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Abstract

This thesis presents a proof system for reasoning about execution time bounds for a core imperative
programming language. We define an axiomatic semantics with assertions on properties related
to execution time. Proof systems are defined for three different scenarios: approximations of the
worst-case execution time, exact time reasoning, and less pessimistic execution time estimation
using amortized analysis. We define a Hoare logic for the three cases and prove its soundness
with respect to an annotated cost-aware operational semantics. Finally, we define a verification
conditions (VC) generator that generates the goals needed to prove program correctness, cost, and
termination. Those goals are then sent to the Easycrypt toolset for validation. The practicality
of the proof system is demonstrated with an implementation in OCaml of the different modules
needed to apply it to example programs. Our case studies are motivated by real-time and
cryptographic software.
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Resumo

Esta tese apresenta um sistema de prova para raciocinar sobre limites de tempo de execução para
uma linguagem de programação imperativa. Definimos uma semântica axiomática com asserções
sobre propriedades relacionadas com o tempo de execução. Os sistemas de prova são definidos
para três cenários diferentes: aproximações do tempo de execução para o pior caso, cálculo de
tempo exato e estimativa de tempo de execução menos pessimista usando análise amortizada.
Definimos uma lógica de Hoare para os três casos e provamos sua correção em relação a uma
semântica operacional com capacidade para cálculo de custos de execução. Por fim, definimos um
gerador de condições de verificação (VC) que gera as condições necessárias para provar a correção,
custo e terminação do programa. Estas condições são enviadas para uma ferramente de provas,
como o EasyCrypt, para validação. A praticalidade do sistema de prova é demonstrada com
uma implementação em OCaml dos diferentes módulos necessários para aplicá-lo a programas
exemplo. Os nossos casos de estudo são motivados por software criptográfico e de tempo real.
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Chapter 1

Introduction

Semantics-based approaches to program verification usually belong to two different broad classes:
1) partial correctness assertions expressing relations between the initial and final state of program
variables in the form of pre and postconditions, assuming that the program terminates; and 2)
total correctness properties, which besides those assertions which specify claims about program
behavior, also express program termination.

However, another class of properties is fast growing in relevance as a target for program
verification: resource consumption when executing a program. The term resource is used broadly:
resources can be time used to execute the program on a particular architecture, memory used
(stack or heap) during program execution, or even energy consumption. Resource consumption
has a significant impact in different specific areas, such as real-time systems, critical systems
relying on limited power sources, and the analysis of timing side-channels in cryptographic
software.

A proof system for total correctness can be used to prove that a program execution terminates,
but it does not give any information about the resources it needs to terminate. In this dissertation,
we want to study extended proof systems for proving assertions about program behavior that
may refer to the required resources and, in particular, to the execution time.

Proof systems to prove bounds on the execution time of program execution were defined
before in [5, 22]. Inspired by the work presented in [5] our goal is to study inference systems that
allow proving assertions of the form {φ}C{ψ|t}, meaning that if the execution of the statement C
is started in a state that validates the precondition φ then it terminates in a state that validates
postcondition ψ and the required execution time is at most of magnitude t.

1.1 Goals and Contributions

Our main goal is to define an axiomatic semantics-based proof system for reasoning about
execution time bounds for a core imperative programming language. Such a system would be

1



2 Chapter 1. Introduction

useful not only to understand the resource necessities of a program but also it could be applied
to cryptographic implementations to prove the independence of resource usage from certain
program variables. This high-level goal translates into the following concrete objectives:

1. Study axiomatic systems. This will further our knowledge in the field and allow us to
understand how to define our logic for resource analysis.

2. Study amortized analysis so we can understand how to apply amortization to a proof
system to refine cost-bound estimation of while loops.

3. Analyze the state-of-the-art to understand what has already been developed to analyze
resource consumption and the main limitations found.

4. Develop a sound logic capable of verifying correction, terminations, and bounds on resource
consumption using a simple imperative programming language.

5. Create a tool based on our logic, capable of verifying time bounds, correction, and
terminations, for example-problems.

6. Apply this logic to analyze the time complexity of classic algorithms.

The main contribution of this paper is a proof system that can verify resource assumptions
in three different scenarios:

1. Upper bounds on the required execution time. This is mostly an adaptation of previous
work in [5].

2. Amortized costs denoting less pessimistic bounds on the execution time.

3. Exact costs for a fragment of the initial language with bounded recursion and a constrained
form of conditional statements.

The two last scenarios are a novel contribution of our system, and we treat them in a unified
way to enable their integrated use.

Assertions on program behavior that establish upper bounds on execution time may be useful
for general programming, where one wants to prove safety conditions concerning the worse case
program complexity. As in prior approaches, the tightness of the bound is not captured by the
logic, and there is often a trade-off between the tightness of the proved bound and the required
proof effort.

Proofs that leverage amortized costs may be used when trivially composing worst-case run-
time bounds results in overly pessimistic analyses. This is particularly useful for algorithms
where some components imply a significant cost in resources, whereas other components are not
as costly. With amortized costs, we may prove assertions about the aggregate use of costly and
less costly operations over the whole algorithm execution.
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Finally, the third class of assertions denoting exact costs are useful in scenarios where the
approximation of execution time is not enough to guarantee safety, as it happens for critical
systems and real-time programming. Moreover, proving that the exact execution time of a
program is an expression that does not depend on confidential data provides a direct way to
prove the absence of timing leakage, which is relevant in cryptographic implementations. We
must restrict the programming language to guarantee the ability to prove exact costs. Thus, in
this third scenario, programs have bound recursion, and conditional statement branches have to
have the same cost.

Before defining our proof system, we defined an operational semantics capable of computing
the execution time for expressions and statements during program execution. This cost-aware
operational semantics is another contribution of our work, and it is used to prove the soundness
of our inference system.

A third contribution of this work, which shows the practicality of our proof system, is an
implementation in OCaml of the different modules needed to apply it to example programs. We
then present several application examples motivated by real-time and cryptographic software.

1.2 Thesis Structure

This thesis is organized as follows:

• The first chapter - Introduction - gives a context of our work in the field, the motivation
for this project, our main goals, our contributions, and how the document is organized.

• The second chapter - Background - elaborates on the theoretical results used in the basis
of our work and needed to understand our definitions and results.

• The third chapter - Related Work - presents an analysis of the literature on static resource
analysis, from type-based systems to axiomatic semantics systems.

• The fourth chapter - Cost Aware Program Logic - presents our language definition, our
original logic for upper bound estimation, the respective Verification Condition Generator
(VCG), and some illustrative examples.

• The fifth chapter - Amortized Costs - briefly introduces the field of amortized analysis
and presents an extension to the logic and VCG from chapter 4, with the use of amortized
analysis to improve the upper-bound estimation.

• The sixth chapter - Exact Logic - presents a variation to our language and an extension
to our logic that allows for the derivation of the exact cost of a program.

• The seventh chapter - Implementation and Experimental Results - shows the
architecture of the tool developed, as well as some implementation details and practical
results.
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• The eighth chapter - Conclusion and Future Work - reflects on the main conclusions
from our research and developed work and presents some goals to further extend and
improve our project.



Chapter 2

Background

In this chapter, we provide an overview of the field of formal verification and some of the
most relevant theoretical results that are the basis of our work. We start by giving historical
background on the field of formal verification. Here we will present results, such as the ones
achieved by Floyd and Hoare, used as the base of our definitions. We will also define concepts
fundamental to understanding the work presented in this dissertation.

2.1 Historical Background

As computers became more powerful, programs also became longer and more complex. When
programs were still relatively small, flowcharts or extensive testing was enough to prove a
program’s functionality. But programs quickly started being so complex that these methods
became unreliable and more prone to error.

At the beginning of the second half of the 20th-century, experts started to find vulnerabilities in
public distributed software. Since then, the use of computational systems has grown exponentially,
and so did the number of vulnerabilities and their impact. A simple error might have drastic
consequences, such as a leak of confidential information, the crash of critical systems, and direct
loss of assets.

This problem proved to be enough reason to start thinking about a more reliable way to
guarantee the properties of a program and develop tools that help verify these properties.

Formal Verification refers to using mathematical principles to prove the correction of a given
specification of a program. It is hard to pinpoint where it all started, but the works of Robert
Floyd [11] and Tony Hoare [14] were undoubtedly pioneers in the field, and their definitions are
still the base of verification tools used today.

5



6 Chapter 2. Background

2.2 Semantics

When defining programming languages, we want a way to be capable of reasoning about what
programs are doing. The syntax describes the grammatical rules we must follow to write a
program in a language. The syntax allows us to distinguish between languages and identify a
program’s language. But if we want to understand what that program is doing, we need to look
at its semantics. Semantics is a way to make sense of the meaning of a program and understand
what it is trying to accomplish.

There are multiple strategies to analyze the meaning of a program. The most popular ones
are operational, denotational, and axiomatic semantics. Operational semantics focus on what
steps we take during the program’s execution. In denotational semantics, we do not care about
the "how" but only about "what" the program is doing. In axiomatic semantics, we are concerned
about evaluating the satisfability of assertions on the program and its variables. We will go more
in-depth on how operational and axiomatic semantics work.

2.2.1 Operational Semantics

Operational semantics describes the meaning of a program by specifying the transitions between
states of an abstract state machine. As we mentioned, unlike with denotational semantics, here
we are concerned about how the machine changes states with the execution of a statement.

There are two styles of operational semantics

• Small-step or Structural Operational Semantics

• Big-step or Natural Semantics

In Structural Operational Semantics or Small-step Semantics, we are concerned about every
individual transition we take throughout the program’s execution. In Natural Semantics or
Big-step semantics, we want to understand how we transition from the initial to the final state.
We are concerned about a high-level analysis of how the machine state changes and not about
each individual step.

2.2.2 Axiomatic Semantics (Hoare Logic)

In 1967 Floyd specified a method that would allow proving properties on programs, such as
correctness, equivalence, and termination [11]. They achieved this by representing programs as
flowcharts and associating propositions to each connection on the flowchart. The proof is done by
induction on the number of steps. If an instruction is reached by a connection whose proposition
is true, then we must leave it with a true condition as well. In 1969 Hoare wrote a paper where
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they extended Floyd’s logic to prove properties on a simple imperative program [14]. In this
paper, they defined what we now call Hoare (or Floyd-Hoare) triples.

Definition 1 (Hoare Triples). A Hoare triple is represented as

{P}Q{R}

and can be interpreted as "if the assertion P is true before we run program Q, then assertion R

will be true when the program ends".

Notice this definition does not offer guarantees over termination. Executing program Q from
a state validating P , does not have to halt. As long as whenever it does the final state validates
R. We call assertions in the form {P}Q{R} partial correctness assertions.

Using this definition Hoare specifies a proof system with a set of axioms and inference rules,
which allow to prove assertions on any program written in this language. A derivation on this
proof system is called a theorem and is written as ⊢ {P}Q{R}.

As an example, let us look at the assignment axiom. Consider an assignment to variable x of
an expression a in the form

x := a

If an assertion P is true after executing the assignment (when variable x takes the value of
expression a) then it has to be true before the assignment if we replace any mentions of x in P
by a. This is usually represented as P [a/x]. Therefore the assignment axiom is written as

{P [a/x]} x := a {P}

If, in addition to proving a program specification is correct, we also want to prove the program
always halts, we are looking for Total Correctness.

Definition 2 (Total Correctness). A total correctness assertion is represented as

[P ]Q[R]

where P and R are assertions and Q is a program. If we execute Q from a state that satisfies P
program Q will terminate and the final state will satisfy R.

partial correctness + termination = total correctness

Total correctness is harder to prove than partial correctness and not always possible. But it
also gives a stronger guarantee about a programs behavior.

We consider two properties on this proof system, soundness an completeness. Soundness
ensures our proof systems generates valid partial correctness assertions. Completeness ensures
that our system is capable of deriving every valid assertion.
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Definition 3 (Validity). We say an assertion {P}Q{R} is valid if it is true for all possible
states.

∀σ ∈ Σ⊥. σ |= {P}Q{R}

Or we can simply represent it as
|= {P}Q{R}

Definition 4 (Soundness). Our proof system is sound if every rule preserves validity. In other
words, for any partial correctness assertion {P}Q{R}

if ⊢ {P}Q{R} then |= {P}Q{R}

Proof. Soundness is proved by structural induction on the statement Q.

Definition 5 (Completeness). A proof system is complete if every true assertion {P}Q{R} can
be proved by our system.

if |= {P}Q{R} then ⊢ {P}Q{R}

Proving completeness is not as trivial and most of the times not possible. The completeness
of the proof system presented by Hoare was established by Cook in 1978 [9]. In this paper he
presents a proof of relative completeness, that is, assuming our assertion language is complete
then the logic presented by Hoare is also complete.

2.3 Verification Conditions Generator

We now have the necessary notation to specify the behavior of a program. Hoare’s set of axioms
and rules allows proving that program’s said behavior. Manually proving these properties is not
only long and tedious but also prone to error. We are missing a mechanized solution we could
apply to any program to guarantee its validity.

Dijkstra defined the weakest precondition algorithm in is 1976 book "A Discipline of
Programming" [10].

Definition 6 (Weakest Precondition). The weakest precondition is the simplest condition,
necessary and sufficient to guarantee the post-condition is true when the program terminates. We
use the notation wp(Q,R) where Q is a statement and R is a post-condition.

|= {P}Q{R} iff P → wp(Q,R)

Let us consider as an example the statement Q ≡ x := y+ 2 and we want to prove R ≡ x ≥ 0
is true after executing Q. The weakest precondition wp(Q,R) would say that as long as y ≥ −2
is true before executing statement Q, then R will be true after execution.

In 1979, JC King presents the first mechanized algorithm to automatically verify the
correctness of a program [19]. His work was based on the definitions provided by Floyd [11] and
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Manna [21]. In more recent implementations this algorithm is usually based on Hoare’s definition
of correctness and it is called a Verification Condition Generator (VCG). This algorithm makes
use of the weakest precondition function. Given a Hoare triple {P}Q{R}, for the program Q to
be correct we must guarantee that P → wp(Q,R) is true. This is the condition that needs to be
proved in order to guarantee correctness. If our language contains loops we need to satisfy extra
conditions, including the preservation of the loop invariant. The loop invariant is an assertion
that is satisfied before and after every execution of the loop’s body.

Definition 7 (Verification Condition Generator). A VCG is an algorithm that when applied to
a Hoare triple returns a set of Verification Condition (VC). The Hoare triple is derivable in our
proof system, if and only if all the generated conditions are valid.

|= V CG({P}Q{R}) iff ⊢ {P}Q{R}

Theorem 1 (Soundness of VCG). |= V CG({P}Q{R}) =⇒ ⊢ {P}Q{R}.

Proof. By induction on the structure of Q.

Theorem 2 (Completness of VCG). ⊢ {P}Q{R} =⇒ |= V CG({P}Q{R}).

Proof. By induction in the derivation of ⊢ {P}Q{R}.

Returning to our last example where wp(x := y + 2, x ≥ 0) = y ≥ −2 let us consider the
partial correctness assertion {y = 0}x := y + 2{x ≥ 0}. Since in this case the program does not
contain any loops there is only one verification condition that needs to be satisfied in order to
prove correctness: (y = 0) → (y ≥ −2). Since this VC is valid, we know our program is correct.





Chapter 3

Related Work

There has been increasing interest in the field of static resource analysis. Knowing bounds on
resources or rough estimates of resource consumption can help us optimize embedded software
and real-time systems.

This chapter briefly describes some of the most relevant work on resource estimation. We
divide the chapter into sections according to the methodology used to prove or infer resource
bounds. We also compare the literature with the work presented in this dissertation and show
the relevance of the work we developed.

3.1 Axiomatic Semantics Systems

One way of proving bounds on a program ’s resources is by using axiomatic semantics. Other
works have already implemented systems that use axiomatic semantics for resource analysis,
which differ from our work in multiple ways, from the paradigm of language used to the precision
of the derived bounds. This section explains some of the most relevant work in the literature
that inspired our definitions. We further subdivided this literature into two categories: classical
cost analysis and amortized cost analysis.

3.1.1 Classical Cost Analysis

There is already some work using derivations on the logic presented by Hoare [14] for resource
analysis. Some estimate orders of magnitude, while others use a more detailed annotation to
automate the process but lack ways of optimizing the bounds.

One of the first and still one of the most relevant works on this topic is the one presented by
Nielsen [22, 23]. The author defines an axiomatic semantics for a simple imperative programming
language in this work and extends Hoare’s logic so that the proof system would be capable of
proving the magnitude of worst-case running time and termination. This system is also proven

11
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sound. Even though this work operates on a similar imperative language to the one we defined,
it lacks the precision our logic provides since it only allows proving order-of-magnitude.

In 2014, Carbonneaux et al. [7] presented a system that verifies stack-space bounds of compiled
machine code (x86 assembly) at the C level. That is, it derives bounds during compilation from
C to assembly. They developed a quantitative Hoare logic capable of reasoning about resource
consumption. This work is an extension of the CompCert C Compiler [20]. Coq was used to
implement and verify the compiler. The work by Carbonneaux focuses on the compilation from
C to assembly using quantitative logic, which does not serve the same purpose we are trying to
achieve. With our work, we can prove tight bounds on imperative programs using an assisted
proof system, where the user can help make the bounds as precise as possible. Also, how default
constructors’ costs are defined makes our work easy to adjust for a system with different resource
usage.

In 2018, Kaminski et al. defined a conservative extension of Nielsen’s logic for deterministic
programs [22, 23] by developing a Weakest Precondition calculus for expected runtime on
probabilistic programs [18]. Again this work is largely automated, which differs from our user-
assisted approach. Since it reasons about probabilistic programs, it faces other challenges than
the ones we are interested in this work.

In 2021 a paper was released extending the logic of EasyCrypt [5]. EasyCrypt is an interactive
tool created to prove the security of cryptographic implementations. One of its core concepts is a
set of Hoare Logics, which allow proofs on relational procedures and probabilistic implementations.
In this paper, the authors propose an extension to the EasyCrypt tool, allowing to prove properties
on the cost of a program. To achieve this, they extended the existing logic to include cost rules.
They also implemented a way to define the cost of custom operators. Our work operates on
a subset of EasyCrypt’s language, but we extended the logic to use the potential method of
amortized analysis, increasing the accuracy of the generated bounds.

3.1.2 Amortized Cost Analysis

We will now present some of the literature that, in addition to using axiomatic semantics for
static cost analysis, also uses amortized analysis to increase the accuracy of the bounds.

Carbonneaux et al. [8] continued their previous work [7] on deriving worst-case resource
bounds for C programs, but they now implemented a system that uses amortized analysis and
abstract interpretations.

In [13], Haslbeck and Nipkow analyze the works of Nielson[23], Carbonneaux et al. [7, 8] and
Atkey [3] and prove the soundness of their systems. In this paper, they implement Verification
Condition Generators based on Nielsen’s logic and Carbonneaux’s Logic, proving it sound and
complete. They compare all three methodologies and explain some of the limitations of these
systems.
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3.2 Type-Based Systems

While our system uses a Hoare logic to prove upper bounds on program cost, many existing
systems are type-based. Usually, these systems use type inference and type size/cost annotation
in order to be able to analyze resource usage statically. Even though these works highly differ
from ours, we will briefly mention some of the most relevant works in the field.

In [24], the authors present a proof system for cost analysis on functional programs using
a fine-grained program logic for verifying relational and unary costs of higher-order programs.
The paper [4] presents a fully automated methodology for complexity analysis of higher-order
functional programs based on a type system for size analysis with a sound type inference procedure.
Hoffman and Jost, [17] defined a type system capable of analyzing heap space requirements
during compilation time based on amortized analysis. This work was limited to linear bounds in
the size of the input, so they later extended it to polynomial resource bounds [15].

In 2017, Hoffman et al. [16] developed a resource analysis system capable of proving worst-case
resource bounds. This resource is a user-defined input and can be anything from time or memory
to energy usage. This work is an extension of their previous work in Automatic Amortized
Resource Analysis (AARA), where they used amortized analysis to derive polynomial bounds for
the first time. Their proof system is a type system with inductive type, refined from OCaml’s
type system.

Atkey [3] presents a type-based amortized resource analysis system adapted from Hofmann’s
work to imperative pointer-manipulating languages. They achieve this by implementing a
separation logic extension to reason about resource analysis.

Serrano et al. [25] introduced a general resource analysis for logic programs based on sized
types, i.e., types that contain structural information and lower and upper bounds on the size of
the terms. They achieved this by using an abstract Interpretation Framework.

In [26], the authors develop a type-based proof system capable of automatically and statically
analyzing heap allocations. This work is an extension of Hoffman’s work for a lazy setting.
Vasconcelos et al. [28] defined a type system capable of predicting upper bounds on the cost of
memory allocation for co-recursive definitions in a lazy functional language.

3.3 Other Proof Systems

Some other works on static estimation of resource bounds use other methodologies other than
axiomatic semantics or type theory. In a 2009 paper, the tool COSTA is presented [1]. COSTA
is a static analyzer for Java bytecode. It infers cost and termination information. It takes a cost
model for a user-defined resource as input and obtains an upper bound on the execution time of
this resource.
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In [12] they compute symbolic bounds on the number of statements a procedure executes in
terms of its input. They use the notion of counter variables and an invariant generation tool to
compute linear bounds on these counters. These bounds are then composed to generate a total
non-linear bound.

Brockschmidt et al. [6] uses Polynomial Rank Functions (PRF) to compute time bounds.
Then these bounds are used to infer size bounds on program variables. They consider small parts
of the program in each step and incrementally improve the bound approximation.



Chapter 4

Cost Aware Program Logic

In this chapter, we will focus on our first goal of formally verifying the worst-case execution time
of imperative programs. To achieve this, we specify a simple while language with annotations.
We first define an operational semantics capable of computing the execution time. Having this,
we define a cost logic, which we use to prove correctness, termination, and worst-case execution
time. In the last section of this chapter, we present a Verification Condition Generator (VCG)
algorithm for our logic. Practical results using this algorithm definition are shown in chapter 7.

4.1 Annotated While Language

We start by defining a core imperative language (IMP) with the following syntactic structures:
numbers, booleans, identifiers, arithmetic expressions, boolean expressions, statements, and
assertions. To simplify the presentation and explanation of these structures we will use meta-
variables to refer to elements in these sets: n for numbers, x for identifiers, a for arithmetic
expressions, b for boolean expressions, S for statements, and P,Q for assertions.

Numbers and Booleans We consider numbers, to be the usual set of signed decimal numerals
for positive and negative integer numbers. Our boolean set is defined as {true, false}.

Arithmetic Expressions Arithmetic expressions are defined by the following rules

a ::= n | x | x[a] | a1 + a2 | a1 − a2 | a1 ∗ a2 | a1/a2 | a1
a2 |

a1∑
x=n

a2

Boolean Expressions Similarly to arithmetic expressions, booleans expressions are defined as

b ::= true | false | b1 = b2 | b1 ̸= b2 | b1 < b2 | b1 > b2 | b1 ≤ b2 | b1 ≥ b2 | ¬b | b1 ∧ b2 | b1 ∨ b2

15
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Statements Finally, we define the following statement rules:

S ::= skip | x = a | x[a1] = a2 | if b then S1 else S2 done | while b do S done | S1;S2

An example of a simple program in our language is shown in figure 4.1, where we note
the time annotation on the right-hand side of the post-condition. For now, let us ignore the
annotations inside {}, they will be explained later in section 4.3.

{r = x ∧ q = 0 ∧ y > 0 ∧ x ≥ 0}
while y <= r do

r = r − y ;
q = q + 1

end

{x = r + y × q ∧ r < y | 20x+ 5}

Figure 4.1: Division algorithm implemented in IMP.

4.2 Operational Semantics

Now that we have defined the syntax of our language we need to set semantic rules that will
give the meaning of a program. In order to achieve this, and since our language has variable
declarations, we first need to define the notion of state. A state can be defined as a function that
given a variable will return its value.

State : var → int

A variable is defined as either an identifier or a position in an array.

var ::= x | x[n]

Thus, writing σ x will specify the value of variable x in state σ.

4.2.1 Semantic of Expressions

In order to evaluate arithmetic expressions, we define a semantic function A which will receive
two arguments, an arithmetic expression and a state.

A : aexp → state → int

Writing AJaKσ will return the value of evaluating expression a in state σ. The function is
defined in figure 4.2.

Similarly, we define a semantic function B that, given a state, will convert a boolean expression
to truth values.

B : bexp → state → bool

In figure 4.3 we define B using the previous definition of A.
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AJnKσ = n

AJxKσ = σ x

AJx[a]Kσ = σ x[AJaKσ]
AJa1 + a2Kσ = AJa1K +AJa2K
AJa1 ∗ a2Kσ = AJa1K ∗ AJa2K
AJa1 − a2Kσ = AJa1K −AJa2K
AJa1/a2Kσ = AJa1K/AJa2K
AJa1a2Kσ = AJa1KAJa2K

AJ
a1∑

x=n

a2Kσ =

AJa1K∑

x=n

AJa2K

Figure 4.2: Semantics of arithmetic expressions.

BJtrueKσ = true

BJfalseKσ = false

BJa1 = a2Kσ = AJa1Kσ = AJa2Kσ
BJa1 ̸= a2Kσ = AJa1Kσ ̸= AJa2Kσ
BJa1 < a2Kσ = AJa1Kσ < AJa2Kσ
BJa1 > a2Kσ = AJa1Kσ > AJa2Kσ
BJa1 ≤ a2Kσ = AJa1Kσ ≤ AJa2Kσ
BJa1 ≥ a2Kσ = AJa1Kσ ≥ AJa2Kσ

BJ¬aKσ = ¬BJaKσ
BJa1 ∧ a2Kσ = BJa1Kσ ∧ BJa2Kσ
BJa1 ∨ a2Kσ = BJa1Kσ ∨ BJa2Kσ

Figure 4.3: Semantics of boolean expressions.

4.2.2 Cost of expressions

Our semantics will not only evaluate the meaning of a program but also compute the exact
cost of executing it. To achieve this, we start by defining semantics for the cost of evaluating
arithmetic and boolean expressions, as shown in Figure 4.4. To evaluate the cost of an expression,
we must establish the cost of atomic operations in our language, such as reading from memory
or performing basic arithmetic (addition, multiplication, etc) and logic operations (disjunction,
negation, etc). For example, CCST corresponds to the cost of evaluating a constant, and CV AR is
the cost of evaluating a variable. The cost of evaluating a multiplication T AJa1 ∗ a2K is defined
as a sum of the cost of evaluating each of the arithmetic expressions, a1 and a2, plus the cost of
the multiplication operation C∗. The cost of evaluating a sum

∑e
i=b a is the cost of evaluating a

multiplied by the number of times we evaluate it e− b. These rules are simultaneously used by
our operational semantics when executing our program, and by our axiomatic semantics, when
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T AJ n K = CCST

T AJ x K = CV AR

T AJ x[a] K = T AJ a K + CARRAY

T AJ a1 + a2 K = T AJ a1 K + T AJ a2 K + C+

T AJa1 ∗ a2K = T AJ a1 K + T AJ a2 K + C∗
T AJ a1 − a2 K = T AJ a1 K + T AJ a2 K + C−

T AJ
e∑

i=b

aK = (e− b)× T J a K

T BJ true K = CBOOL

T BJ false K = CBOOL

T BJ a1 = a2 K = T AJ a1 K + T AJ a2 K + C=

T BJ a1 ≤ a2 K = T AJ a1 K + T AJ a2 K + C≤
T BJ ¬b K = T BJ b K + C¬
T BJ b1 ∧ b2 K = T BJ b1 K + T BJ b2 K + C∧
T BJ b1 ∨ b2 K = T BJ b1 K + T BJ b2 K + C∨

Figure 4.4: Cost of Arithmetic and Boolean Expressions.

proving time restrictions statically using our VCG. For simplicity in the rest of the document,
we will consider all the atomic costs as 1, except in logic definitions and soundness proofs.

4.2.3 Free Variables and Substitution

Before we can define the semantics of a statement we need to first look at two important
definitions: Free Variables, and Substitution.

Definition 8 (Free Variables). The Free Variables of an arithmetic expression can be defined
as the set of variables occurring in an expression that are not bounded by any variable binding
operator, such as

∑
.

If we define this as a function FV : a → {x} we get the definition in figure 4.5.

For example, the free variables of
∑10

x=0 x+ 2y + z are {y, z}.

Definition 9 (Substitution). A substitution consists of replacing every occurrence of a variable
(x1) in an arithmetic expression (a) with another arithmetic expression (a0). This is written as
a[a0/x1] and the substitutions rules are as described in figure 4.6.

As an example, let us look at the following substitution

(x+ 4y + 3)[z + 4/y] = x+ 4(z + 4) + 3
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FV (n) = ∅
FV (x) = {x}

FV (x[a]) = {x[a]} ∪ FV (a)

FV (a1 + a2) = FV (a1) ∪ FV (a2)

FV (a1 − a2) = FV (a1) ∪ FV (a2)

FV (a1 ∗ a2) = FV (a1) ∪ FV (a2)

FV (a1
a2) = FV (a1) ∪ FV (a2)

FV (

a1∑

x=n

a2) = FV (a1) ∪ FV (a2)− {x}

Figure 4.5: Free Variables of Arithmetic Expressions.

n[a0/x1] = n

x[a0/x1] =

{
a0, if x = x1

x, if x ̸= x1

x[a][a0/x1] =

{
a0, if x1 = x[a]

x[(a[a0/x1])], ifx1 ̸= x[a]

(a1 + a2)[a0/x1] = a1[a0/x1] + a2[a0/x2]

(a1 − a2)[a0/x1] = a1[a0/x1]− a2[a0/x2]

(a1 ∗ a2)[a0/x1] = a1[a0/x1] ∗ a2[a0/x2]
(a1/a2)[a0/x1] = a1[a0/x1]/a2[a0/x2]

(a1
a2 [a0/x1] = a1[a0/x1]

a2[a0/x2]

(

a1∑

x=n

a2)[a0/x1] =

{∑a1[a0/x1]
x=n a2, if x = x1∑a1[a0/x1]
x=n a2[a0/x1], if x ̸= x1

Figure 4.6: Substitution algorithm for arithmetic expressions.

Substitutions might also be applied to states. For example, σ[n/x] represents a state that
is identical to σ, with the exception that x takes the value of n. Note that, since a state is a
mapping from variable to an integer value, n has to always be an integer and never an expression.

4.2.4 Evaluating statements

In order to prove assertions on the execution time of a program, we need to define a cost-aware
semantics. We define a natural operational semantics, where transitions are of the form

⟨S, σ⟩ →t σ′

meaning that after executing statement S from state σ the final state is σ′ and the execution
time was t.

The cost-instrumented operational semantics is defined in Figure 4.7.
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[skip] ⟨skip, σ⟩ →CSKIP σ

[assign] ⟨x = a, σ⟩ →T AJaK+CASSIGN V σ[ AJaKσ / x ]

[array] ⟨x[a1] = a2, σ⟩ →T AJa1K+T AJa2K+CASSIGN A σ[ AJa2Kσ / x[AJa1Kσ] ]

[seq]
⟨S1, σ⟩ →t1 σ′ ⟨S2, σ

′⟩ →t2 σ′′

⟨S1;S2, σ⟩ →t1+t2 σ′′

[if true]
⟨S1, σ⟩ →t σ′

⟨if b then S1 else S2, σ⟩ →T AJbK+t σ′
if BJbKσ = true

[if false]
⟨S2, σ⟩ →t σ′

⟨if b then S1 else S2, σ⟩ →T AJbK+t σ′
if BJbKσ = false

[whiletrue]
⟨S, σ⟩ →t σ′′ ⟨while b do S, σ′′⟩ →t′ σ′

⟨while b do S, σ⟩ →T BJbK+t+t′ σ′
if BJbKσ = true

[whilefalse] ⟨while b do S, σ⟩ →T BJbK σ if BJbKσ = false

Figure 4.7: Operational Semantics.

The skip axiom [skip] says that skip does not change the state of the program, and we
associate a constant cost for its execution of CSKIP .

The assignment axiom [assign] says that executing the assignment x = a in state σ will lead
to a state σ[AJaKσ/x], which means state σ where x takes the value of AJaKσ. The cost of this
expression is defined as the cost of evaluating a, T AJaK, plus the constant cost of an assignment,
CASSIGN_V .

Similarly, the array assignment axiom [array] says that executing x[a1] = a2 from state σ
will lead to state σ[AJa2Kσ/x[AJa2Ksσ], which is a similar state to σ, except x[AJa1Kσ] takes the
value of AJa2Kσ. This execution cost will be the cost of evaluating a1, T AJa1K, plus the cost
of evaluating a2, T AJa2K, plus the constant cost of assigning a value to a position in an array,
CASSIGN_A.

The sequence rule [seq] says that if we want to execute a sequence S1;S2 from state σ we will
first execute statement S1 from state σ, this execution will lead to a certain state σ′ in t1 time.
If we execute S2 from this state σ′ we will reach a final state σ′′ in t2 time. Therefore executing
S1;S2 from state σ will lead to state σ′′ in t1 + t2 time.

We have two conditional rules, [if true] and [iffalse]. In order to decide which of the rules
to apply, we must first evaluate BJbKσ. If this evaluates to true we apply rule [if true], which
means we simply execute statement S1, otherwise we apple rule [iffalse], which means we execute
statement S2. For both rules, the cost of executing the if statement is the cost of executing S1

when true or S2 when false, plus the cost of evaluating b, T BJbK.
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We have one rule and one axiom for while, [whiletrue] and [whilefalse].

If BJbKσ is false, we apply the axiom [whilefalse], that says we will remain in the same state
σ and the cost is simply the cost of the evaluation of b, T BJbK.

If BJbKσ is true, we apply rule [whiletrue], which means we will execute the loop body, S,
once from state σ and this will lead to a state σ′′. Finally, we execute the while loop again, but
this time from state σ′′. The cost of the while loop, in this case, is the cost of evaluating b, plus
the cost of executing the body, plus the cost of executing the while loop from state σ′′.

Example

Let us consider the following program that swaps the values of x and y:

showstringspacescommentstylez = x; x = y; y = z

Let the initial state σ0 be a state such that σ0 x = 3, σ0 y = 10 and σ0 z = 0.

Then the derivation tree of this program will look like

⟨z = x, σ0⟩ →t1 σ1 ⟨x = y, σ1⟩ →t2 σ2

⟨z = x;x = y, σ⟩ →t1+t2 σ2 ⟨y = z, σ2⟩ →t3 σ3

⟨z = x;x = y; y = z, σ0⟩ →t1+t2+t3 σ3

Where σ1 = σ0[3/z], σ2 = σ1[10/x] and σ3 = σ2[3/y].

From the assign rule we get that t1 = T AJxK + CASSIGN_V = CV AR + CASSIGN_V , t2 and
t3 will be the same. Therefore t1 + t2 + t3 = 3 × (CV AR + CASSIGN_V ).

4.3 Axiomatic Semantics

We will now define a logic with triples in the form {P}S{Q|t}. This triple can be read as
executing S from a state σ that validates the precondition P leads to a state that validates
postcondition Q, and this execution costs at most t to complete. We will call these triples total
correctness assertions.

Before defining our assertion language, we must distinguish between program variables and
logic variables. Let us imagine the following triple {x = n}y = x+ 1{y > n}. In this case, x and
y are program variables since they are both present in the statement inside the triple. In our
pre and postconditions, we reference variable n, which does not appear on the program. This is
what we call a logic variable.
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Assertions Our language supports annotations with preconditions and postconditions in order
to prove correctness, termination, and time restrictions on our program. Our assertion language
will be an extension of the boolean expressions extended with quantifiers over integer variables
and implications.

P ::= true | false

| a1 = a2 | a1 ̸= a2 | a1 < a2 | a1 > a2 | a2 ≤ a2 | a1 ≥ a2

| ¬P | P ∧Q | P ∨Q | P =⇒ Q

| ∃x. P | ∀x. P

Note that a1 and a2 are arithmetic expressions extended with logic variables. As assertions
may include logic variables, the semantics require an interpretation function to provide the value
of a variable. Given an interpretation, it is convenient to define the states which satisfy an
assertion. We will use the notation σ |=I P to denote that state σ satisfies P in interpretation I,
or equivalently that assertion P is true at state σ, in interpretation I. The definition of σ |=I P

is the usual for a first-order language.

Now, note that we are not interested in the particular values associated with variables in
an interpretation I. We are interested in whether or not an assertion is true at all states for all
interpretations. This motivates the following definition.

Definition 10 (Validity). |= {P}S{Q|t} if and only if, for every state σ and interpretation I

such that σ |=I P and ⟨S, σ⟩ →t′
σ′ we have that σ′ |=I Q and AJtKσ ≥ t′.

If |= {P}S{Q|t} we say that the total correctness assertion {P}S{Q|t} is valid.

We now define a set of proof rules that generate valid total correctness assertions. The rules
of our logic are given in figure 4.8.

The skip axiom says that if P is true before executing skip, then it is also true after its
execution. The upper bound for this execution is the constant CSKIP .

The assign axiom says that P will be true after executing x = a if P [AJaK/x] is true before
its execution. The upper bound of this execution is defined as the sum of evaluating a and
assigning a simple variable T AJaK + CASSIGN_V .

The array axiom is very similar to the assignment axiom, except in the upper bound we also
need to consider the time to evaluate a1.

The seq rule says if P is true before executing S1;S2 then R will be true after the execution,
as long as we can prove that

• If P is true before executing S1 then Q is true after and t1 is an upper bound on this
execution

• If Q is true before executing S2 then R is true after and t2 is an upper bound on this
execution
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[Skip] { P }skip{ P | CSKIP }

[Assign] { P [ AJaK/x ] } x = a { P | T AJaK + CASSIGN_V }

[Array] { P [ AJa2K/x[AJa1K] ] } x[a1] = a2 { P | T AJa1K + T AJa2K + CASSIGN_A }

[Seq]
{ P } S1 { Q | t1 } { Q } S2 { R | t2 }

{ P } S1; S2 { R | t1 + t2 }

[If ]
{ P ∧ BJbK } S1 { Q | t1} { P ∧ ¬BJbK } S2 { Q | t2 }
{ P } if b then S1 else S2 { Q | max(t1, t2) + T BJbK }

[While]
I ∧ BJbK ⇒ f ≤ N ∀k.{ I ∧ BJbK ∧ f = k} S { I ∧ f > k | t(k)}

{ I ∧ f ≥ 0 } while b do S { I ∧ ¬BJbK | ∑N−1
i=0 t(i) + (N + 1)× T BJbK}

[Weak]
{P ′}s{Q′|t′} P ⇒ P ′ Q′ ⇒ Q t′ ≤ t

{P}S{Q|t}

Figure 4.8: Proof Rules for the IMP Language.

The upper bound for the sequence is the sum of both upper bounds, t1 + t2.

The if rule says if P is true before executing if b then S1 else S2, then Q will be true after
the execution, as long as we can prove that

• If P and BJbK are both true before executing S1, then Q will be true after executing it.
This execution is upper bounded by t1

• If P and ¬BJbK are both true before executing S2, then Q will be true after executing it.
This execution is upper bounded by t2

In the while rule, f , I, N and t(k) are values provided by an oracle: in an interactive proof
system, these can be provided by the user, and in a non-interactive setting, they can be annotated
into the program. I is the loop invariant, which must remain true before and after every iteration
of the loop. f is a termination function that must start as a positive value, increase with every
iteration, but remain smaller than N . N is therefore the maximum number of iterations. t(k)
is a function describing the cost of the body of the while at iteration k. If the while loop runs
at most N times and, for each k iteration, the cost of the loop body is given by t(k) we have
the following upper bound for the while statement: the sum of the cost of all the iterations∑N−1

i=0 t(i); plus the sum of evaluating the loop condition, b, each time we enter the while body
(at most N), plus one evaluation of b when the condition fails, and the loop terminates. This
leads to the term

∑N−1
i=0 t(i) + (N + 1) × T BJbK used in the rule for the while loop.
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Besides each rule and axiom for every statement in our language, we need an extra rule that
we call weak rule. This rule says

• If a weaker precondition is sufficient, then so is a stronger one. If we know |= {P}S{Q|t}
and P ′ → P , then |= {P ′}S{Q|t},

• If a stronger postcondition is provable, then so is a weaker one. If we know |= {P}S{Q|t}
and Q → Q′, then |= {P}S{Q′|t}

• An upper bound can always be replaced with a bigger one. If we know |= {P}S{Q|t} and
t′ > t, then |= {P}S{Q|t′}

Proof rules should preserve validity in the sense that if the premise is valid, then so is the
conclusion. When this holds for every rule, we say that the proof system is sound. For the
proposed Hoare logic, it is generally easy to show by induction that every assertion {P}S{Q|t}
which is the conclusion of a derivation in the proof system, is a valid assertion.

The proof of soundness depends on an important property of substitution.

Lemma 1. Let P be an assertion, x a variable, and a an arithmetic expression. Then for every
state σ

σ |= P [a/x] iff σ[AJaKσ/x] |= P

Proof. The proof follows by structural induction on P .

Theorem 3 (Soundness). Let {P}S{Q|t} be a total correctness assertion. Then

⊢ {P}S{Q|t} implies |= {P}S{Q|t}

Proof. The proof follows by induction on the length of the derivation of {P}S{Q|t}.

Case Skip: Consider a state σ, where σ |= P . According to our semantic, after executing
skip we are still in state σ and the statement skip takes CSKIP to execute, ⟨σ, skip⟩ →CSKIP σ.
Therefore, the rule for skip is sound.

|= {P}skip{P |CSKIP }

Case Assign: Consider a state σ where σ |= P [AJaK/x]. We have ⟨σ, x = a⟩ →T AJaK+CASSIGN_V

σ[AJaKσ / x], that is, after the statement is executed we are in state σ[AJaKσ / x] and it costs
T AJaK + CASSIGN_V . By the substitution lemma 1 we have that σ[AJaKσ / x] |= P . Therefore,
the rule for assignment is sound.

|= { P [ AJaK/x ] } x = a { P | T AJaK + CASSIGN_V }

Case Array: Consider a state σ where σ |= P [AJa2K/x[AJa1K]]. We have

⟨σ, x[a1] = a2⟩ →T AJaK+CASSIGN_A σ[AJa2Kσ/x[AJa1Kσ]]
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That is, after the statement is executed we are in state

σ[AJa2Kσ/x[AJa1Kσ]]

and the cost is T AJaK + CASSIGN_A. By lemma 1 we have that σ[AJa2Kσ/x[AJa1Kσ]] |= P .
Therefore, the rule for assignment to an array is sound.

|= { P [ AJa2K/x[AJa1K] ] } x[a1] = a2 { P | T AJa1K + T AJa2K + CASSIGN_A }

Case Sequence: Assume |= {P}S1{Q|t1} and |= {Q}S2{R|t2}. Lets consider a state σ

that validates P, σ |= P . From our semantics we have that, there is a state σ1 such that
⟨S1, σ⟩ →t σ1. Since we have that |= {P}S1{Q|t1}, then σ1 |= Q, and AJt1Kσ ≥ t. We also
have that ⟨S2, σ1⟩ →t′

σ2, and since we assume |= {Q}S2{R|t2}, then σ2 |= R, and AJt2Kσ1 ≥ t′.
Since t1 and t2 are both constant values, AJt2Kσ1 = AJt2Kσ, which means AJt1 + t2Kσ ≥ t+ t′.
Therefore the proof for sequence is sound.

|= {P}S1;S2{Q|t1 + t2}

Case If: Assume |= {P ∧ b}S1{Q|t1} and |= {P ∧ ¬b}S2{Q|t2}. Suppose σ |= P .

If σ |= b, then σ |= P ∧ b so, assuming ⟨S1, σ⟩ →t σ1, we have that σ1 |= Q, and AJt1Kσ ≥ t.

If σ |= ¬b, then σ |= P ∧ ¬b so, assuming ⟨S2, σ⟩ →t′
σ2, we have that σ2 |= Q, and

AJt2Kσ ≥ t′.

Since AJmax(t1, t2) + T BJbKKσ ≥ T BJbK + t and A Jmax(t1, t2) + T BJbKKσ ≥ T BJbK + t′. The
rule for if is sound.

|= { P } if b then S1 else S2 { Q | max(t1, t2) + T BJbK }

Case While: Assume I ∧ BJbK ⇒ f ≤ N and |= { I ∧ BJbK ∧ f = k} S { I ∧ f > k | t(k)}.
Considering a state σ such that σ |= I ∧ f ≥ 0 and ⟨while b do S, σ⟩ →t σ1.

If σ |= ¬BJbK then σ1 = σ, therefore σ1 |= ¬BJbK ∧ I and the cost is t = T BJbK.

If σ |= BJbK, we have that σ |= BJbK ∧ I. Considering a state σ2 such that ⟨S, σ⟩ →t′
σ2

and ⟨while e do S, σ2⟩ →t′′
σ1. Applying our initial assumption we get σ2 |= I ∧ f > k, and

AJt(k)Kσ ≥ t′. Finally by applying the induction hypothesis we have that σ1 |= ¬BJbK ∧ I.

Given the function f provided by the user and taking into account our assumptions, we know
that the program will eventually stop and at most, it will iterate N + 1 times. For each iteration
the cost is T BJbK + t′ and T BJbK for the last time, when b is false and the while terminates.
Therefore the cost of this program is always smaller or equal to

T BJbK +
N∑

i=0
(T BJbK + t′)
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Since t(k) ≥ t′, our upper bound is

N+1∑
i=0

T BJbK +
N∑

i=0
t(k)

Therefore the rule for while is sound.

|= { I ∧ f ≥ 0 } while b do S { I ∧ ¬BJbK |
N∑

i=0
t(i) +

N+1∑
i=0

T BJbK}

Example: Division Algorithm

To illustrate our logic, let us apply our rules to the division algorithm, as presented in figure 4.1.
For simplicity we assume unitary values for all "atomic" operations (C+, CSKIP , etc).

Since our example contains a while loop we will have to define, the invariant I as x =
q × y + r ∧ y ≥ 0 ∧ r ≥ 0, the variant f as x− r, the maximum number of iterations N as x, and
the function of cost t(k) as fun k → 10.

Let us consider Sw ≡ r = r − y; q = q + 1.

By the assign rule we know

⊢ {(I ∧ f > k)[q + 1/q]}q = q + 1{I ∧ f > k|T AJq + 1K + 1} (4.1)

Where
T AJq + 1K = T AJqK + T AJ1K + 1 = 3

(I ∧ f > k)[q + 1/q] ≡ x = (q + 1) × y + r ∧ y ≥ 0 ∧ r ≥ 0 ∧ x− r > k

Again by the assign rule we know

⊢ {(I ∧ f > k)[q + 1/q][r − y/r]}r = r − y{(I ∧ f > k)[q + 1/q]|T AJr − yK + 1} (4.2)

Where

T AJr − yK = T AJrK + T AJyK + 1 = 3

(I ∧ f > k)[q + 1/q][r − y/r] ≡ x = (q + 1) × y + r − y ∧ y ≥ 0 ∧ r − y ≥ 0 ∧ x− r + y > k

Since 4.1, and 4.2, by the seq rule, we have

⊢ {(I ∧ f > k)[q + 1/q][r − y/r]}Sw{I ∧ f > k|8}
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I ∧ y ≤ r ∧ f = k ≡ x = q × y + r ∧ y ≥ 0 ∧ r ≥ 0 ∧ y ≥ r ∧ x− r = k

→ x = (q + 1) × y + r − y ∧ y ≥ 0 ∧ r ≥ y ∧ x− r + y ≥ k

≡ (I ∧ f > k)[q + 1/q][r − y/r]

Given this result, and since 10 ≥ 8, by the weak rule we get

⊢ {I ∧ y ≤ r ∧ f = k}r = r − y; q = q + 1{I ∧ f > k|10}

It also apparent that
I ∧ y ≤ r → r ≥ 0 → x− r ≤ x

We are now ready to apply the while rule, and we get

⊢ {I ∧ f ≥ 0}S{I ∧ ¬(y ≤ r)|
x−1∑
i=0

10 + (x+ 1) × T BJy ≤ rK}

Where
x−1∑
i=0

10 + T BJy ≤ rK = 10 × x+ (x+ 1) × 3 = 13x+ 3

Since P → I ∧ f ≥ 0, I ∧ ¬(y ≤ r), and 20x+ 5 ≥ 13x+ 3, by the weak rule we get

⊢ {P}S{Q|T}

4.4 Verification Conditions Generation

To implement a verification system based on our logic, we define a Verification Condition
Generator (VCG) based on the weakest-precondition algorithm.

Given a Hoare triple {P}S{Q|t}, we start by identifying the weakest precondition of S given
Q as the postcondition. In figure 4.9 we define the Weakest Precondition-Cost (wpc) function
which receives a statement and a postcondition and returns a tuple (wp, tS), where wp is the
weakest precondition of the program and tS is an upper bound on the program’s cost. The
weakest precondition is calculated by a standard algorithm such as the one presented in [2]. Let
us focus on the second value of our tuple, which estimates an upper bound for the program.
This upper bound will be equivalent to the ones presented in figure 4.2. The upper-bound for
skip, assignment, and array are very straightforward since they are the same as the exact cost
calculated by our operational semantics in section 4.2. To calculate the upper bound of a sequence
S1;S2 we need to both calculate the upper bound of S1 given by t1 and the upper bound of S2,
given by t2. The upper bound for the sequence is then defined as the sum of both upper bounds
t1 + t2. In the case of if, we calculate the upper bound of each conditional statement S1 and S2.
The upper bound for if is defined as the max between both upper bounds max(t1, t2) plus the
cost of evaluating b, T BJbK. Finally, looking at the while, the upper bound is defined as the sum
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wpc(skip, Q) = (Q , CSKIP )

wpc(x := a,Q) = (Q[a/x] , CASSIGN_V + T AJaK))

wpc(x[a1] := a2, Q) = (Q[a2/x[a1]] , CASSIGN_A + T AJa1K + T AJa2K)

wpc(S1;S2, Q) = (wp1 , t1 + t2)

where (wp2 , t2) = wpc(S2, Q)

(wp1 , t1) = wp1(S1, wp2)

wpc(if b then S1 else S2, Q) = ((b → wp1) ∧ (¬b → wp2) , max(t1, t2) + T BJbK)
where (wp1 , t1) = wpc(S1, Q),

(wp2 , t2) = wpc(S2, Q)

wpc(while b do S,Q) = (I ∧ f ≥ 0 ,

N+1∑

i=0

×T BJbK +
N∑

i=0

t(i))

Figure 4.9: Weakest Precondition Algorithm.

of evaluating the while condition N+1 times and the sum of the cost of each execution of the
while body, given by t(k).

The program is correct if P implies the weakest precondition. If t ≥ tS , we also guarantee
that t is, in fact, an upper bound on the execution of S. Even though these conditions are enough
to prove both correction and cost upper-bound of our program, we still need extra Verification
Conditions to handle while loops. The VC function in figure 4.10 receives a program and a
postcondition. It returns a set of purely mathematical statements (the verification conditions)
needed to handle loops and guarantee termination. Let us take a more in-depth look to the while
case, V C(while b do S,Q). To prove the while statement, we need the oracle to provide some
extra information. All the values provided need to be demonstrated. Firstly, as seen previously,
the weakest precondition of a while is the invariant being true and the variant being positive.
The loop invariant is assured by the following VC

∀k.I → wpS

We also need to guarantee the termination of the loop. For this we prove that the variant
(f) always increases ∀k, I ∧ b ∧ f = k → wpS and that the variant is always limited by N ,
I ∧ BJbK → f ≤ N . Lastly, we prove the postcondition I ∧ ¬b → Q, and call V C recursively for
the body. The V C function applied to sequence and if, is just a recursive call of the function
to their sub-statements. Finally for skip, assign, and array there are no extra Verification
Condition (VC). The function V CG is the glue that puts all these VCs together. The first
condition P → wp implies the correctness of our program. Secondly, we call V C(S,Q) to
potentially deal with loop invariants, termination, and cost. The last condition states that
t ≥ tS proves if the user-provided upper bound is indeed valid. These verification conditions
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are then passed to an interactive prover, such as EasyCrypt [5], which attempts to prove them
automatically. If it fails, some advice is needed from the user.

VC(skip, Q) = ∅

VC(x := a,Q) = ∅

VC(x[a1] := a2, Q) = ∅

VC(S1;S2, Q) = VC(S1, wp2) ∪ VC(S2, Q)

where (wp2, t2) = wpc(S2, Q)

VC(if B then S1 else S2, Q) = VC(S1, Q) ∪ VC(S2, Q)

VC(while b do S,Q) = {∀k.(I ∧ b ∧ f = k) → wpS ∧ t(k) ≥ tS} ∪
{(I ∧ ¬b) → Q} ∪ VC(S, I) ∪
{I ∧ BJbK ⇒ f ≤ N}

where (wpS , tS) = wpc(S, I ∧ f > k)

VCG( {P} S {Q | t} ) = {P → wp} ∪ VC(S,Q) ∪ {P → t ≥ tS}
where

(wp, tS) = wpc(S,Q)

Figure 4.10: VC and VCG functions.

We need to ensure that this algorithm is actually sound with our Hoare Logic. For this, we
need to prove theorem 1 that states that the VCG algorithm is sound if the Verification Condition
generated implies of the Hoare triple we wish to prove, |= V CG({P}Q{R}) =⇒ ⊢ {P}Q{R}.
This assures that by proving our VCs, we are actually proving our triple. If we also want to show
that if a triple is valid, then we can also validate every VC generated by the VCG algorithm,
then we are looking at the completeness theorem 2, ⊢ {P}Q{R} =⇒ |= V CG({P}Q{R}). To
prove both soundness and completeness, we then need to prove

|= V CG({P}Q{R}) iff ⊢ {P}Q{R}

Proof. We prove =⇒ by induction on the structure of Q.

Case Skip:
V CG({P}skip{Q|T}) = {P → Q} ∪ {T ≥ CSKIP }

By the skip axiom, we know ⊢ {Q}skip{Q|CSKIP }.
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By the weak rule, knowing ⊢ {Q}skip{Q|CSKIP }, P → Q, and T ≥ CSKIP , we have

⊢ {P}skip{Q|T}

Case Assign:

V CG({P}x = a{Q|T}) = {P → Q[AJaK/x]} ∪ {T ≥ CASSIGN_V }

By the assign axiom ⊢ {Q[AJaK/x]}x = a{Q|CASSIGN_V }. By the weak rule, knowing
⊢ {Q[AJaK/x]}x = a{Q|CASSIGN_V }, P → Q[AJaK/x], and T ≥ CASSIGN_V , we have

⊢ {P}x = a{Q|T}

Case Array:

V CG({P}x[a1] = a2{Q|T}) = {P → Q[AJa2K/x[AJa1K]]} ∪ {T ≥ CASSIGN_A}

By the array axiom ⊢ {Q[AJa2K/x[AJa1K]]}x[a1] = a2{Q|CASSIGN_A}. By the weak rule,
knowing {Q[AJa2K/x[AJa1K]]}x[a1] = a2{Q|CASSIGN_A}, P → Q[AJa2K/x[AJa1K]], and T ≥
CASSIGN_A, we have

⊢ {P}x[a1] = a2{Q|T}

Case seq:

Induction Hypothesis:

|= V CG({P}S1{R|T1} →⊢ {P}S1{R|T1})

|= V CG({P}S2{R|T2} →⊢ {P}S2{R|T2})

Let us consider:

• wp2, t2 = wpc(S2, Q)

• wp1, t1 = wpc(S1, wp2)

• wpc(S1;S2, Q) = (wp1, t1 + t2)

|= V CG({P}S1;S2{R|T} = {P → wp1} ∪ {T ≥ t1 + t2} ∪ V C(S1;S2, R)

Where V C(S1;S2, R) = V C(S1, wp2) ∪ V C(S2, R)

Assuming |= V CG({P}S1;S2{R|T}
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• since we know P → wp1, t1 ≥ t1, and |= V C(S1, wp2), then

|= V CG({P}S1{wp2|t1}

• since we know wp2 → wp2, t2 ≥ t2, and |= V C(S2, R), then

|= V CG({wp2}S2{R|t2}

By our Induction Hypothesis, we have ⊢ {P}S1{wp2|t1}), and ⊢ {wp2}S2{R|t2}). By the seq
rule

⊢ {P}S1;S2 {R|t1 + t2}

Since T ≥ t1 + t2, by the weak rule

⊢ {P}S1;S2{R|T}

Case if:

Induction Hypothesis:

|= V CG({P}S1{Q|t1} →⊢ {P}S1{Q|t1})

|= V CG({P}S2{Q|t2} →⊢ {P}S2{Q|t2})

Let us consider

• wp1, t1 = wpc(S1, Q)

• wp2, t2 = wpc(S2, Q)

• wpc(if b then S1 else S2, Q) = (BJbK → wp1 ∧ ¬BJbK → wp2,max(t1, t2) + T BJbK)

V CG({P}if b then S1 elseS2{Q|T}) ={P → (b → wp1 ∧ ¬b → wp2)} ∪

{T ≥ max(t1, t2) + T BJbK} ∪

V C(if b then S1 else S2, Q)

Where V C(if b then S1 elseS2, Q) = V C(S1, Q) ∪ V C(S2, Q)

Assuming |= V CG({P}if b then S1 else S2{Q|T})

• Since P ∧ BJbK → wp1, t1 ≥ t1, and V C(S1, Q),

|= V CG({P ∧ BJbK}S1{Q|t1})
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• Since P ∧ ¬BJbK → wp2, t2 ≥ t2, and V C(S2, Q),

|= V CG({P ∧ ¬BJbK}S2{Q|t2})

From our Induction Hypothesis, we have ⊢ {P ∧ BJbK}S1{Q|t1}, and ⊢ {P ∧ ¬BJbK}S2{Q|t2}

By the if the rule, we get

{P}if b then S1 else S2{Q|max(t1, t2) + T BJbK}

Since T ≥ max(t1, t2) + T BJbK, by the weak rule

⊢ {P}if b then S1 else S2{Q|T}

Case while:

Induction Hypothesis:

|= V CG({P}S{Q|T}) → ⊢ {P}S{Q|T}

Let us consider:

• wpc(while b do S,Q) = (I ∧ f ≥ 0,
∑N−1

i=0 t(i) + (N + 1) × T BJbK)

• wpS , tS = wpc(S, I ∧ f > k)

V C(while b do S,Q) ={(I ∧ BJbK ∧ f = k) → wpS ∧ t(k) ≥ tS} ∪

{(I ∧ ¬b) → Q} ∪

{(I ∧BJbK) → f ≤ N} ∪

V C(S, I ∧ f > k)

V CG({P}while b do S{Q|T}) =P → (I ∧ f ≥ 0) ∪

{P → T ≥
N−1∑
i=0

t(i) + (N + 1) × T BJbK} ∪

V C(while b do S,Q)

Assuming |= V CG({P}while b do S{Q|T})

Since (I ∧ BJbK ∧ f = k) → wpS ∧ t(k) ≥ tS , and V C(S, I ∧ f > k) we have

|= V CG({I ∧ BJbK ∧ f = k}S{I ∧ f > k|t(k)})
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By our Induction Hypothesis

⊢ {I ∧ BJbK ∧ f = k}S{I ∧ f > k|t(k)}

Since I ∧ BJbK → f ≤ N , and ⊢ {I ∧ BJbK ∧ f = k}S{I ∧ f > k|t(k)}, by the while rule

⊢ {I ∧ f ≥ 0}while b do S{I ∧ BJbK|
N−1∑
i=0

t(i) + (N + 1) × T BJbK}

Since P → (I ∧ f ≥ 0), (I ∧ ¬BJbK) → Q, and P → T ≥
∑N−1

i=0 t(i) + (N + 1) × T BJbK, by
the weak rule

⊢ {P}while b do S{Q|T}

Example

Let us apply the VCG algorithm to the division example 4.1. We will use the same notation as
in section 4.3 and refer to our precondition as P , our program as S, our postcondition as Q and
our cost upperbound as T . The algorithm starts with a call to the V CG function.

V CG({P}S{Q|T}) ={P → wp) ∪ (4.3)

{P → T ≥ t} ∪ (4.4)

V C(S,Q)

Where
wp, t = wpc(S,Q) = (I ∧ x− r ≥ 0,

x∑
i=0

10 + (x+ 1) × 3)

Then the V CG function calls the VC function for S. Since only while loops generate extra
VCs, we will omit other calls to the V C function for simplicity.

V C(S,Q) ={(I ∧ y ≤ r ∧ x− r = k) → wpS} ∪ (4.5)

{(I ∧ ¬(y ≤ r)) → Q} ∪ (4.6)

{(I ∧ y ≤ r) → x− r ≤ x} ∪ (4.7)

{(I ∧ y ≤ r ∧ x− r = k) → t(k) ≥ tS} ∪ (4.8)

V C(r = r − y; q = q + 1, I ∧ x− r > k)
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Where

wpS , tS = wpc(r = r − y; q = q + 1, I ∧ x− r > k)

= (wp1, t1 + t2)

wp1, t1 = wpc(r = r − y, wp2)

= (wp2[r − y/r], T AJr − yK + 1)

wp2, t2 = wpc(q = q + 1, I ∧ x− r > k)

= ((I ∧ x− r > k)[q + 1/q], T AJq + 1K + 1)

To prove our triple, we now simply need to prove all of the VCs generated by the algorithm
(4.3 to 4.8), this can easily be done for all the conditions manually, or with the assistance of a
theorem prover.

As would be expected, proving a Hoare triple by applying the Verification Condition Generator
algorithm is simpler and more mechanic than proving it directly by applying our rules and
deriving the inference tree.



Chapter 5

Amortized Costs

In chapter 4 we introduced our language, a cost-aware operational semantics, an axiomatic
semantics to verify cost upper-bounds, and a Verification Condition Generator algorithm to
apply our logic. In this chapter, we present a variation to our logic by considering amortized
analysis to refine the estimation of costs for the while loop. We start by giving some background
on amortization before presenting our updated definitions and some examples.

5.1 Background

Amortized analysis is a method defined by Tarjan for analyzing the complexity of a sequence of
operations [27]. Instead of reasoning about the worst-case cost of individual operations, amortized
analysis concerns the worst-case cost of a sequence of operations. The advantage of this method is
that some operations can be more expensive than others. Thus, distributing the cost of expensive
operations over the cheaper ones can produce better bounds than analyzing the worst case for
individual operations.

Let ai and ti be, respectively, the amortized cost and the actual cost of each i operation. In
order to obtain an amortized analysis, it is necessary to define an amortized cost such that

n∑
i=1

ai ≥
n∑

i=1
ti

i.e., for a sequence of n operations, the total amortized cost is an upper bound on the total
actual cost.

Thus for each intermediate step, the accumulated amortized cost is an upper bound on the
accumulated actual cost. This allows the use of operations with an actual cost that exceeds their
amortized cost. Conversely, other operations have a lower actual cost than their amortized cost.
Expensive operations can only occur when the difference between the accumulated amortized
cost and the accumulated actual cost is enough to cover the extra cost.

There are three methods for amortized analysis: the aggregate method, the accounting method,

35



36 Chapter 5. Amortized Costs

and the potential method. Let us analyze each of the methods with the same example.

Dynamic Array Let us consider a simple dynamic array algorithm. We will perform n
insertions on the array. Every time the array is full, we create a new array with double the size,
and all the elements must be copied to the new array. Consider a worst-case analysis of this
algorithm for n insertions. When inserting element i, we might need to resize, so one insertion
might lead to a resize, which would copy i−1 elements to the new array, plus the cost of inserting
i, which means the worst-case scenario cost of one insertion is i. The cost of inserting n elements
would be

∑n
i=1 i, which is O(n2).

Aggregate Method The aggregate method considers the worst-case execution time T (n) to
run a sequence of n operations. The amortized cost for each operation is T (n)/n. Applying the
aggregate method to our dynamic array example gives us an amortized cost of O(n2)

n = O(n) per
insertion.

Accounting Method The Accounting Method, sometimes also called the taxation method, is
a method where we tax cheaper operations, so we always have enough saved up to cover more
expensive operations without ever going out of credit. To apply the accounting method to the
dynamic array, we need to define what are the cheap operations we need to tax. Let us consider
we have already inserted m elements. Inserting an element in an array is T (1) if the array is not
full. If the array is full, we create a new array with size 2m and copy all m elements to this new
array. In this case, the cost of inserting an element is T (m) to copy all the elements, plus T (1) to
insert the new element. If we consider the cost of inserting as T (3), 1 being the actual insertion
cost we will never run out of credit. For every array state, all elements after position m/2, have
never been copied, so they still have 2 extra credits. If we need to resize again, 1 of these credits
will be used to copy the element, the remainder m/2 credits will be used to pay for copying
elements before position m/2 that might have run out of credit. Since we always double the
array size, this will always be enough. Therefore the amortized cost of insertion is 3, i.e. O(1).

Potential method The Potential Method considers a function Φ, which maps a data structure’s
state di to a real number. While with the accounting method, we would tax operations, with the
potential method, credit is associated with the state of the data structure. Let di represent the
state of the data structure after i operations, and Φi represent its potential. A valid potential
function guarantees two properties: the initial potential is 0, Φ0 = 0; the potential always remains
positive, ∀i.Φi ≥ 0. The amortized cost of an operation ai is defined as its actual cost ti, plus
the change in potential between di−1 and di:

ai = ti + Φi − Φi−1
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From this, we get for j operations:

j∑
i=1

ti =
j∑

i=1
(ai + Φ(di−1) − Φ(di))

j∑
i=1

ti =
j∑

i=1
ai +

j∑
i=1

(Φ(di−1) − Φ(di))

The sequence of potential function values forms a telescoping series; thus, all terms except the
initial and final values cancel.

j∑
i=1

ti =
j∑

i=1
ai + Φ(d0) − Φ(dj)

Since Φ0 = 0 and Φj ≥ 0 then
j∑

i=1
ai ≥

j∑
i=1

ti

Let us apply the potential method to the dynamic array problem. We start by defining our
potential function ϕ as 2 times the number of elements after position m/2 for an array of size
m, Φn = 2 × (n−m/2) = 2n−m. If the array is not full, the real cost (ti) of inserting i in the
array is 1, and the change in potential ϕi − ϕi−1 is 2, which means the amortized cost of this
insertion is 3. If the array is full the real cost (ti) is the cost of copying m elements plus the cost
of one insertion, ti = m+ 1. The change in potential is 2 −m, then the amortized cost ai will be
3, i.e. O(1). This method, like the accounting method, gives us a better amortized cost than the
aggregated method.

The choice of method depends on how convenient each method is to the situation. The proof
rules we will show in the next section use the potential method. As we have seen in chapter 3,
amortized analysis based on the potential method was already used in previous work, which
derives upper bounds on the use of computational resources [8, 17, 26, 28]. Here we use it to
prove tighter bounds when the composition of worst-case execution times is overly pessimistic.

5.2 Proof Rules with Amortized Costs

We now present our modified logic for amortized analysis. To this end, we modify the while
rule (Figure 5.1) to allow deriving more precise bounds. Similarly to the while rule presented
in figure 4.8, we still get the variant f , the invariant I, and the maximum number of iteration
N from the oracle. But now, this new rule requires additional information from the oracle: an
amortized cost for each iteration a and a potential function ϕ. Regarding these new values, we
add the following restrictions:

• The potential function ϕ must be zero before we start the while, ϕ = 0

• The potential function ϕ must remain positive after every iteration of the while I → ϕ ≥ 0
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I ∧ BJbK ⇒ f ≤ N I → ϕ ≥ 0
{ I ∧ BJbK ∧ f = k} S { I ∧ f > k ∧ ϕ = Pk | a+ ϕ− Pk }

{ I ∧ f ≥ 0 ∧ ϕ = 0 } while b do S { I ∧ ¬BJbK | ∑N
i=0 a+

∑N+1
i=0 T BJbK}

Figure 5.1: Hoare rule for while statement with amortized costs.

• Knowing that ⟨S, σ⟩ →t σ1, we must have that ∀k.AJa+ ϕ− PkKσ ≥ t

Note that we have added a logic variable Pk. This variable is used in the time assertion a+ϕ−Pk,
and allows us to refer to the value of variable ϕ in two different states, before and after executing
statement S.

Soundness

Assume I ∧ BJbK ⇒ f ≤ N , I ⇒ ϕ ≥ 0, and

|= { I ∧ BJbK ∧ f = k} S { I ∧ ϕ = Pk ∧ f > k | a+ ϕ− Pk }

Considering a state σ such that σ |= I ∧ f ≥ 0 ∧ ϕ = 0 and ⟨while b do S, σ⟩ →tw σ1.

Given our assumption, we know that σ |= f ≥ 0 and that every time we enter the while body,
f increases. We also know that as long as I ∧B[b] are true, f ≤ N . Therefore we know that the
program will eventually stop and at most iterate N + 1 times.

If σ |= ¬BJbK then σ1 = σ, therefore σ1 |= ¬BJbK ∧ I. In this case tw = T BJbK. Since N ≥ 0,
then AJ∑N

i=0 a+
∑N+1

i=0 T BJbKKσ ≥ tw.

If σ |= BJbK, we have that σ |= BJbK ∧ I. Considering a state σ2 such that ⟨S, σ⟩ →t1 σ2 and
⟨while b do S, σ2⟩ →t2 σ1. Applying our initial assumption we get σ2 |= I ∧ ϕ = Pk ∧ f > k.
Finally by applying the induction hypothesis we have that σ1 |= ¬BJbK ∧ I.

By our assumption we also know that ∀k.AJ(a+ ϕ− Pk)Kσ ≥ t1.

By induction, we know that ⟨while b do S, σ2⟩ →t2 σ1 where

AJ(N − 1) × a+N × T BJbKKσ2 ≥ t2

The real cost of the while is given by t1 + t2 + T BJbK.

AJ(a+ ϕ− Pk)Kσ ≥ t1

Since σ |= ϕ = 0 → AJϕKσ = 0. And since σ2 |= I and I → ϕ ≥ 0, then σ |= ϕ ≥ 0.
Pk = AJϕKσ2, then Pk ≥ 0. Then we have
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AJaKσ ≥ t1

Since a, N , and T BJbK are all constant, we get

AJN × a+N × T BJbKKσ ≥ t1 + t2

AJN × a+ (N + 1) × T BJbKKσ ≥ t1 + t2 + T BJbK

Therefore the rule for while is sound.

|= { I ∧ f ≥ 0 } while b do S { I ∧ ¬BJeK | N × a+ (N + 1) × T BJbK}

Example: Binary Counter

We now illustrate this new version of the Hoare Logic on a typical application of amortized
analysis: a binary counter. In the binary counter algorithm, we represent a binary number as an
array of zeros and ones. We start with an array with every value at zero, and with each iteration,
we increase the number by one until we reach the desired value. Our implementation can be seen
in figure 5.2.

{n ≥ 0 ∧ size = log(n) ∧ ∀i.0 ≤ i ∧ i ≤ size⇒ B[i] = 0}
i = 0 ;
whi l e i < n do

j = 0 ;
whi l e B[ j ] == 1 do

B[ j ] = 0 ;
j = j + 1

end ;
B[ j ] = 1 ;
i = i + 1

end

{n =
∑log(n)−1

i=0 B[i]× 2i|30n+ 30}

Figure 5.2: Binary Counter Implementation with Annotation.

To start our proof we will define the oracle information for each of the two while loops. For
simplicity, we refer to the external while loop as while 1, and the internal as while 2.

The invariant of while 1, I1 ≡ i =
∑size−1

k=0 B[k] × 2k ∧ 0 ≤ i ≤ n, the variant f1 ≡ i, the
maximum number of iterations N1 ≡ n, the amortized cos a1 ≡ 20, and the potential function
ϕ1 ≡ fun k →

∑size
i=0 B[i]. Here log(n) is the base two logarithm of n.
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For the while 2 we have I2 ≡ ∀k.0 ≤ k < j → B[k] = 0 ∧ 0 ≤ j ≤ size, f2 ≡ j, N2 ≡ size,
a2 ≡ 10, and ϕ2 ≡ fun k → 1.

By the assign rule, we have

⊢ {(I1 ∧ f1 ≥ k ∧ ϕ1 = Pk)[i+ 1/i]}i = i+ 1{I1 ∧ f1 ≥ k ∧ ϕ1 = Pk|4}

By the assign rule, we have

⊢ {(I1 ∧ f1 ≥ k ∧ ϕ1 = Pk)[i+ 1/i][1/B[j]]}B[j] = 1{(I1 ∧ f1 ≥ k ∧ ϕ1 = Pk)[i+ 1/i]|3}

Applying the seq rule, we get

⊢ {(I1 ∧ f1 ≥ k ∧ ϕ1 = Pk)[i+ 1/i][1/B[j]]}B[j] = 1; i = i+ 1{I1 ∧ f1 ≥ k ∧ ϕ1 = Pk|7}

By the assign rule, we get

⊢ {(I2 ∧ f2 ≥ k ∧ ϕ2 = Pk)[j + 1/j]}j = j + 1{I2 ∧ f2 ≥ k ∧ ϕ2 = Pk|4}

By the assign rule, we get

⊢ {(I2 ∧ f2 ≥ k ∧ ϕ2 = Pk)[j + 1/j][0/B[j]]}B[j] = 0{(I2 ∧ f2 ≥ k ∧ ϕ2 = Pk)[j + 1/j]|3}

By the seq rule

⊢ {(I2 ∧ f2 ≥ k ∧ ϕ2 = Pk)[j + 1/j][0/B[j]]}B[j] = 0; j = j + 1{I2 ∧ f2 ≥ k ∧ ϕ2 = Pk|7}

Since we know I2∧B[j] = 1∧f2 = k → (I2∧f2 ≥ k∧ϕ2 = Pk)[j+1/j][0/B[j]]∧a2+ϕ2−Pk ≥ 7,
then by the weak rule

⊢ {I2 ∧B[j] = 1 ∧ f2 = k}B[j] = 0; j = j + 1{I2 ∧ f2 > k ∧ ϕ2 = Pk|a2 + ϕ2 − Pk}

Then by the while rule, we get

⊢ {I2 ∧ f2 ≥ 0}while2{I2 ∧ ¬(B[j] = 1)|N2 × a2 + (N2 + 1) × T BJB[j] = 1K}

Since I2 ∧ ¬(B[j] = 1) → (I1 ∧ f1 ≥ k ∧ ϕ1 = Pk)[i+ 1/i][1/B[j]], then by the weak rule

⊢ {I2 ∧f2 ≥ 0}while2{(I1 ∧f1 ≥ k∧ϕ1 = Pk)[i+1/i][1/B[j]]|N2 ×a2 +(N2 +1)×T BJB[j] = 1K}

By the seq rule

⊢ {I2∧f2 ≥ 0}while2;B[j] = 1; i = i+1{I1∧f1 ≥ k∧ϕ1 = Pk|N2×a2+(N2+1)×T BJB[j] = 1K+7}
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By the assign rule, we have

{(I2 ∧ f2 ≥ 0)[0/j]}j = 0{I2 ∧ f2 ≥ 0|2}

By the seq rule

⊢ {(I2∧f2 ≥ 0)[0/j]}j = 0;while2;B[j] = 1; i = i+1{I1∧f1 ≥ k∧ϕ1 = Pk|N2×a2+(N2+1)×T BJB[j] = 1K+9}

Since I1∧i < n∧f1 = k → (I2∧f2 ≥ 0)[0/j], and a1+ϕ1−Pk ≥ N2×a2+(N2+1)×T BJB[j] =
1K + 9, then by the weak rule

⊢ {I1 ∧ i < n ∧ f1 = k}j = 0;while2;B[j] = 1; i = i+ 1{I1 ∧ f1 ≥ k ∧ ϕ1 = Pk|a1 + ϕ1 − Pk}

Since I1 ∧ i < n → f1 ≤ N1, and I1 → ϕ1 ≥ 0, then we can apply the while rule and we get

⊢ {I1 ∧ f1 ≥ 0 ∧ ϕ1 = 0}while1{I1 ∧ ¬(i < n)|N1 × a1 + (N1 + 1) × 3}

By the assign rule

⊢ {(I1 ∧ f1 ≥ 0 ∧ ϕ1 = 0)[0/i]}i = 0{I1 ∧ f1 ≥ 0 ∧ ϕ1 = 0|2}

Applying the seq rule gives us

⊢ {(I1 ∧ f1 ≥ 0 ∧ ϕ1 = 0)[0/i]}i = 0;while1{I1 ∧ ¬(i < n)|2 +N1 × a1 + (N1 + 1) × 3}

Since n ≥ 0 ∧ size = log(n) → (I1 ∧ f1 ≥ 0 ∧ ϕ1 = 0)[0/i], I1 ∧ ¬(i < n) → n =∑log(n)−1
i=0 B[i] × 2i, and 40n+ 10n+ 30 ≥ 2 +N1 × a1 + (N1 + 1) × 3, by the weak rule

⊢ {n ≥ 0 ∧ size = log(n)}i = 0;while1{n =
log(n)−1∑

i=0
B[i] × 2i|40n+ 10n+ 30}

5.3 Verification Conditions Generation with Amortized Costs

Considering the extensions to our logic, as presented and explained in the last section, we need
to modify our VCG accordingly. The only changes we need to perform in wpc and VC are for
the while cases. Both these changes are shown in Figure 5.3.

The new wpc rule for while returns a new term in the invariants conjunction that stipulates
that ϕ = 0, i.e., the potential function must be zero before the while begins. The upper bound is
given by the sum of the amortized cost for every iteration

∑N
i=0 a, plus the sum of every N + 1

evaluation of b,
∑N+1

i=0 T BJbK.

The VC rule for while generates four VCs:
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wpc(while b do S,Q) = (I ∧ f ≥ 0 ∧ ϕ = 0 , N × a+ (N + 1)× T BJBK

VC(while b do S,Q) = {(I ∧ BJbK ∧ f = k) → wpS ∧ a+Φ− Pk ≥ tS} ∪
{(I ∧ ¬B) → Q} ∪
{I ∧ BJbK ⇒ f ≤ N}∪
{I → ϕ ≥ 0}
VC(S, I ∧ f > k ∧ ϕ = Pk) ∪

where wpS , tS = wpc(S, I ∧ f > k ∧ ϕ = Pk)

Figure 5.3: VCG rules for while statement with amortized costs.

• ∀k.(I ∧B ∧ f = k) → wpc(S, I ∧ f > k∧ϕ = Pk) guarantees both the invariant, the variant
increase with every iteration, and defines a logic variable Pk which allows us to refer to the
state of variable ϕ in the postcondition.

• I ∧ ¬b → Q which states that at the end of the while (when b is false), the invariant and
¬b imply the postcondition Q we wish to prove.

• I ∧ BJbK → f ≤ N , which states that while the while is still running (when b is true), the
variant is always less or equal to N .

• I → ϕ ≥ 0, the potential function is always positive.

This rule also makes a recursive call to VC for the loop’s body.

Soundness

Proof. We start by defining our Induction Hypothesis.

|= V CG({P}S{Q|T}) → ⊢ {P}S{Q|T}

We also calculate the result of wpc, VC and VCG for while.

wpc(while b do S,Q) = (I ∧ f ≥ 0 ∧ Φ = 0, N × a+ (N + 1) × T BJbK)

wpS , tS = wpc(S, I ∧ f > k ∧ ϕ = Pk)
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V C(while b do S,Q) ={(I ∧ BJbK ∧ f = k) → wpS}∪ (5.1)

{I ∧ BJbK ∧ f = k → a+ Φ − Pk ≥ ts}∪ (5.2)

{I ∧ ¬BJbK → Q}∪ (5.3)

{I ∧ BJbK → f ≤ N}∪ (5.4)

{I → Φ ≥ 0}∪ (5.5)

V C(S, I ∧ f > k ∧ Φ = Pk) (5.6)

V CG({P}while b do S{Q|T}) ={P → (I ∧ f ≥ 0 ∧ Φ = 0)}∪ (5.7)

{P → T ≥ N × a+ (N + 1) × T BJbK}∪ (5.8)

V C(while b do S,Q) (5.9)

Assuming |= V CG({P}while b do S{Q|T}).

Since we have 5.1, 5.2, and 5.6, then

|= V CG({I ∧ BJbK ∧ f = k}S{I ∧ f > k ∧ Φ = Pk|a+ Φ − Pk})

By the induction hypothesis

⊢ {I ∧ BJbK ∧ f = k}S{I ∧ f > k ∧ Φ = Pk|a+ Φ − Pk} (5.10)

Given 5.4, 5.5, and 5.10, by the while rule

⊢ {I ∧ f ≥ 0 ∧ Φ = 0}while b do S{I ∧ ¬BJbK|N × a+ (N + 1) × T BJbK}

Given 5.3, 5.7, and 5.8, by the weak rule

⊢ {P}while b do S{Q|T}

Example: Binary Counter

Let us apply the VCG algorithm to the binary counter example 5.2. We will use the same
notation as in section 5.2 and refer to our precondition as P , our program as S, our postcondition
as Q and our cost upperbound as T .

We start by calling the wpc function.
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wpc(while1, Q) = (I1 ∧ I ≥ 0 ∧ ϕ1 = 0, n× a1 + (n+ 1) × 3)

wpc(i = 0, I1 ∧ i ≥ 0 ∧ ϕ1 = 0) = ((I1 ∧ i ≥ 0 ∧ ϕ1 = 0)[0/i], 2)

wpS , tS = wpc(S,Q) = ((I1 ∧ i ≥ 0 ∧ ϕ1 = 0)[0/i], 2 + n× a1 + (n+ 1) × 3)

Then we call the VC function for our program. Since this function only generates extra VCs
for while loops, we will omit other calls to the VC function for simplicity.

V C(S,Q) = V C(while1, Q) =

{(I1 ∧ i < n ∧ i = k) → wp1} ∪ (5.11)

{(I1 ∧ i < n ∧ i = k) → 30 + ϕ1 − Pk ≥ t1} ∪ (5.12)

{(I1 ∧ ¬i < n) → Q} ∪ (5.13)

{I1 ∧ i < n ⇒ i ≤ n}∪ (5.14)

{I1 → ϕ1 ≥ 0} ∪ (5.15)

VC(Sw, I1 ∧ i > k ∧ ϕ1 = Pk)

Where Sw ≡ j = 0;while2;B[j] = 1; i = i+ 1, and

wp1, t1 = wpc(Sw, I1 ∧ i > k ∧ ϕ1 = Pk)

= (I2 ∧ j ≥ 0 ∧ ϕ2 = 0)[0/j], size× a2 + (size+ 1) × T BJB[j] = 1K

V C(Sw, I1 ∧ i > k ∧ ϕ1 = Pk) =

V C(while2, (I1 ∧ i > k ∧ ϕ1 = Pk)[i+ 1/i][1/B[j]]) =

{(I2 ∧B[j] = 1 ∧ j = k) → wp2} ∪ (5.16)

{(I2 ∧B[j] = 1 ∧ j = k) → a2 + ϕ2 − PK ≥ t2} ∪ (5.17)

{(I2 ∧ ¬B[j] = 1) → (I1 ∧ i > k ∧ ϕ1 = Pk)[i+ 1/i][1/B[j]]} ∪ (5.18)

{I2 ∧B[j] = 1 ⇒ j ≤ size}∪ (5.19)

{I2 → ϕ2 ≥ 0} (5.20)

Where

wp2, t2 = wpc(B[j] = 0; j = j + 1, I2 ∧ j > k ∧ ϕ2 = Pk)

= ((I2 ∧ j ≥ 0 ∧ ϕ2 = 0)[j + 1/j][0/B[j]], size× a2 + (size+ 1) × 3 + 9)
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Finally we call the VCG function

V CG({P}S{Q|T}) ={P → wpS} ∪ (5.21)

{P → T ≥ tS} ∪ (5.22)

V C(S,Q)

To prove our triple, we now simply need to prove all of the VCs generated by the algorithm
(5.11 to 5.21), this can easily be done for all the conditions manually, or with the assistance of a
theorem prover.

As would be expected, proving a Hoare triple by applying the VCG algorithm is simpler and
more mechanic than proving it directly by applying our rules and deriving the inference tree.





Chapter 6

Exact Costs

The final part of our work consists of extending our language and logic so that we can verify the
exact cost of a program instead of an upper bound like in the previous chapters. This approach is
advantageous in scenarios where the approximation of execution time is not enough to guarantee
safety, as it happens for critical systems and real-time programming. Moreover, proving that the
exact execution time of a program is an expression that does not depend on confidential data
provides a direct way to prove the absence of timing leakage, which is relevant in cryptographic
implementations. We must restrict the programming language to guarantee the ability to prove
exact costs. Thus, in this third scenario, programs have bound recursion (for loops), and both
branches of conditional statements must have identical costs.

6.1 Operational Semantics for Exact Costs

Since we need to be able to calculate exact costs, we need to make some extensions to our
language so that the execution time is fully deterministic. The first one is a restriction to our
conditional statement, if b then S1 else S2. It is still possible to have conditional statements in
this scenario. However, we need to guarantee that both branches of the if will take the same
time to run.

In our original language, we used while loops, but since we can not predict accurately the
exact amount of times a while is going to run, we can not have this statement in this version.
We will then replace our while loop with a for loop, which executes a deterministic number of
times, solving our problem.

Let us now present our updated syntax rules for statements, which remain the same for every
statement except the for loop.

S ::= skip | x = a | x[a1] = a2 | if b then S1 else S2 done | for i = a to b do S done | S1;S2

47
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The semantic rules for for loop are presented in figure 6.1. We have one rule and one axiom
for for loop, [fortrue] and [forfalse].

If BJbKσ is false, we apply the axiom [forfalse], that says we will remain in the same state σ
and the cost is simply the cost of the evaluation of a < b, T BJa < bK.

If BJbKσ is true, we apply rule [fortrue], which means we will, assign a to variable i, which
will lead to a state σ′′′, we will then execute the loop body, S, once from state σ′′′ and this will
lead to a state σ′′. Finally, we execute the for loop again, but this time starting at a+ 1 and
from state σ′′. The cost of the for loop, in this case, is the cost of evaluating a < b, plus the cost
of executing the assign, plus the cost of executing the body, plus the cost of executing the for
loop from state σ′′.

[fortrue]
⟨i = a, σ⟩ →t1 σ′′′ ⟨S, σ′′′⟩ →t2 σ′′ ⟨for i = a+ 1 to b do S, σ′′⟩ →t3 σ′

⟨for i = a to b do S, σ⟩ →T BJa<bK+t1+t2+t3 σ′
if BJa < bKσ = true

[forfalse] ⟨for i = a to b do S, σ⟩ →T BJa<bK σ if AJ¬(a < b)Kσ = false

Figure 6.1: Operational semantic of for loop.

The semantic rules for skip, assign, array, seq and if remain the same as presented in
section 4.2.

6.2 Proof Rules for Exact Costs

In this new logic we have that |= {P}S{Q|t} if and only if, for all state σ such that σ |= P and
⟨S, σ⟩ →t σ′ we have that σ′ |= Q and AJtKσ = t′. Notice that this is fairly similar to what was
presented in section 4.3 but now, for a Hoare triple to be valid, the value passed in the cost
section needs to represent the exact cost of the program (AJtKσ = t′).

The new axiomatic rules for the for loop are defined in figure 6.2.

{P ∧ a ≤ i ∧ i < b} S {P [i+ 1/i] | tS}
{P [a/i] ∧ a < b} for i = a to b do S {P [b/i] | (b− a)× (T AJaK + CASSIGN_V + tS) + (b− a+ 1)× (T BJa < bK)}

{P ∧ b ≤ a} for i = a to b do S {P |T BJa < bK}

Figure 6.2: Hoare rule for for-loop statement.

We have one rule and one axiom for for. The axiom says that if we are in a state that
validates P and b ≤ a, then after executing the for, we will be in a state that validates P, and this
execution will have an exact cost of T BJa < bK. The for rule says that if we start in a state that
validates P and a < b then after executing the for loop we will be in a state that validates P [b/i]
and this will have a cost of (b− a+ 1) × T BJa < bK + (b− a) × (tS + T AJaK +CASSIGN_V ). To
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prove this, we must first prove that if we execute S from a state that validates P and a ≤ i < b,
then after executing S, we will be in a state that validates P [b/i] and this will cost tS to execute.

We also modify the rule for conditional statements by imposing that both branches must
execute with the same exact cost. The rule for if is then redefined as shown in Figure 6.3.
Note that balancing if branches with, e.g., dummy instructions is a common technique used
in cryptography to eliminate execution time dependencies from branch conditions that may be
related to secret data. The new rule is shown in Figure 6.3.

{ P ∧ b } S1 { Q | t} { P ∧ ¬b } S2 { Q | t }
{ P } if b then S1 else S2 { Q | t+ T BJbK }

Figure 6.3: Hoare rule for if statement where both branches take exactly the same time to
execute.

The rule for if says that, if we start at a state validating P then after executing if we will
arrive to a state that validates Q. This execution will take exactly t+ T BJbK. To prove this, we
need to guarantee

• Executing S1 from a state validating P ∧ b generates a state that validates Q and S1 takes
t to execute.

• Executing S2 from a state validating P ∧ ¬b generates a state that validates Q and S2

takes t to execute.

Soundness

We need to ensure that our Hoare logic is sound with respect to our operational semantic. For
this version, our soundness theorem will be slightly different than the one we have previously
presented.

Theorem 4 (Soundness). We have that |= {P}S{Q|t} if and only if, forall state σ such that
σ |= P and ⟨S, σ⟩ →t′

σ′, we have σ′ |= Q and AJtKσ = t′.

Even though our theorem changed, the proof for skip, assign, array and seq will look exactly
the same since the upper bound calculated by our previous logic was already identical to the real
cost of execution. Therefore we will only show the proof for if and for.

Proof. Case if: Assume |= {P ∧ b}S1{Q|t} and |= {P ∧ ¬b}S2{Q|t}. Suppose σ |= P .

If σ |= b, then σ |= P ∧ b so, assuming ⟨S1, σ⟩ →t1 σ1, we have that σ1 |= Q

If σ |= ¬b, then σ |= P ∧ ¬b e so, assuming ⟨S2, σ⟩ →t2 σ2, we have that σ2 |= Q.
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Given our assumptions we know that t1 = t2 = t. We then have that the exact cost for the if
statement is t+ T BJbK. The rule for if is sound.

|= { P } if e then S1 else S2 { t1 + T BJbK | Q }

Case for: Assume |= { P ∧ (a ≤ i) ∧ i < b } S { P [i+ 1/i] |tS}
Suppose σ |= P [a/i] and ⟨for i = a to b do S, σ⟩ →t σ1.

If σ |= ¬(a ≤ b) then σ = σ1. From our lemma 1 we get that σ |= P . In this case, the
execution time is T BJa ≤ bK. When a > b, t = T BJa < bK, then the axiom is sound.

If σ |= a < b then σ |= P [a/i] ∧ a < b. Let us consider a state σ2 such that ⟨i = a, σ⟩ →t1 σ2.
By the assign rule, we know σ2 |= P and t1 = T AJaK + CASSIGN_V . We also have that
σ2 |= a ≤ i < b, therefore if we execute S from state σ2, we will get a state σ3, ⟨S, σ2⟩ →t2 σ3, such
that σ3 |= P [i+1/i], and tS = t2. By our induction hypothesis: ⟨for i = a+1 to b do S, σ3⟩ →t3 σ1,
where σ1 |= P [b/i], and t3 = (b−a) × T BJa < bK+ (b−a− 1) × (tS + T AJaK+CASSIGN_V ). The
real cost of executing statement for from state σ is t = t1 + t2 + t3 + T BJa < bK. Knowing t1 =
T AJaK+CASSIGN_V , t2 = tS , and t3 = (b−a)×T BJa < bK+(b−a−1)×(tS+T AJaK+CASSIGN_V ),
gives us

t = T AJaK+CASSIGN_V +tS+(b−a)×T BJa < bK+(b−a−1)×(tS+T AJaK+CASSIGN_V )+T BJa < bK

t = (b− a+ 1) × T BJa < bK + (b− a) × (tS + T AJaK + CASSIGN_V ) + T BJa < bK

Therefore the rule for for is sound.

Example: Range Filter

To illustrate our logic, we will apply our rules to the range filter algorithm, as presented in
figure 6.4. This algorithm consists of a simple filter where, given an array (a) and a range [l..u],
we use an auxiliary array (b) to filter the elements in a that are within the range.

We provide the invariant I ≡ ∀k.(0 ≤ k∧k < i) → (l ≤ a[k]∧a[k] ≤ u → ∃k.b[j] = a[i])∧(l >
a[k] ∧ a[k] > u → ¬(∃j.b[k] = a[i])) in order to prove correctness.

Let us refer to the if statement as Sif and to the for statement as Sfor.

By the assign rule we have

{I[i+ 1/i][j + 1/j]}j = j + 1{I[i+ 1/i]|T AJj + 1K + 1}

By the assign rule we also have

{I[i+ 1/i][j + 1/j][a[i]/b[j]]}b[j] = a[i]{I[i+ 1/i][j + 1/j]|T AJiK + T AJjK + 1}
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{0 ≤ l ∧ l < u ∧ n ≥ 0}
j = 0 ;
f o r i=0 to n do

i f ( l <= a [ i ] and a [ i ] <= u)
then

b [ j ] = a [ i ] ;
j = j + 1

e l s e
b [ j ] = b [ j ] ;
j = j + 0

end
end

{∀i.(0 ≤ i < n) → (l ≤ a[i] ≤ u→ ∃j.B[j] = a[i])∧
(l > a[i] > u→ ¬(∃j.b[j] = a[i]))|17 × n+ 22 }

Figure 6.4: Array filtering algorithm with annotations for exact cost.

By the seq rule we get

{I[i+ 1/i][j + 1/j][a[i]/b[j]]}b[j] = a[i]; j = j + 1{I[i+ 1/i]|4 + 3 + 1}

By the assign rule we have

{I[i+ 1/i][j + 0/j]}j = j + 0{I[i+ 1/i]|T AJj + 0K + 1}

By the assign rule we also have

{I[i+ 1/i][j + 0/j][b[j]/b[j]]}b[j] = b[j]{I[i+ 1/i][j + 0/j]|T AJjK + T AJjK + 1}

By the seq rule we get

{I[i+ 1/i][j + 0/j][b[j]/b[j]]}b[j] = b[j]; j = j + 0{I[i+ 1/i]|4 + 3 + 1}

Since I[0/i] ∧ l ≤ a[i] ≤ u → I[i + 1/i][j + 1/j][a[i]/b[j]], I[0/i] ∧ ¬(l ≤ a[i] ≤ u) →
I[i+ 1/i][j + 0/j][b[j]/b[j]], then by the if rule

{I[0/i]}Sif {I[i+ 1/i]|8 + T BJl ≤ a[i] ∧ a[i] ≤ uK}

By the for rule we get

{I[0/i]}Sfor{I[b/i]|n× 17 + (n+ 1) × T BJi < nK}

By the assign rule
{I[0/i][0/j]}j = 0{ I[b/i]|2}
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By the seq rule

{I[0/i][0/j]}S{I[i+ 1/i]|8 + n× 9 + (n+ 1) × T BJi < nK + 2}

Since P → I[0/i][0/j], I[i+ 1/i] → Q, and T ≥ n× 9 + (n+ 1) × T BJi < nK + 2, then by the
weak rule

⊢ {P}S{Q|T}

6.3 Verification Conditions Generation for Exact Costs

Given the extensions to our logic, we must rewrite our VCG accordingly.

In figure 6.5 we present the new Weakest Precondition-Cost (wpc) algorithm for if and for.
The rules for skip, assign, array, and seq remain the same since they already output exact costs.

wpc(if B then S1 else S2, ψ) = ((B → wp1) ∧ (¬B → wp2) ∧ t1 = t2 , t1 + T BJBK)
where (wp1 , t1) = wpc(S1, ψ),

(wp2 , t2) = wpc(S2, ψ),

wpc(for i = a to b do S, ψ) = (I[a/i], (b− a)× (T AJaK + CASSIGN_V + t) + (b− a+ 1)× T AJa < bK)
where (wp, t) = wpc(S, I[i+ 1/i])

Figure 6.5: Weakest Precondition Algorithm for Exact Costs.

In the wpc result for if , we add a precondition restriction that says t1 = t2. In the cost
expression, instead of computing the max between t1 and t2, we can simply define the cost as
t1 + T BJbK.

The Weakest Precondition of a for loop is the invariant when i = a. The cost of executing a
for loop is b− a times the cost of the loop body t, plus b− a+ 1 times the cost of evaluating
a < b.

In figure 6.6 we show the VC rules for if and for. The rule for if remains exactly the same
as in the original version (4.10).

The rule for for derives three VCs:

• I[b/i] → Q, meaning that when i reaches value b the loop breaks and the postcondition Q
is met.

• I ∧ a ≤ i < b → wp(S, I), which guarantees the invariant is preserved and that before
executing the for loop body, i must be a value between a and b.
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• I ∧ ¬(a < b) → Q, which states that if a < b is not met, then the loop will not execute and
the postcondition Q is true.

The rule also has a recursive call to VC applied to the body statement S.

VC(if B then S1 else S2, Q) = VC(S1, Q) ∪ VC(S2, Q)

VC(for i = a to b do S,Q) = {I[b/i] → Q} ∪
{(I ∧ a ≤ i < b) → wp(S, I[i+ 1/i])} ∪
{(I ∧ ¬(a < b)) → Q} ∪
VC(S, I[i+ 1/i])

Figure 6.6: VC Function for Exact Costs.

Soundness

We need to prove theorem 1, which states that the VCG algorithm is sound if the Verification
Condition generated implies the Hoare triple we wish to prove,

|= V CG({P}Q{R}) =⇒ ⊢ {P}Q{R}

Proof. We prove =⇒ by induction on the structure of Q and ⇐ by induction in the derivation
of ⊢ {P}Q{R}.

Case if:

Induction Hypothesis:

|= V CG({P}S1{Q|t1} →⊢ {P}S1{Q|t1})

|= V CG({P}S2{Q|t2} →⊢ {P}S2{Q|t2})

Let us consider

• wp1, t1 = wpc(S1, Q)

• wp2, t2 = wpc(S2, Q)

• wpc(if b then S1 else S2, Q) = (BJbK → wp1 ∧ ¬BJbK → wp2 ∧ t1 = t2, t1 + T BJbK)

V CG({P}if b then S1 elseS2{Q|T}) ={P → (b → wp1 ∧ ¬b → wp2 ∧ t1 = t2)}∪

{T = t1 + T BJbK}∪

V C(if b then S1 elseS2, Q)
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Where V C(if b then S1 elseS2, Q) = V C(S1, Q) ∪ V C(S2, Q).

Assuming |= V CG({P}if b then S1 else S2{Q|T}).

• Since P ∧ BJbK → wp1, t1 = t1, and V C(S1, Q),

|= V CG({P}S1{Q|t1})

• Since P ∧ ¬BJbK → wp2, t2 = t2, and V C(S2, Q),

|= V CG({P}S2{Q|t2})

From our Induction Hypothesis, we have ⊢ {P ∧ BJbK}S1{Q|t1}, and ⊢ {P ∧ ¬BJbK}S2{Q|t2}.

By the if rule, we get

{P}if b then S1 else S2{Q|t1 + T BJbK}

Since T = t1 + T BJbK, by the weak rule

⊢ {P}if b then S1 else S2{Q|T}

Case for:

Induction Hypothesis:

|= V CG({P}S{Q|T} → ⊢ {P}S{Q|T})

Let us consider

wpc(for i = a to b do S,Q) = (I[a/i], (b−a)×(T AJaK+CASSIGN_V +t)+(b−a+1)×T BJa ≤ bK)

where wpS , tS = wpc(S, I[i+ 1/i])

V C(for i = a to b do S,Q) ={I[b/i] → Q} ∪ (6.1)

{(I ∧ ¬(a < b)) → Q} ∪ (6.2)

{(I ∧ a ≤ i < b) → wp} ∪ (6.3)

V C(S, I[i+ 1/i]) (6.4)

V CG({P}for i = a to b do S{Q|T}) ={P → I[a/i]} ∪ (6.5)

{T = (b− a) × t+ (b− a+ 1) × T BJa ≤ bK} ∪ (6.6)

V C(for i = a to b do S,Q) (6.7)
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Assuming |= V CG({P}for i = a to b do S{Q|T}).

Given 6.3, , tS = tS , and VC(S,I[i+1/i]) then |= V CG[{I ∧ a ≤ i < b}S{I[i+ 1/i]|t}]

From our Induction Hypothesis

⊢ {I ∧ a ≤ i < b}S{I[i+ 1/i]|t}

By the for rule

⊢ {I[a/i]}for i = a to b do S{I[b/i]|(b−a)×(T AJaK+CASSIGN_V +t)+(b−a+1)×T BJa ≤ bK}

Given 6.5, 6.1 and 6.6 we get

⊢ {P}for i = a to b do S{Q|T}

Example: Range Filter

We now apply the VCG algorithm to the range filter example 6.4. We will use the same notation
as in section 6.2 and refer to our precondition as P , our program as S, our postcondition as Q,
and our tight cost as T . We will also refer to the for loop body statement as Sif . The algorithm
starts with a call to the VCG function.

V CG({P}S{Q|T}) ={P → wp) ∪ (6.8)

{T = t} ∪ (6.9)

V C(S,Q)

Where

wp, t = wpc(S,Q) = (I[0/i][0/j], n× tif + (n+ 1) × T BJ0 < nK + 2)

wpif , tif = wpc(Sif , I[i+ 1/i])

Then the VCG function calls the VC function for S. Since only for loops generate extra VCs,
we will omit other calls to the VC function for simplicity.

V C(S,Q) ={(I ∧ 0 ≤ i < n) → wpif } ∪ (6.10)

{(I[n+ 1/i]) → Q} ∪ (6.11)

{(I[0/i] ∧ n < 0) → Q} ∪ (6.12)

V C(Sf , I[i+ 1/i])
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To prove our triple, we now simply need to prove all of the VCs generated by the algorithm
(6.8 to 6.12), this can easily be done for all the conditions manually, or with the assistance of a
theorem prover.

As would be expected, proving a Hoare triple by applying the VCG algorithm is simpler and
more mechanic than proving it directly by applying our rules and deriving the inference tree.



Chapter 7

Implementation and Experimental Re-
sults

This chapter describes how we implemented our verification tool for all three versions of our logic.
We will also present implementations of classic algorithms and how we prove their correctness
and cost using our tool. We have implemented our verification system prototype in OCaml, and
all the code and examples are in the GitHub repository https://github.com/carolinafsilva/time-
verification.

7.1 Tool Architecture

Our goal is to write programs with annotation of correctness and time bounds and be able to
prove these conditions. In figure 7.1 we show the architecture of our tool, with each of the steps
that will allow us to meet our goal.

Program verification is conducted in three stages:

1. Annotation of the program by the programmer, who specifies the correctness conditions
that must be met, as well as the cost upper bound.

2. Implementation of the Verification Condition Generator (VCG) which, given an annotated
program generates a set of goals that need to be proved.

3. The proof stage: proof goals are passed to a theorem prover which attempts to prove them
automatically. If it fails, some interaction with the user is needed to guide the proof.

Achieving the first stage involves defining the language Abstract Syntax Tree (AST), parsing
the program and annotations, and implementing the operational semantics interpreter.

The second stage includes the implementation of our VCG algorithm and interaction with
the oracle, to provide extra information about program loops. At the end of stage two, our tool
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Figure 7.1: Architecture of our tool.

has generated a set of proof goals needed to ensure correction, termination, and resource usage
of our input program.

Finally, in stage three, we discard these proof goals by sending them to an automatic prover
(e.g., Easycrypt, why3) for validation. This step might need some assistance from the user since
the generated VCs might be too complex to be automatically proved. If all our VCs are validated,
we know our program is correct, and we have learned some restrictions on its execution time.

Verification is semi-automatic in the sense that in certain situations, the user has to give extra
information to the program, either in the form of an oracle that defines some needed parameters
or in the proof stage in situations where the proof is interactive.
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7.2 Implementation Details

7.2.1 Cost Model

One essential part of our system is our cost model. We need to define a way to evaluate the cost
of a program. We start by defining a map to store the cost of atomic operations. For instance,
the cost of a sum (C+) might be defined as 1, and the cost of multiplication (C∗) as 3. Besides
our dictionary, we implement a semantic to define the cost of evaluating arithmetic expressions,
boolean expressions, and statements. Our operational semantics uses the cost model to compute
the real execution cost.

7.2.2 Oracle

Programs with loops require additional information to prove correctness, termination, and cost
bounds. This information is provided through an oracle. This oracle will request user input
when necessary to complete the VCG algorithm. Since information such as invariants is needed
multiple times throughout the algorithm, we need to store this information to be easily accessible.
To achieve this, we assign a unique identifier to each while-loop and create an oracle hashtable to
store the oracle information for each loop. The code for our oracle can be seen in listing 7.1.� �

let oracle_hashtbl = Hashtbl.create 43

let parse_info name parser_function =

Printf.printf name ;

let input = read_line () in

Lexing.from_string input |> parser_function Lexer.token

let oracle () =

try

let inv = parse_info "Invariant: " Parser.annot_start in

let f = parse_info "Variant: " Parser.aexp_start in

let n = parse_info "Number of iterations: " Parser.aexp_start in

let t = parse_info "Cost Function of While: " Parser.lambda_start in

(inv, f, n, t)

with _ -> failwith "Oracle Error\n"

let get_oracle id =

if Hashtbl.mem oracle_hashtbl id then Hashtbl.find oracle_hashtbl id

else

let inv, f, n, t = oracle () in

Hashtbl.add oracle_hashtbl id (inv, f, n, t) ;

(inv, f, n, t)� �
Listing 7.1: Oracle Implementation.
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7.2.3 VCG

Let us look at our VCG implementation. We implemented this algorithm as similar to the
theoretical definitions as possible to guarantee soundness, as per our proofs. We presented
three theoretical definitions of our logic, one classic for upper bounds, one which uses amortized
analysis to further refine our upper-bound estimation, and one that proves the exact costs of a
restricted version of our language.

Consider the implementation of the Weakest Precondition (wp) function in listing 7.2. Note
how in the while case we start by calling the get_oracle function to get our loop information.� �

let rec wpc s phi =

match s with

| Skip ->

(phi, Var "Skip")

| Assign (x, a) ->

(subst phi x a, Sum (Var "Assign", time_aexp a))

| ArrAssign (x, a1, a2) ->

let t’ = Sum (time_aexp a1, time_aexp a2) in

(subst_arr phi x a1 a2, Sum (Var "Assign", t’))

| Seq (s1, s2) ->

let phi’, t2 = wpc s2 phi in

let phi, t1 = wpc s1 phi’ in

(phi, Sum (t1, t2))

| If (b, s1, s2) ->

let wp1, t1 = wpc s1 phi in

let wp2, t2 = wpc s2 phi in

let v_b = annot_of_bexp b in

let tb = time_bexp b in

(AAnd (AImpl (v_b, wp1), AImpl (ANeg v_b, wp2)), Sum (Sum (t1, t2), tb))

| While (id, b, _) ->

let inv, f, n, t = get_oracle id in

let time =

Sum

( Mul (Sum (n, Cons 1), time_bexp b)

, Sigma ("k", 0, Sub (n, Cons 1), lambda_app t (Var "k")) )

in

(AAnd (inv, AGe (f, Cons 0)), time)� �
Listing 7.2: Weakest Precondition Implementation.

Similarly, we can see the VC function implementation in listing 7.3. The while case calls the
get_oracle function again to retrieve the information about loop invariant, variant, and cost.

Finally, we show the entry point function VCG in listing 7.4. This function calls both wpc

and V C and combines all the VCs together.

The VCG implementation for amortized costs differs from the previous one, only for the
while case. The oracle will also request new information in this version, an amortized cost and a
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� �
let rec vc s phi: annot list =

match s with

| Skip | Assign (_, _) | ArrDef (_, _) | ArrAssign (_, _, _) ->

[]

| Seq (s1, s2) ->

vc s1 (wp s2 phi) @ vc s2 phi

| If (_, s1, s2) ->

vc s1 phi @ vc s2 phi

| While (id, b, s’) ->

let inv, f, n, t = get_oracle id in

let b = annot_of_bexp b in

let wp, t’ = wpc s’ (AAnd (inv, AGt (f, Var "k"))) false in

AForall ("k", AImpl (AAnd (inv, AAnd (b, AEq (f, Var "k"))), wp))

:: AImpl (AAnd (inv, AAnd (b, AEq (f, Var "k"))), AGe (lambda_app t (Var

"k"), t’))

:: AImpl (AAnd (inv, ANeg b), phi)

:: AImpl (AAnd (inv, b), ALe (f, n))

:: vc s’ (AAnd (inv, ALe (f, Var "k")))� �
Listing 7.3: VC Implementation.

� �
let vcg pre s t pos =

let wp, ts = wpc s pos true in

AImpl (pre, ALe (ts, t)) :: AImpl (pre, wp) :: vc s pos� �
Listing 7.4: VCG Implementation.

potential function instead of a function of cost.

The exact cost version of our logic requires additional changes. We start by extending
our language with for-loops and implementing the required adaptations to our interpreter. A
restriction will be added to if statements to ensure equal run time for both branches. Our VCG
algorithm will now be extended to deal with for-loops and the inequality operator in the cost
assertion will now be replaced with an equality operator to prove the exact-time bound.

7.3 Examples

Let us now analyze some working examples implemented in this language and the conditions
generated by our VCG algorithm. Particularly we will be able to look at the implementation
and results we have already analyzed in previous chapters. For simplicity, we defined the cost
of all atomic operations as 1 in our cost dictionary. In table 7.1 we show how many VCs each
example generated and which of the three versions of our logic was used.



62 Chapter 7. Implementation and Experimental Results

7.3.1 Insertion Sort

Our first example is of a classic sorting algorithm, insertion sort. The implementation is presented
in listing 7.5.� �

{ n > 0 }

i = 1;

while i < n do

key = x[i];

j = i - 1;

while j >= 0 and x[j] > key do

x[j + 1] = x[j];

j = j - 1

end;

x[j + 1] = key;

i = i + 1

end

{ forall k. (0<=k and k<n) => x[k] >= x[k-1] | 9*n*n + 27*n + 13 }� �
Listing 7.5: Insertion Sort Implementation with Annotations.

The precondition simply states that n is a positive number. The postcondition says that our
final array is in ascending order. Since the implementation has two while loops, we will have two
calls to the oracle.

For the external loop, we define the maximum number of iterations as n. The variant is the i
variable since it always increases until it reaches the value of n. The invariant states that the
array is always ordered from the first position until the (i− 1)-th position: ∀k.(0 < k ∧ k < i) →
(x[k − 1] ≤ x[k]). The cost of the body of the external while is not the same for all iterations,
since we have a nested while. We define this cost with the function: t(i) = 9 × i+ 15.

For the internal loop, it will iterate i times. The variant is the increasing expression i−j. The
invariant is that all elements between positions i and j are greater than the key and that from the
first position until i− 1 the array is sorted, excluding the element on position j: (∀k.(j < k ∧ k <
i) → x[k] > key) → ∀k1, k2.0 ≤ k1 ∧ k1 ≤ k2 ∧ k2 < i ∧ ¬(k1 = j) ∧ ¬(k2 = j) → x[k1] ≤ x[k2].
Note that one can define a cost function t(k) that would allow us to derive an exact cost for the
while rule, however, our logic does not allow proving that this bound is tight.

Given this information, our VCG generates the conditions needed to prove the termination,
correctness, and cost bound of our program.

7.3.2 Binary Search

Our next example is another classic algorithm, Binary Search. Here we want to prove that,
not only our implementation is correct and terminates, but also that the algorithm runs in
logarithmic time in the size of the array. The specification can be seen in listing 7.6
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� �
{(forall i. (0 <= i and i < n) => a[i] < a[i+1]) and (exists j. a[j] = v)}

l = 0;

u = n - 1;

while l <= u do

m = l + ((u - l) / 2);

if a[m] < v then

l = m + 1

else

if a[m] > v then

u = m - 1

else

result = m;

l = u + 1

end

end

end

{0 <= result and result < n and a[result] = v | 43 * log(n) + 10}� �
Listing 7.6: Binary Search Implementation with Annotations.

The precondition states that the array a is sorted, and that value v is in the array. The
postcondition says that result is a valid position in a and it corresponds to the position of v in
a, a[result] = v.

To prove the execution time bound, we provide to the oracle the maximum number of
iterations as being log(n) and a constant value as the cost of each loop body iteration. To prove
termination we must also provide n− u+ l as a variant. Our invariant says that the position we
are looking for is between l and u, 0 ≤ l ∧ u < n ∧ (∀i.(0 ≤ i ∧ i < n ∧ a[i] = v) → l ≤ i ∧ i ≤ u)
as invariant.

7.3.3 Binary Counter

In the binary counter algorithm, we represent a binary number as an array of zeros and ones.
We start with an array with every value at zero, and with each iteration, we increase the number
by one until we reach the desired value. Our implementation can be seen in listing 7.7.

Unlike in previous examples, we applied our amortized logic to prove the bound of the binary
counter algorithm. Our precondition says that n is a positive value, size is log(n) and that all
elements in array B from 0 to size start at zero. Our postcondition says that at the end of
the program, array B is a binary representation of decimal number n. In order to prove this
assertion, we must provide the oracle with the amortized cost (2c) and a potential function
denoting the number of ones in the array at each iteration. We must also specify the invariant
i = sum(k, 0, size,B[k] ∗ 2k), the variant i, and the maximum number of iterations size, to prove
correctness and termination respectively.
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� �
{n >= 0 and size = log(n)}

i = 0;

while i < n do

j = 0;

while B[j] = 1 do

B[j] = 0;

j = j + 1

end;

B[j] = 1;

i = i + 1

end

{n = sum(i,0,log(n) - 1, B[i]*2^i) | 20*c*n + 3*n + 30}� �
Listing 7.7: Binary Counter Implementation with Annotations.

If we were to use a worst-case analysis on this implementation, we would get that this
algorithm is O(n logn), meaning we would flip every bit (logn) a total of n times. However, this
is not the case. While the first bit (B[0]) does flip every iteration, the second bit(B[1]) flips every
other iteration, the third (B[2]) every 4th iteration, and so on. We can see a pattern where each
bit B[i] flips every 2ith iteration. This will mean that, at most, we have 2n bit flips, meaning
our algorithm is actually O(n), as we successfully proved with our algorithm. we can define a
potential function as:

7.3.4 Range Filter

In our last example, we implement a simple filter where, given an array (a) and a range [l..u], we
use an auxiliary array (b) to filter if the elements in a are within the range, listing 7.8.

� �
{ 0 <= l and l < u and n >= 0}

j = 0;

for i=0 to n do

if (l <= a[i] and a[i] <= u)

then

b[j] = a[i];

j = j + 1

else

b[j] = b[j];

j = j + 0

end

end

{ forall i. (0<=i and i<n) => (l <= a[i] and a[i] <= u => exists j. B[j] = a[i]

)

and (l > a[i] and a[i] > u => not (exists j. b[j] = a[i]) ) | 13*n + 10 }� �
Listing 7.8: Range Filter Implementation with Annotations.
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Our pre-condition states that l and n are positive values, and u is greater than l. Our
postcondition says that for every i element in a in the range [l..u], i will also be in B. And for
every i element in a not in the range [l..u], i will not be in B.

We provide the invariant ∀k.(0 ≤ k ∧ k < i) → (l ≤ a[k] ∧ a[k] ≤ u → ∃k.b[j] = a[i]) ∧ (l >
a[k] ∧ a[k] > u → ¬(∃j.b[k] = a[i])) in order to prove correctness. Using our VC generator and
EasyCrypt we prove that not only is this algorithm correct, the cost we provide of 13n+ 10 is
the exact cost of this program. This result allows us to conclude the time it takes to run depends
only on the size of the array, and not on its values.

Algorithm Logic Number of VCs Generated
Insertion Sort Classic 10
Binary Search Classic 6

Binary Counter Amortized 17
Range Filter Exact 5

Table 7.1: Logic Used and Number of VCs generated by each example.





Chapter 8

Conclusion

The topic of static cost analysis is not new. There is a lot of previous research on how to get
reasonable estimations of cost or worst-case scenario costs, either by using type systems or using
an axiomatic semantics. Our work continues on this but aims to produce tighter bounds than
what we found so far in the literature.

We first extended the traditional logic of worst-case cost to use amortized analysis, giving
better results for programs that fit the amortized analysis scenario.

Then, we further extended our logic to a restricted version of our language, where one can
prove the exact cost of execution. As far as we know, this is a novel logic. This result is rather
significant if we consider the application to critical systems where the worst-case cost is not enough
to guarantee all safety goals. It is also relevant if applied to cryptographic implementations,
where timing leakage might be a security concern.

8.1 Future Work

One of the first improvements we are aiming towards is to develop a single system capturing all
of the cost logics together, creating a more cohesive, powerful tool.

We primarily focused on theoretical definitions and guaranteeing a sound logic that produced
reasonable bounds. Our implementation is a simple prototype that serves as proof of concept of
these definitions. Therefore many improvements can be made to our tool concerning efficiency,
transforming it from a conceptual tool to a practical one.

We also defined our logic using a simple language, which allowed us to focus on the cost
estimation aspect without having to worry so much about language details. In the future, we
want to extend our language with more features, such as functions, to improve the expressiveness
of programs. We would also like to expand the application of our logic to more extensive and
complex case studies, namely cryptographic implementations.

67



68 Chapter 8. Conclusion

Our work started as an adaptation of the EasyCrypt cost logic developed in [5]. In the future,
we would like to propose an extension to the EasyCrypt tool with our logic.
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