the effects of the immune status in
people with alcohol-use disorders depends not only on the time of consumption and the
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amount of alcohol but also on age, sex, body composition, environmental factors, and
even the type of alcoholic beverage [32]. Antioxidants and polyphenols found in red wine
and phytoestrogens and vitamins found in beer could be protectors against immune cell
damage and cytokine overexpression [33–35]. Ethanol can harm immune cells due to the
formation of free radicals during metabolism, but antioxidants should provide protection
against this [36]. Interestingly, the degree of a hangover the day after alcohol consumption
does not affect alcohol-induced immune changes [37].

3. “Spike Effect” of COVID-19 Vaccines and Alcohol

The SARS-CoV-2 spike protein (S protein, SP) is a clove-shaped transmembrane struc-
tural glycoprotein that is localized on the surface of the SARS-CoV-2 virus [38]. This unit is
responsible for the recognition of and the binding to the host cell angiotensin-converting
enzyme 2 receptor (ACE2), thus making the S protein the main target of neutralizing anti-
bodies [39]. The large ectodomain of coronavirus S proteins includes two subunits, subunit
1 (S1), containing a receptor-binding domain (RBD), and the membrane-fusion subunit
2 (S2). The S protein is an ideal target for vaccine development on different platforms
because it has a high antigenicity and the ability to induce a robust immune response [40].
Almost all types of COVID-19 vaccines run the endogenous synthesis of the SARS-CoV-2
spike protein. Synthetized S proteins move via blood circulation, interacting with ACE2
receptors and demonstrating the pathological features of SARS-CoV-2 [41]. A maximum
concentration (14.6 µg/mL) of S proteins in blood serum was detected 24 h after vaccination
and was reduced within 10 days [42]. Suggestions have been published that the spike
protein may be responsible for the long-term effects of COVID-19, such as rare neurological
complications, including Guillain–Barre syndrome and Bell’s palsy [43]. A growing body of
research points to the potential dangers of the spike protein, even in the absence of the intact
virus. The S protein has been reported to mediate pro-inflammatory and/or damaging (of
various etiologies) responses in various human cell types [44,45]. Systemic inflammation,
induced by the spike protein, may proceed through the TLR2-dependent activation of the
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway [46]. There
are several in vitro studies suggesting the negative impact of the S protein on endothelial
barrier function [47–49]. Other reports indicate that the S protein induces an inflammatory
response in human corneal epithelial cells and binds to lipopolysaccharide (LPS), enhancing
its pro-inflammatory activity [50,51]. Several publications have reported that the spike
protein leads to hemagglutination, blood coagulation, and thrombosis [52,53]. Boschi et al.,
showed that the Wuhan, Alpha, Delta, and Omicron B.1.1.529 variants of the SARS-CoV-2
spike protein mixed with human erythrocytes led to hemagglutination [54].

There is evidence to suggest that alcohol consumption may cause the activation
of the ACE2 receptor and, consequently, enhance the negative effect of the spike protein
(Figure 1). Balasubramanian et al., observed an increase in ACE2 in brain expression in both
chronic alcohol exposure and abrupt withdrawal from alcohol [55]. Reportedly, alcohol
consumption induced the intracellular accumulation of reactive oxygen species (ROS),
which leads to the activation of NF-κB and an increase in vascular endothelial growth factor
(VEGF) and monocyte chemoattractant protein-1 (MCP-1) [56]. Moreover, alcohol could be
an independent cause of syndromes, similar to COVID-19-vaccine-related side effects. A
few recent clinical cases discussed the possibility that heavy alcohol consumption may play
a role in the pathogenesis of Guillain–Barré syndrome [57,58]. Another study demonstrated
that alcohol abuse was negatively associated with Bell’s palsy occurrence [59]. Thus, it
can be assumed that alcohol consumption may provoke or enhance the “spike effect” of
COVID-19 vaccines.
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Figure 1. Ethanol-induced overexpression of angiotensin-converting enzyme 2 (ACE2) activates
pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling
pathway and exacerbates the “spike effect” of COVID-19 vaccines.

4. Protein Subunit Vaccines and Alcohol

Recombinant subunit vaccines contain purified and inactivated “subunits” of the
pathogens. Their immunogenic properties can be amplified by immunopotentiating adju-
vant systems or by means of targeting immunoreactive sites [60]. This approach of vaccine
development has already been used for several other vaccines, including the recombinant
hepatitis B vaccine, pneumococcal polysaccharide and meningococcal polysaccharide vac-
cines, pneumococcal conjugate and meningococcal conjugate vaccines, and recombinant
influenza vaccine RIV4 [61].

The vaccine manufactured by Novavax (Gaithersburg, MD, USA) is the only recom-
binant subunit COVID-19 vaccine currently authorized for use in the United States by
the FDA. The WHO added it to the Emergency Use Listing for 38 countries [62,63]. NVX-
CoV2373 contains a saponin-based Matrix-M1 adjuvant and a recombinant SARS-CoV-2
nanoparticle vaccine from the full-length, wild-type SARS-CoV-2 S protein [61]. NVX-
CoV2373 induces a relatively broad humoral and cellular immune response consisting of
robust and polyfunctional CD4+ T cells and a modest CD8+ T cell response [64]. In Phase
3 clinical studies, most vaccine side effects were mild to moderate [62]. However, we can
assume that since alcohol affects the function of T cells, the effectiveness of this vaccine
would be weaker in people with alcohol-use disorders.

There are several ongoing clinical trials for other S-protein subunit recombinant
COVID-19 vaccines based on the S1 subunit or RBD protein (Covax19, Nanocovax, SCTV01C,
GBP510, etc.), showing good effectiveness and safety [61]. However, in our K18-hACE2
transgenic mice model, only subunit 1 of the SARS-CoV-2 S protein, instilled intratracheally,
provoked acute lung injury and cytokine storm in lungs, unlike the whole S protein. We
recently published a study demonstrating that K18-hACE2 transgenic mice on a Lieber–
DeCarli ’82 ethanol liquid diet exhibit a more severe SARS-CoV-2 Spike Protein Subunit
1-induced acute respiratory distress syndrome (ARDS) than corresponding mice on a nor-
mal diet. Lung tissue homogenates from mice on alcohol diet showed the overexpression of
ACE2 [21]. The S1 subunit of the SARS-CoV-2 spike protein exerted hippocampal neuronal
cell death in mice, affecting brain functions [65]. More additional studies are needed to
evaluate the safety of S-protein subunits on all organs and systems.

5. Inactivated Whole-Virus Vaccines and Alcohol

Vaccines based on inactivated pathogens have been used for over a hundred years
as a protective agent against bacteria and viruses. Inactivated viral vaccines are first
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cultivated on a substrate (primary and continuous cell lines, tissues, fertilized eggs, and
even whole organisms) to produce large amounts of antigens [66]. The multiplied virus in
the substrate is purified, concentrated, and inactivated by various chemical agents (ascorbic
acid, hydrogen peroxide, etc.) or by using physical methods (heat, ultraviolet exposure,
gamma irradiation, etc.). In recent decades, only formaldehyde and β-Propiolactone have
been used as inactivated agents for human viral vaccines [67]. Adjuvants are important
components of many inactivated vaccines due to their ability to induce more robust and
long-lasting specific immune responses [68]. Aluminum salts, such as aluminum hydroxide,
phosphate, and potassium sulfate, have been widely used in vaccines for a long time [69].

Developed in China, the inactivated whole-virus vaccine Sinopharm (Beijing, China)
BBIBP-CorV, containing an aluminum hydroxide adjuvant, has been approved by the WHO
for emergency use, and it has been distributed in more than 40 countries [70]. Another
Chinese vaccine approved by the WHO is CoronaVac (Sinovac (Beijing, China)), an inacti-
vated SARS-CoV-2 aluminum-hydroxide-adjuvanted vaccine created from African green
monkey kidney cells (Vero cells) that have been inoculated with SARS-CoV-2 [71,72]. In
both BBIBP-CorV and CoronaVac clinical trials, alcohol addiction was one of the exclusion
criteria [73]. No serious adverse reactions to vaccines, which could be aggravated by
alcohol consumption, have been reported. A clinical study carried out by Jingwen Ai et al.,
demonstrated the safety of inactivated whole-virion SARS-CoV-2 vaccines in patients
with alcoholic liver disease; however, those patients demonstrated a lower immunologic
response to the vaccines than healthy patients [74].

6. Viral-Vector-Based COVID-19 Vaccines and Alcohol

In 1972, Jackson and colleagues created the recombinant DNA of the virus SV40, and
in 1982, Moss used the vaccinia virus as a gene expression vector [75,76]. Vaccines based
on viral vectors are able to intensify immunogenicity without an adjuvant, and they are
able to induce a stable cytotoxic T-lymphocyte response in order to eliminate cells infected
with the virus [77]. Vaccinia virus and adenovirus are the two most used vectors due to
their abilities to induce a robust immune response against expressed foreign antigens and
produce inflammatory cytokines and interferons [78]. This technology has recently proven
itself in the production of Ebola vaccines and is now actively used for COVID-19 vaccines.

On 29 January 2020, the European Commission granted conditional marketing autho-
rization for the Oxford/AstraZeneca COVID-19 vaccine (Covishield, Vaxzevria (Oxford,
UK)), a monovalent vaccine composed of a single recombinant, replication-deficient chim-
panzee adenovirus (ChAdOx1) vector encoding the S glycoprotein of SARS-CoV-2. How-
ever, five countries in the European Union have since placed age limitations on the vaccine,
which has given rise to a certain distrust in it [79]. One of the rare but most severe
side effects of this vaccine is a syndrome named vaccine-associated immune thrombosis
and thrombocytopenia (VITT) [80]. Usually, the administration of a viral-vector-based
COVID-19 vaccine induces the production of antibodies to the SARS-CoV-2 S protein. In
very rare cases, VITT antibodies are generated that can bind to platelet factor 4 (PF4) and
construct immune complexes that lead to a coagulation cascade and reduce the number
of platelets [81]. As of April 2021, there had been 222 registered cases of VITT in Eu-
rope [80]. The Victorian Department of Health (Australia) equated this to eight cases
of thrombopenia per million doses for the AstraZeneca vaccine [82]. Based on several
reported cases, young women, especially those taking hormonal contraceptives, are at the
highest risk of developing this vaccine-related adverse reaction [80]. Consequently, the
AstraZeneca vaccine has not been authorized for use in the U.S. There have been no reports
of Oxford/AstraZeneca-vaccine-related thrombosis and thrombocytopenia complications
after alcohol consumption. However, binge alcohol consumption can lead to endothelial
dysfunction, which, in combination with stasis and hypercoagulability, could increase ve-
nous thromboembolism (VTE) formation [83]. Liver dysfunction, caused by chronic alcohol
intoxication, decreases the synthesis of anticoagulant thrombotic factors [84]. Nonetheless,
there are also studies suggesting that low or moderate alcohol consumption could decrease
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the risk of deep venous thrombosis and pulmonary embolism in older people [85]. The
ethanol treatment of human whole blood led to a decrease in PF4 release in response to
a-thrombin [86]. According to Abolmaali’s study, AstraZeneca is the vaccine most reported
to be associated with Guillain–Barré syndrome [87]. Summarizing the above facts, we can
say that young people who drink alcohol, as well as those who chronically drink alcohol,
have an increased risk of complications after immunization with the Oxford/AstraZeneca
vaccine (Figure 2).
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Figure 2. Alcohol consumption affects the immune response to adenovirus-vector-based vaccines
and vaccine-associated immune thrombosis and thrombocytopenia (VITT). Physiologically relevant
concentrations of alcohol lead to endothelial dysfunction, which, in combination with stasis and hy-
percoagulability, could increase venous thromboembolism (VTE) formation. At the same time, small
or moderate doses of alcohol have an inhibitory effect on secondary platelet aggregation responses.

The next vaccine, approved by both the FDA and EUA for emergency use in February
2021, was the adenovirus-vector-based vaccine JNJ-78435735 developed by Johnson and
Johnson (New Brunswick, NJ, USA) [57] along with Beth Israel Deaconess Medical Center
(Boston, MA, USA) [88]. The clear advantage of this vaccine over other vector-based
vaccines is that it is a single-shot vaccine. However, doctors faced a problem similar to
that of the AstraZeneca vaccine—cases of a condition characterized by low platelets and
thrombosis, including cerebral venous sinus thrombosis [89]. All cases of VITT occurred
among women: 13 cases in 18–49-year-old women and 2 cases among women aged 50 years
and older [90]. Following an emergency meeting that was held in December 2021, the use
of mRNA COVID-19 vaccines was recommended over the Janssen COVID-19 vaccine [91].
The vaccine label information does not warn against alcohol use, but we can consider that
alcohol abuse can increase the risk of VITT in young women.

The Gamaleya National Research Center for Epidemiology and Microbiology (Moscow,
Russia) was the first to announce the creation of Gam-COVID-Vac (Sputnik V (Moscow,
Russia)), a recombinant adenovirus-based vaccine [92]. Even though Sputnik V has not
yet been approved by the WHO, it has been approved in 70 countries with a combined
population of more than 4 billion people [93]. Sputnik V consists of two doses containing
different components of the SARS-CoV-2 glycoprotein S gene, Ad26 and Ad5, administered
separately 21 days apart [94]. The latter Ad’s immune complexes activate the dendritic T-
cell axis [95]. A large proportion of this population, especially Africans, have high anti-Ad5
antibody titers from previous infections [96]. In an experiment on DO11.10 transgenic mice,
it was shown that alcohol diminishes the capacity of dendritic cells to secrete interleukins
IL-12 and IL-6 and reduces the ability to maintain the secretion of cytokines IL-17A and
IFN-c but increases IL-13 expression [97]. Thompson et al., reported that ethanol promotes
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a reduced immune stimulatory capacity of female DC by reducing IL-12 production [98].
Thus, alcohol consumption after the second dose of the Sputnik V vaccine may significantly
compromise its effectiveness, especially in some population categories. A Ministry of
Health official representative warned that anyone being vaccinated against COVID-19 with
Russia’s Sputnik V vaccine should give up alcohol for almost two months [99]. Interestingly,
the Phase 3 trial on patients who received the Sputnik V vaccine showed only one patient
with vein thrombosis unlike the above adenovirus-vector-based vaccines [93].

7. mRNA-Based Vaccines and Alcohol Consumption

The first report of protein production following reporter gene mRNA in mice was
published by Wolff at al. in 1990 [100]. During that period, pharmaceutical companies did
not consider mRNA a prospective technology because of doubts about its stability and its
low efficacy [101]. Despite mRNA vaccines representing only 11% of all the developed
COVID-19 vaccines, two mRNA vaccines, mRNA-1273 and BNT162b, were the first vaccines
approved by the FDA and EUA for COVID-19 [102]. Both new mRNA vaccines, BNT162b2,
manufactured by Pfizer/BioNTech, and mRNA-1273, produced by Moderna, contain
molecules of RNA, modified with pseudo-uridine and encapsulated in a lipid nanoparticle
vehicle. The Pfizer–BioNTech and Moderna vaccine constructs do not contain an S-protein
S1/S2 furin cleavage site. Ribonucleic acid is endowed to be rapidly translated into
nonactive SARS-CoV-2 S proteins in a stable closed structure in order to induce the immune
response without causing cell damage due to its interaction with the ACE2 receptor [103].
However, these two vaccines were the most feared among people at the initial stage of
vaccination due to the lack of data on their long-term side effects.

The S protein encoded by the vaccine is stabilized in its pre-fusion form; thus, it is pos-
sible that, if it enters the bloodstream and is distributed systemically throughout the human
body, it may contribute to adverse effects [104]. Ndeupen et al., reported that the mRNA
platform’s lipid nanoparticle (LNP) component used in preclinical vaccine studies causes a
highly inflammatory response in mice. LNPs administrated intra-dermally, intramuscularly,
or intranasally at a dose of 10 µg/mouse led to severe neutrophil infiltration, the activation
of inflammatory pathways, and cytokine and chemokine production [105]. Such a reaction,
in combination with the spike effect, can increase the negative consequences of vaccination
in the body.

Among Japanese healthcare workers who were vaccinated with the BNT162b2 mRNA
vaccine, alcohol consumption, along with other factors, was identified as a factor predicting
lower IgG antibody titers after vaccination [106]. Wang et al., in their study of vaccinated
patients with substance use disorders (SUDs), including alcohol disorders, demonstrated
that patients with SUDs remain vulnerable to COVID-19 breakthrough infection, even after
full vaccination. The risk was higher in patients who received the Pfizer-BioNTech vaccine
than in those who received the Moderna vaccine [19].

Several cases of myocarditis have been reported following the administration of
COVID-19 mRNA vaccines [107]. After the self-controlled case series, studies found that
myocarditis after vaccination is higher in men younger than 40 years old, particularly
after the second dose of the mRNA-1273 vaccine [108]. Excessive alcohol consumption
can cause non-ischemic dilated cardiomyopathy and chronic heart disease, characterized
by dilation and the impaired contraction of myocardial ventricles [109]. Of all alcohol-
related myocardiopathy cases, 30% were myocarditis with a lymphocytic infiltrate in
association with myocyte degeneration or focal necrosis [110]. Most people who heavily
drink alcohol do not have any symptoms in the earlier stages of the disease, and many
never develop clinical heart failure [111]. A case of vasospastic angina (VSA) caused by
alcohol consumption following Pfizer/BioNTech vaccination has been reported [112]. Thus,
a patient who chronically drinks alcohol, unaware of the presence of heart problems, could
exacerbate them with an injection of the mRNA COVID-19 vaccine. Mark J. Mulligan et al.,
reported that up to 50% of patients demonstrated a decrease in lymphocytes after the first
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dose of the BNT162b1 vaccine [113], which, combined with the negative effect of alcohol
on these cells, can have severe consequences for the immune system.

There is no data suggesting that other alcohol-associated chronic illnesses reduce the
effectiveness of mRNA vaccines. Patients with compensated and decompensated cirrhosis
demonstrated a 100% reduction in COVID-19-related hospitalization or death following
the first dose of either the BNT162b2 or the mRNA-1273 vaccines [114].

8. Conclusions

To date, 24 COVID-19 vaccines have been approved by various institutions in dif-
ferent countries, with more than 100 vaccines undergoing clinical trials and more than
270 currently in pre-clinical development [115]. Besides the well-known adverse effects
associated with antiviral vaccines, cases of severe pathologies and syndromes have been
rarely observed among people who have received COVID-19 vaccines. Moreover, The
Lancet reported that 1.3% of the cases processed by the Vaccine Adverse Event Reporting
System (VAERS) in the USA were deaths [116]. Considering the risk of severe COVID-19
and the widespread distribution of vaccinations within a short time span, we can safely say
that all these cases are insignificant compared to the benefits of vaccines. At the same time,
the currently predominant Omicron strain variants have a reduced risk of severe disease,
which, in turn, reduces the advantages of vaccination relative to the disadvantages. It was
reported that the repeated use of vaccine boosters induced humoral and cellular tolerance
against the Delta and Omicron variants [117]. There is no direct evidence in the literature
indicating that moderate alcohol consumption has any effect on the health of vaccinated
patients. However, there are several health conditions associated with alcohol abuse for
which vaccination poses additional risks (Table 1).

Table 1. COVID-19 vaccines and post-vaccination risks associated with alcohol consumption.

Vaccine Name Vaccine Type Health Conditions and Potential
Alcohol-Associated Risks Reference

Sputnik V Recombinant
adenovirus

Low immune response (warning by
health officials) [99]

(Gamaleya National Research Centre
for Epidemiology and Microbiology)

Possible reduced efficacy, especially in
populations with high anti-Ad5 antibody titers

from previous infections
[96]

JNJ-78435735 Recombinant
adenovirus

Thrombosis and thrombocytopenia [83–87](Johnson and Johnson/Beth Israel
Deaconess Medical Center)

Covishield, Vaxzevria Recombinant
adenovirus

Thrombosis and thrombocytopenia [83–87](Oxford/AstraZeneca)

BBIBP-CorV Inactivated
whole-virus vaccines

Low immune response [74](Sinopharm)

CoronaVac Inactivated
whole-virus vaccines

Low immune response [74](Sinovac)

NVX-CoV2373
Recombinant subunit

Low immune response [22]
(Novavax) High risk of “spike effect” [21]

BNT162b2
mRNA

Cardiomyopathy [109–111]
(Pfizer/BioNTech) Low immune response [106]

Vasospastic angina [112]

mRNA-1273
mRNA

Cardiomyopathy [107–109]
(Moderna) Low immune response [106]

At present, the “spike effect” of vaccines and its amplification by alcohol exposure is
of most interest. More research is needed to understand the full mechanism of the alcohol-
enhanced “spike effect” and to develop appropriate countermeasures to block it. It should
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also be considered that the chronic and excessive consumption of alcoholic beverages leads
to a weakening of the immune system and, as a result, a lower effectiveness of vaccination.
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