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Article

Robust Testing of Paired Outcomes Incorporating Covariate
Effects in Clustered Data with Informative Cluster Size
Sandipan Dutta

Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, USA; s1dutta@odu.edu

Abstract: Paired outcomes are common in correlated clustered data where the main aim is to compare
the distributions of the outcomes in a pair. In such clustered paired data, informative cluster sizes
can occur when the number of pairs in a cluster (i.e., a cluster size) is correlated to the paired
outcomes or the paired differences. There have been some attempts to develop robust rank-based
tests for comparing paired outcomes in such complex clustered data. Most of these existing rank tests
developed for paired outcomes in clustered data compare the marginal distributions in a pair and
ignore any covariate effect on the outcomes. However, when potentially important covariate data
is available in observational studies, ignoring these covariate effects on the outcomes can result in
a flawed inference. In this article, using rank based weighted estimating equations, we propose a
robust procedure for covariate effect adjusted comparison of paired outcomes in a clustered data
that can also address the issue of informative cluster size. Through simulated scenarios and real-life
neuroimaging data, we demonstrate the importance of considering covariate effects during paired
testing and robust performances of our proposed method in covariate adjusted paired comparisons
in complex clustered data settings.

Keywords: paired outcomes; clustered data; informative cluster size; signed rank test; robust esti-
mating equations; covariate effect

1. Introduction

Paired outcomes are very common in various fields of study. Data with paired ob-
servations can often be seen in health and social studies, which include results of the
same test before and after an intervention, outcomes from crossover clinical trials where
the same subject is assigned two treatment arms at two different time points in the same
trial, measurements on the left and right eyes of the same person, and observations from
twin studies involving identical or fraternal twins. For comparing the distributions of
such paired outcomes, a paired-t test is a widely used approach. However, the strong
distributional assumption of a paired-t test makes it unfavorable for non-normal data. As
an alternative nonparametric approach, a Wilcoxon signed-rank test is very popular for
comparing the paired outcomes.

The Wilcoxon signed-rank test is only valid for independent and identically distributed
pairs. In practice, not all data is independently distributed as there can be correlated
datasets. One type of correlated data is clustered data where outcomes within a cluster are
correlated while outcomes between different clusters may be independent. Several methods
have been developed for inference on different types of outcomes from clustered data
including comparison of continuous outcomes from independent groups [1–4], categorical
outcomes [5], longitudinal outcomes [6], and censored time-to-event outcomes [7]. Apart
from these aforementioned outcomes, another type of outcome which can exist in clustered
data is paired outcomes. Such paired outcomes in clustered data can be observed in dental
studies involving multiple individuals where measurement of attachment loss in each
tooth is carried out at two different locations (e.g., buccal and mesial) of the same tooth.
Here, individuals are clusters and attachment loss scores from buccal and mesial site of
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the same tooth form a paired outcome resulting in many paired observations within each
cluster. Paired clustered data can also be obtained from large crossover clinical trials with
two treatment arms and a washout period. Here, a trial participant forms a cluster while
the outcome measurements before and after a treatment form a pair in that cluster. Since
in a crossover trial every participant is allocated to both the competing treatment arms,
separated by a washout period to remove prior treatment effects, each cluster has multiple
pairs of observations. In these types of clustered paired data, the traditional Wilcoxon
signed-rank test do not work as it fails to account for the correlated nature of the data. As a
result, there have been a number of attempts in the past to develop signed-rank test for
clustered data [8–10].

The signed-rank test by Rosner, Glynn, and Lee [10] is one of the earliest signed-
rank tests developed for clustered data under the assumption of a common intra-cluster
correlation structure across different clusters. Later, Datta and Satten [8] developed a
more flexible signed-rank testing approach for clustered data that considers informative
cluster size scenarios using the idea of within-cluster resampling [11]. Informative cluster
sizes occur when the cluster size (i.e., the number of units (pairs) within a cluster) is
correlated with the outcome in that cluster. Such informative cluster sizes can exist in a
dental study when comparing the buccal and mesial attachment loss scores in an aged
population. This is because the number of teeth (cluster size) in an aged individual (cluster)
is indicative of the overall attachment loss (outcome) of that individual. Another example of
a potentially informative cluster size can be considered while analyzing neuroimaging data
of individuals suffering from dementia or Alzheimer’s disease. In this case, the number
of imaging sessions, conducted on a patient, is the cluster size that may be related to the
disease severity outcome.

The signed-rank tests discussed above are tests developed for marginal comparison of
outcomes in a pair. These tests do not take into account any covariate information while
comparing the outcome distributions in a pair. However, in many situations, there may exist
potentially important covariate information in the data, which can significantly impact
the outcomes and, hence, the paired comparison results. Ignoring available covariate
information for marginal analyses of outcomes can lead to incomplete inference and,
consequently, can result in inaccurate or biased findings. For example, in longitudinal
neuroimaging data, it can be interesting to examine whether certain metrics of cognitive
abilities of individuals who are at risk of cognitive impairment have significantly changed
over the period of study. This can be obtained through the multiple MRI scans performed
during their successive clinic visits. In this case, the data is clustered as each individual
represents a cluster while there exists a possibility of informative cluster sizes since the
number of visits (cluster size) may be associated with the severity of the impairment.
However, it is also known that age impacts cognitive abilities of individuals and the effect
of age on cognitive abilities can become significant in older population. Therefore, even
if we find some significant changes in cognitive metrics over a certain period of study,
those changes cannot be solely attributed to some cognitive disorder as age may have
also contributed to the change in those cognitive abilities. Therefore, ignoring the age
information during a marginal analysis may leave the effect of the age on the outcome,
unadjusted leading to a possibility of biased inference. It becomes essential to adjust for the
effect of such important covariates while performing pairwise comparison of outcomes in a
clustered data. This highlights the need of a robust approach that can perform hypothesis
testing of paired outcomes while incorporating information on and adjusting for the effect
of important covariates. Motivated by this need, in this article, we develop a method for the
covariate adjusted pairwise comparison of the outcomes in clustered data while maintaining
a rank-based approach that is robust to the choice of outcome distribution. We discuss the
different scenarios of clustered data, where the cluster sizes can be informative and where
they can be uninformative, and how we can apply our covariate adjusted testing approach
to address both types of clustered data. We show that the proposed covariate adjusted
testing methodology maintains the correct size and has substantial power in different
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simulated scenarios of clustered data and performs better than the marginal signed rank
tests and a standard parametric linear mixed effects method. Through neuroimaging data,
we demonstrate the applicability of our method in obtaining meaningful results.

The rest of the article is organized in the following way. In Section 2, we introduce
the notations, discuss the different types of marginal hypothesis that can be framed for
a clustered data and their implications. We also develop, in this section, our rank-based
covariate adjusted testing mechanism for paired comparison that can be used for clustered
data when the cluster sizes are informative as well as in situations when the cluster sizes
appear to be uninformative. In Section 3, we explore the performances of our covariate
adjusted testing methodology through different simulated scenarios of clustered data. In
Section 4, we return to the neuroimaging data example for the application of our method.
Finally, the article ends with a discussion in Section 5.

2. Methods
2.1. Preliminaries

Let M denote the number of clusters and the number of matched pairs in the ith
cluster is Ni. Let Yij denote the pair-specific difference in outcome for the jth pair in the ith
cluster, 1 ≤ j ≤ Ni, 1 ≤ i ≤M. The null hypothesis we considered was that the marginal
distribution of the paired difference for a randomly chosen pair in a randomly chosen
cluster is symmetric around 0 (i.e., H0:F is symmetric around 0), where F(y) = P

(
Yij ≤ y

)
is the distribution function of a typical pair-specific outcome difference. This marginal
distribution function can be interpreted in different ways for a clustered data. If F̂ is the
empirical analog of this marginal distribution function, then we can express F̂ in one of the
following two ways.

F̂1(y) =
1
N

M

∑
i=1

Ni

∑
j=1

I
(
Yij ≤ y

)
(1)

F̂2(y) =
1
M

M

∑
i=1

1
Ni

Ni

∑
j=1

I
(
Yij ≤ y

)
(2)

where N = ∑M
i=1 Ni and I is a binary indicator function. Note that in (1) every paired

difference contributes equally to the construction of the marginal distribution function.
Hence, every paired unit receives equal weight in F̂1. However, in (2) contribution of a
paired difference to the construction of the marginal distribution function depended on the
cluster to which the pair belonged. In F̂2, pairs belonging to a typical cluster i received a
weight 1

Ni
, which was the inverse of its cluster size. Therefore, a pair from a larger cluster

received smaller weight than a pair from a smaller cluster. It was important to determine
which of the two forms, F̂1(y) or F̂2(y), would be the appropriate choice for the empirical
version of the marginal distribution function F for a given clustered data. If the cluster size
was informative and the number of units within a cluster was correlated with the outcome
variable in that cluster, then preferring F̂2(y) over F̂1(y) would seem more appropriate. On
the other hand, if there were no informativeness in cluster sizes, then using F̂1(y) would be
good enough.

2.2. Proposed Covariate Adjusted Ranked Residual Based Signed Rank Tests for Clustered Data

In this section, our main aim is to develop a signed rank test for marginal hypothesis
while accounting for the effects of additional covariate(s) on the outcome variable. For
developing such a covariate-adjusted signed rank test in a clustered data, we adopted a
robust rank-based regression technique for computing covariate-adjusted residuals and
use these residuals, in place of the raw outcomes, for the signed rank testing. The detailed
steps for this method are explained in the next two sub-sections.
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2.2.1. Rank Based Estimation of Covariate Effects and Residual Formation

At first, we will discuss the process of obtaining covariate-adjusted residuals. There
exists a number of approaches for modeling covariate effects in clustered data settings as
discussed in [12]. However, instead of extending one of those methods for our setting,
we accounted for the effects of the covariates through a rank-based estimating equation
approach. In doing this, we maintained a uniform rank-based, distribution-free struc-
ture in both covariate effect estimation and hypothesis testing of paired differences in a
clustered data.

Let the impact of the covariate vector X on the pair-specific outcome difference variable
Y be modeled through the following linear regression model:

Yij = βTXij + εij, 1 ≤ j ≤ Ni, 1 ≤ i ≤ M

Here, Xij is the covariate effect on unit j in cluster i, βT is the regression coefficient
vector denoting the impact of the covariate, and εij are the model errors for the cluster
i. We assumed that the εij, which may be correlated for a given cluster i, had a common
cluster-specific continuous distribution. Note that the errors were free of any location
constraint, which is reflected through the absence of an intercept term in the above model.
Our aim was to estimate the unknown parameter β and use this estimate to calculate
the residuals which would be free from the effects of the covariate. Subsequently, these
residuals would be used as covariate adjusted paired differences for hypothesis testing. For
estimating β, we employed a rank-based approach (R-estimation) where we minimized the
following weighted score function.

R(β) =
M

∑
i=1

Ni

∑
j=1

wijeij(β)dw
(
eij(β)

)
Here, eij(β) = Yij − βTXij, dw

(
eij(β)

)
= 1

(M+1) ∑M
k=1 ∑Ni

l=1 wkl I
(
ekl(β) ≤ eij(β)

)
, and

wij is the weight associated with the jth paired difference in the cluster i. The choice of wij
can be an important factor in the resulting rank-based inference. We proposed the use of
wij =

1
Ni

, where any paired difference in outcome from a typical cluster i was given a weight
equal to the inverse of its cluster size (Ni). Such a choice addressed the issue of informative
cluster sizes by involving F̂2 (in Section 2.1) and has reasonable performances even if the
cluster sizes were not informative, as shown later in Section 3. Suppose β̂R is the value
(R-estimator) of β that minimizes R(β). The large sample properties of this R-estimator can
be obtained through the following theorem:

Theorem 1. Under H0, as M→∞,
√

M
(

β̂R − β
) d→ N

(
0, τ2Γ−1ΣΓ−1) under certain regularity

conditions, where Σ = lim
M→∞

M−1 ∑M
i=1

(
Var

(
∑Ni

j=1 wijdw
(
eij(β)

)
Xij

))
,

Γ = lim
M→∞

E
(

M−1 ∑M
i=1 ∑Ni

j=1 wijXijXij
T
)

, τ =

[
1∫

0
uφ f (u)du

]−1

, φ f (u) =
− f ′(F−1(u))

f (F−1(u))
,

F(u) = E
[

1
N ∑M

i=1 ∑Ni
j=1 wij I

(
εij ≤ u

)]
while f and f′ are first and second derivatives of F.

An outline of the proof of Theorem 1 is provided in the Appendix A section.
Once we obtained the R-estimator of β, i.e., β̂R, the residuals could be obtained as

Uij = Yij − β̂R
TXij, 1 ≤ j ≤ Ni, 1 ≤ i ≤ M

This Uij was the modified paired difference, which was free from the effects of the
covariates and was used as a proxy for the original paired difference Yij in constructing
the marginal signed rank test statistic in the next step. These covariate-adjusted residuals
belonged to the category of aligned- residuals, which were constructed to remove any
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unwanted effects of nuisance variables on the outcome before performing a rank-based test
on the outcome. The resulting rank test is, often, known as an aligned rank test [13].

2.2.2. Signed-Rank Test Based on the Covariate-Adjusted Residual

We constructed a signed-rank test for clustered data based on the previously obtained
covariate adjusted residuals or aligned residuals of paired differences in Section 2.2.1. For
the signed-rank testing, we explored two different approaches:

(i.) The first approach was the signed-rank testing developed by Rosner, Glynn, and
Lee [10], which was mainly aimed for comparing marginal distributions under unin-
formative cluster sizes. This was equivalent to a test involving F̂1.

(ii.) The second approach was based on the signed-rank testing developed by Datta and
Satten [8], which aimed to compare marginal distributions under informative cluster
sizes. This was equivalent to the testing marginal distributions involving F̂2.

We will refer the testing approach (i) as uninformative covariate adjusted signed-rank
testing (UCAST) and the testing approach (ii) as informative covariate adjusted signed-rank
testing (ICAST).

For constructing both ICAST and UCAST, we denoted Rij as the rank of |Uij| among
the set of absolute values of the residuals {|Uij|, 1 ≤ j ≤ Nij, 1 ≤ i ≤ M}. Further, we
denoted Vij = sign(Uij) and Qij = VijRij. Then, the test statistic for the UCAST approach was
obtained as

TU =
M

∑
i=1

WiSi

where Si =
1
Ni

∑Ni
j=1 Qij =

1
Ni

∑Ni
j=1 VijRij, and Wi =

1
Var(Si)

under the null hypothesis where

the variance estimator ˆVar
(
Si
)

was obtained assuming a shared correlation coefficient as
shown in Rosner, Glynn, and Lee [10]. Under H0, the large sample distribution of the
standardized statistic TU√

∑M
i=1 Ŵi

2Si
2
, where Ŵi =

1
ˆVar(Si)

was a standard normal distribution

under mild regularity conditions as described in Rosner Glynn, and Lee [10].
FordescribingtheICAST,wedenoted Ĥi(u) = 1

2Ni
{∑Ni

j=1 I
(∣∣Uij

∣∣ ≤ u
)
+ ∑Ni

j=1 I(
∣∣Uij

∣∣ < u)},
I(.) being a binary indicator function, and D̂i(u) = ∑i′ 6=i Ĥi′(u). Then, following Datta and
Satten [8], the test statistic for ICAST was defined as

TI =
M

∑
i=1

(
Ni

+ − Ni
−

Ni

)
+

M

∑
i=1

1
Ni

Ni

∑
j=1

VijD̂i
(∣∣Uij

∣∣)
where Ni

+ = ∑Ni
j=1 I

(
Uij > 0

)
and Ni

− = ∑Ni
j=1 I

(
Uij < 0

)
. The standardized

TI/
(√

∑M
i=1 Ẑi

2
)

followed a standard normal distribution asymptotically where

Ẑi =
Ni

+−Ni
−

Ni
+ (M−1)

Ni
∑Ni

k=1 Vik Ĥ(|Uik|) and Ĥ(u) =
(

∑M
i=1 Ni Ĥi(u)

)
/N.

3. Simulation Studies

We conducted two simulation studies in this section. In the first simulation scenario,
the cluster sizes varied among different clusters, but these cluster sizes were uninformative.
The second simulation scenario considered clustered data, where the cluster sizes were
informative (i.e., the cluster sizes are correlated with the outcome of interest). In each of
these simulated scenarios, we evaluated the performances, namely size (type-I error rate)
and power, of ICAST and UCAST methods. Moreover, we compared the performances
of these methods with the marginal signed-rank tests of both Rosner, Glynn, and Lee [10]
and Datta and Satten [8]. We abbreviated these two marginal signed-rank testing methods
as RGL and DS, respectively. In addition, we compared the performances of ICAST and
UCAST with a parametric linear mixed model (LMM) [14], which involved a fixed effect
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for covariate and a random cluster effect. The size and power computations for each
of the abovementioned testing approaches were based on 500 Monte-Carlo repetitions
under a fixed nominal size (type-I error) of 0.05. The empirical size (type-I error rate) and
power were calculated as the proportion of total Monte Carlo replicates in which the null
hypothesis was rejected. Note that, in this setting, if the empirical size of any method largely
exceeded 0.05, then that testing approach was unacceptable for testing these hypotheses
irrespective of its power.

3.1. Simulation Scenario 1

In this simulation scenario, we considered clustered data with uninformative cluster
size where the marginal distribution of pairwise difference in a cluster did not depend on
its cluster size. Extending the simulation settings of Rosner, Glynn, and Lee [10] and Datta
and Satten [8], we generated the pairwise differences as

Yij = εij + βXij

where Xij∼N(0,1), β = 5, εij = Rijexp(|Bij|), Bij = Aij + Eij, Ai∼N(0,0.25), Eij∼N(0,0.75), and
1 ≤ j ≤ Ni, 1 ≤ i ≤M. For generating Rij, we first generated pi, from a Beta(1,b) distribution
for each 1 ≤ i ≤ M. If pi ≤ 0.5, then Rij = 1, or else Rij = −1. Here, M was fixed (either
10 or 25), but for each i, Ni was generated as Ni = Ni* + 1 where Ni*∼Binomial(7,0.5). In
this scenario, the cluster size Ni, for typical cluster i, was a random variable which was
independent of the outcome variable Yij. Note that, b = 1 represented the marginal null
hypothesis H0. For power calculations, one could choose any positive value of b other than
1. For our simulations, we chose three different values of b (0.15, 0.3, 0.6) to investigate and
compare the power performances of all the methods under consideration.

Table 1 displays the results relating to the performances of all the methods in this
simulated scenario. From Table 1, we found that both the covariate-adjusted methods of
ICAST and UCAST maintain the nominal size of 0.05 and had similar power performance
patterns for both choices of M. The powers of both methods increased with the increase
in the number of clusters with the ICAST having slightly increased power in the case of
smaller sample size (M = 10). The marginal signed-rank testing methods (i.e., the Datta-
Satten (DS) test and the Rosner-Glynn-Lee (RGL) test) maintained the nominal size of 0.05
but have extremely low power compared to ICAST and UCAST for both small and large
number of clusters. This showed that there was a substantial loss of power for ignoring the
effect of covariates on the outcomes. The parametric LMM approach has a highly inflated
empirical size, much higher than the nominal size of 0.05, making them unacceptable for
this simulated scenario. This was mainly because the underlying skewed distributions
of the outcomes make the standard parametric mixed effects model unsuitable for this
analysis. Overall, we observed that both ICAST and UCAST methods were appropriate for
this scenario of uninformative cluster sizes and, hence, either of them can be considered for
testing the marginal null hypothesis H0 in presence of covariates.

3.2. Simulation Scenario 2

In this simulation scenario, we considered clustered data with informative cluster
size where the marginal distribution of pairwise difference in a cluster was correlated to
the cluster size. Here, we generated the pairwise differences through the same model, as
in Section 3.1, with the same model parameters except for the generation of cluster size
Ni for each 1 ≤ i ≤ M. In this case, Ni = 2 if pi ≤ 0.5 and Ni = 8 if pi > 0.5. Recall that, pi
is generated from a Beta(1,b) for each 1 ≤ i ≤M and contributes to the generation of the
paired differences Yij through the quantity εij as shown in Section 3.1. Therefore, for a
typical cluster i, the cluster size Ni and the paired outcome differences Yij were correlated
leading to an informative cluster size scenario. For the size calculation we simulated the
data under H0 which was equivalent to choosing b = 1 while for the power calculations we
retained the previous set of values of b as (0.15, 0.3, 0.6).
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Table 1. Empirical size (type-I error rate) and power performances of different methods for clustered
data with uninformative cluster sizes under Simulation Scenario 1. Here M is the number of clusters
and b represents the true effect-size where b = 1 denotes H0 is true and any other value of b denotes
H0 is false. The nominal/target size (type-I error rate) is 0.05 and empirical size of any valid test
should not exceed 0.05 irrespective of its power.

Method M = 10 M = 25

Size
(b = 1)

Power
(b = 0.60)

Power
(b = 0.30)

Power
(b = 0.15)

Size
(b = 1)

Power
(b = 0.60)

Power
(b = 0.30)

Power
(b = 0.15)

ICAST 0.050 0.148 0.487 0.775 0.044 0.328 0.910 1.000

UCAST 0.050 0.140 0.477 0.763 0.044 0.323 0.910 1.000

DS 0.048 0.072 0.146 0.190 0.044 0.150 0.322 0.508

RGL 0.050 0.060 0.148 0.200 0.046 0.146 0.336 0.546

LMM 0.362 0.542 0.846 0.958 0.322 0.648 0.984 1.000

The performances of all the methods in this simulated scenario of informative cluster
size are shown in Table 2. ICAST closely maintained the nominal size of 0.05 for both
small and large number of clusters and its power increased with the increase in the number
of clusters for all choices of b. The performance of UCAST, in this informative cluster
size setting, was different from that in the uninformative cluster size scenario. Here, the
empirical size of UCAST exceeded the nominal size of 0.05 for both small and large number
of clusters indicating that the type-I error rate of UCAST can be higher than expected in
case of an informative cluster size. The marginal DS test maintained the nominal size for
M = 10 but narrowly exceeded the target size of 0.05 for M = 25. The power performance
of DS method was, again, dismal with its power values drastically lower than the power
of ICAST even for large number of clusters. The marginal test of RGL, on the other
hand, had a grossly inflated empirical size (0.202) compared to the target size of 0.05
when the number of clusters is large. Even the power of RGL became lower than that of
the ICAST and UCAST methods when the effect size b shifted further away (b = 0.3 or
b = 0.15) from its null value (b = 1). These indicated the unsuitability of marginal RGL
test for informative cluster size scenarios. An interesting fact, however, was that applying
our proposed covariate effect adjustment technique on the marginal RGL test does lead
to a significant reduction of the type-I error rate, as evident from the size value (0.067) of
UCAST, although it still exceeded the nominal limit of 0.05 by a considerable margin. The
parametric LMM had unacceptably high sizes values, much worse than its size under the
uninformative cluster size scenario, due to the added complexity of informative cluster
size which the standard LMM does not address. Hence, the standard parametric LMM was
inappropriate in presence of informative cluster sizes. Overall, we found that ICAST is the
only method that, simultaneously, maintained the empirical size close to the nominal size
and had adequate power for the informative cluster size scenario.
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Table 2. Empirical size (type-I error rate) and power performances of different methods for clustered
data with informative cluster sizes under Simulation Scenario 2. Here M is the number of clusters
and b represents the true effect-size where b = 1 denotes H0 is true and any other value of b denotes
H0 is false. The nominal/target size (type-I error rate) is 0.05 and empirical size of any valid test
should not exceed 0.05 irrespective of its power.

Method M = 10 M = 25

Size
(b = 1)

Power
(b = 0.60)

Power
(b = 0.30)

Power
(b = 0.15)

Size
(b = 1)

Power
(b = 0.60)

Power
(b = 0.30)

Power
(b = 0.15)

ICAST 0.041 0.173 0.522 0.803 0.047 0.343 0.903 1.000

UCAST 0.065 0.243 0.633 0.863 0.067 0.505 0.963 1.000

DS 0.048 0.100 0.162 0.367 0.056 0.174 0.414 0.704

RGL 0.050 0.184 0.196 0.422 0.202 0.554 0.780 0.910

LMM 0.906 0.988 1.000 1.000 0.998 1.000 1.000 1.000

4. An Application to Open Access Series of Imaging Studies (OASIS) Data

The Open Access Series of Imaging Studies (OASIS) [15] is a collection of neuroimaging
data sets that are publicly available and contains magnetic resonance imaging (MRI) data
from brains of hundreds of individuals including dementia and Alzheimer patients as well
as nondemented individuals. In this section, we focus on a longitudinal data [16] from
the OASIS platform that involves MRI data of 150 individuals who have visited the clinic
two or more times separated by at least a year. These individuals included 72 subjects
who have been classified as non-demented throughout the entire period of study and
78 subjects who were identified as demented and/or suffering from Alzheimer’s Disease
(AD) at some point during this study. Among the different variables computed from the
MRI scans of brain, a variable of interest is the total intracranial volume (TIV) that has
been, in the past, linked to cognitive impairments and development of dementia or AD
in certain individuals [17,18]. A normalization factor called atlas scoring factor (ASF) [19],
proportional to TIV, is often measured in neuroimaging studies and is available from the
OASIS longitudinal data. In this longitudinal study, an interesting question to consider is
whether the ASF values, and hence the TIV levels, change over time that may be indicative
of the changes or time trends in cognitive abilities of these individuals under study.

To answer this question, we use the change in ASF values, obtained from the MRI
scans, during successive visits of an individual as the pairwise difference in the outcome. In
that case, a hypothesis of no change over time would be equivalent to the null hypothesis of
symmetry (about 0) of the distribution of the paired differences in ASF values. This scenario
represents a clustered data where each individual is a cluster, and we have 150 clusters
with one or more paired differences since all these individuals have at least two visits
for MRI scans during the period of the study. Note that the number of visits vary by
individuals, and it is possible that the frequency of visits for individuals suffering from
cognitive impairments, e.g., demented individuals and AD patients, may be different from
that of the nondemented group of individuals. Figure 1 compares the distributions of
number of visits between the demented group and the nondemented group. Combining
the numbers from Figure 1, we find that among the demented group of individuals only
23% had three or more visits, while more than 47% of nondemented individuals visited
the MRI clinics three or more times. Such discrepancies in the number of visits between
the two groups can be related to the fact that demented individuals are more prone to
be lost to follow-up due to the severity of their diseases and high mortality. Since every
clinic visit generated an MRI scan, a cluster size is directly obtained from total number of
visits by an individual. Hence, this situation gives rise to a possibility of an informative
cluster size in this clustered data. For the testing of the null hypothesis of no change in ASF
values over time in such a clustered data, one can use the marginal testing approach of
DS that addresses the issue of informative cluster size. Application of the DS test yields a
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p-value of 0.0003. We also implement the marginal RGL testing approach that generates a
p-value < 0.0001. In both cases the null hypothesis of symmetry appears to be rejected with
highly significant p-values indicating that the distribution of paired differences is highly
asymmetric around 0 and the ASF values changed over the time period of study.

Figure 1. Plot showing distribution of the number of visits in the demented group and the nonde-
mented group of individuals.

These results, obtained from marginal tests of DS and RGL, do not account for effects
of any covariate which may be associated with TIV or ASF values. However, certain
covariates, that are available from the data, may have important effects on TIV that needs
to be monitored or adjusted for while carrying out the testing of pairwise differences
of ASF. One such important covariate is age of an individual. In recent studies [20],
it has been found out that age, especially in older individuals, affects the intracranial
volume. It would be interesting to see if the conclusion of change in ASF values over
time remains consistent after adjusting for the effect of age as this longitudinal study
contains many aged individuals. For this analysis, we need to apply the covariate adjusted
testing approaches of ICAST and UCAST with age as the adjusted additional covariate.
The estimated age coefficient, obtained through the relevant R-estimation of ICAST and
UCAST, is −0.008 indicating that higher age is associated with lower ASF values and larger
cognitive impairment which is consistent with the findings in other recent studies [20]. The
signed-rank tests of ICAST and UCAST produce a p-value of 0.050 and 0.049, respectively.
The ICAST and UCAST p-values show that the previously obtained highly significant
changes in ASF over time can no longer be concluded once the effect of the age covariate is
considered. Rather, the age adjusted ICAST and UCAST results indicate only a marginally
significant ASF change, if any, over time at 5% level of significance. Figure 2 shows the
weighted histogram of paired differences of ASF values with inverse cluster size weights
while Figure 3 shows the unweighted histogram of same paired differences of ASF values.
From these figures, it appears that the distribution of paired differences may be only
marginally asymmetric supporting the borderline significant p-values of the ICAST and
UCAST approaches. Therefore, it is demonstrated that adjusting for the effects of potentially
important covariates, while performing marginal hypothesis testing of paired outcome
differences, can play important role in obtaining accurate inference.
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Figure 2. Plot showing inverse cluster size weighted histogram of ASF score differences.

Figure 3. Plot showing unweighted histogram of ASF score differences.

5. Discussion

Rank based tests are popular nonparametric hypotheses testing approaches when
distributions of outcomes tend to be non-normal with the signed rank test being one such
test widely used for the comparison of marginal distributions of paired outcomes. Signed
rank tests have been extended to different types of clustered data including the ones where
the cluster sizes are informative. Most of these existing signed rank tests compare marginal
distributions of paired outcomes without considering any additional covariate effect on the
outcomes. However, ignoring available covariate information during paired comparisons
can result in inaccurate inferences as discussed in Section 1 and evident from the OASIS
neuroimaging data analysis in Section 4. Based on this need to develop a hypothesis testing
mechanism for paired outcomes that can adjust for the effect of covariates, we proposed a
robust rank-based procedure of covariate effect adjustment while carrying out hypothesis
testing in a clustered data framework. Our method addresses the issue of informative
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cluster sizes and performs well even if the cluster sizes are uninformative as presented
through the extensive simulation results in Section 3.

In this article we have outlined covariate adjusted signed rank testing procedure
for two types of clustered data, namely, a testing procedure in presence of informative
cluster size (ICAST) and a testing procedure when the cluster sizes are uninformative
(UCAST). The determination of the most appropriate choice between these two testing
procedures would depend on the research aim of the investigator and the type of marginal
distributions (F̂1 or F̂2) to be compared. Note that another deciding factor in this context
can be the identification of the primary unit of sampling and inference. In case the primary
sampling unit is a cluster, ICAST may be preferred over UCAST as all the clusters receive
the same weight under ICAST. On the other hand, if the primary sampling unit is a member
within a cluster and the cluster sizes are not expected to be informative, UCAST can be
preferred. Following this idea, one can prefer to choose ICAST over UCAST in the OASIS
neuroimaging data analysis in Section 4 since the primary unit of inference is a patient
undergoing the MRI scans and not the pair of successive MRI scans.

In addition to the potential areas of real-life application mentioned in Sections 1 and 4,
our proposed method can also be applied in analyzing data arising from cluster-randomized
trials. In such a trial, the clusters are randomized, and an intervention is administered to a
whole cluster (i.e., all the units in a cluster receive the same intervention). If the intervention
is a drug under trial while the patients are units within hospitals (clusters), then our method
can be applied for testing the drug efficacy. Here, the outcomes obtained for each patient
before and after receiving the drug form paired outcomes and we have multiple pairs from
multiple patients in a cluster. Then, we can use our proposed method to adjust for the
effects of the available covariates in each patient while comparing the pre-intervention and
post-intervention outcomes.

In our rank-based covariate adjustment procedure, we have assumed a linear model
framework without making any strong distributional assumptions. This type of model is
applicable to any continuous response even if the underlying distribution is asymmetric.
This rank-based covariate adjustment procedure can be extended to other types of non-
continuous responses as well through generalized linear model frameworks (e.g., count
model for discrete count responses). We plan to pursue such non-continuous outcome
modeling in future. However, a limitation of this type of covariate adjusted rank-based
testing is that it cannot be used for binary outcomes due to the infeasibility of ranking
in those outcomes. Our proposed method is a two-step procedure where we perform
covariate effect adjustment on the outcomes at the first step and then test the distribution
of the modified paired differences at the second step. An alternative approach could be
to develop a one-step inference procedure that can simultaneously estimate the covariate
effects using ranks and perform rank-based testing under informative cluster sizes. Such
an approach is an area of potential future research on rank-based inference.
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Appendix A

Outline of the proof of Theorem 1
Without loss of generality, let us assume that true value of the parameter β is 0. The

R-estimator of β, i.e., β̂R, is obtained as the solution to estimating equation
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RE(β) =
M

∑
i=1

Ni

∑
j=1

wijdw
(
eij(β)

)
Xij = 0 (A1)

Then, following the results of Datta and Beck [21], we can get

M−1/2RE(0)
d→ N(0, Σ) (A2)

where ∑ is defined in Section 2.2.1. Next, following the expansions of R-estimators from
Chapter 3 of Hettmansperger and McKean [22], we can obtain

M−1/2RE
(

β̂R
)
= M−1/2RE(0)− τ−1

[
M−1

M

∑
i=1

Ni

∑
j=1

wijXijXij
T

]
√

Mβ̂R + op(1) (A3)

in a local neighborhood of 0. Here, τ is the same as defined in Section 2.2.1.
Then, denoting Γ = lim

M→∞
E
(

M−1 ∑M
i=1 ∑Ni

j=1 wijXijXij
T
)

and combining (A1) (where

β = 0), (A2), and (A3), we have

√
M
(

β̂R − β
) d→ N

(
0, τ2Γ−1ΣΓ−1

)
(A4)
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