
St. Cloud State University St. Cloud State University

The Repository at St. Cloud State The Repository at St. Cloud State

Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and
Information Technology

12-2022

Application Development Using Microservice Architecture Application Development Using Microservice Architecture

Tonmoy Saha

Tonmoy Saha
St. Cloud State University

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Saha, Tonmoy and Saha, Tonmoy, "Application Development Using Microservice Architecture" (2022).
Culminating Projects in Computer Science and Information Technology. 41.
https://repository.stcloudstate.edu/csit_etds/41

This Starred Paper is brought to you for free and open access by the Department of Computer Science and
Information Technology at The Repository at St. Cloud State. It has been accepted for inclusion in Culminating
Projects in Computer Science and Information Technology by an authorized administrator of The Repository at St.
Cloud State. For more information, please contact tdsteman@stcloudstate.edu.

https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/csit_etds
https://repository.stcloudstate.edu/csit_etds
https://repository.stcloudstate.edu/csit
https://repository.stcloudstate.edu/csit
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/41?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu

Application Development Using Microservice Architecture

By

Tonmoy Saha

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in Computer Science

December, 2022

Starred Paper Committee:
Jie Hu Meichsner, Chairperson

Omar Al-Azzam
Ezzat Kirmani

 2
Abstract

Application development has always been a complex process. An application, once
developed, also needs to be maintained and enhanced to add new requirements.
Traditionally the application has been a monolithic entity. Different components in the
application are tightly coupled and making a change has always been challenging.
Microservice architecture breaks away from this monolithic approach and arranges the
different functionalities as services. In a microservice architecture, individual services are
developed to perform one function only.
This report demonstrates the application development process using the Microservice
architecture. It explains the design, development, and deployment of a Microservice-based
application. Market Place is an e-commerce application that consists of a collection of
microservices working together to provide a buyer and seller platform to individuals. This
application will allow sellers to showcase their products on this platform. The application
consists of the following microservices: Product Microservice, Order Microservice, UI
Microservice, and database Microservice. Similarly, the buyers can connect with the sellers
directly in this application. This application is developed using the Spring Microservice
framework, the services are hosted in Kubernetes. Docker is used for the containerization of
services.

 3
Table of Contents

 Page
List of Tables …………………………………………………………………………………………………….……………6

List of Figures …………………………………………………………...……………………………………………….…...7

Chapter

1. Introduction …………………………………………………………………………….………………….……………9

2. Technology Overview …………………………………………………………………….…………….…………10

2.1 Spring Boot …………………………………………………………………………...………….…………10

2.2 HTML ……………………………………………………………………………………………….…………11

2.3 CSS …………………………………………………………………………………….……………..…………12

2.4 JavaScript ………………………………………………………………………….…………………………12

2.5 Docker ……………………………………………………………………………….………………………..12

2.6 Kubernetes ……………………………………………………………….………….………………..........13

2.7 MySQL ……………………………………………………………………….………………………………..15

3. Microservice Architecture and Design …………………….…………………………………...………….16

3.1 Principles of Microservices ………………………………………….……………………………….16

3.1.1 Single responsibility per service …………………………………………………………..16

3.1.2 Microservices are Autonomous ……………………………………………………………17

3.2 Microservices Benefits ………………………………………………….……………………………..18

3.2.1 Supports Polyglot Architecture ……………………………………………………………18

3.2.2 Elastically and Selectively Scalable ………………………………………………………19

3.2.3 Allowing the co-existence of different versions …………………………………….19

 4
Chapter Page

4. Demonstration of a Microservice application …………………………………………….……………..20

4.1 Application Overview ………………………………………………..………………………………..20

4.2 Application Architecture ……………………………………………………….……………………...20

4.3 Microservice Implementation ……………………………………………………….………………21

4.3.1 Create a Docker image of the service …………………………………………………….22

4.3.2 Using Kubernetes to Orchestrate Microservice ……………………………………...23

4.4 Application Use Case ……………………………………….………….………..………………………28

4.4.1 Use Case - General User Login ………………………………………………………………30

4.4.2 Use Case - General User purchase …………………………………………………………31

4.4.3 Use Case - General User Register …………………………………………………………..32

4.4.4 Use Case - General User Update Profile …………………………………………………33

4.4.5 Use Case - General User Purchase History ……………………………………………..33

4.4.6 Use Case - Admin User Login ………………………………………………………………...34

4.4.7 Use Case - Admin User Find Product …………………………………………………….35

4.4.8 Use Case - Admin User Add Product ……………………………………………………..36

4.4.9 Use Case - Admin User Modify Product …………………………………………………36

4.5 Application Screenshots ……………………………………………………….………………………37

4.5.1 Landing/Main Page ……………………………………………………………………………...37

4.5.2 The Login Page ……………………………………………………………………………………38

4.5.3 Admin Home ……………………………………………………………………………………….38

4.5.4 Add Product ………………………………………………………………………………………..39

4.5.5 Find product ……………………………………………………………………………………….39

 5
Chapter Page

4.5.6 Modify Product ……………………………………………………………………………………39

4.5.7 User Home …………………………………………………………………………………………..40

4.5.8 User Profile Update …………………………………………………………………………......40

4.5.9 Purchase History …………………………………………………………………………………40

5. Demonstrating the advantages of Microservice ………………………………………………………..41

5.1 Ease of Deployment and Maintenance …………………………………………………………..41

5.2 High Elasticity and Selectively Scalable …………………………………………………………41

5.3 Allowing the Co-existence of Different Versions ……………………………………………42

5.4 Better Quality of Service ………………………………………………………………………………42

5.5 Co-development and speed of delivery ………………………………………………………...43

6. Conclusion.…………………………………………………………….…………………………………………….....44

References ……………………….…………………………………………………………………………………………45

 6
List of Tables

Table Page

1. General User Login Use Case Description …………………………….…………………………………...30

2. General User purchases Use case Description ………………..…………………………………………31

3. General User Register Use Case Description ……………………………………………………………..32

4. General User Update Profile Use Case Description …………..………………………………………..33

5. General User purchases History Use case Description ………………………………………………33

6. Admin User Login Use Case Description …………………………………………………………………..34

7. Admin User Find Product Use Case Description ……………………………………………………….35

8. Admin User Add Product Use Case Description ………………………………………………………..36

9. Admin User Modify Product Use Case Description ……………………………………………………36

 7

List of Figures

Figure Page

1. The basic block diagram of Spring Framework …………………………………………………………11

2 Overview of Docker Architecture ……………………………………………………………………………...13

3. Kubernetes Basic Working ………………………………………………………………………………………14

4. Block Diagram depicting Various Kubernetes components………………………………………..15

5. Block depiction of Microservice Vs Monolithic Design ………………………………………………16

6. Diagram depicting Various components in a Microservice………………………………………17

7. Diagram showing the polyglot architecture ……………………………………………………………...18

8. Showing the CO-existence of different versions of the service …………………………………...19

9. Various Microservice components in the application ………………………………………………..21

10. How to create Docker image …..………………………………………………………………………………22

11. All the images that have been created in the project ………………………………………………..23

12. YAML file for UI service of POD definition ……………………………………………………………….23

13. YAML file for Product service of POD definition …………………...24

14. YAML file for Order service of POD definition …………………………………………………………24

15. YAML file for Database service of POD definition …………………………………………………….25

16. YAML file for UI service of Service Definition ………………………………………………………….25

17. YAML file for Product service of Service Definition …………………………………………………26

18. YAML file for Order service of Service Definition ……………………………………………………26

19. YAML file for Database service of Service Definition ……………………………………………….27

 8

Figure Page

20. Shows all the PODs that are created in the system …………………………………………………..27

21. Shows all the Services that are created in the system ………………………………………………28

22. Interaction Diagram for Market Place Application ……….………………………………………….28

23. Use case Diagram …………….……………………………………….……………………………………………29

24. Landing Screen of The Market Place App ………………………….…………………………………….37

25. Login Screen of The Market Place App ………………………….….……………………………………..38

26. Admin Home Screen of The Market Place App ………………..….……………………………………38

27. Add Product Screen of The Market Place App ……………….…………………………………………39

28. Find Product Screen of The Market Place App ………………...………………………………………39

29. Modify Product Screen of The Market Place App ……………….…………………………………….39

30. User Home Screen of The Market Place App …………………...……………………………………….40

31. User Profile Update Screen of The Market Place App ………...……………………………………..40

32. Purchase History Screen of The Market Place App …………………………………………………..40

 9
Chapter 1: Introduction

Microservices are an architectural style in which applications are developed as

physically separated modules. The microservice-based application provides a simple yet

powerful design, ease of development, flexible deployment cycle, speed of agility, and

scalability [2]. Microservices started from the idea of Hexagonal Architecture. It is also

known as the Ports and Adapters patterns [3]. Two fundamental principles of Microservices

are single responsibility and autonomy. The single responsibility principle states that a unit

should only have one responsibility. If any unit has more than one responsibility, it becomes

tightly coupled. Autonomous means microservices are independently deployable and can

perform a business capability independently.

Within a microservice, it could follow any of the existing patterns. The most popular

one is the REST web service. Within the service, the code is stacked up in layer architecture.

The controller layer uses the REST protocol to communicate with the caller. Below the

Controller layer is the Service layer which communicates with the Domain layer. In this layer,

the data are fetched or modified and persisted in the storage system, typically a Database.

In this project, a working application is developed using Microservice Architecture.

It is called the Market Place application. The Administrative user act as a moderator of the

application. The second kind of user is the Buyer and seller of products, goods, and services.

Product information will be stored in the Database and displayed to the seller via a service

call. Each transaction is persisted in the database for future reference. This application can

add new business functionality without interfering with the existing running application. In

the same way, an existing functionality could also be removed without hampering the rest of

the application.

 10
Chapter 2: Technology Overview

This Chapter outlines the technologies that have been used in this project work. The

microservice architecture in this project has been built around the following technologies:

Spring Boot framework, Java programming language, HTML, CSS, and JavaScript. For

Containerization, Docker is used, and for Orchestration, Kubernetes is used. MySQL has

been selected as the database storage.

The Main technologies used in this paper are described below:

2.1 Spring Boot

It is a framework for building Java applications; Spring is one of the most popular Java

frameworks. It gained popularity for developing Monolithic applications, primarily with its

MVC architectural pattern. However, with the arrival of microservices, Spring has bought a

new slim, convention-based framework that would cater to the demands of microservices.

Spring Boot is the latest offering from Spring. Developers can build a standalone

microservice with Spring Boot's help without Spring Framework's complexities. Figure 1

shows the Architecture diagram for the Spring Framework.

 11

 Fig. 1. Basic block diagram of Spring Framework

 Some of the advantages of Spring Boot [1] are listed below:

• Lightweight

• Minimum Configuration

• Built-in Tomcat

• Ideal for microservice stand-alone architecture

2.2 HTML

HTML means Hyper Text Markup Language [9], which is used for creating web pages.

HTML describes and defines the structure of web pages. It builds the pages with a series of

Elements. These elements direct the browser what would be the content of the page. It

creates a static display of the web page. All the components of a web page that are visible to

the user are provided by HTML structure. To make it dynamic java scripts are applied to the

HTML components.

 Spring Framework

Spring
AOP

Spring
ORM

 Spring Core

Spring
DAO

Spring
Web

Spring
Context

Spring
MVC

 12
2.3 CSS

CSS stands for Cascading Style Sheets [9]. It affects the presentation of the web page.

HTML elements could be rendered or presented in the browser in various ways; CSS tells

how this could be done. CSS is not a programming language but a markup language.

2.4 JavaScript

JavaScript is a scripting language or just in time-compiled programming language [9].

It is responsible for making the static HTML content of a web page dynamic. The standards

for JavaScript are the ECMAScript Language Specification (ECMA-262) and the ECMAScript

Internationalization API specification (ECMA-402) [8].

2.5 Docker

Docker is a containerization technology [5]. It is an open-platform technology. It is

used in developing, packaging, and deploying an application. Docker helps in separating the

application from the infrastructure. This separation facilitates delivering the software in a

faster manner. Docker provides an abstraction or isolation layer for the software to run. The

container works independently of the host hardware or software configuration. Isolation

means the containers run in a different environment from the host and each other. Figure 2

shows the architecture of Docker. Figure 2 is adapted from ‘Docker Overview’ [7].

 13

Fig. 2. Overview of Docker Architecture

2.6 Kubernetes

Kubernetes is an open-source container orchestration engine. It is used for

automating deployment, scaling up applications, and monitoring and managing the

application. The Cloud Native Computing Foundation hosts it. Kubernetes plays a significant

part in microservice-based architecture in deploying services as an independent unit.

Kubernetes Basic Modules are shown in Figure 3. This figure is taken from “Learn

Kubernetes” [6].

Client
Docker build
Docker pull
Docker run

 Docker Host

Docker Daemon

Containers Images

container

container

container

Image

 14

Fig. 3. Kubernetes Basic Working.

Kubernetes cluster consists of a Master node and a collection of worker nodes.

Kubernetes communicates with the nodes with the help of the API server. It has built-in

storage in ‘etcd’. The Scheduler and controller are used for managing the nodes. In

Kubernetes Pod is the basic unit of the Kubernetes platform. The pod is nothing but Docker

containers. A Pod can have more than one container and share namespace, resources, and

security features. A basic block-level component diagram is shown in Figure 4. This Figure is

adapted from Docker and Kubernetes for Java Developers [4].

1. Create A cluster 2. Deploy an APP in cluster

3. Scale up the APP 4.Update the App

 15

 Fig. 4. Block Diagram depicting Various Kubernetes component

Kubernetes Service is an abstraction through which one or more POD can be accessed

through networks. Every service in Kubernetes has its own IP address and port number.

They have the following features [4]:

• Service is permanent

• Service offers built-in load balancing

• It has a permanent IP address and port number

• They connect to a group of Pods and expose them to outside traffic

2.7 MySQL

MySQL is an open-source system, SQL stands for Structured Query Language. It is a

relational database.

 16
Chapter 3: Microservice Architecture and Design

Microservices are an architectural style, and it was not invented but rather evolved

from the existing architectural design. It is one of the most popular architectural design

patterns today [2]. Following this design, one can develop a very agile, fast, and scalable

solution. Microservice provides an option to develop physically separated modular

applications. Microservices trace back their origin from the Hexagonal Architecture, which

is also known as Ports and Adapters patterns.[3]

3.1 Principles of Microservices

Single responsibility and Autonomous are the two key principles of Microservices [2].

3.1.1 Single responsibility per service

 One of the principles of the SOLID design pattern is Single responsibility. It means a

single unit should have only one responsibility. A service should have only one responsibility

of work. If it performs more than one responsibility, then tight coupling occurs.

Fig. 5. Block depiction of Microservice Vs Monolithic

Multiple Responsibility
Monolithic App

Other

Product

Customer
Customer

Product

Other

Single Responsibility
Microservices

 17
Figure 5 has been adapted from “Spring 5.0 Microservices” [2]. As depicted in Figure 5,

Customer, Product, and Order are three different features of an e-commerce application. If

all three are built in a single application, it will result in a tightly coupled monolithic

application. In the microservice world, each feature will be a separate service, and changing

one service will not impact the other one. Each service here is responsible to perform only

one business task.

3.1.2 Microservices are Autonomous

Each Microservices are physically separate application or service. They could be

independently built, compiled, and deployed. It includes all the dependencies like the

libraries and execution environment.

Fig. 6. Diagram depicting Various components in a Microservice

 18
As shown in Figure 6, microservices get their own containers Container technology like

Docker is ideal for this purpose.

3.2 Microservices Benefits

There are various benefits of Microservices over monolithic applications. A few major

benefits [2] are discussed below:

3.2.1 Supports Polyglot Architecture

As microservices are separate services and can be deployed and tested individually.

They can be of different technology or different versions of the same technology. Figure 7

has been taken from “Spring 5.0 Microservices” [2].

 Fig. 7. Diagram showing the polyglot architecture

The Order microservice and Product microservice stores data in a relational database,

whereas the Audit microservice stores data in Hadoop File System. Moreover, the Order

Microservice could be in Java technology and the Products microservice could be developed

in .Net technology.

 19
3.2.2 Elastically and Selectively Scalable

In a monolithic application, there is no option to scale a particular feature or

functionality as it is packaged as a single war or ear. A lot of resources go unutilized. That is

not the case in microservice, as each microservice is an independent entity that could be

scaled up or down independently. As scaling could be selectively applied the cost of resource

are less and better utilized.

3.2.3 Allowing the co-existence of different versions

In a microservice architecture, one can have different versions of the same

functionality in the production environment.

 Fig. 8. Showing the CO-existence of different versions of the service

As shown in Figure 8, let us assume we need to have a new business requirement to be rolled

out to customers in a particular region. This could be very easily achieved by having two

versions of the same feature in production as V01 and V02. Then we could apply a routing

rule at the Gateway level to route the traffic to the appropriate service based on the region.

 20
Chapter 4: Demonstration of a Microservice application

 This Chapter describes the different features and components of a Microservice-

based application. The first section gives an overview of the different functionalities of the

application. Then there is a description of the system architecture. Then there are use case

diagrams, flow charts, and screenshots of the application features.

4.1 Application Overview

 The Market Place application is a simple e-commerce application. Where a

user/customer can buy different products that are available in the application. This

application has two types of users Admin users and general users. Admin users can ADD or

Modify new products in the system. Where the general users can create a login, manage the

user profile, can purchase items from the e-commerce site, also can view a list of existing

purchases.

4.2 Application Architecture

 This e-commerce application Market Place has been designed as a Microservice

Architecture. Here the components are loosely coupled, and each functionality could be

deployed and maintained separately. To demonstrate the microservice concept, the

application has been divided into four individual microservice: Market Palace APP, the

product microservice, the order microservice, and the database microservice. A basic block

diagram in Figure 9, shows the microservices.

 21

Fig. 9. Showing the various Microservice component in the application

4.3 Microservice Implementation

Each microservice is programmed in the spring boot framework of Java. The UI

service has implemented Spring security to enable the login feature. The product service and

order service are Spring boot RESTFUL APIs. Database service is out of the box MySQL image.

Docker and Orchestration engines like Kubernetes have played a big role in popularizing the

microservice design. In this project, both have been used. Docker for containerization and

Kubernetes for Orchestration. A cut-down version of Kubernetes called mini Kube has been

used to simulate the Kubernetes functionality.

The following steps have been followed to containerize the services:

APP UI Service

Order Service Product Service

Database Service

 22
4.3.1 Create a Docker image of the service

In the root folder of the service, create a Docker file. Below is the Docker File used in the UI

microservice.

FROM openjdk:8-jdk-alpine

ARG JAR_FILE=target/*.jar

COPY ${JAR_FILE} prj-mkt-place-login.jar

ENTRYPOINT ["java","-jar","/prj-mkt-place-login.jar"]

EXPOSE 8085 443

Log in to the Docker hub using the below command

 docker login

Build a local Docker image by using docker build command

 docker build -t tonmoy126/prj-mkt-place-login.

Push the image in Docker hub

 docker push tonmoy126/ prj-mkt-place-login: tag

 Fig. 10. How to create a Docker image

 23

 Fig. 11. All the images that have been created in the project

4.3.2 Using Kubernetes to Orchestrate Microservice

Create YAML file defining each POD

Fig. 12. YAML file for UI service of POD definition

 24

Fig. 13. YAML file for Product service of POD definition

Fig. 14. YAML file for Order service of POD definition

 25

Fig. 15. YAML file for Database service of POD definition

Create a YAML file to create a service

Fig. 16. YAML file for UI service of Service Definition

 26

Fig. 17. YAML file for Product service of Service Definition

Fig. 18. YAML file for Order service of Service Definition

 27

Fig. 19. YAML file for Database service of Service Definition

Apply the YAML file in Kubernetes to create POD and Services

 After running the kubectl apply commands PODs and services will be created.

Figure 20 shows the PODS that are created.

Fig. 20. Shows all the PODs that are created in the system

 28

Fig. 21. Shows all the Services that are created in the system

 4.4 Application Use Case

There are two significant categories of use cases in this application: the General User

use case, and the Admin user use case. The different use cases of this application have been

depicted in Figure 22.

\

Fig. 22. Interaction diagram for Market Place Application

Market Place
APP

General
User

Admin
User Login

Purchase

Purchase
History

Register

Profile
Update

Find
product

Login

Add
Product

Modify
product

 29

Fig. 23. Use case for the application

 30
4.4.1 Use Case - General User Login

Table 1: General User Login Use Case Description

Description

The Login Use case allows the General user to login to the Market Place App

Steps:

1. Enter the username in the login screen

2. Enter the password in the login screen

3. Once the username and password are validated user is displayed a success screen. Failed

login stays on the login page

Exception:

3.a. User entered an incorrect username or password

3. b. User aborts and starts with the main landing page again.

Alternate Flow:

1. a User enters a different username.

2. b. The user enters a different password.

 31
4.4.2 Use Case - General User purchase

Table 2: General User purchase Use case Description

Description

The purchase Use case describes the purchasing of items in the Market Place APP

Steps

1. The user selects one or more products from the displayed list of products

2. The user selects the cart icon to proceed to checkout

3. Users can decrease the number of selected products

4. Users can see the amount purchased in the cart icon

5. Users can dismiss the selected products and go back to the main page

6. Users can proceed with the purchase and order of products.

 Exception:

2. a User needs to be logged in to make the transaction

2. b User performs the login process and proceeds to checkout

Alternate flow:

6. a User can dismiss the product selection

6. b User goes back to the main landing page and re-selects products

 32
4.4.3 Use Case - General User Register

Table 3: General User Register Use case Description

Description

The Register use case describes how a user can sign up for the Market place application

Steps

1. The user selects the signup option on the main page

2. The user then enters the username and password

3. If the entered username is unique a new login is created for the user

4. The user lands on the logged-in page

Exception:

3. a User enters a user id that already exists.

3. b User is given an error message and asks the user to choose a different id.

Alternate flow:

1. a User reenters a unique username

1. b. The user lands on the logged-in page.

 33
4.4.4 Use Case - General User Update Profile

Table 4: General User Update Profile Use Case Description

Description

The update profile use case allows the logged-in user to modify the user profile

Steps:

1. Logged-in users can select the “Profile” option

2. The profile page loads with existing profile data

3. The user can update any of the existing data

4. The new data will be saved

Exception:

3.a. User tries to modify the username

3. b System does not allow to modify username.

4.4.5 Use Case - General User Purchase History

Table 5: General User purchase History Use case Description

Description

The purchase history use case describes the past purchases made by the logged in user

Steps

1. Logged in user selects the “purchase” option

2. The list of all past purchases made by the user is displayed on the page

Exception:

2. a System error occurs, and no list is returned. The user returns to the main page

 34
4.4.6 Use Case - Admin User Login

Table 6: Admin User Login Use Case Description

Description

The Admin User Login Use case enables the user to log in as Admin

Steps

1. Enter the username in the login screen

2. Enter the password in the login screen

3. Once the username and password are validated user is displayed a success screen. Failed

login stays in the login page

Exception:

3.a. User entered an incorrect username or password

3. b. User aborts and starts with the main landing page again.

Alternate Flow:

1. a User enters a different username.

2. b. The user enters a different password.

 35
4.4.7 Use Case - Admin User Find Product

Table 7: Admin User Find Product Use Case Description

Description

The Admin user Find product use case enables the logged-in admin user to search for a

product by a product id.

Step

1. Admin user selects the “Find Product” option on the screen

2. The user then enters the product id for the search

3. The detail of the products is displayed on the screen

Exception:

3. a There is no product in the system for the searched criteria.

3. b The search returns an empty response

Alternative:

2. a User enters different search criteria.

 36
4.4.8 Use Case - Admin User Add Product

Table 8: Admin User Add Product Use Case Description

Description

The admin user Add Product Use case enables the admin user to add a new product to the

system

Step

1. The logged-in admin user selects the “Add Product” option on the screen

2. A new form opens, directing the user to enter details of a product

3. Once the user enters all the data, the user can press add to store the information

Exception:

3. a System fails to save the data

Alternate flow:

1. a User cancels and returns to the landing page.

4.4.9 Use Case - Admin User Modify Product

Table 9: Admin User Modify Product Use Case Description

Description

The Admin user Modify Product Use case enables the Admin user to make a change to an

existing product on the system

Steps

1. The logged-in Admin user selects on “find a product”

 37

2. User searches the desired product by its product Id

3. The user makes the required changes to the product data

4. The user saves the data

Exception:

4.a The system fails to save the data

Alternate Flow:

1.a User cancels the operation and returns to the landing page.

4.5 Application Screenshots

The different features and functionalities of the Market Place application are present

below in screenshots:

4.5.1 Landing/Main Page

Fig. 24. Landing Screen of The Market Place App

 38
4.5.2 The Login Page

Fig. 25. Login Screen of The Market Place App

4.5.3 Admin Home

Fig. 26. Admin Home Screen of The Market Place App

 39
4.5.4 Add Product

Fig. 27. Add Product Screen of The Market Place App

4.5.5 Find product

Fig. 28. Find the Product Screen of The Market Place App

4.5.6 Modify Product

Fig. 29. Modify the Product Screen of The Market Place App

 40
4.5.7 User Home

Fig. 30. User Home Screen of The Market Place App

4.5.8 User Profile Update

Fig. 31. User Profile Update Screen of The Market Place App

4.5.9 Purchase History

Fig. 32. Purchase History Screen of The Market Place App

 41
Chapter 5: Demonstrating the advantages of Microservice

The previous Chapters have described the Market Place Application using

microservice design architecture. This chapter will highlight the benefits of this architecture.

5.1 Ease of Deployment and Maintenance

 The individual services here, The UI service, Product service, and Order service, have

separate java codes. These services are built individually, and three docker images are

prepared. If any of the business requirements on any of the feature changes, that service is

coded for the new change, a new jar file is generated, and a new docker image is prepared.

Then the new image is deployed via Kubernetes. While performing the above-mentioned

steps, no other services are touched. The change is confined to one service, and a deployment

to the production environment is done only for one service. This simplifies the process of

adopting new change.

5.2 High Elasticity and Selectively Scalable

 Elasticity and Scalability ensure that an application can handle an increased amount

of load at any time. One example of this is, during the holiday season, there will be an

increased number of purchases in e-commerce applications. The purchase feature in the

application will see increased traffic. An elastic application should be able to scale its

resource and provide service to this increased load. If the application is monolithic, then the

whole application needs to scale up. You must add resources like memory disk space and

CPU to handle an increased load. But in a microservice application, selective scaling is

possible. Here only the Order service needs to scale up. This scaling up could be done by

increasing the number of Pods in the Order service. The rest of the services can remain as it

 42
is. So, the number of resources (memory, CPU) needed to handle the same amount of

increased load is comparatively very less.

5.3 Allowing the Co-existence of Different Versions

 In a production-grade application, whenever a new feature is delivered, it is rolled

out to the general public in a phased manner. Doing this in a monolithic application is very

difficult. In a monolithic application, usually, a different cluster is maintained, and into that

cluster, the whole application with the new feature is deployed. As the application is always

bundled in one single war file in a monolithic application, the entire application needs to be

deployed in that cluster. It is similar to having two production environments.

The same could be achieved in microservice design in a relatively more straightforward and

cost-effective manner. The service that has this new feature is versioned as v1 and v2. The

latest and old versions of the service, for example, the product service, are deployed in

production. The gateway will route traffic either to v1 or v2 depending on some condition.

In this design, only one service will have a different version. The rest of the application will

be only one. Thus, it consumes less infrastructure and hence is more cost-effective.

5.4 Better Quality of Service

 Microservice applications are more resilient and provide better service due to

infrastructure failure. Any system will have its share of downtime. Now the important

question here is, what is the impact on the user experience? In a typical monolithic

application, downtime means the application is unavailable to the user, and the user cannot

do anything on the application.

In a microservice application like the one we have discussed here, the Market Place e-

commerce application. The user impact due to downtime is very localized. For example, if

 43
the Order service is down. The user will not be able to purchase any new items on the

application. However, the user would still be able to login into the application and update

user profile-related information. Browse through the product catalogs. In this Market Place

application, each feature is provided via a different microservice. So, when the Order service

is down, the Product and UI service is still up. The application is never down. Thus, providing

a better quality of service.

5.5 Co-development and speed of delivery

In the traditional application, the code base for the entire application is one. Multiple

developers working on a large application become complex. It comes with extra overhead of

code merge, conflict resolution, and regression testing. This adds up complexities to software

development. Making any change to the existing application requires more time and effort.

Sometimes the different features are so tightly coupled that making a change without

impacting the other feature becomes impossible.

 44
Chapter 6: Conclusion

The microservice architecture has evolved from the current business needs and best

practices to solve industry-level problems that an application has to face continuously. With

the proper support from technological advancement in application development, today's

microservice design pattern is an efficient solution. The containerization technique from

Docker and the orchestration mechanism from Kubernetes made this design very popular in

the software industry.

 The main objective of this project was to describe the microservice architecture in

detail and introduce the relevant technology in this field. A hands-on project was created to

replicate all the steps in developing a microservice application. While doing so, I learned the

different benefits of microservices architecture design. I have highlighted some significant

advantages of microservice over monolithic applications.

 There is still scope for further addition to this project. Other features in Kubernetes

could be implemented. DevOps could be involved in automatic deployment. A logging service

could be added for audit and monitoring.

 45
References

[1] “Spring Boot.” Spring.io. https://spring.io/projects/spring-boot (accessed Oct. 10, 2022)

[2] R. V. Rajesh, Spring 5.0 Microservices, 2nd ed. Birmingham, UK: Packt, 2017

[3] J. Carnell, Spring Microservices in Action, Manning Publications, 2017.

https://learning.oreilly.com/library/view/spring-microservices-in/9781617293986/

(accessed Oct. 12, 2022)

[4] J. Krochmalski, Docker and Kubernetes for Java Developers. Packt Publishing, 2017.

https://learning.oreilly.com/library/view/docker-and-kubernetes/9781786468390/

(accessed Oct. 12, 2022)

[5] P. Fisher, “Docker in Motion.” O’reilly. https://learning.oreilly.com/videos/docker-in-

motion/10000MNLV201711/(accessed Oct 15, 2022)

[6] “Learn Kubernetes.” Kubernetes.io. https://kubernetes.io/docs/home/ (accessed Oct

5, 2022)

[7] “Docker.” Docker.com. https://www.docker.com/get-started

 (accessed June 10, 2022)

[8] “JavaScript.” MDN Web Docs. https://developer.mozilla.org/en-

US/docs/Web/JavaScript (accessed June 10, 2022)

[9] “HTML, CSS and JavaScript.” W3Schools. https://www.w3schools.com/ (accessed

June 10, 2022)

about:blank
https://learning.oreilly.com/library/view/spring-microservices-in/9781617293986/
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

	Application Development Using Microservice Architecture
	Recommended Citation

	tmp.1672959608.pdf.otMov

