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Abstract: The goal of the paper is two-fold. The first of which is to derive an explicit formula to
compute the generating series of a closed-loop system when a plant, given in a Chen-Fliess series
description is in multiplicative output feedback connection with another system given in Chen-
Fliess series description. In addition, the multiplicative dynamic output feedback connection
has a natural interpretation as a transformation group acting on the plant. The second of the
two-part goal of this paper is same as the first part albeit when the Chen-Fliess series in the
feedback is replaced by a memoryless map, so called multiplicative static feedback connection.
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1. INTRODUCTION

The objective of the document is two fold and works with
the Chen-Fliess functional series (Fliess, 1981). There is
no need that these input-output systems have a state
space realization and thus, the results presented here
are independent of any state space embedding when a
realization is possible (Fliess, 1983). Firstly, let Fc and
Fd be two nonlinear input-output systems represented by
Chen-Fliess series. It was shown in Gray & Li (2005) that
the additive feedback interconnection of two such systems
result in a Chen-Fliess series description for the closed-
loop system. An efficient computation of the generat-
ing series for closed-loop system is facilitated through a
combinatorial Hopf algebra (Gray, et al., 2014a; Duffaut
Espinosa, et al., 2016). The convergence of the closed-loop
system was characterized in Thitsa & Gray (2012). The
feedback product formula and its computation were used
to solve system inversion problems (Gray, et al., 2014b)
and trajectory generation problems (Duffaut Espinosa &
Gray, 2017). However, when the nature of interconnec-
tion becomes multiplicative feedback, the similar set of
questions persist in general. It is known that, in single-
input single-output setting, the closed-loop system in the
affine feedback case (of which multiplicative feedback is
a special case) has a Chen-Fliess series description and
the computation of feedback formula is facilitated through
a combinatorial Hopf algebra (Gray & Ebrahimi-Fard,
2017). The present document, in one part, shows that
even in multi-input multi-output setting the closed-loop
system under multiplicative feedback has a Chen-Fliess
series representation and provides an explicit expression of
the closed-loop generating series termed multiplicative dy-
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namic feedback product. It will be shown that this feedback
product has a natural interpretation as a transformation
group acting on the plant. The algorithmic framework for
the computation of the multiplicative dynamic feedback
product formula for a general multi-input multi-output
case and characterization of convergence for the closed-
loop system is deferred to future work. Hence, the docu-
ment is void of a computational example.

Suppose Fd in the feedback path be replaced by a mem-
oryless function fd which is coined as additive static
feedback connection (Isidori, 1995), then the closed-loop
system for the additive static feedback interconnection is
known to have a Chen-Fliess series representation and an
explicit expression for the closed-loop generating series,
called Wiener-Fliess feedback product and an algorithmic
framework for computing the feedback product exists in
literature (Venkatesh & Gray, 2021). The convergence of
the closed-loop system was characterized in Venkatesh
(2021). However the questions remain open when the na-
ture of static feedback becomes multiplicative. Hence, the
second of the two-part goal of this paper is to show that
the closed-loop system in multiplicative static feedback
connection has a Chen-Fliess series representation and an
explicit expression for the closed-loop generating series,
termed multiplicative static feedback product, is provided.
Further, the feedback product is shown as a transformation
group acting on the plant. As in the case of multiplicative
dynamic feedback product, the algorithmic framework for
the computation of the multiplicative static feedback prod-
uct and characterization of convergence for the closed-loop
system is deferred to future work.

The paper is organized as follows. The next section pro-
vides a summary of the concepts related to Chen-Fliess
series and their interconnections. The section also builds
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the pivotal multiplicative dynamic output feedback group
and provides a brief discussion on formal static maps
and Wiener-Fliess composition. Section 3 is where the
multiplicative dynamic feedback connection is analyzed in
Section 4 is where the results of the multiplicative static
feedback connection is detailed. The conclusions of the
paper and directions for future work is given in the last
section. Apropos to the page limit, proofs to the results
were not furnished and the reader is requested to read the
arXiv

∗∗ version fo the document.

2. PRELIMINARIES

A finite nonempty set of noncommuting symbols X =
{x0, x1, . . . , xm} is called an alphabet. Each element of X
is called a letter, and any finite sequence of letters from
X , η = xi1 · · ·xik , is called a word over X . Its length is
|η| = k. The set of all words including the empty word,
∅, is denoted by X∗, and X+ := X∗\∅. The set X∗ forms
a monoid under catenation. Any mapping c : X∗ → Rℓ is
called a formal power series. The value of c at η ∈ X∗ is
denoted by (c, η) and called the coefficient of η in c. A series
c is proper when (c, ∅) = 0 else it is a non-proper series.
The support of c, supp(c), is the set of all words having
nonzero coefficients. The order of c, ord(c), is the length
of the minimal length word in its support. Normally, c is
written as a formal sum c =

∑

η∈X∗(c, η)η. The collection

of all formal power series over X is denoted by Rℓ��X��.
The ith component of a series c ∈ Rℓ��X�� is denoted by
ci viz (ci, η) = (c, η)i. The subset of all proper series in

Rℓ��X�� is denoted by Rℓ
p ��X��, while the subset of non-

proper series is denoted by Rℓ
np ��X��.

Definition 2.1. A series c ∈ Rℓ��X�� is called purely
improper if ci is non-proper ∀i = 1, . . . , ℓ. The subset of all
purely improper series in Rℓ��X�� is denoted by Rℓ

pi ��X��.

Observe that Rℓ
pi ��X�� � Rℓ

np ��X�� if ℓ > 1, otherwise
Rpi ��X�� = Rnp ��X��. For the purpose of the document,
the product of two vectors in Rn is given by the Hadamard
product. The Cauchy product, C : Rℓ��X�� ×Rℓ��X�� −→
Rℓ��X�� defined as (c, d) �→ c.d, where

(c.d, η) =
∑

ζ,ν∈X∗

ζν=η

(c, ζ) (d, ν)

Observe that Rℓ��X�� constitutes an associative R-algebra
under the Cauchy product. If d ∈ Rℓ

pi ��X��, then Cauchy

inverse of d, denoted by d−1 is defined as

d−1
i = (di, ∅)

−1

(

∑

k∈N0

(d′i)
k

)

,

where d′i = 1−(di/ (di, ∅)). Hence, Rℓ
pi ��X�� forms a group

under Cauchy product with ll = [11 · · · 1]t ∈ Rℓ as the
identity element. The shuffle product of two words which
is a bilinear product uniquely specified by

(xiη) ⊔⊔ (xjξ) = xi(η ⊔⊔ (xjξ)) + xj((xiη) ⊔⊔ ξ),

where xi, xj ∈ X , η, ξ ∈ X∗ and with η ⊔⊔ ∅ = ∅ ⊔⊔ η = η
(Fliess, 1981). The shuffle product of two series, (c, d) �→
c ⊔⊔ d is defined as

(c ⊔⊔ d, η) =
∑

ζ,ν∈X∗

ζ ⊔⊔ ν=η

(c, ζ) (d, ν)

Note that Rℓ��X�� forms an associative and commutative
R-algebra under the shuffle product. If d ∈ Rℓ

pi ��X��, then

shuffle inverse of d, denoted by d ⊔⊔ −1 is defined as

d ⊔⊔ −1
i = (di, ∅)

−1

(

∑

k∈N0

(d′i)
⊔⊔ k

)

,

where d′i = 1 − (di/ (di, ∅)). Hence, Rℓ
pi ��X�� forms

an Abelian group under the shuffle product with ll =
[11 · · ·1]t ∈ Rℓ as the identity element. The set Rℓ��X�� is
an ultrametric space with the ultrametric

κ(c, d) = σord(c−d),

where c, d ∈ Rℓ��X�� and σ ∈ ]0, 1[. For brevity, κ(c, 0)
is written as κ(c), and κ(c, d) = κ(c − d). The ultramet-
ric space (Rℓ��X��, κ) is known to be Cauchy complete
(Berstel & Reutenauer, 1988). The following definition of
contraction maps will be useful.

Definition 2.2. Given metric spaces (E, d) and (E′, d′), a
map f : E −→ E′ is said to be a strong contraction map if
∀s, t ∈ E, it satisfies the condition d′(f(s), f(t)) ≤ αd(s, t)
where α ∈ [0, 1[. If α = 1, then the map f is said to be a
weak contraction map or a non-expansive map.

In the event that the letters of X commute, the set
of all formal power series is denoted by Rℓ [[X ]]. The
formal series with commuting alphabet is indispensable in
definition of the formal static maps in Section 2.4. For any
series c ∈ Rℓ [[X ]], the natural number ω(c) corresponds
to the order of its proper part c− (c, ∅).

2.1 Chen-Fliess Series

Let p ≥ 1 and t0 < t1 be given. For a Lebesgue measurable
function u : [t0, t1] → Rm, define �u�p = max{�ui�p : 1 ≤
i ≤ m}, where �ui�p is the usual Lp-norm for a measurable
real-valued function, ui, defined on [t0, t1]. Let Lm

p [t0, t1]
denote the set of all measurable functions defined on [t0, t1]
having a finite � · �p norm and Bm

p (R)[t0, t1] := {u ∈

Lm
p [t0, t1] : �u�p ≤ R}. Given any series c ∈ Rℓ��X��,

the corresponding Chen-Fliess series is

Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0), (1)

where E∅[u] = 1 and

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄ [u](τ, t0) dτ

with xi ∈ X , η̄ ∈ X∗, and u0 = 1 (Fliess, 1981). If there
exists constants K,M > 0 such that

|(c, η)| ≤ KM |η||η|!, ∀η ∈ X∗,

then Fc constitutes a well defined mapping fromBm
p (R)[t0,

t0+T ] into Bℓ
q(S)[t0, t0+T ] for sufficiently small R, T > 0,

where the numbers p, q ∈ [1,∞] are conjugate exponents,
i.e., 1/p + 1/q = 1 (Gray & Wang, 2002). This map is
referred to as a Fliess operator. Here Rℓ

LC��X�� will denote
the set of all such locally convergent generating series. In
the absence of any convergence criterion, (1) only defines
an operator in a formal sense.

-
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2.2 Interconnections of Chen-Fliess series

Given Chen-Fliess series Fc and Fd, where c, d ∈ Rℓ��X��,
the parallel and product connections satisfy Fc + Fd =
Fc+d and FcFd = Fc ⊔⊔ d, respectively (Ree, 1958; Fliess,
1981). The parallel and product connections preserve local
convergence and hence the interconnected systems have
a Fliess operator representation (Thitsa & Gray, 2012;
Venkatesh, 2021). When Chen-Fliess series Fc and Fd with
c ∈ Rk��X ′�� and d ∈ Rℓ��X�� are interconnected in a
cascade fashion, where |X ′| = ℓ+1, the composite system
Fc ◦Fd has a Chen-Fliess series representation Fc◦d, where
the composition product of c and d is given by

c ◦ d =
∑

η∈X′∗

(c, η)ψd(η)(1) (2)

(Ferfera, 1979). Here 1 denotes the monomial 1∅, and
ψd is the continuous (in the ultrametric sense) algebra
homomorphism from R��X ′�� to the set of vector space en-
domorphisms on R��X��, End (R��X��), uniquely specified
by ψd(x

′
iη) = ψd(x

′
i) ◦ ψd(η) with ψd(x

′
i)(e) = x0(di ⊔⊔ e),

i = 0, 1, . . . ,m for any e ∈ R��X��, and where di is
the i-th component series of d (d0 := 1). By definition,
ψd(∅) is the identity map on R��X��. The cascade in-
terconnection preserves local convergence and thus the
composite has a Fliess operator representation (Thitsa &
Gray, 2012). Given a series e ∈ Rℓ��X��, define a map
Υe : Rk��X ′�� −→ Rk��X�� defined as c �→ c ◦ e. The
following theorem infers that Υe is an R-algebra homomor-
phism from the shuffle algebra of Rk��X ′�� to the shuffle
algebra of Rℓ��X��.

Theorem 2.1. (Gray & Li, 2005) Let c, d ∈ Rk��X ′��, e ∈
Rℓ��X�� and α ∈ R, such that |X ′| = ℓ+1, then (αc+ d)◦
e = α (c ◦ e) + (d ◦ e) and (c ⊔⊔ d) ◦ e = (c ◦ e) ⊔⊔ (d ◦ e).

The composition product is a strong contraction map with
respect to its right argument in the ultrametric topology
and is stated in the following theorem.

Theorem 2.2. (Gray & Li, 2005) Let c ∈ Rk��X ′�� and
d, e ∈ Rℓ��X��, such that |X ′| = ℓ+1, then κ (c ◦ d, c ◦ e) ≤
σκ (d, e) where σ ∈ [0, 1[.

The unital shuffle Chen-Fliess series arise primarily in the
multiplicative output dynamic feedback interconnection of
Chen-Fliess series as described in Gray & Ebrahimi-Fard
(2017) and Section 3 of this document. For |X | = m + 1,
the set of all unital shuffle Chen-Fliess series, denoted by
δF , is defined as δF = {I.Fd : d ∈ Rm��X��}, where I
denotes the identity operator. It is convenient to introduce
a symbol δ as the generating series for the identity map
viz. Fδ[u] = I[u] = u. Hence, u.Fd[u] = I.Fd[u] =
Fδ.Fd[u] = Fδ ⊔⊔ d[u] = Fδd

[u], with δd = δ ⊔⊔ d. The series

δ ⊔⊔ d is the generating series for the Chen-Fliess series
depicting the feedforward product of input with the output
of Fd. The set of all generating series for δF shall be
denoted by δ ⊔⊔ Rm��X��. The cascade interconnection of a
Chen-Fliess series Fc and Fd along with the multiplicative
feedforward of the input, as shown in Figure 1, is denoted
by F

c ◦̌
δd

viz. Fc[u.Fd[u]] = Fc ◦Fδd
[u] = F

c ◦̌
δd

[u], where

c ◦̌ δd denotes the multiplicative mixed composition product
of c ∈ Rp��X�� and d ∈ Rm��X��. The multiplicative

Fd Fcu y

Fig. 1. Cascade connection of Chen-Fliess Fd with Fc along
with multiplicative feedforward of input

mixed composition product of c and d , c◦̌ δd can be defined
as

c ◦̌ δd =
∑

η∈X∗

(c, η) φ̄d (η) (1) =
∑

η∈X∗

(c, η) η ◦̌ δd,

where φ̄d : R��X�� −→ End (R��X��) is an R-algebra
homomorphism such that φ̄d(x0)(e) = x0e and φ̄d(xi)(e) =
xi(di ⊔⊔ e). Here R��X�� is taken as an R-algebra under
Cauchy product and End (R��X��) is an R-algebra un-
der composition. It is straightforward that multiplicative
mixed composition product is linear in its left argument.
The following results are already known in the single-input
single-output (SISO) setting. However, their multi-input
multi-output (MIMO) extensions are straightforward and
to avoid reiteration of the proofs, only the statements are
provided in this document. The following theorem assets
that for any e ∈ Rm��X��, the map Γe : Rp��X�� −→
Rp��X�� given by d �→ d◦̌ δe is an R-algebra endomorphism
on the shuffle algebra Rp��X��.

Theorem 2.3. (Gray & Ebrahimi-Fard, 2017) Let c, d ∈
Rp��X�� and e ∈ Rm��X��, then (c ⊔⊔ d) ◦̌ δe =

(

c ◦̌ δe
)

⊔⊔

(

d ◦̌ δe
)

.

The following theorem states the strong contraction prop-
erty of the multiplicative mixed composition product
which is an essential result in Section 3.

Theorem 2.4. (Gray & Ebrahimi-Fard, 2017) Let d, e ∈
Rm��X�� and c ∈ Rp��X��, then κ

(

c ◦̌ δd, c ◦̌ δe
)

≤

σord(c′)κ (d, e), where c′ = c − (c, ∅), the proper part of
c.

Since ord (c′) ≥ 1 and σ ∈]0, 1[, then from Theorem 2.4,
the map Γ̄c : e �→ c ◦̌ δe is a strong contraction map in
the ultrametric topology. The following theorem states the
mixed associativity of the composition and multiplicative
mixed composition product. The result in the SISO set-
ting is stated in Gray & Ebrahimi-Fard (2017), and its
extension to the MIMO case is purely straightforward.

Theorem 2.5. (Gray & Ebrahimi-Fard, 2017) Let X ′ =
{x′

0, . . . , x
′
p} and c ∈ Rq��X ′��. Let d ∈ Rp��X�� and

e ∈ Rm��X��, then c ◦
(

d ◦̌ δe
)

= (c ◦ d) ◦̌ δe.

2.3 Multiplicative Dynamic Output Feedback Group

The dynamic multiplicative feedback group plays a vital
role in computation of the multiplicative dynamic feedback
formula, as pictured in SISO setting, in Gray & Ebrahimi-
Fard (2017) and in assessing the feedback as a group action
in Section 3. Consider the cascade interconnection of two
unital shuffle Chen-Fliess series Fδc

and Fδd
, where c, d ∈

Rm��X��. The composite system is given by the Chen-
Fliess series Fδc◦δd

, where δc◦δd denotes the multiplicative

composition product of δc and δd and is defined as
δc ◦ δd = δ ⊔⊔

(

d ⊔⊔ c ◦̌ δd
)

= δ
(

d ⊔⊔ c ◦̌ δd
)

. (3)
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There is an abuse of notation ◦ between (2) and (3),
however the meaning of ◦ should always be clear from the
context. The following theorem states the multiplicative
composition product is associative. The result, along with
Theorem 2.7 were stated and proven in Lemma 3.6 of
Gray & Ebrahimi-Fard (2017) in the SISO setting but the
authors’ proofs were independent of the SISO assumption.
Hence, the statements along with the proofs naturally
extend to the MIMO setting.

Theorem 2.6. (Gray & Ebrahimi-Fard, 2017) Let c, d, e ∈
Rm��X��, then,

(

δc ◦ δd
)

◦ δe = δc ◦
(

δd ◦ δe
)

.

Observe that (3) and Theorem 2.6 infer that δ ⊔⊔ Rm��X��
forms a noncommutative monoid under multiplicative
composition product, with the identity element δ ll. The
following theorem states that the multiplicative mixed
composition product is a right action on Rq��X�� by the
monoid (δ ⊔⊔ Rm��X��, ◦).

Theorem 2.7. (Gray & Ebrahimi-Fard, 2017) Let c ∈
Rq��X�� and d, e ∈ Rm��X��, then

(

c ◦̌ δd
)

◦̌ δe =

c ◦̌
(

δd ◦ δe
)

.

The prominent question is to find the invertible elements
of the monoid (δ ⊔⊔ Rm��X��, ◦). Let d, e ∈ Rm

pi ��X�� and
suppose

δd ◦ δe = δ ll

Applying (3),

e ⊔⊔

(

d ◦̌ δe
)

= ll

Observe that d ∈ Rm
pi ��X�� implies d ◦̌ δe ∈ Rm

pi ��X�� and
using Theorem 2.3,

e =
(

d ◦̌ δe
)

⊔⊔ −1
= d ⊔⊔ −1 ◦̌ δe.

Hence, for δe to be right inverse of δd, the purely improper
series e has to satisfy the fixed point equation

e = d ⊔⊔ −1 ◦̌ δe (4)

Observe from Theorem 2.4 that the map e �→ d ⊔⊔ −1 ◦̌ δe
is a strong contraction in the ultrametric space inferring
that (4) has a unique fixed point. Suppose δe is the left
inverse of δd viz δe ◦ δd, then a similar procedure shows
that e has to satisfy the equation

d = e ⊔⊔ −1 ◦̌ δd (5)

Note that if e is a solution of (4), then e satisfies (5) and
also the converse holds true. Hence, e is given the notation
d◦−1 and for d ∈ Rm

pi ��X��, the inverse of δd exists and

is unique, denoted by δd◦−1 viz.
(

δd
)◦−1

= δ ⊔⊔ d◦−1 =
δd◦−1. Thus, δ ⊔⊔ Rm

pi ��X�� forms a group under multi-
plicative composition product, termed as themultiplicative
dynamic output feedback group and is formally stated in
the following theorem.

Theorem 2.8.
(

δ ⊔⊔ Rm
pi ��X��, ◦

)

forms a group with δ ll
being the identity element.

It is worth noting that Gray & Ebrahimi-Fard (2017)
proved Theorem 2.8 for one-dimensional case viz. m = 1.
In light of Theorem 2.8, Theorem 2.3 and (3) one obtains
the following relations for c ∈ Rm

pi ��X��:

c◦−1 = c ⊔⊔ −1 ◦̌ δc◦−1 (6)
(

c◦−1
)

⊔⊔ −1
= c ◦̌ δc◦−1

y u 
v 

FcFcF fd

Fig. 2. Wiener-Fliess connection

2.4 Cauchy Algebra of Formal Static Maps

This subsection provides a brief discussion on formal static
maps, which are used to describe the memoryless maps
in the feedback path of static feedback interconnection,
as described in Section 4. Let X̃ = {x̃1, . . . , x̃m} and

d ∈ Rk [[X̃ ]]. A formal static function fd : Rm −→ Rk

around the point z = 0 is defined as

fd (z) =
∑

η∈X̃∗

(d, η) zη,

where z ∈ Rm, and zx̃iη = ziz
η ∀x̃i ∈ X̃, η ∈ X̃∗. The

base case is taken to be z∅ = 1. Denote the collection of all
formal static maps from Rm to Rk as Homstatic

(

Rm,Rk
)

.

The series d ∈ Rk [[X̃]] is called the generating series of

the static map fd. A series d ∈ R [[X̃ ]] is said to be locally
convergent if there exist constants Kd,Md > 0 such that

|(d, η)| ≤ KdM
|η|
d , ∀η ∈ X̃∗. A series d ∈ Rk [[X̃ ]] is said

to be locally convergent if and only if each component di
is locally convergent for i = 1, . . . ,m.

Theorem 2.9. Let the formal static maps fd, fe : Rm −→
Rk, with d, e ∈ Rk [[X̃]]. The product of the maps fd.fe :
Rm −→ Rk is a formal static map fd.e, where d.e is the
Cauchy product of d and e.

Theorem 2.9 asserts that Homstatic

(

Rm,Rk
)

forms an R-
algebra and there is an R-algebra isomorphism from the
Homstatic

(

Rm,Rk
)

to the Cauchy algebra of Rk [[X̃]]. Let

fd be formal static map, with d ∈ Rk
pi [[X̃]]. Then from

Theorem 2.9, the generating series of the multiplicative
inverse of the formal static map fd, denoted by f−1

d , is

given by the Cauchy iverse of d viz. f−1
d = fd−1 . Hence,

the unit group of Homstatic

(

Rm,Rk
)

is isomorphic to the

group Rk
pi [[X̃]] under Cauchy product.

2.5 Wiener-Fliess Composition of Formal Power Series

This subsection describes the cascade connection shown
in Figure 2 of a Chen-Fliess series Fc generated by a
proper series c ∈ Rℓ

p ��X�� and a formal static map fd ∈

Homstatic

(

Rℓ,Rk
)

. Such configurations are called Wiener-
Fliess connections. The connection is known to generate
well-defined Chen-Fliess series for the composite system,
and its generating series is computed through the Wiener-
Fliess composition product. The definition of Wiener-Fliess
composition product first appeared in Thitsa & Gray
(2012), however, the definition was expanded even for
c ∈ Rℓ

np ��X�� in Venkatesh (2021). However, the current
document works with the restricted definition.

Theorem 2.10. (Gray & Thitsa, 2012; Venkatesh & Gray,

2021) Let X = {x0, x1, . . . , xm} and X̃ = {x̃1, x̃2, . . . , x̃ℓ}.
Given a formal Fliess operator Fc with c ∈ Rℓ

p ��X��

and formal function fd ∈ Homstatic

(

Rℓ,Rk
)

, then the

composition fd ◦ Fc has a generating series in Rk��X��
given by the Wiener-Fliess composition product
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d ◦̂ c =
∑

η̃∈X̃∗

(d, η̃)c ⊔⊔ η̃, (7)

where c ⊔⊔ x̃iη̃ := ci ⊔⊔ c ⊔⊔ η̃ ∀x̃i ∈ X̃, ∀η̃ ∈ X̃∗, and
c ⊔⊔ φ = 1.

Observe that if d ∈ Rk
pi [[X̃]] and c ∈ Rℓ

p ��X��, then

d ◦̂ c ∈ Rk
pi ��X��. For a fixed d ∈ Rk [[X̃ ]] define the map

d ◦̂ : Rℓ
p ��X�� −→ Rk��X�� : c �→ d ◦̂ c. The Wiener-

Fliess connection preserves local convergence and hence,
the composite system has a Fliess operator representation
(Venkatesh, 2021). The following theorems describe the
contractive properties of d ◦̂ in the ultrametric topology.

Theorem 2.11. (Venkatesh & Gray, 2021) The map d ◦̂ is
a weak contraction map when ω (d) = 1 and a strong
contraction map when ω (d) > 1.

Theorem 2.11 infers that the Wiener-Fliess composition
product is at the very least is a weak contraction map with
respect to the noncommutative formal series argument.
The following theorem is a crucial result used in computing
the feedback formula for the multiplicative static feedback
connection.

Theorem 2.12. Let d, d′ ∈ Rk [[X̃]] and c ∈ Rℓ
p ��X��, then

(d.d′) ◦̂ c = (d ◦̂ c) ⊔⊔ (d′ ◦̂ c).

Note that (Rk [[X̃ ]], ·) is a commutative monoid as the

letters of X̃ commute. For a series c ∈ Rℓ
p ��X��, define

a map Ωc : Rk [[X̃]] −→ Rk��X�� : d �→ d ◦̂ c. Theo-
rem 2.12 asserts that Ωc is an R-algebra homomorphism
from the Cauchy algebra of Rk [[X̃]] to the shuffle algebra
of Rk��X��. If c is proper, then via theorem 2.12, it is

evident that d−1 ◦̂ c = (d ◦̂ c) ⊔⊔ −1
, provided d ∈ Rk

pi [[X̃ ]].

Hence, there is a group homomorphism from the Rk
pi [[X̃ ]]

group under Cauchy product to the Rk
pi ��X�� group under

shuffle product via the map Ωc. The following theorem is
pivotal in Section 4 and states Wiener-Fliess composition
product and multiplicative mixed composition product are
mixed associative in light of Theorem 2.3.

Theorem 2.13. Let d ∈ Rp [[X̃]], c ∈ Rq��X�� and e ∈
Rm��X��, such that |X̃ | = q, then d◦̂

(

c ◦̌ δe
)

= (d ◦̂ c) ◦̌ δe.

3. CHEN-FLIESS SERIES UNDER MULTIPLICATIVE
DYNAMIC OUTPUT FEEDBACK

Let Fc be a Chen-Fliess series with a generating series
c ∈ Rq��X��. Assume it is interconnected with a Chen-
Fliess series Fd with a purely improper generating series
d ∈ Rm

pi ��X
′��, as shown in Figure 3. Note that, |X | = m+

1 and |X ′| = q + 1. The primary goal of this section is to
show that the closed-loop system has a Chen-Fliess series
representation, say y = Fe[v], where e ∈ Rq��X��. If this
is the case, then necessarily

y = Fe[v] = Fc[u] = Fc[vFd[y]]

= Fc[vFd[Fe[v]]] = Fc[vFd◦e[v]]

= F
c ◦̌

δ (d ◦ e)[v]

for any admissible input v. Therefore, the series e has to
satisfy the fixed point equation

Fcv

Fd

yu

Fig. 3. Chen-Fliess series Fc in multiplicative output
feedback with Chen-Flies series Fd

Fcv

fd

yu

Fig. 4. Chen-Fliess series Fc in multiplicative output
feedback with fd

e = c ◦̌ δ (d ◦ e). (8)

Observe that, in light of Theorem 2.2 and Theorem 2.4 the
map e �→ c ◦̌ δ (d ◦ e) is a strong contraction map in the
ultrametric space and thus (8) has a unique fixed point.
The following thoerem establishes the first main result of
this section, which follows immediately.

Theorem 3.1. The series c ◦̌ δ
(

d ⊔⊔ −1 ◦ c
)◦−1

∈ Rq��X�� is

the unique fixed point of the map e �→ c ◦̌ δ (d ◦ e).

Theorem 3.2. Given a series c ∈ Rq��X�� and a purely
improper series d ∈ Rm

pi ��X
′�� (such that |X | = m+1 and

|X ′| = q+1), then the generating series for the closed-loop
system in Figure 3 is given by the multiplicative dynamic

feedback product c@̌d := c ◦̌ δ
(

d ⊔⊔ −1 ◦ c
)◦−1

.

The notion that feedback can described mathematically
as a transformation group acting on the plant is well es-
tablished in control theory (Brockett, 1978). The following
theorem describes the situation in the present context.

Theorem 3.3. The multiplicative dynamic feedback prod-
uct is a right group action by the multiplicative group
(

Rm
pi ��X

′��, ⊔⊔ , ll
)

on the set Rq��X��, where |X | = m+1
and |X ′| = q + 1.

It is worth noting that for the additive dynamic feedback
product the transformation group is the additive group
(Rm��X ′��,+, 0) while here (Rm

pi ��X
′��, ⊔⊔ , ll) plays that

role.

4. CHEN-FLIESS SERIES UNDER MULTIPLICATIVE
STATIC OUTPUT FEEDBACK

Let Fc be a Chen-Fliess series with a proper generating
series c ∈ Rq

p ��X��. Assume it is interconnected with a
formal static map fd with a purely improper generating
series d ∈ Rm

pi [[X̃]], as shown in Figure 4. Note that,

|X | = m+1 and |X̃| = q. The primary goal of this section
is to show that the closed-loop system has a Chen-Fliess
series representation, say y = Fe[v], where e ∈ Rq��X��. If
this is the case, then necessarily

y = Fe[v] = Fc[u] = Fc[vfd[y]]

= Fc[vfd[Fe[v]]] = Fc[vFd ◦̂ e[v]]

= F
c ◦̌

δ (d ◦̂ e)[v]
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for any admissible input v. Therefore, the series e has to
satisy the fixed point equation

e = c ◦̌ δ (d ◦̂ e). (9)

In addition, e must be a proper series for the Wiener-
Fliess composition d ◦̂ e to be well defined for arbitrary
d ∈ Rm

pi [[X̃ ]]. It follows directly from the definition
of the multiplicative mixed composition product that if
c ∈ Rq

p ��X�� then c ◦̌ δw is also a proper series for all
w ∈ Rm��X��.

Observe that, in light of Theorem 2.11 and Theorem 2.4
the map e �→ c ◦̌ δ (d ◦̂ e) is a strong contraction map in
the ultrametric space and thus (9) has a unique fixed
point. The following fixed point theorem establishes the
first main result of this section, which follows immediately.

Theorem 4.1. The series c ◦̌ δ
(

d−1 ◦̂ c
)◦−1

∈ Rq
p ��X�� is

the unique fixed point of the map e �→ c ◦̌ δ (d ◦̂ e).

Theorem 4.2. Given a series c ∈ Rq
p ��X�� and a purely

improper series d ∈ Rm
pi [[X̃ ]] (such that |X | = m + 1 and

|X̃ | = q), then the generating series for the closed-loop
system in Figure 4 is given by the multiplicative static

feedback product c@̄d := c ◦̌ δ
(

d−1 ◦ c
)◦−1

.

The following theorem describes the transformation group
on the plant which characterizes the multiplicative static
feedback product.

Theorem 4.3. The multiplicative static feedback product
is a right group action by the Abelian multiplicative group
(

Rm
pi [[X̃]], ·, ll

)

on the set Rq
p ��X��, where |X | = m + 1

and |X̃| = q.

It is important to note that for additive static out-
put feedback product, known as Wiener-Fliess feedback
product, the transformation group is the additive group
(Rm [[X̃ ]],+, 0) while for multiplicative static output feed-

back the Abelian multiplicative group (Rm
pi [[X̃]], ·, ll) per-

forms that role.

5. CONCLUSIONS AND FUTURE WORK

It was shown that the closed-loop system of a plant
in Chen-Fliess series description in multiplicative output
feedback with another system, given by Chen-Fliess series,
has a Chen-Fliess series representation. An explicit expres-
sion of the closed-loop generating series was derived. The
multiplicative dynamic feedback connection has a natural
interpretation as a right group action on the plant. The
same set of questions were answered when the Chen-Fliess
series in the feedback is replaced by a memoryless map.
Future work will address the solemn problem regarding
the local convergence of the both multiplicative dynamic
and static output feedback connections and to identify the
feedback invariants.
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