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Abstract

The phylogenetic signal measures the tendency that species that have recently diverged resemble

more than species that are distantly related. Species’ observable traits (i.e., phenotypic traits) usually

follow the species’ evolutionary history and are thus expectedly correlated. However, violations of

this expectation occur in nature and may provide clues of how species adaptation proceeds (e.g.,

convergent evolution). The phylogenetic signal has thus the potential to help us understand why

species diverge and become different. As such, several indices to quantify the phylogenetic signal

have been proposed over the last 20 years, but while many exist for continuous traits, few were

devised for categorical traits. This is because categorical data pose additional challenges as they do

not allow calculating variances and covariances.

The recently developed delta-statistic is based on the concept of entropy from information theory.

It exploits the uncertainty on the ancestral trait’s probability vectors (inferred via maximum likelihood

or Bayesian inference) to calculate the degree of phylogenetic signal between a categorical trait and

a phylogeny. As several phenotypic traits used in evolutionary research can only be measured in

categories (e.g., presence or absence), the delta-statistic allows testing hypotheses that have been

intractable to date.

Despite delta-statistic being currently in use, it suffers from both computational and statistical

shortcomings that we address in this master project. In particular, we extended the statistic to deal

with more evolutionary histories, accounting for sources of error that are currently being ignored and

optimizing the algorithm to allow its use in large-scale genomic studies. We increase the

accessibility and reproducibility of the delta-statistic, by facilitating its use to the evolutionary

community, namely by introducing an easy-to-use web interface.

Keywords: Statistics; Evolution; Phylogeny; Categorical traits; Bioinformatics

vii



viii FCUP
Assessing traits and phylogenetic signal to unravel the tempo and mode of phenotypic evolution



Contents

Sworn Statement iii

Acknowledgements v

Abstract vii

1 Introduction 1

1.1 Phylogenetic Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Model Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Brownian motion overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 δ Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Discrete evolutionary models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Ancestral character reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Shannon’s entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Null Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Programming language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Materials and methods 11

2.1 Entropy Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Sample collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Phylogenetic inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Entropy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Python conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Straightforward interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Results 17

3.1 Multiple Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Entropy distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ix



x FCUP
Assessing traits and phylogenetic signal to unravel the tempo and mode of phenotypic evolution

3.1.2 Null-Hypothesis distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.3 Probability value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Website Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Conclusion 25

4.1 Future Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 References 27



List of Tables

1.1 Phylogenetic signal statistics table, customized from [3, 9] . . . . . . . . . . . . . . . . 2

2.1 Specie’s scientific name, family and respective trait information that was analyzed in

this project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Resulting values of the calculation [Quantile of ST method / Quantile of MT method] . 20

3.2 Quadrants of the 3-Class trait’s significant level . . . . . . . . . . . . . . . . . . . . . 22

xi



xii FCUP
Assessing traits and phylogenetic signal to unravel the tempo and mode of phenotypic evolution



List of Figures

1.1 In the left column, the plots show 500 replicates of simulated BM with the same starting

value (0) and total time frame (10s) but with different evolutionary rates (A = 0.5; B =

1.5). In the right column, it shows histograms with the distributions of ending values

from the BM simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Representation of a 3-state Markov chain with the transition rates between states (A-B-C) 5

1.3 Representation of the ACR calculated for a 2-class trait, where species (A, B = 1) and

(C = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Representation of the ”Linear version of the Shannon’s entropy” applied to ancestral

nodes of (A) 2 and (B) 3 class discrete traits . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Histogram of the evolutionary rate values of the 1000 markers obtained from a random

uniform sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Visual examination of the CTU2 marker in the Tracer package by analyzing both runs.

A. trace plots, B. density plots and C. box-plots . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Result distribution of the multiple trees method and current method value as a green

line (CTU2) in the 2-class trait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Current method A. and Multiple trees B. null-hypothesis distributions (CTU2) in the 2-

class trait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Time comparison of the δ statistic’s code in Python (VS Code) and R (RStudio),

measured in a 30 species’ random phylogenies with (100, 200, 300, 400, 500, 600,

700, 800, 900, 1000, 10000) iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 A comparison of the entropies obtained in the single phylogenetic tree (ST) andmultiple

trees (MT) methods when analyzing the sample of 1000 markers. . . . . . . . . . . . . 17

3.2 Phylogenetic tree of the genetic marker MBNL1. Phylogeny visualization made with

the FigTree software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Distribution of the entropy results in the different methods and k-class traits, when

analyzing the sample of 1000 markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

xiii



xiv FCUP
Assessing traits and phylogenetic signal to unravel the tempo and mode of phenotypic evolution

3.4 Distribution of the null hypothesis results in the different methods and k-class traits,

when analyzing the sample of 1000 markers. . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Percentage of trees from the null-hypothesis distributions that have a lower than the

one obtained from the methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Image of the home page from the δ statistic web interface implemented in Django. . . 23

3.7 Image of the result page from the δ statistic web interface implemented in Django. . . 24

3.8 Image of the data page from the δ statistic web interface implemented in Django. . . . 24



Abbreviations

ACR Ancestral character reconstruction. xiii, 6, 7, 16

BM Brownian motion. xiii, 3–5

bp base pair. 11

CDS Coding Sequence. 11

CTMC Continuous-time Markov chain. 5

GTR General time reversible. 12

JC Jukes-Cantor. 6

MAP Maximum a posteriori. 7, 14, 15, 17, 18, 25

MCMC Markov chain Monte Carlo. 7, 9, 12, 13, 17

ML Maximum likelihood. 6–8

MPPA Marginal Posterior Probabilities Approximation. 7, 8

xv



xvi FCUP
Assessing traits and phylogenetic signal to unravel the tempo and mode of phenotypic evolution



Chapter 1
Introduction

1.1 Phylogenetic Signal

Phylogenies (i.e., the ancient relationships among a set of species) are frequently adopted to test

past and present relationships between species and their respective adaptive traits. This is a result

of the increasing number of studies reporting more accurate and larger phylogenies, as well as

ecology studies giving important clues on how adaptation operates [1, 2, 3]. Adaptive traits (i.e.,

phenotypic traits) may follow the species’ evolutionary history and are thus expected to correlate

across evolutionary scales. However, violations of this expectation occur in nature and may provide

clues to how fast and unpredicted species adaptation proceeds, as well as further enlighten some

species’ ecological resemblance [4, 5, 6]. This is why it is important to measure the statistical

non-independence among species’ trait values as a result of their phylogenetic similarity since they

cannot be seen as independent data points [7, 3]. An important evolutionary quantity, the

phylogenetic signal, measures the tendency that recently diverged species resemble more than

species that are distantly related [8], and it is frequently used to find signatures of adaptive evolution

or associations between genes and phenotypes that they are likely involved in [9].

The value of the phylogenetic signal in a specie’s attribute can vary depending on the chosen

measure to calculate it [Table1.1]. This has been to be particularly problematic when analyzing

inaccurate phylogenies, low sample sizes, and the absence of evolutionary times (i.e., information of

the branch lengths) [3]. Nonetheless, a high value for the phylogenetic signal usually indicates that

similar trait values are observed in species that are closely related or, equivalently, that share a

more-recent common ancestor [2]. On the contrary, a low phylogenetic signal value indicates either

a random trait distribution across the phylogeny or distantly-related species that possible due to

similar selective pressures, and not by inheritance, developed similar phenotypes (i.e., convergent

evolution) [6][10].

1
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1.1.1 Model Approaches

Several methods have been developed to measure the phylogenetic signal. These include a

multitude of approaches and statistics, which we summarize in Table 1.1. They frequently address

similar ecological and evolutionary questions (e.g., properties of species, their habitat and

phylogenetic relationships) [11, 12, 10], while focusing and quantifying different aspects of the

phylogenetic signal [3].

Year Statistic Approach Null Hypothesis Data Type Ref.

1950 Moran’s I Autocorrelation Permutation Continuous [13]
1999 Abouheif’s Cmean Autocorrelation Permutation Continuous [14]
1999 Pagel’s λ Evolutionary Maximum Likelihood Continuous [1]
2003 Blomberg’s K Evolutionary Permutation Continuous [15]
2010 D statistic Evolutionary Permutation Categorical [16]
2018 δ statistic Evolutionary Bayesian Categorical [9]

Table 1.1: Phylogenetic signal statistics table, customized from [3, 9]

The first indices were originally developed with the intention of detecting the presence of

systematic spatial variation in a mapped variable (spatial autocorrelation), having the purpose of

finding signatures in the distribution [17]. Later on, these were adopted to be used in phylogenetic

analyses [18]. The autocorrelation indices, Moran’s I [13] and Abouheif’s Cmean [14], are based on

summary statistics of correlation. When compared to evolutionary approaches, they show better

robustness to inaccurate phylogenetic information and impose less restrictive assumptions [19, 20].

However, since the statistic under the given model is unknown beforehand, comparing the values

obtained between multiple phylogenetic trees cannot provide quantitative interpretations. On the

other hand, all recent methods use evolutionary approaches that rely on an evolutionary model.

This is extremely beneficial since it allows an easier evolutionary interpretation of character

evolution [21, 22].

Another instance where these methods diverge is in how they generate random trait distributions

with the aim of testing the null hypothesis (no phylogenetic signal). While most analyses numerically

simulate random traits by relying on random permutations of the trait values among the tips of the

phylogenetic tree, the Pagel’s λ [1] and δ statistic [9] can attain it analytically by leveraging previously

made assumptions as a means to create a distribution where the alternative hypothesis is tested [3].

A comparison between the two methods still has not reached a clear conclusion [23, 24].
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Another crucial aspect is the fact that, although several indices to quantify the phylogenetic signal

have been proposed, most were only devised for continuous traits. This is because, following

Pagel’s λ [1], several statistics have their indices directly related to a Brownian motion (BM) model

[25]. Hence, the traits evolve following a random walk along the branches of the phylogenetic tree,

and the variance in the distribution of trait values is directly proportional to the branch length. On the

other hand, since variance and covariance cannot be directly calculated in categorical data, the

number of available alternatives to compute the phylogenetic signal are significantly lower. Two

methods have nevertheless been proposed to overcome this issue:

• D statistic [16] circumvents this problem by defining a trait discretization based on a continuous

trait that evolves under the BM.

• δ statistic [9] uses Shannon entropy for measuring the degree of phylogenetic signal between

a categorical trait and a phylogeny.

Multiple aspects of species’ characteristics can only be explored with categorical traits, but the

phylogenetic signal in these characters is still relatively new and understudied due to the statistical

difficulties in treating this type of data [26, 9].

Nonetheless, it is known that discrete traits are affected heavily by the evolutionary rate, becoming

more pronounced when the rate increases or the number of potential states decreases [27, 28, 29].

The validity of this in continuous traits is something that has recently been heavily questioned after it

was noticed that the evolutionary rate does not impact the phylogenetic signal when the evolutionary

process approximates BM. Furthermore, the analyses of different evolutionary processes show that

the resulting phylogenetic signal value does not seem to be affected by the similarity of these methods

when testing the results in Blomberg’s K [21, 30].
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1.1.2 Brownian motion overview

The BM model, originally developed to describe the motion of particles suspended in a fluid, is a

popular model in comparative biology since it captures the way traits might evolve in basic evolutionary

circumstances. It has very practical statistical properties that make tree analyses and computations

pretty straightforward. Overall, in this model, traits are affected by a lot of extremely small ”forces” that

when combined result in a normal distribution of the trait values regardless of how they are distributed

or what forces caused them [25, 7, 21].

Figure 1.1: In the left column, the plots show 500 replicates of simulated BM with the same starting value (0)
and total time frame (10s) but with different evolutionary rates (A = 0.5; B = 1.5). In the right column, it shows
histograms with the distributions of ending values from the BM simulations.

BM is a simplistic model that can be completely described by only the initial mean trait value that

is seen in the ancestral population and the evolutionary rate parameter, that determines how fast

traits will randomly walk through time and how varied the species could become. Furthermore, it

can be represented simply by a variance-covariance matrix, where the values are proportional to the

branches of species in the phylogenetic tree [Figure 1.1] [31, 10].
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However, a BM model corresponds to a few simple scenarios of trait evolution, not fitting all

biological traits. The phylogenetic signal may also greatly deviate from what the BM predicts,

changing drastically as a result of some evolutionary processes (e.g., genetic drift with different

rates across the tree) [32, 21, 30].

1.2 δ Statistic

As aforementioned, the D statistic is based on the BM to model the evolution of categorical traits,

and thus might be unfitting in some evolutionary scenarios [16, 9]. Therefore, the δ statistic manages

to fill an important void in the literature since it is currently the only method that can accurately calculate

the phylogenetic signal in categorical traits without assuming the BM model.

1.2.1 Discrete evolutionary models

The continuous-time Markov chain (CTMC) model is the usual approach for analyzing the evolution

of discrete traits in trees. These characters can be modeled similarly to how the models of sequence

evolution work (e.g., JC [33], HKY [34], and GTR [35]). The models thus provide a rate matrix that,

instead of defining the nucleotide or amino acid changes, represent the state changes in the character

space [Figure 1.2].

Figure 1.2: Representation of a 3-state Markov chain with the transition rates between states (A-B-C)

Furthermore, through an exponentiation of the instantaneous rate matrix, the probability distribution

of the k-states of a trait can be calculated for any time interval [36].
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The Markov chain model is the most basic model for discrete character evolution, being an analog

of the Jukes-Cantor (JC) [33] model. All of its transitions have the same rate, with the probability of

changing from one state to another depending only on the current state, regardless of their start or

end states. As such, it makes no difference if a lineage has had the feature for a long time or has only

recently evolved it [37, 38]. This approach could be extended by incorporating more complex models

that account for rate variations between characters:

• (a) On one hand, this can be incorporated as a symmetric model, where the rate of change in 2

character states is the same in both forward and reverse.

• (b) On the other hand, a more complex model where every possible type of transition can have

a different rate, (all-rates-different model) can also be incorporated.

1.2.2 Ancestral character reconstruction

For the purpose of calculating the phylogenetic signal, an ancestral character reconstruction (ACR)

of the discrete traits is first necessary. This inference of historical data from measured characteristics

in species [Figure 1.3] is an important application of phylogenetics and is still widely used [39, 40]. The

ACR is done probabilistically, still having some uncertainty regarding the possible state at a certain

ancestral node. Progress is constantly being made by the recent development of efficient computer

techniques and the exponential expansion of computing power. However, numerous challenges still

persist [38].

Figure 1.3: Representation of the ACR calculated for a 2-class trait, where species (A, B = 1) and (C = 2)

The ACR relies on a multitude of factors that need to be carefully considered when analyzing the

data. For instance, the incorporation of known-age historical samples for calibration can help resolve

some problems of reconstructions. Generally speaking, the more evolutionary time passes between

the ancestor and its descendants, the less accurate these reconstructions become. Using this

calibration is shown to improve the ACR compared to only using contemporaneous data [41, 42, 43].

Throughout the years, several methods (Maximum parsimony [44], maximum likelihood (ML) [1,

45, 39] and Bayesian methods [46, 47]) with multiple approaches for ACR have been proposed,
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consequently having different complexity and performance [38, 37]. It is important to note that the

parsimony-based ACR cannot be used to calculate the δ statistic, as it is necessary to produce

probability vectors for the ancestral nodes [9]. Moreover, although this approach is fast, it is not very

accurate, having various problems when compared to the other two methods and lacking versatility

[48, 49, 50, 38].

• ML methods treat character states at the internal nodes as parameters and attempt to provide

point estimates (instead of distributions, like in Bayesian) by using the observed leaf states,

model of evolution (an inaccurate model might drastically compromise the accuracy of ACR)

and phylogeny. Their objective is to try to maximize the probability of the data and, at each node,

all potential ancestral character states are used to determine the likelihood of its descendants

[1].

The most well-known practices to analyze the data are: (a.) calculating marginal ML at each

ancestral node and then choosing the combination of states that gives the highest ML value.

This selection could induce globally inconsistent scenarios because of the independence

between nodes [45, 51, 37]; (b.) or using a more computationally complex method to find the

joint combination of ancestral character states from across the tree that together maximizes

the likelihood of the data. This joint method selects a unique state for every tree node, not

taking into account that multiple scenarios may have similar uncertainties [52, 38].

Additionally, a novel method between the MAP and joint approaches was recently proposed.

This method uses Marginal Posterior Probabilities Approximation (MPPA) [37] and has high

accuracy and robustness.

• Bayesian methods use the likelihood of observed data and a prior distribution (evolutionary

model and the phylogenetic tree) to infer the posterior probabilities of ancestral character

states at each internal node of a given tree. According to some researchers, using a Bayesian

approach and evaluating ancestral reconstructions over many trees to account for uncertainty

in the tree reconstruction should be done [47]. However, this has a high computational cost

and, because of it, cannot be achieved for large data sets [38].

Currently, there are two main approaches: (a.) The Empirical Bayes approach requires both the

evolutionary model parameters and the tree to be known without error, using them to calculate

the probabilities of ancestral states [53]. (b.) The Hierarchical Bayes approach averages all

potential evolutionary trees and models in proportion to how plausible they are by using MCMC,

leading to the need for a much greater computer cost [46].

There are several software packages available dedicated to ACR that are mainly maintained by the
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scientific community, implementing these methods in various programming languages. For instance,

the PastML software can use the above-stated MPPA method in the Python programming language

[37] and the original δ statistic code was applied in the package ape for the programming language

R. This R package uses scaled conditional likelihoods, which, unlike other ML-based methods, might

negatively affect the accuracy [54, 38].

1.2.3 Shannon’s entropy

We now introduce in deeper detail the delta statistic, as it represents the core of this thesis.

After the ancestral discrete characters are estimated for all nodes in the phylogeny, a linear version

of Shannon’s entropy (1.1) is applied to calculate the expected information that is obtained from the

node probabilities in the ancestral traits [9].

eji =

pji , if pji ≤ 1/k

1
1−kp

j
i −

1
1−k , if pji > 1/k

(1.1)

For each of a trait’s states, the linear version of Shannon’s entropy is calculated. This equation

(1.1) is changed to account for the maximum amount of characters that may be contained in a single

trait [Figure 1.4], and it is then implemented so that the maximum value of a state entropy can be

simply calculated as 1/k [9].

Figure 1.4: Representation of the ”Linear version of the Shannon’s entropy” applied to ancestral nodes of (A)
2 and (B) 3 class discrete traits
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The entropy is maximized when all states have identical probability and, on the other hand, when

a state occurrence in a node is certain (i.e., it has probability 1 and all the others 0), the entropy

becomes null. Finally, combining all state entropies in a node, will create a node entropy defined in

the (0, 1) interval [9].

ej =
k∑

i=1

eji (1.2)

1.2.4 Null Hypothesis

In the original approach of the statistic, the node entropies’ beta distribution was used to calculate

the shape parameters α and β and then, they were implemented in an MCMC scheme to obtain

random samples from the posterior distribution [9]. The Beta distribution is often used in Bayesian

inference, describing the distribution of a probability in the (0, 1) interval. As our entropies also varied

in that range, the beta distribution is a suitable option. The delta statistic can then be calculated as

the expected ratio between the obtained posterior distributions of the previously calculated α and β:

δ = E

[
p(β|α, e)
p(α|β, e)

]
(1.3)

In this work, the null hypothesis was obtained by randomly assigning trait values at the tree tips

multiple times and then calculating their entropy distribution. In other words, the whole null distribution

and not just a simple value represented by it, was simulated. This approach was preferred because

it provides a better assessment of the features that are responsible for false positives and negatives.
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1.3 Computation

Currently, computation has become an essential tool to quickly deal with previous time-consuming

procedures and be able to manage the ever-growing volume of available data (i.e. easily obtained in

existing databases [55, 56]). These changes provide an immense opportunity for scientific discovery,

but, especially when there is not an established guide or supportive software to handle data more

easily, computational resources can be difficult to use and feel overloaded [57].

Having access to an easy-to-use interface is an advantage for the currently numerous researchers

without informatics or programming expertise in data analysis. Although this is usually less flexible

than working directly in a programming language, restricting these analyses to only researchers that

can program ultimately leads to a missed opportunity for breakthrough, limiting ideas and/or science

development or, in the worst case, leading to confusion and difficulty in reproducibility of results when

the available data is improperly analyzed [58].

1.3.1 Programming language

There are currently multiple programming languages used in bioinformatics. Each of them has

varying degrees of computing speed, coding flexibility, and memory consumption [59]. Among them,

the programming languages R and Python have been widely used in genomics.

The current code of the δ statistic is implemented in R, an open-source programming language

that has data analysis and visualization as its primary purposes, but, for this project, this code was

converted into Python. Python is the current most popular coding language as measured by both the

TIOBE [60] and PYPL [61] indexes, having also grown the most in the last five years. In addition to

reaching a larger audience, it is actively getting better with each new release, having often changed

the language to improve its syntax and performance.

The use of frameworks in web development is becoming crucial, being used by countless

developers worldwide to build rich and dynamic web applications. Of those, Django is a framework

that uses Python for web development. This framework was chosen because it offers a ton of

high-quality documentation and is highly secure, giving little room for security vulnerabilities by

being constantly updated and kept up to an elevated standard. Additionally, although it mainly

assists in the back-end (server-side, for the website components and server creation), it also helps

the user in the front-end (client-side, improving some visual aspects in the website view) [62].



Chapter 2
Materials and methods

2.1 Entropy Calculation

2.1.1 Sample collection

The OrthoMAM [63], a database of orthologous mammalian markers, was employed to obtain a

group of protein-coding sequence (CDS) alignments. With the aim of obtaining alignments

representative of multiple mammal groups, 30 species whose genomes are particularly well known

were selected based on their varied taxonomy [Table 2.1]. As such, only the genetic markers

containing all of these selected species were considered for further analyses.

Furthermore, to avoid possible biases due to gene length, the alignments were trimmed to 1000

base pair (bp) and, to keep their original data as much as possible, this adjustment was not made in

alignments with more than 2500 bp. After this, markers with resulting sequences consisting mostly of

gaps were also discarded.

Figure 2.1: Histogram of the evolutionary rate values of the 1000 markers obtained from a random uniform
sample.
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Finally, since this project also has the intention of studying if the rate at which new substitutions

arise within a species or lineage influences the estimated δ, the relative evolutionary rate values were

obtained and a uniform random sample of 1000 was collected, represented in Figure 2.1.

2.1.2 Phylogenetic inference

Phylogenetic inference was performed in a Bayesian MCMC framework implemented in RevBayes

[64], a software that allows for the implementation of more complex phylogenetic models, permitting

adapting substitution models to particular biological scenarios.

The samples were analyzed under the general time reversible (GTR) model [35], which assumes

different rates of substitution for each pair of nucleotides and different frequencies of occurrence

of nucleotides. Also, both the discrete gamma model [65] and the possibility of invariant sites [34]

were included with the GTR model. According to the discrete gamma model, the substitution rate

at each site is a random variable, described by a discretized gamma distribution. Additionally, the

possibility of invariant sites enables the substitution rate of a site to be zero. Afterwards, since there

was no strong prior knowledge about the pattern of the relative rates, the GTR model was defined

with a flat Dirichlet distribution (1,1,1,1,1,1), describing equal exchangeabilities between nucleotides.

The MCMC ran with two independent chains for a total of 100000 generations and, to control for

autocorrelation between the sampled parameters, only every 10th iteration was considered for the

estimation.

Although there is not a universally established approach for convergence assessment, the currently

most used methods were used in this project: visual examination of the chain trajectory [Figure 2.2]

and numerical quantification of convergence. Additionally, even though the quantity of discarded

samples as a burn-in has divergent opinions, 15% of samples were discarded [66].

• For the visual examination, the Tracer package [67] was used to assess the reliability of the

MCMC convergence by superimposing the two chains in a trace plot and by checking if they

meander fairly smoothly and overlap each other. The resulting density plots were also checked

to verify if they overlapped well after the burn-in period, and the distribution of values was quickly

inspected [Figure 2.2].

• To check numerically for convergence, the python package ChainConsumer [68] was deployed to

quickly calculate both the Gelman-Rubin statistic [69] (the most popular method for assessing

samples, obtained from running MCMC algorithms, which compares the estimated between-

chains and within-chain variances) and the Gweke statistic [70] (which is based on a test for

equality of the means of the first and last part of a Markov chain), two convergence diagnostics

for Markov chains.
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Figure 2.2: Visual examination of the CTU2 marker in the Tracer package by analyzing both runs. A. trace
plots, B. density plots and C. box-plots

The resulting 8500 sampled trees represent topologies that were visited during theMCMC; however,

they may have been visited several times. We created an exhaustive code that uses the ace package

in R, which compares each topology and determines their frequency. A sample of 1000 trees and

their sample frequency was created for each gene.

2.1.3 Entropy Analysis

To test the newly devised δ-statistic, the characteristic primary diet of the species was arbitrarily

chosen. For the 30 mammalian species in our alignments, we created trait vectors that consisted

of 2-class [Traits.A] (presence/absence of meat in primary diet) and 3-class [Traits.B] (carnivorous,

omnivorous, and herbivorous) traits that were defined based on existing scientific literature collected

by the Animal Diversity Web database [71] [Table 2.1].
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Specie Family Traits.A Traits.B

Ailuropoda melanoleuca Ursidae No Herbivorous
Bos mutus Bovidae No Herbivorous
Camelus bactrianus Camelidae Yes Omnivorous
Canis familiaris Canidae Yes Carnivorous
Capra hircus Bovidae No Herbivorous
Castor canadensis Castoridae No Herbivorous
Cebus capucinus Cebidae Yes Omnivorous
Ceratotherium simum Rhinocerotidae No Herbivorous
Chlorocebus sabaeus Cercopithecidae No Herbivorous
Colobus angolensis Cercopithecidae No Herbivorous
Cricetulus griseus Cricetidae Yes Omnivorous
Enhydra lutris Mustelidae Yes Carnivorous
Eptesicus fuscus Vespertilionidae Yes Carnivorous
Equus asinus Equidae No Herbivorous
Homo sapiens Hominidae Yes Omnivorous
Macaca fascicularis Cercopithecidae Yes Omnivorous
Mus musculus Muridae Yes Omnivorous
Nomascus leucogenys Hylobatidae No Herbivorous
Odobenus rosmarus Odobenidae Yes Carnivorous
Odocoileus virginianus Cervidae No Herbivorous
Orcinus orca Delphinidae Yes Carnivorous
Orycteropus afer Orycteropodidae Yes Carnivorous
Otolemur garnettii Galagidae Yes Omnivorous
Panthera pardus Felidae Yes Carnivorous
Papio anubis Cercopithecidae Yes Omnivorous
Physeter catodon Physeteridae Yes Carnivorous
Rhinolophus sinicus Rhinolophidae Yes Carnivorous
Sus scrofa Suidae Yes Omnivorous
Trichechus manatus Trichechidae No Herbivorous
Tupaia chinensis Tupaiidae Yes Omnivorous

Table 2.1: Specie’s scientific name, family and respective trait information that was analyzed in this project.

Finally, for the purpose of comparing if the δ statistic varies significantly when multiple phylogenetic

trees are accounted for, we compared the estimated entropies under the current method and the

extention proposed in this thesis [Figure 2.3], plus their null distributions [Figure 3.4]:

• Current method: The data uses the maximum a posteriori (MAP) tree and the trait vector.

• Multiple trees method: This method calculates the entropies based on the trait vector and

multiples trees, thus accounting for variations in the species tree. These trees were sampled

from the posterior distribution and their mean entropy value was obtained.
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Figure 2.3: Result distribution of the multiple trees method and current method value as a green line (CTU2)
in the 2-class trait

• Null-Hypothesis with the current method: The data uses the MAP tree, but the trait values

among the tips of the phylogenetic tree are randomly assigned multiple times. It is represented

as a distribution of 1000 data points.

• Null-Hypothesis with the multiple trees method: This distribution is obtained by sampled the

tree from the posterior distribution, but the trait values among the tips of the phylogenetic tree

are randomly assigned in each instance. It is represented as a distribution of 1000 data points.

Figure 2.4: Current method A. and Multiple trees B. null-hypothesis distributions (CTU2) in the 2-class trait
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2.2 Computation

2.2.1 Python conversion

As previously stated, the δ statistic code was converted to the Python programming language to

take advantage of its straightforward code and current fast growth. Array operations were also

implemented using the NumPy [72] library, resulting in more compact and faster reading and writing

of data items. Then, the final code’s velocity was measured to compare it to the existing delta

statistic in R [Figure 2.5].

Figure 2.5: Time comparison of the δ statistic’s code in Python (VS Code) and R (RStudio), measured in a 30
species’ random phylogenies with (100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 10000) iterations

The PastML package is currently available in Python for the ACR. It was chosen to produce

probability vectors for the ancestral nodes and its code was slightly modified and then applied to be

used with the delta statistic.

2.2.2 Straightforward interface

As previously mentioned, we used Django because of its assistance with both the front-end and

back-end which allowed for the swift creation of a website. Additionally, one of the most widely used

CSS frameworks, Bootstrap, was used for the front-end development, contributing to a unified

appearance of the website by providing basic style definitions for all HTML components and

ready-to-use CSS style-sheets. Overall, the website was created using Python, CSS, JavaScript,

and HTML.



Chapter 3
Results

3.1 Multiple Trees

The δ statistic still has some statistical flaws, one of which is the assumption that the phylogenetic

tree’s topology and branch lengths are known. To solve this unaccounted-for source of error, when

calculating the statistic, we also examined the entropy values taking into account the overall

uncertainty of a phylogeny. For that, we calculated δ with several trees (i.e., those that were visited

during the MCMC analyses) and compared its value, as well as its statistical significance, to the

current method, which uses a single tree (i.e., the MAP tree).

3.1.1 Entropy distribution

We calculated the entropy in a 2-class and 3-class trait [Table 2.1] for the single and multiple trees

methods. When comparing both entropies together, we expect that if the entropies under both

methods behave similarly, they fall within the identity line, which is clearly not the case.

Figure 3.1: A comparison of the entropies obtained in the single phylogenetic tree (ST) and multiple trees
(MT) methods when analyzing the sample of 1000 markers.
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When analyzing Figure 3.1, there exists a set of markers that, with the old method had an entropy

close to zero but, this was changed when they were analyzed with multiple trees, increasing the

entropy. A subset of these outliers’ phylogeny was then analyzed and, as expected, these phylogenies

show low posterior clade probabilities for the majority of clades. As such, the MAP does not represent

a likely species past history and the resulting statistics for the entropy are, in a lot of cases incorrect

[Figure 3.2]. As such, when the MAP phylogenetic tree has a high uncertainty value, the single tree

method needs to make more assumptions and selects a possibly wrong phylogeny but, when the

statistic is analyzed through multiple trees, even if low support is verified, some of the alternative

trees might explain the trait resulting in a higher entropy value.

Subsequently, the remaining data indicates that the new technique is more conservative, resulting

in a reduction of the overall gene entropies.

Figure 3.2: Phylogenetic tree of the genetic marker MBNL1. Phylogeny visualization made with the FigTree
software.
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The resulting distribution of entropies changes considerably between the two methods. While

inspecting their resulting distributions, we can see in both cases that the single tree method, when

analyzing a trait vector, gives a fixed point to most of phylogenies, independently of their uncertainty

[Figure 3.3].

Figure 3.3: Distribution of the entropy results in the different methods and k-class traits, when analyzing the
sample of 1000 markers.

In contrast, with the new multiple trees method, its entropy is dependent on multiple possibilities,

shifting the result to a more pragmatic interpretation that is dependent on the phylogeny’s uncertainty

and the similarities between them (close phylogenies might give similar values). Additionally, extreme

values of absolute certainty (Entropy close to 0 or 1), are harder to obtain in this method, needing the

possible trees to match entropy values when analyzing the marker.

3.1.2 Null-Hypothesis distribution

The null distribution is the base for hypothesis testing. To obtain it we randomly assigned character

traits to the tree tips and then calculated the resulting entropy. We did this for the standard method and

for the the multiple trees. We compare the resulting null-distributions in terms of their 5%, 25%, 75%

and 95% and median. The expections is that if these statistics are similar, then the null distributions

generated by these two methods are similar.
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Since the quantiles show very similar values across methods [Table 3.1], we conclude that the null

distribution might not be responsible for differences in the detected target between the methods and,

instead, this variation might be because of the way we calculate the δ statistic. As such, both methods

can be used to calculate the null-hypothesis, and this would result in similar values.

Quantile divided
2-class
mean

2-class
median

3-class
mean

3-class
median

5% 1.0170 0.9688 0.9778 0.9761
25% 0.9750 0.9764 0.9861 0.9874
50% 0.9997 0.9999 0.9944 0.9959
75% 1.0000 1.0000 0.9999 1.0000
95% 0.9976 0.9985 1.0002 1.0003

Table 3.1: Resulting values of the calculation [Quantile of ST method / Quantile of MT method]

Additionally, when analyzing their distribution, their results also seem to be relatively congruent, not

changing much except the quantile 5% that, in the 2-class trait, seems to vary considerably among

methods but a trend was not observed [Figure 3.4].

Figure 3.4: Distribution of the null hypothesis results in the different methods and k-class traits, when
analyzing the sample of 1000 markers.
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The left quantiles determine the significance of the obtained entropy values. The quantile 5% is

especially important since it is generally the limit to reject the null hypothesis. To better understand this

distribution and its general tendencies, we analyzed the overall probability that the obtained entropy,

calculated for the real data, was not due to chance.

3.1.3 Probability value

It is important to ascertain if the results obtained under the null hypothesis are not the product of

chance. To determine that, we calculate the probability p of observing the empirical entropy value in

the null distribution. If it falls in the left region of this distribution, then the entropies are smaller than

expected by chance, and the character has phylogenetic signal. Thus smaller the values of p, the

more associated the character is with the phylogeny.

As such, the number of trees from each genetic marker’s null-hypothesis distribution that had a

value under the approaches’ (mean for the multiple trees method and, in the MAP method, only a

value existed) was noted.

Figure 3.5: Percentage of trees from the null-hypothesis distributions that have a lower than the one obtained
from the methods
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Most of the results, when analyzed by the new method, tend to approximate the significance level,

by having a lower value. Although we can clearly see this in the 3-class trait distribution, since the

lower values are mostly agglomerated, an additional table was created with a 5% significance level

to compare them more thoroughly [Table 3.2].

Number of points
3-Class trait

MT <5%
[ 893 ]

MT >5%
[ 107 ]

ST <5%
[ 695 ]

688 7

ST >5%
[ 305 ]

205 100

Table 3.2: Quadrants of the 3-Class trait’s significant level

The results indicate that, by considering the statistical uncertainty present in the phylogenetic trees,

we are gaining more biological information and can better explain the data. Consequently, the new

method is stronger at assessing phylogenetic signal.

A gene-specific feature that we have tested was the evolutionary rate. Genes evolve differently

by incoporating substitutions at different rates; this is expected to have an impact on the estimated

entropies. However, no correlation was found between the evolutionary rate and the two methods we

employed to measure the entropies. This might indicate that, independently from its values, the new

method does not distort the results.
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3.2 Website Interface

A web interface was created to increase the accessibility and reproducibility of the δ statistic,

facilitating its use to the evolutionary community. The code of this project was made available at the

Github repository: https://github.com/diogo-s-ribeiro/delta-statistic

Figure 3.6: Image of the home page from the δ statistic web interface implemented in Django.

The home page [Figure 3.6] was created with the objective of being a core page that has direct

access to multiple relevant links. Additionally, an interactive sidebar was implemented with JavaScript

for the user’s easier navigation across all the web pages.

Furthermore, a dedicated page with the sole aim to calculate the δ statistic was implemented. The

user can set the parameters, tuning the overall calculation of the statistic to his preferences and, after

this adjustment is made, the website is automatically re-directed to the result page, where the final

results are presented [Figure 3.8].
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Figure 3.7: Image of the result page from the δ statistic web interface implemented in Django.

Finally, in the web interface, these results can be added to a data table that stores the calculated

δ statistics and their respective parameters. These instances can be easily inserted, deleted and

updated. The totality of the result table’ metadata, can also simply be download in this page.

Figure 3.8: Image of the data page from the δ statistic web interface implemented in Django.



Chapter 4
Conclusion

In this thesis, we improved computational and statistical shortcomings of the widely used statistic

of phylogenetic signal, the δ statistic.

We expanded the statistic to allow it to deal with stringent assumptions regarding the phylogenetic

history of phenotypic traits. The δ statistic was extended to consider the uncertainty present in the

MAP phylogenetic tree by instead analyzing multiple possible evolutionary histories. As such, the

new entropies reflect several hypothetical phylogenies in a more practical manner, and thus providing

a statistical sounder approach for measuring entropy and assess phylogenetic signal with increased

accuracy.

Computational changeswere alsomade, improving on one hand the accessibility and reproducibility

with the implementation of a easy-to-use interface and, on the other hand, optimizing the algorithm’s

code to allow its use in current day genomics. Both of these aspects are very important nowadays.

By implementing the web interface, we allow numerous researchers without informatics or

programming expertise in data analysis to keep up to date with current methods, which are only

available through computational means. This consequently expands the possibility of a science

breakthrough and reduces the risk of incorrectly analyzing data.

Furthermore, science nowadays generate an ever-increasing amount of genomic data in both

quantity and quality. As such, fast and accurate methods are a must when dealing with large-scale

genomic datasets. Thus, more efficient computational implementation of these statistics will

considerably expedite the interpretation of genomic data in evolutionary biology.
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4.1 Future Remarks

Despite strengthening computation and statistics limitations of the δ statistic, several improvements

can still be considered and tested in the future.

For instance, testing different types of entropy might be beneficial to see if the resulting values in

the δ statistic change significantly when compared with each other.

Additionally, in the future, if the null hypothesis is obtained through a mathematical way, a lot of

time and computational power that is currently dedicated to obtaining these distributions through

permutations, can be saved. Currently, this step is the most time-and resource-consuming.

Finally, an implementation of the developed web interface on a stable and fast web server is desired,

as this would speed up the calculation of this new statistic and will allow its use even more efficiently

than the current implementation.
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