
Instituto Superior de Engenharia de Lisboa

Departamento de Engenharia de Electrónica e Telecomunicações
e de Computadores

FLOWViZ: Framework for Phylogenetic Processing

Miguel Filipe Paiva Luís
(Bachelor of Science)

Final project to obtain the Master Degree in Computer Science and Engineering

Supervisor: Doctor Cátia Raquel Jesus Vaz

Committee:
President: Doctor Nuno Miguel Soares Datia
Members: Doctor José Manuel de Campos Lages Garcia Simão

Doctor Cátia Raquel Jesus Vaz

December, 2022

Acknowledgments

À Professora Doutora Cátia Raquel Jesus Vaz, do Instituto Superior de Engenharia
de Lisboa, pela sua excelente orientação, disponibilidade e apoio imprescindível que me
prestou ao longo da realização da minha tese.

Ao INESC-ID pela atribuição da bolsa, que financiou o projeto e permitiu-me submeter
e apresentar um artigo no simpósio INForum 2022, na Guarda.

Aos meus amigos, em especial, aos meus colegas de mestrado e de licenciatura David
Albuquerque e Nuno Gomes.

Em especial, um enorme agradecimento aos meus pais e irmã que sempre estiveram
comigo, apoiaram-me ao longo da minha vida e sempre acreditaram em mim.

Sem todas estas pessoas nada disto seria possível e dedico este trabalho a todas elas.

iii

Abstract

The increasing risk of epidemics and a fast-growing world population has contributed
to a great investment in phylogenetic analysis, in order to track numerous diseases and
conceive effective medication and treatments.

Phylogenetic analysis requires large quantities of information to be analyzed and pro-
cessed for knowledge extraction, using adequate techniques and, nowadays, specific soft-
ware and algorithms, to deliver results as efficiently and fast as possible. These algorithms
and techniques are already provided by a great set of free and available frameworks and
tools, such as PHYLOViZ[23].

Most of the applied techniques and algorithms used for phylogenetic inference tend
to form work pipelines - procedures formed by steps, which typically have an intrinsic
dependency between them. Although it is possible to execute work pipelines manually, as
it has been done for decades, nowadays, is not feasible, as genomic datasets are very large,
and the respective analysis is time-consuming. The transition between steps also needs
human interaction and each step must receive the matching data, correctly, which can
introduce human error. Because of this, software were made to ease and reduce manual
interaction, so these procedures could be automated. This type of software is typically
referred as a workflow system - software which allows users to create workflows, on
top of a provided Domain-Specific Language (DSL)[13], where procedures are translated
into scripts, through the definition of a group of steps and their specific parameters and
dependencies.

There are already many software solutions available, which differ in their Domain-
Specific Language and workflow structuring, leading to a great software heterogeneity,
but also low workflow shareability - as users work on different workflow systems. Thus,
when they share workflows with others, time needs to be spent converting and adapt-
ing certain workflows to a specific workflow system, so work pipelines can be executed,
making workflow sharing a difficult task.

This lead to the creation of the Common Workflow Language (CWL)[2] - a new stan-
dard which provides a way to execute workflows and work pipelines among different
workflow systems. However, not every system supports this new standard.

This project aims to build a framework on top of an already existing project - PHYLO-
ViZ, which provides a set of state-of-the-art tools for phylogenetic inference. The devel-
oped framework, will link phylogenetic inference web frameworks with workflow sys-
tems, giving the user freedom to build its workflows, using the provided web framework’s
or its remote tools, through a user-friendly web interface. Resulting in workflow automa-
tion, task scheduling and a more efficient and faster phylogenetic analysis.

The project was supported by funds, under the context of a student grant of Fun-
dação para a Ciência e a Tecnologia (FCT) with reference UIDB/50021/2020, for a INESC-
ID’s project - NGPHYLO PTDC/CCI-BIO/29676/2017 and a Polytechnic Institute of Lisbon
project - IPL/2021/DIVA_ISEL.

Keywords: Workflow systems, Phylogenetic framework, Software integration.

v

Resumo

O aumento do risco epidemiológico e o constante crescimento da população mundial
contribuiu para que se fizesse um forte investimento na análise filogenética, de modo a
monitorizar doenças e a conceber tratamentos e medicação rápidos e eficazes.

A análise filogenética utiliza grandes quantidades de informação, que deve ser ana-
lisada e processada para se extrair conhecimento, utilizando técnicas adequadas e, at-
ualmente, software especializado e algoritmos, de modo a produzir resultados eficazes e
rápidos. Estes algoritmos já são fornecidos por um grande conjunto de frameworks e fer-
ramentas disponíveis gratuitamente, um bom exemplo é a framework de inferência filo-
genética PHYLOViZ[23].

A maioria das técnicas de análise utilizadas na inferência filogenética tendem a for-
mar, topologicamente, pipelines de trabalho - procedimentos constituídos por passos, cujos
fluxos de dados são dependentes entre si. Apesar de ser possível executar pipelines de tra-
balho manualmente, como tem sido feito há várias décadas, atualmente, já não é fazível,
dado que os datasets utilizados são volumosos, tornando a sua análise manual contrapro-
ducente. A transição manual entre passos necessita também que haja interação humana
para que cada passo receba os dados necessários, o que pode também estar sujeito ao erro
humano. Por isso, foi construído software que reduzisse a interação humana e que autom-
atizasse estes procedimentos. Este tipo de software é designado por sistemas de workflow
- software que permite os utilizadores criarem workflows, através de uma Domain-Specific
Language (DSL)[13], onde estes procedimentos são traduzidos para scripts, especificando-
se o grupo de tarefas, com os seus parâmetros e dependências de dados.

Existem atualmente várias soluções de sistemas de workflow, que diferem na sua lin-
guagem e estruturação de workflows, o que leva a que exista uma grande heterogeneidade
de software, mas que piora também a partilha destes procedimentos. Por isso, quando
se partilham workflows, é necessário despender-se tempo a traduzir pipelines de trabalho
para a linguagem específica do sistema de workflow que vai executar a pipeline partilhada.

Este problema levou a que fosse criada a Common Workflow Language (CWL)[2] - um
novo standard que permite executar workflows entre vários sistemas de workflow. No
entanto, nem todos os sistemas suportam este novo standard.

Este projeto pretende construir uma framework, recorrendo a um projeto existente -
PHYLOViZ e ao seu conjunto de ferramentas de inferência filogenética. Esta framework,
permitirá ligar frameworks de inferência filogenética a sistemas deworkflow, dando ao uti-
lizador liberdade para construir os seusworkflows personalizados, recorrendo à framework
e às ferramentas do utilizador, fornecidas remotamente, que poderão ser geridas através
de uma interface intuitiva. Tudo isto, fornecerá automatização deworkflows e uma análise
filogenética mais rápida e eficaz.

Este projeto foi financiado, no contexto de uma bolsa de estudo da Fundação para
a Ciência e a Tecnologia (FCT) com referência UIDB/50021/2020, no projeto NGPHYLO
PTDC/CCI-BIO/29676/2017 e num projeto do IPL - IPL/2021/DIVA_ISEL.

Palavras-chave: Workflows, Frameworks filogenéticas, Integração de software.

vii

Contents

1 Introduction 1

1.1 Objective . 3
1.2 Document Structure . 3

2 Case Studies 5

2.1 Pipelines for phylogenetic analysis . 6
2.2 Pipelines for genomics processing . 7

3 State of the art 9

3.1 Workflow Systems . 9
3.1.1 Airflow . 10
3.1.2 Nextflow . 13
3.1.3 Snakemake . 15
3.1.4 Systems comparison . 17

3.2 Web Frameworks . 19
3.2.1 PHYLOViZ . 19
3.2.2 NGPhylogeny . 20
3.2.3 Other web frameworks . 23
3.2.4 Observations . 23

4 Requirements 25

4.1 Functional requirements . 26
4.1.1 FLOWViZ Framework . 26
4.1.2 Workflow System . 26
4.1.3 Database . 26
4.1.4 Phylogenetic framework . 27

ix

4.2 Non-functional requirements . 27

4.2.1 FLOWViZ Framework . 27

4.2.2 Workflow System . 27

4.2.3 Database . 27

4.3 Proposed solution . 27

4.4 General use cases . 28

5 Solution 31

5.1 System architecture . 31

5.2 Domain model . 34

5.3 Use case implementation . 38

5.4 Server architecture . 40

5.5 Client architecture . 43

6 Implementation 45

6.1 Server . 45

6.1.1 Used technologies . 46

6.1.2 Authentication . 46

6.2 Client . 48

6.2.1 Used technologies . 49

6.2.2 Data layer implementation details 49

6.2.3 Application overview . 51

6.2.4 Tool integration . 54

6.2.5 Workflow building . 57

6.2.6 Result production . 59

6.3 Workflow system . 61

6.4 Deployment . 64

6.4.1 HTTP server and React client . 64

6.4.2 Phylogenetic framework integration 65

7 Conclusion 67

A Airflow workflow 75

B Nextflow workflow 77

C Snakemake workflow 79

D ETL pipeline 81

E HTTP server’s REST API endpoints 85

List of Figures

2.1 Representation of a pipeline . 6

2.2 Representation of a Directed Acyclic Graph 6

2.3 Hamming distance→ UPGMA algorithm workflow, from Phylolib 6

2.4 Hamming distance → goeBURST algorithm → LBR optimization work-
flow, from Phylolib . 7

2.5 Trimmomatic→ Spades→ ABRIcate workflow, from Flowcraft 7

2.6 Trimmomatic → Spades → Pilon → (ABRIcate, Prokka) workflow, from
Flowcraft . 8

3.1 DAG representation of airflow’s example workflow script 13

3.2 PHYLOViZ Online: web application home page. Source: online.phyloviz.net 19

3.3 PHYLOViZ Online: phylogenetic tree real-time visualization, with the re-
spective settings. Source: online.phyloviz.net/index/tutorial/ 20

3.4 NGPhylogeny web application home page. Source: ngphylogeny.fr 21

3.5 NGPhylogeny: list of executing and schedule tasks. Source: NGPhylogeny’s
documentation (ngphylogeny.fr/documentation#title13) 22

3.6 T-Rex web application home page. Source: trex.uqam.ca 23

4.1 System’s general functionality of the proposed solution 28

4.2 User’s general use cases and interaction with the framework 29

4.3 Framework’s general use cases and interaction with library and the work-
flow system . 29

5.1 System architecture - FLOWViZ detail . 32

5.2 System architecture - interactions among involved components 33

5.3 Tool domain model . 35

5.4 Workflow domain model . 37

xiii

https://online.phyloviz.net/
https://online.phyloviz.net/index/tutorial/
https://ngphylogeny.fr/
https://ngphylogeny.fr/documentation#title13
https://ngphylogeny.fr/documentation#title13
http://www.trex.uqam.ca/

5.5 User domain model . 37
5.6 Tool integration module interaction model 38
5.7 Workflow building module interaction model 39
5.8 Result production module interaction model 40
5.9 Server’s subsystem diagram . 41
5.10 Client’s subsystem diagram . 43
5.11 Flowchart of a generic HTTP request . 44

6.1 A generic and successful workflow of the JWT usage 47
6.2 User sign up (registration) with JWT strategy 47
6.3 User sign in (login) with JWT strategy . 48
6.4 FLOWViZ: home page . 51
6.5 FLOWViZ: documentation page . 52
6.6 FLOWViZ: specific tool documentation . 52
6.7 FLOWViZ: sign in and sign up buttons location (home page top-right corner) 53
6.8 FLOWViZ: sign in page . 53
6.9 FLOWViZ: tool integration general fragment 54
6.10 FLOWViZ: tool integration access fragment 55
6.11 FLOWViZ: tool integration rules fragment 56
6.12 FLOWViZ: whiteboard . 57
6.13 FLOWViZ: configuration of a task inside the workflow 58
6.14 FLOWViZ: workflow submission form . 59
6.15 FLOWViZ: workflow list page . 59
6.16 FLOWViZ: workflow execution log . 60
6.17 FLOWViZ: workflow source code . 61
6.18 ETL pipeline . 62
6.19 ETL pipeline detail . 62

List of Tables

2.1 Pipeline versus DAG . 6

3.1 Workflow system comparison table . 17

xv

Listings

3.1 Downloading docker-compose.yaml . 11
3.2 Starting Airflow services . 11
3.3 Airflow mock workflow’s script example 12
3.4 Nextflow mock workflow’s script example 14
3.5 Snakemake mock workflow’s script example 16
6.1 useFetch custom hook useEffect operation 50
6.2 Request function . 50
6.3 Airflow development DockerFile . 63
6.4 Docker network creation . 63
6.5 Docker network inspect . 64
6.6 React client production build command . 64
6.7 Server using client static assets (flowviz.js) 64
6.8 Server path prefix . 65
6.9 Client path prefix . 65
6.10 FLOWViZ npm package installation . 65
6.11 FLOWViZ linking to phylogenetic framework 65
6.12 FLOWViZ npm package required dependencies for framework extension . . 66

xvii

Acronyms

API Application Programming Interface. xi, 11, 18, 27, 34, 36, 39, 42, 46, 55, 61, 62, 67, 85

CLI Command Line Interface. 17, 27, 34, 36, 55, 56

CWL Common Workflow Language. v, vii, 2, 10, 15, 17, 18, 25, 26, 27, 68, 69

DAG Directed Acyclic Graph. xiii, xv, 5, 6, 10, 11, 12, 13, 36, 39, 40, 60, 61, 62, 63, 64, 67,
85

DCG Directed Cyclic Graph. 6

DSL Domain-Specific Language. v, vii, 2, 9, 14, 17, 28, 30, 36, 59, 60, 61, 62, 63, 67, 68, 69

FOSS Free and Open-Source Software. 45

GUI Graphical User Interface. 9, 11, 17

HPC High Performance Computing. 25, 26

HTML Hypertext Markup Language. 43

HTTP Hypertext Transfer Protocol. x, xi, xiv, 31, 32, 36, 39, 40, 41, 42, 43, 44, 45, 46, 48,
49, 50, 51, 59, 62, 64, 65, 66, 67, 85

JSX JavaScript XML. 50

REST Representational State Transfer. xi, 11, 18, 39, 46, 55, 61, 62, 67, 85

xix

Glossary

allelic Comes from term allele - denotes the variant of a given gene.. 19

blob A file-like object of immutable, raw data. 67

Covid-19 a contagious disease caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). 1

ETL pipeline An ETL pipeline is a set of processes to extract data from one system,
transform it, and load it into a target repository. xi, xiv, 36, 39, 40, 61, 62, 64, 67, 81

genome The genetic information of an organism. 1, 7, 8

interoperability the basic ability of different computerized products or systems to read-
ily connect and exchange information with one another, in either implementation
or access, without restriction. 2, 25

loosely coupled Components which are connected via loose coupling - an approach to
interconnecting the components in a system or network so that those components,
also called elements, depend on each other to the least extent practicable. 2, 3, 22,
24, 25, 26

phylogenetic the systematic study of reconstructing the past evolutionary history of ex-
tant species or taxa, based on present-day data, such as morphologies or molecular
information (sequence data). v, ix, xiii, 1, 2, 3, 6, 7, 19, 20, 23, 25, 26, 27, 28, 29, 31,
32, 33, 42, 45, 48, 51, 64, 65, 66, 67, 68

prokaryotic genome annotation amulti-level process that includes prediction of protein-
coding genes, as well as other functional genome units such as structural RNAs and
tRNAs. 8

scale-out adding more nodes to (or removing nodes from) a system, such as adding a
new computer to a distributed software application. 14

scale-up adding resources to (or removing resources from) a single node, typically in-
volving the addition of CPUs, memory or storage to a single computer. 14

xxi

Chapter 1

Introduction

Biology has been strongly influenced by the digital era we live in. The relationship be-
tween it and informatics had proven great humanitarian and scientific advances, mainly
in the areas of healthcare and virology, not only contributing to create, but also enrich
the science field of Bioinformatics. The need of delivering fast and efficient results and
track different viruses and diseases has been fast-increasing, specially in the last two years
with the ongoing Covid-19 pandemic and due to the continuously growing world popula-
tion, which contributes to the appearance of new epidemics. Consequently, scientists rely
on phylogenetic and genome analysis for variant tracking, in order to conceive effective
medication.

Phylogenetic and genome analysis involve large quantities of data, that needs to be
processed in order to be usable. Genome data can sometimes reach terabytes (TB) in
size[24], this added to the multiple tasks which compose analysis procedures, can make
these processes very demanding, complex and time-consuming. In pursuance of easing
these tasks’ requirements, software were made to better fit their specificities. Nowadays,
these also use distributed and parallel computing to decrease processing times. There
are already multiple free and available solutions that let users make this type of analy-
sis, usually providing them with tools to build their phylogenetic trees. Solutions such
as PHYLOViZ[23] and NGPhylogeny[17] are good examples of projects that have web
frameworks which do this type of work.

These analysis procedures are composed by groups of tasks or steps, which are usually
intrinsically dependent with each other - an output of a certain task may serve as an input
of a future task. This pattern repeats until the final task’s output - where the procedure
ends. The procedure’s structure and flow resembles a pipeline - a channel where a certain
product is forwarded, suffering multiple transformations along the way, until reaching
a final result. In Bioinformatics, this term was applied to these phylogenetic analysis
procedures, along with the termworkflow. This one can be interpreted as a flow of work
that has a beginning and an end, which also relates with the firstly approached term. It is
common to see these two terms being treated and used as they were the same. However,
as it will be later explained in this report, a pipeline is a subset of a workflow, thus a
pipeline can also be designated as a workflow. Informally, in Bioinformatics, it is common

1

to designate most workflows as pipelines.
Workflows are built and executed inworkflow systems - specialized software, which

provides a Domain-Specific Language (DSL), that allows users to script their own work-
flows and manage complex distributed computation and data in distributed resource envi-
ronments. Nowadays, there are many available workflow systems and each one provides
a different and, sometimes, unique way to build workflows. At first, this software diver-
sity can bring many options to build workflows, however, workflow shareability worsens
when users are building their workflows in their specific systems instead of a common
one. In order to provide workflow shareability among users that use different workflow
systems, the Common Workflow Language (CWL)[2] standard was created. This new
standard contributed to an increasing interoperability between different workflow sys-
tems, however, as it is still new, a small percentage of them support this standard. It is
expected that, given this standard increasing popularity, more implementations will be
made in more workflow systems.

Most available phylogenetic web frameworks have a limited set of tools, without possi-
ble user integration, and almost none of them possess a workflow buildingmechanism nor
uses a workflow system. From all the studied available frameworks, only one integrated
a workflow system - NGPhylogeny[17], which is the only found example of a successful
integration between a phylogenetic web framework and a workflow system. However,
the implementation was only made to fit NGPhylogeny and does not provide any tool
integration mechanisms, restricting users to the available tool set. This web framework
will be detailed during chapter 3 - State of the art.

Given these facts, FLOWViZ - the framework introduced by this project, aims to
provide users an environment that eases workflow building and shareability, by linking
the phylogenetic web framework to a workflow system that schedules and executes users’
workflows and by granting these characteristics:

• Automation: make phylogenetic analysis automatic processes, by providing users
ways to, priorly, define work pipelines and not just individual tasks.

• Flexibility: allow users to use their own tools, since provided in containers or
remote computing instances;

• Scalability: support large-scale analysis by relying on a workflow system that en-
ables distributed and parallel computations on large clusters;

• Result production: provide complete results and logging, regarding the work-
flow’s execution;

• Integration: implement a loosely coupled relationship between the web frame-
work, the state-of-the-art phylogenetic tools and the workflow system. This allows
better integration for other web phylogenetic frameworks that want to integrate
this framework in the future, as for other workflow systems that might be imple-
mented later;

2

• Interoperability: by allowing easy integrationwith otherweb phylogenetic frame-
works and workflow systems, through defined contracts or interfaces;

• Reproducibility: supplying ready-to-use tools, which smooths the users’ experi-
ence, by not require them to manage installations or tool dependencies on their
personal computers; and workflow extraction which allows process reproducibility
of the entire procedure.

At the end of this project, the frameworkwill be tested and integratedwith the PHYLO-
ViZ web framework, version 2.0, via a contract, which will create a loosely coupled re-
lationship between them. This will allow to not only better integrate FLOWViZ with
the web framework, but will also allow other web frameworks’ integrations possible in
the future. The integration of FLOWViZ with PHYLOViZ 2.0 version will create the
PHYLOViZ 3.0 version, as the first one will deliver tool integration and workflow building
to PHYLOViZ.

The project was supported by funds, under the context of a student grant of Fun-
dação para a Ciência e a Tecnologia (FCT) with reference UIDB/50021/2020, for a INESC-
ID’s project - NGPHYLO PTDC/CCI-BIO/29676/2017 and a Polytechnic Institute of Lisbon
project - IPL/2021/DIVA_ISEL. In the context of this project, three articles were also made
and submitted to three different sources. The first one was submitted and presented at
the INForum 2022 Conference∗. The second one was submitted at ISEL Academic Journal
of Electronics, Telecommunications and Computers (i-ETC)† and the third was submitted
at arxiv.org [20].

1.1 Objective

Design an architecture and create a prototype of a framework that provides phyloge-
netic frameworks with tool integration and workflow building mechanisms, which will
ease the process of binding phylogenetic frameworks with workflow systems. This is
achieved by implementing contracts - interfaces that users need to comply with in or-
der to integrate a great variety of tools through a single form. Integrated tools are then
used by users to build customized workflows, which are scheduled and executed by the
FLOWViZ’s implementedworkflow system. The FLOWViZ frameworkwill be testedwith
the phylogenetic framework PHYLOViZ version 2.0 and the integration of these two will
result in the generation of new PHYLOViZ version - version 3.0.

1.2 Document Structure

This document is divided by the following main chapters:
∗https://inforum.org.pt/sites/default/files/2022-09/Actas_INForum.pdf#page=224
†http://journals.isel.pt/index.php/i-ETC

3

https://inforum.org.pt/sites/default/files/2022-09/Actas_INForum.pdf#page=224
http://journals.isel.pt/index.php/i-ETC

• Introduction - Provides the context of the problem, project’s objectives and the
document’s structure;

• Case Study - A dedicated chapter presenting prior knowledge required to the state
of the art’s full comprehension;

• State of the art - Contains the information which was retrieved before the devel-
opment of the project. Here are mainly stated comparisons between the different
workflow systems and tools and is mentioned related work available online. It is
also studied and concluded which workflow system is best for the project;

• Requirements - Shows the project’s functional and non-functional requirements,
the general use cases and the proposed solution;

• Solution - Displays and explains the system architecture and all associated models;

• Implementation - Presents the implementation of the solution and displays details
about the developed applications;

• Conclusion - States final notes about the implementation and the obtained results;
Discusses future improvements that could be implemented in this project.

4

Chapter 2

Case Studies

This chapter depicts the pipeline examples that were used for testing purposes in the
context of this project.

Before theworkflows’ examples, it is relevant to clarify differences and details between
workflows and pipelines, which were firstly approached during the introduction.

A workflow is a generic term to designate the automation of a process, which data
is processed by different logical data, processing activities according to a specified set of
rules [19].

Workflows can fall into two main categories: business workflows and scientific
workflows. Although they are similar, they differ in some aspects:

1. Abstract level: business workflows take advantage of traditional programming
languages, while scientific workflows use higher abstraction level tools to prove a
scientific hypothesis[4];

2. Interaction with participants: In business workflows, data can be processed by
different participants - computing instances or humans. In scientific workflows,
data is processed only by computing instances, while the scientists are just required
to monitor the workflow execution or control execution, when needed[4];

3. Data flows and control: Business workflows focus on procedural rules that gen-
erally represent the control flows, while scientific workflows highlight data flows
that are depicted by data dependencies[32].

It should be mentioned that the workflows being used in this project are scientific.
During this research, it was also found that workflows only have two subsets: Pipeli-

nes and Direct Acyclic Graphs (DAGs) [19].
Their differences and representations [30, 19] are shown in the following Table 2.1.

5

Pipeline DAG
Linear Process Non-linear process

Data flow does not branch Data flow can branch
Data may come from a single source, Data may come from multiple processes
usually the previous task’s output

Usually simple, quick and short-lived Usually complex and long-lived

1 2 3

Figure 2.1: Representation of a
pipeline

1

2

3

4 5 6

7

8

9

Figure 2.2: Representation of a
Directed Acyclic Graph

Table 2.1: Pipeline versus DAG

DAGs are graphs where nodes represent tasks and edges represent data dependencies.
This also applies to pipelines, however, they are described as more straight forward pro-
cedures, which graphical representation resembles a physical pipeline. Meaning that, like
it was stated, these can not have multiple inputs or outputs and thus can not branch.

Although rarely approached, there is also a subtype of the DAG, which is a more com-
plex version of it - a Directed Cyclic Graph (DCG)[30]. The only difference between this
two is that the data flow can loop inside a DCG, whereas in a DAG that does not happen.
The Direct Cyclic Graph is also more difficult to represent, as loops’ iterations need to be
represented, making its representation more complex. DCGs will not be focused much
during this report, as they will not be used during the project’s development.

2.1 Pipelines for phylogenetic analysis

This section shows workflows related with phylogenetic analysis, namely phyloge-
netic trees building. These two workflows are examples provided by a library of efficient
algorithms for phylogenetic analysis - Phylolib[28]. Figure 2.3 presents the first work-
flow.

Hamming UPGMA

Figure 2.3: Hamming distance→ UPGMA algorithm workflow, from Phylolib

The first task of this workflow is to calculate the Hamming[8] distance - obtain the
number of positions at which two aligned genetic sequences differ. Using the output of

6

the calculated distance - a matrix, the next task - theUPGMA[29] (unweighted pair group
method with arithmetic mean) algorithm will infer the phylogenetic tree.

Figure 2.4 displays the second workflow.

Hamming goeBURST LBR

Figure 2.4: Hamming distance→ goeBURST algorithm → LBR optimization workflow,
from Phylolib

This workflow also starts with the Hamming distance calculation, then the output
matrix will be used as input of the goeBURST[14] algorithm - another algorithm used to
build phylogenetic trees, that is an optimized implementation of the eBURST algorithm
which identifies alternative patterns of descent for several bacterial species. Finally, the
last step - LBR[28] (Local Branch Recrafting) optimization, will optimize the phylogenetic
tree generated from the previous step.

2.2 Pipelines for genomics processing

This section displays workflows related to genome assembly. These workflows are
examples provided by Flowcraft∗ - a pipeline assembler for genomics. This first workflow
(Figure 2.5) has the following structure:

Trimmomatic Spades ABRIcate

Figure 2.5: Trimmomatic→ Spades→ ABRIcate workflow, from Flowcraft

Thisworkflow startswith the toolTrimmomatic[7] - a trimming tool for next-genera-
tion sequencing data, which receives a pair of .fastq files, containing genomic data, and
outputs two pairs of .fastq files with trimmed genomes. The next tool - Spades[3], will
receive one pair of the resultant pairs and assemble the genome according to a given set
of parameters, this will output .fasta files. The final tool - ABRIcate[10], will use the
produced .fasta and find antimicrobial resistance or virulence genes in the provided
genomic data.

This document’s appendices contains, as example, this pipeline, written for the three
main workflow systems’ Domain-Specific Languages (appendices A, B and C), which are
going to be studied during chapter 3 - State of the art. Only these examples are available
in the appendices, the rest is available through this repository∗.

∗https://github.com/assemblerflow/flowcraft

7

https://github.com/assemblerflow/flowcraft

The second workflow uses some tools in common with the last workflow, however, it
is more complex, as it forks at the end, as shown in Figure 2.6:

Trimmomatic Spades Pilon

Prokka

ABRIcate

Figure 2.6: Trimmomatic→ Spades→ Pilon→ (ABRIcate, Prokka) workflow, from
Flowcraft

Here are introduced two new tools: Pilon[31] and Prokka[27]. Their functionalities
are the following:

• Pilon: an automated genome assembly improvement and variant detection tool;

• Prokka: rapid prokaryotic genome annotation.

For demonstration purposes, a public online repository∗ wasmade, where all the tested
workflows and their requirements are available, provided with guides so that each one can
be executed by each studied workflow system.

∗github.com/mig07/Phyloviz-Workflow-Examples.

8

https://github.com/mig07/Phyloviz-Workflow-Examples

Chapter 3

State of the art

This state of the art is composed by two main study components:

• The study of available workflow systems;

• The study of existing related web frameworks.

The state of the art will focus on three distinct workflow systems: Airflow[12], Next-
flow[11] and Snakemake[16].

The previously demonstrated workflows, available in a GitHub’s repository∗and pre-
sented during chapter 2 - Case Studies, will be used here to study each workflow system.
The usage of these workflows among this set of systems will provide detailed compar-
isons, which will be detailed during the study of each system and summarized by the end
of this chapter, with some final observations. This provides a better overview, which links
the project’s objectives with these chapter’s studied topics.

Available web frameworks will also be studied, in order to retrieve what solutions are
available and how they could be improved. This way, important remarks can be taken,
which will be considered in the project’s requirements.

3.1 Workflow Systems

Workflow systems are specialized software whichmanage, not onlyworkflows’ sched-
ules and executions, but also associated resources and distributed computation. They
provide users ways to build workflows through a Domain-Specific Language (DSL), and
some, through a specialized GUI, providing users with more configuration options, better
workflow visualization and logging.

∗github.com/mig07/Phyloviz-Workflow-Examples

9

https://github.com/mig07/Phyloviz-Workflow-Examples

As previously mentioned, there are many workflow solutions available, which offer
different functionalities and standards. During this research, a curated list of these work-
flow systems, elaborated by pditommaso† - the co-founder of Seqera Labs‡, was analyzed.

The listed systems were filtered based on their popularity and functionalities of inter-
ested. Consequently, the workflow systems which were studied are the following:

• Airflow[12]§;

• Nextflow[11]¶;

• Snakemake[16]∥;

The following subsections 3.1.1, 3.1.2 and 3.1.3 will detail each enumerated workflow
system, respectively.

3.1.1 Airflow

Overview

Airflow[12] is a scientific workflow system, written in Python, that enables scalable
and reproducible data analysis. It started being developed by Airbnb∗∗ and currently be-
longs to Apache†† as an open-source project.

Here, workflow scripts are designated as DAGs (Directed Acyclic Graph).
Its general features are the following:

• The unit of work here is a Task;

• Tasks usually call Operators, which are specialized objects that invoke specific
functions or perform specific tasks (e.g., a PythonOperator can only invoke a Python
function);

• DAGs can be executed by a defined schedule or by an external trigger;

• It can run on the cloud (Google Cloud Platform or Amazon Web Services) or inside
a cluster;

• It supports CWL;
†https://github.com/pditommaso/awesome-pipeline
‡https://seqera.io/about/
§https://airflow.apache.org/
¶https://www.nextflow.io/
∥https://snakemake.readthedocs.io/en/stable/
∗∗https://www.airbnb.com/
††https://www.apache.org/

10

https://github.com/pditommaso/awesome-pipeline
https://seqera.io/about/
https://airflow.apache.org/
https://www.nextflow.io/
https://snakemake.readthedocs.io/en/stable/
https://www.airbnb.com/
https://www.apache.org/

• Offers a GUI through a Web Application, that executes when running the Airflow
services;

• Creates a detailed log of the executed DAGs, with the execution timestamps and
stack traces;

• Provides a ready-to-use REST API, that can receive external triggers or supply com-
plete logs regarding workflows and their executions.

Installation and prerequirements

Airflow can be installed locally or can be executed inside containers, using the pro-
vided docker-compose.yaml that provide the minimum required services with a minimal
configuration.

Airflow requires Python as its execution environment (version 3.7 up to 3.10). It re-
quires docker and docker-compose if running the containerized version.

Installation observations

Docker-Compose must be installed alongside with Docker, in order to execute the
Airflow services.

After this, the docker-compose.yaml - the file where each Airflow-related service is
defined, can be downloaded and executed, using the following commands, respectively:

Listing 3.1: Downloading docker-compose.yaml
1 curl -LfO 'https :// airflow.apache.org/docs/apache -airflow /2.2.4/

docker -compose.yaml'

Listing 3.2: Starting Airflow services
1 docker compose up

In this state of the art, it is used the containerized version of Airflow. With the ver-
sion being used, there are some precautions that must be taken, regarding the usage of
other containers by the container where Airflow services are running. By default, the
containerized version of Airflow can not access the host’s Docker daemon and thus can
not call other containers. This happens because the user created for Airflow does not have
root permissions. To solve this, there are two possibilities:

• Change the Airflow user to the root user, less desirable in terms of security;

• Add the Airflow user to the sudoers group, which provides more configurability in
some security aspects.

11

Scripting

In Listing 3.3 there is an example of an Airflow DAG structure.

Listing 3.3: Airflow mock workflow’s script example
1 # Imports
2 from airflow import DAG
3 from datetime import datetime , timedelta
4 from airflow.providers.docker.operators.docker import DockerOperator
5 from airflow.operators.bash import BashOperator
6
7 from docker.types import Mount
8
9 # Default Arguments
10 default_args = {
11 'owner ' : 'owner ',
12 'description ' : 'Example ',
13 'depend_on_past ' : False ,
14 'email_on_failure ' : False ,
15 'email_on_retry ' : False ,
16 'retries ' : 1,
17 'retry_delay ' : timedelta(minutes =5),
18 ...
19 }
20
21 # DAG definition
22 with DAG('Mock -Example -workflow ', default_args=default_args ,

schedule_interval ="5 * * * *", catchup=False) as dag:
23
24 dockerOpOne = DockerOperator(
25 task_id='dockerOpOne ',
26 image='...',
27 api_version='auto',
28 mounts =[Mount(target='...', source='...', type='bind')],
29 command='...',
30 auto_remove=True ,
31 docker_url='unix ://var/run/docker.sock',
32 network_mode='bridge '
33)
34
35 dockerOpTwo = DockerOperator(
36 task_id='dockerOpTwo ',
37 image='...',
38 api_version='auto',
39 mounts =[Mount(target='...', source='...', type='bind')],
40 command='...',
41 auto_remove=True ,
42 docker_url='unix ://var/run/docker.sock',
43 network_mode='bridge '
44)
45
46 bashOpOne = BashOperator(
47 task_id='bashOpOne ',

12

48 bash_command='...',
49)
50
51 bashOpTwo = BashOperator(
52 task_id='bashOpTwo ',
53 bash_command='...',
54)
55
56 # Execution order definition
57 dockerOpOne >> dockerOpTwo >> [bashOpOne , bashOpTwo]

As the workflow depicted in the previous Listing 3.3 forks at its end, and it is harder
to visualize than the others, the following Figure 3.1 represents it graphically.

dockerOpOne dockerOpTwo

bashOpOne

bashOpTwo

Figure 3.1: DAG representation of airflow’s example workflow script

Contrary to other studied workflow system, Airflow allows users to explicitly specify
the execution order, which is a great advantage, specially with workflows that have tasks
with multiple inputs or outputs.

3.1.2 Nextflow

Overview

Nextflow[11] is a scientific workflow system which enables scalable and reproducible
scientific workflow, focused on using software containers. It was developed by Seqera
Labs‡‡. The unit of work inside a workflow is labeled as a process. Multiple processes
can be defined with inputs and outputs, inside a script. The sequential order of processes
is implicitly inferred by their inputs and outputs’ usage of each adjacent process.

The features that Nextflow provide are the following:

• Reproducibility: supports Docker[22], Singularity[15] and integrates with GitHub
- workflows and pipelines can be executed from an online repository;

‡‡https://seqera.io/about/

13

https://seqera.io/about/

• Portability: provides an abstraction layerwhich enables theworkflows and pipelines
to be executed on multiple platforms;

• Stream oriented programming: Nextflow took inspiration in the Unix pipes∗
model and uses it in its fluent DSL, allowing the user to handle complex stream
interactions easily;

• Parallelism: developed application are inherently parallel, providing the ability to
scale-up or scale-out a system with transparency;

• Statefulness: having continuous checkpoints along a workflow’s execution, mak-
ing it possible to resume one if it stopped;

• Fast Prototyping: multiple programming languages can be used inside a script to
configure each process.

Installation and prerequirements

The system prerequirements are:

• Operating system: Any posix system (Linux or macOS), Windows is supported
through WSL;

• Execution environment: Java 8 or later, up to version 16. Java 11 LTS is recom-
mended;

• Others: Bash 3.2 or later.

Installation observations

Of all the tested workflow systems, Nextflow has the simplest installation, consisting
of a single executable file that can be added to the system path and invoked anywhere
when executing .nf type files.

Scripting

A Nextflow script, shown in Listing 3.4, has the following structure:

Listing 3.4: Nextflow mock workflow’s script example
1 #!/usr/bin/env nextflow
2
3 params.saveMode = '...'
4 params.filePattern = '...' // Files directory , can be override by

program arguments

∗en.wikipedia.org/wiki/Pipeline_(Unix)

14

https://en.wikipedia.org/wiki/Pipeline_(Unix)

5 params.resultsDir = '...' // Results directory
6
7 // A data channel for program arguments
8 Channel.fromPath(params.filePattern)
9 .set { ch_in }
10
11 process proc1 {
12 // Where the script will output its results
13 publishDir params.resultsDir , mode: params.saveMode
14
15 input:
16 ...
17 output:
18 ...
19 script:
20 """
21 ...
22 """
23 }
24
25 process proc2 {
26 ...
27 }

3.1.3 Snakemake

Overview

Snakemake[16] is another scientific workflow system, written in Python, that enables
scalable and reproducible data analysis. It was developed by Johannes Köster.

Here are presented its general features:

• The work unit is labeled as a rule;

• Inside a script, code can be written in these languages: Python, R, Julia, Jupyter
Notebook, Rust and Shell, which eases some configurations;

• Snakemake introduced Wrappers, which provide a ready-to-use environment to
execute the most popular tools;

• It supports CWL;

• It has in-built script linting;

• Containerization is supported, however, it has some limitations when using local
containers.

15

Installation and prerequirements

The system requirements are:

• Operating system: Any posix system (Linux or macOS), Windows is supported
through WSL and Vagrant;

• Execution environment: Python 3.5 or later;

• Others: BWA, SAMtools, Pysam, BCFtools, Graphviz, Jinja2, NetworkX and Mat-
plotLib, which can be installed through MambaForge.

Installation observations

The documentation advices to install MambaForge to install Snakemake and its re-
quirements. After this, a Conda environment can be set up and activated through a con-
figured terminal, so that snakemake can be executed.

Scripting

A Snakemake script has the structure shown in Listing 3.5, which resembles the topol-
ogy of a Nextflow script with syntax differences.

Listing 3.5: Snakemake mock workflow’s script example
1 rule r1:
2 input:
3 ...
4 output:
5 ...
6 shell:
7 """
8 ...
9 """
10
11 rule r2:
12 ...

16

3.1.4 Systems comparison

Table 3.1 summarizes the main differences between each workflow system.

Characteristics Workflow System
Airflow Nextflow Snakemake

Base Language Python Java / Groovy Python
Composition Style
(Values: Script, GUI) Script Script Script

Execution Style
(Values: CLI, GUI) GUI / CLI CLI CLI

CWL Support
(Values: Yes, No) Yes No Yes

Containerization Support
(Values: Yes, No) Yes Yes No

Execution Order
(Values: Explicit, Implicit) Explicit Implicit Implicit

Dependency Order
(Values: Explicit, Implicit) Explicit Implicit Implicit

Workflow Sharing
(Values: Yes, Partial, No) Yes Partial Partial

Table 3.1: Workflow system comparison table

The Base Language states the language in which the workflow system is based on
and, also, the execution environment. It is preferred that the language for the chosen
workflow system is widely known and provides good and complete documentation.

The Composition Style describes if workflows in a certain workflow system can be
built via Script or Graphical User Interface. For the framework, it is preferred a system
that offers script composition, so the framework can compose workflows internally with
the appropriated DSL. Some systems also allow external dependencies, which can provide
more composition style features.

The Execution Style describes if workflows are executed via Command Line Inter-
face or by a provided Graphical User Interface. For the framework’s implementation, it is
preferred the CLI style, as the GUI one might abstract features or even make the frame-
work’s workflow execution impossible.

TheCWL Support indicates if the workflow system supports the CommonWorkflow
Standard. It is preferred that the chosen workflow system has this feature to provide a
superior workflow shareability among users that user different systems.

Containerization Support states that a workflow system fully supports containers
and containerized executions. For the framework being developed, it is crucial that the
used system has this feature, so users can provide external tools to build their workflows.

Execution Order indicates if the execution of the tasks composing a workflow are

17

implicitly inferred by the system or can be explicitly defined by the users. Although the
implicit inference orders the execution by order the tasks are written, it is preferred that
a workflow system offers explicit execution order, in order to provide more control to the
end-user.

The Dependency Order indicates if the workflows’ dependencies are implicitly in-
ferred by the system or if the user can explicitly define them. As the last characteristic, it
is preferred that the chosen system provide explicit dependency order, so the users have
more control over their workflows’ data dependencies.

Workflow Sharing describes the ability of a workflow system to maintain and save
the execution states of certain workflows, so other users can execute them from a deter-
mined point of the procedure, without needing to restart them. For the framework, it is
preferred that the workflow system offers this feature, to provide better shareability and
superior error tolerance.

Results from Table 3.1 show that only Airflow and Snakemake have CWL support,
which is a characteristic of interest. Nextflow also has a CWL parsing tool∗, however,
the project’s maintenance has been on hold for years, and it was left in its experimental
phase. Because of this, it was considered that Nextflow does not have a proper Common
Workflow Language support.

Airflow also supports another characteristics of interest, such as: explicit execution,
explicit dependency order, CWL† and containerizationwhich are key features, being these
the primary reasons whyApache Airflowwas chosen to be the workflow system for the
FLOWViZ implementation. The supplied ready-to-use Airflow REST API is also a great
advantage, as it provides another way to interact with the workflow system externally.

∗github.com/nextflow-io/cwl2nxf
†During the development of this project, integrating the Airflow’s CWL plugin was not possible due to

the plugin’s outdate and some incompatibilities with the project’s objectives and requirements.

18

https://github.com/nextflow-io/cwl2nxf

3.2 Web Frameworks

This section states, primarily, the related work which was found during this research
and that share common objectives with this project.

PHYLOViZ online§§ will be the first studied web framework, as it does not provide
mechanisms that allow workflow building and execution, and it is the framework which
was planned to integrate FLOWViZ with.

During this research, a list of other available solutions was also found ¶¶. As this list
gives a wide range of results and, most applications / frameworks are focused on one tool.
Due to this, only the relevant ones with common objectives were studied in this section.

3.2.1 PHYLOViZ

PHYLOViZ project started in 2012, by providing a Java platform that allowed sequen-
ce-based typing methods’ analysis, which generate allelic profiles and their associated
epidemiological data.

Later, in 2016, PHYLOViZ Online[26] was released: the online platform for the
PHYLOViZ project (Figure 3.2).

Figure 3.2: PHYLOViZ Online: web application home page. Source: online.phyloviz.net

Thisweb application providesways to build phylogenetic trees through a user-friendly
interface - the user starts to input its data and specific parameters and then a phylogenetic
tree is graphically generated, along with a set of settings that allows the tree’s manipula-
tion in real-time (Figure 3.3).

§§online.phyloviz.net/
¶¶molbiol-tools.ca/Phylogeny.htm

19

https://online.phyloviz.net/
https://online.phyloviz.net/
https://molbiol-tools.ca/Phylogeny.htm

Figure 3.3: PHYLOViZ Online: phylogenetic tree real-time visualization, with the
respective settings. Source: online.phyloviz.net/index/tutorial/

Besides tree visualization, PHYLOViZ also provides other functionalities, such as: dis-
tance matrix visualization and sequence visualization.

Although PHYLOViZ provides the necessary tools to successfully elaborate the phy-
logenetic analysis, it does not provide workflow building. Consequently, the user can
only prepare and execute one task at a time. Because of this, the user needs to wait for
each task’s completion, in order to configure and execute the following task.

As previously stated, this project will test and integrate FLOWViZ with this web
framework, which will solve this issue. The integration will allow the user to, priorly,
prepare all the tasks and execute them by the order specified in the workflow, without
needing to manually configure each one at a time.

3.2.2 NGPhylogeny

NGPhylogeny[17] is a web application for phylogenetic analysis, being the second
web framework to be studied.

NGPhylogeny started in 2008, previously called Phylogeny, and had its last iteration
in 2019, providing us the web application depicted in (Figure 3.4).

20

https://online.phyloviz.net/index/tutorial/

Figure 3.4: NGPhylogeny web application home page. Source: ngphylogeny.fr

This web framework is a great case study, as it implemented aworkflow system to al-
low workflow building and execution with the available tools. Because of this, it contains
many topics of interest that can be used to better substantiate FLOWViZ’s requirements
and features.

NGPhylogeny offers three main ways to build workflows or pipelines:

• Using pre-made workflows with default values;

• Using pre-made workflows with users’ values;

• Building their own workflows with users’ values, using the provided tools. This
way is labeled as "à la carte" workflows, because the users have freedom to choose
and configure each tool of the workflow.

This web application uses Galaxy[1] as the workflow system to run the workflows.
More specifically, they are executed inside the Pasteur institute’s Galaxy Cloud Service
instance[21]. The usage of a workflow system provides very relevant advantages:

21

https://ngphylogeny.fr/

• Scheduling: By using a workflow system, all tasks can be priorly configured and
executed at once;

• Scalability: Not only computing resources can be scaled-out to serve more users
and execute more workflows simultaneously, but also more tools can be added to
all users, in order to better fit their needs;

• Elasticity: Computing resources can be allocated and better adapted in function of
the current workload.

These advantages are possible in this project because, contrary to PHYLOViZ, this
one relies on a workflow system for task scheduling and easy computing instance man-
agement, not only making the final product practical to the end-user, but also reliable in
terms of distributed computing and task automation.

The example depicted in the Figure 3.5 shows a list of scheduled tasks and their exe-
cution status.

Figure 3.5: NGPhylogeny: list of executing and schedule tasks.
Source: NGPhylogeny’s documentation (ngphylogeny.fr/documentation#title13)

However, beyond these great advantages, users can only build workflows with the
provided tools and parameters, as the application does not allow tool integration.

These are problems that FLOWViZ aims to tackle, by allowing users to specify their
own external tools and by building an extensible framework, which provides an easy
implementation with other available web frameworks. This can be done by defining
contract or interface-based relationships between system components, contributing for
loosely coupled relationships between them.

22

https://ngphylogeny.fr/documentation#title13

3.2.3 Other web frameworks

Another example is T-Rex[6] - a web application focused on phylogenetic tree build-
ing and visualization.

T-Rex is a project that started in 2001 with native applications for Windows and ma-
cOS. Its latest iteration provided the project with a web application in 2012, which is the
target of study.

Contrary to NGPhylogeny, T-Rex and its underlying tools are running on a single web
server, and thus does not provide workflow building mechanisms. However, it provides
other set of tools that NGPhylogeny does not possess.

In T-Rex, the user can also specify its own values, but it is not clear that this application
provides default values, as some tools have pre-generated values, but other tools do not
pre-generate any values when invoked.

Below it is shown an overview of the web application (Figure 3.6).

Figure 3.6: T-Rex web application home page. Source: trex.uqam.ca

Other solution which is worth mentioning is iTOL[18], as it shares similarities with T-
Rex. iTOL stands for interactive Tree Of Life, and it is a tool, provided by a web application,
for tree visualization and annotation.

3.2.4 Observations

More tools and applications from the encountered list could be explored, however,
most of themwould fall out of the scope of this research - studyweb frameworks that share

23

http://www.trex.uqam.ca/

similar objectives with this project and that can help improve the project requirements
and features.

From all the studied applications, NGPhylogeny shared most of its objectives, as this
project aims to develop a similar web framework, however, with some improvements:

• Providing the user more ways to build its own workflows, by allowing integration
with other libraries and by letting the user call external containers or remote com-
puting instances to execute certain tasks.

• Framework extensibility - enable other web frameworks to integrate FLOWViZ,
by creating loosely coupled relationships between system components, based on
contracts and interfaces.

• Common workflow language support;

NGPhylogeny can serve as great example for this project’s development, as it is the
only found web framework which uses a workflow system. FLOWViZ aims to have the
same advantages as NGPhylogeny, while providing the mentioned improvements. These
will be stated again with more detail in chapter 4, where the project’s requirements, gen-
eral use cases and features will be discussed.

24

Chapter 4

Requirements

This chapter contains the project’s requirements, the general proposed solution and
general use cases.

As previously stated in the objective, the end goal of this project is to build a frame-
work that will serve as a component of an already existing project, with state-of-the-art
tools - PHYLOViZ. This framework’s premise is to provide the user ways to build custom
workflows and work pipelines, by providing phylogenetic tool integration through con-
tracts, which will result in a great single point of interoperability among different tools.
Users can then use integrated tools to build their customized workflows.

Tools can be integrated with FLOWViZ, since provided in a specific runtime environ-
ment that is deployed and accessible online. These runtime environments can be contain-
ers or remote computing instances inside a cluster, which are used to host and execute
specific tools for a user’s workflow. This way, contrary to many studied state-of-the-art
frameworks, the user will not be limited to a specific tool set, supplied by the phylogenetic
framework, and will have total control over its integrated tools.

This is a task which will be accomplished by the used workflow system, that must
have full containerization support and be able to execute on the Cloud / HPC.

Contract based relationships or loosely coupled relationship are not only limited to
tool integration. As such, FLOWViZ aims to be an extensible framework, meaning that it
can be easily integrated by another phylogenetic framework that suffice the base require-
ments, it will also expose a contract that needs to be fulfilled, in order to successfully
integrate it with the phylogenetic framework.

Another important feature is Common Workflow Language. This is considered an-
other source of interoperability, as it allows users to share workflows, that could be origi-
nated by different workflow systems, using different domain-specific languages through a
single standard, which provides a superior shareability. Asmentioned in the final footnote
of the previous chapter 3, the Airflow’s CWL plugin was not integrated due to the plugin’s
outdate and also some incompatibilities with the project’s objectives and requirements.

The next sections will list both project’s functional requirements and non-

25

-functional requirements, as a general proposed solution for the system to be developed
with the associated general use cases.

4.1 Functional requirements

This subsection lists the project’s functional requirements.

4.1.1 FLOWViZ Framework

• Allow the user to integrate customized tools via contracts, by specifying custom
runtime environments, such as containers or remote computing instances, that host
the phylogenetic tool;

• Allow the user to build customized workflows using tools from the library tool set
and integrated ones;

• Present results regarding the workflows executions, where logs, workflow gener-
ated source code and task details can be easily accessed;

• Framework extensibility: create a framework that can be easily integrated with an-
other phylogenetic framework, via contracts and loosely coupled relationships.

4.1.2 Workflow System

• Workflow execution with prior scheduling;

• Containerization support;

• Result production.

• Cloud / HPC execution support;

• Allow both implicit and explicit execution order;

• Interfaces and contract-based relationship with other system components, in order
to enable implementations from other workflow systems;

• Common Workflow Language compatibility.

4.1.3 Database

• Save tool contracts;

• Save workflows’ configurations;

• Save users’ data.

26

4.1.4 Phylogenetic framework

• Expose the phylogenetic tools via Command Line Interface (CLI) or Application
Programming Interface (API).

4.2 Non-functional requirements

This subsection lists the project’s non-functional requirements.

4.2.1 FLOWViZ Framework

• Export workflows to the supported domain-specific language;

• Export a workflow’s script, written with supported workflow’s domain-specific lan-
guage, to the CWL format.

4.2.2 Workflow System

• Automatic container download and execution from a container repository;

• Execute scripts hosted in a code repository, such as GitHub or GitLab.

4.2.3 Database

• Data redundancy;

• High availability, when deployed.

4.3 Proposed solution

This section shows the general diagram of the proposed solution. During the next
section, the interactions between this diagram entities will be divided and detailed into
general use cases.

The general functionality of the system, depicted in Figure 4.1, starts with the user
integrating a customized phylogenetic tool with the FLOWViZ framework. The user in-
tegrates the tool by filling the tool contract and, then, submitting the contract, which will
go through a validation before being saved into the system. If the validation passes, the
tool contract will be saved and the tool will be successfully integrated.

Finished the necessary user’s integrations, the user can now build workflows. This is
achieved by letting it draw the workflow and the associated data flow with the provided

27

User

Workflow System

PHYLOViZ 2.0

FLOWViZ

Use

PHYLOViZ 3.0

Actor
System

Component
Interaction

Keys: Use

Dependency

Database

Figure 4.1: System’s general functionality of the proposed solution

framework editor and the previously integrated phylogenetic tools. The tool contracts
will be useful in this step: as each task in a workflow represents an integrated tool, the
user needs to configure each task according to each tool rules or guidelines, which are
specified in the previously filled tools contracts. Using the specified rules, the user can
configure the workflow and each involved tool with great control, while avoiding config-
uration errors. When the user finishes the configuration, the workflow can be submitted.
After the workflow’s submission, the framework will also validate the submitted work-
flow and notify the workflow system that a there’s a new workflow that will be executed
at a specific time and date, and dynamically generate a workflow DSL script, according to
the submitted workflow. The workflow will then execute at the specified date and time.

After the workflow’s execution, the user can fetch the results, the associated generated
data and retrieve output generated files from its tools or from the framework result page.

Figure 4.1 also depicts the creation of a new PHYLOViZ version - PHYLOViZ 3.0.
As it is planned to integrate FLOWViZ with PHYLOViZ, this integration will result in a
new version of the latter one, as FLOWViZ is supplying it with workflow building and
execution mechanisms.

More details regarding the system solution and architecture will be approached during
chapter 5 - Solution.

4.4 General use cases

This section shows the general use cases between the user and the framework and
between the framework and the workflow system, in order to better understand the in-
teractions between the system components, introduced in the last section (section 4.3).

28

(Figures 4.2 and 4.3)
The general use cases that happen between the user and the framework are depicted

in Figure 4.2. As explained during the last section (section 4.3), the user is able to (i)
integrate its customized phylogenetic tools, since provided inside a container or a remote
virtual machine that can be accessed by the FLOWViZ framework; (ii) build and schedule
customized workflows using the previously integrated tools; (iii) obtain results, logs and
output data originated from the user workflows; (iv) check the user workflows, manage
them and retrieve their execution status.

User

Integrate new phylogenetic tools
by filling the contract

Obtain results and logs
regarding the workflow

executions

Keys:
Actor Use case Association

Build and schedule customized workflows

Check and manage user workflows

FLOWViZ

Figure 4.2: User’s general use cases and interaction with the framework

FLOWViZ

Keys:
Actor Use case Associate

Trigger when
there is new a workflow

to generate and run

Obtain information
regarding workflow executions

Access workflow
generated source code

Workflow System

Figure 4.3: Framework’s general use cases and interaction with library and the
workflow system

The general use cases between the framework and the workflow system is displayed
by Figure 4.3. FLOWViZ framework only interacts with the workflow system to (i) notify
the workflow system when there is a new user workflow to be retrieved and parsed at
a specified time and date; (ii) access workflow generated source code, as the workflow

29

system parses the workflow requests to its own DSL; (iii) obtain information and logs
about workflow executions.

30

Chapter 5

Solution

This chapter presents the implemented solution of this project, namely, the imple-
mented system architecture, the domain model and use cases’ implementation.

5.1 System architecture

The final goal of this project is to develop an integration framework, that can also be
easily integrated with other frameworks or phylogenetic tools. FLOWViZ main goal is
to act as a middleware between the phylogenetic tool or framework and the workflow
system and provide workflow scheduling and execution for phylogenetic frameworks or
tools that lack this mechanism. A previous work called NGSPipes[9] already implemented
part of this project’s logic, when it comes to tool annotation and integration, however, the
annotations were more detailed and it was not made to be an extensible framework.

Figure 5.1 details the FLOWViZ component of the global architecture. FLOWViZ is
mainly composed by a React Web client and an HTTP Express Server. Both client and
serve use and provide the three displayed functional modules: the (i) tool integration,
(ii) workflow building and (iii) result production modules, which allow users to integrate
new phylogenetic tools, build workflows with them and retrieve results from workflow
executions, respectively.

31

User-specified
external tools running in

containers or remote instances

User-specified external data
sources

FLOWViZ

Client Server

User Use

System assets

Use

Actor
System

Component
Interaction

Keys: Use

Dependency Group of
components

Module

Tool integration
module

Workflow building
module

Result production
module

Figure 5.1: System architecture - FLOWViZ detail

The external database, depicted in the previous Figure 4.1, stores tool contracts, sub-
mitted workflows and user credentials. Tool contracts and workflows contain informa-
tion which can point out to external tools (hosted by containers or remote computing
instances) and data sources, shown inside the System assets system component. This is a
core requirement of the FLOWViZ architecture, as tool integration requires users to ex-
pose their phylogenetic tools, by using docker containers or virtual machines, and specify
in the tool contract how the framework can invoke them. In short, the database stores col-
lections of pointers that point to external tools or data, in order to allow the framework
and the workflow system to access them for workflow building and execution.

The workflow system interacts both with the database and the HTTP server. Airflow,
the previously selected workflow system in subsection 3.1.4, retrieve information from the
database, in order to dynamically create and execute users’ workflows, and it provides the
server with information regarding workflows’ executions, which latterly the server will
deliver to the client.

For a better overview, Figure 5.2 shows the interactions among all the components of
the system.

32

MongoDB
database

Apache Airflow
workflow system

Add tools, workflows
and users

Returns data

Triggers the ETL pipeline

Returns information

about workflows' executions

Sends workflow to transform
into the Airflow DSL

Integrates
phylogenetic tools;

Configures workflows

Returns data
React web client

Node.js
HTTP Server

Use

Use

Use

Use

...

External user customized phylogenetic tools

...

Phylogenetic framework's tools

FLOWViZ

Phylogenetic framework

Keys: Use

Group of
components

Dependency /
Usage

Data flow
dependency

Figure 5.2: System architecture - interactions among involved components

In the depicted Figure 5.2, FLOWViZ is shown as an internal module of the phylo-
genetic framework. FLOWViZ is intended to be integrated with the phylogenetic frame-
work via an established contract. If the latter one has common core dependencies, such
as the express server dependency, the express instance can be shared with FLOWViZ, if
specified in the contract. This way, FLOWViZ will behave as an extension or a plugin of
the phylogenetic framework. There are essentially two types of contracts in this solution:
the contract in which the Phylogenetic framework shares common dependencies and that
allows its extension with FLOWViZ; the contracts that allow phylogenetic tools, either
from the phylogenetic framework or external ones, to be specified and integrated with
FLOWViZ.

FLOWViZ will also be able to be integrated by frameworks that do not possess com-
mon dependencies or technologies, however, the deployment of FLOWViZ will have to be
standalone, meaning that it can not be integrated as an internal module and share object
instances, as depicted in Figure 5.2, but it will be an external module that communicates
with the phylogenetic framework and its tools over the network.

More details regarding the solution’s deployment and the contract between FLOWViZ
and the phylogenetic tool will be described during section 6.4.2.

33

5.2 Domain model

There are three main domain models: tool, workflow, user.

Tool model

The tool model represents the contract of the integrated tool.
This model is composed by three main properties:

• general: general information about the tool, such as name and description;

• access: information that specifies how the tool can be accessed by FLOWViZ and
the workflow system;

• rules: the rules and guidelines to correctly invoke and use the tool.

As there are different types of tools, the tool model has two subtypes:

• api: a tool which functions are available through API endpoints;

• container: a tool that is available inside a specified container and provides a CLI.

These subtypes where considered the most generic to integrate users’ tools, as most
tools provide a Command Line Interface (CLI) or are APIs that provide endpoints to per-
form different operations. It should be noted, that this domain model and its properties
can be extended in the future, in order to accommodate more tools and their respective
data. Figure 5.3 represents the tool domain model diagram.

The diagram in Figure 5.3 shows the General and the Access main properties, how-
ever, the Rules property is represented by both CommandGroup and Endpoint, as it was
not needed to create an intermediary model.

When the tool is a library, it must be hosted by a container to be integrable with
FLOWViZ. This is why there are properties which are only for containers - all the prop-
erties in LibraryAccess that have the "docker" prefix. Although Docker was used to test
and integrate tools, more container engines can be used for tools’ integration, since they
suffice the minimum requirements to fill this contract main property.

When a library tool is supplied, the user must only supply CommandGroup models,
which contains Commandmodels, this way the user can easily specify the tool’s command
tree and establish the command hierarchy. If the user supplies an API tool it can only
configure it with Endpoint models.

The CommandGroup sub-properties and their functions are the following:

• The invocation property allows the user to specify an alias to invoke a specific
command group or command.

34

Tool

General

+ name: String
+ description: String

Access

+ _type: String

1 1

ApiAccess

+ url: String
+ apiKey: String

LibraryAccess

+ address: String
+ port: String
+ dockerDaemon: String
+ dockerImage: String
+ dockerContainer: String
+ dockerVolumes: Array<String>

CommandGroup

+ name: String
+ invocation: String
+ order: String
+ allowRep: String
+ commands: Array<String>

Command

+ name: String
+ invocation: String
+ allowedValues: Array<String>
+ allowedCommands: Array<String>
+ allowedCommandGroups: Array<String>

0..*

1..*

Endpoint

+ name: String
+ description: String
+ path: String
+ method: String
+ headers: Object
+ body: Object

0..*

<Domain Model> Tool

Keys:
Composition Generalization

Model

Model

Figure 5.3: Tool domain model

35

• The order property defines the priority of a specific command or command group:
a command with a higher order value (e.g., 1) can not be invoked before command
with a lower order value (e.g., 0).

• The allowRep property defines if a command or command group can be invoked
again, after a previous invocation.

Each CommandGroup is composed by one or more Command models, which represent
a single command, inside the tool’s CLI. The sub-properties which compose a Command
model and their functions are following:

• name: the name of the command;

• invocation: the multiple command invocation aliases, specify how the command
can be invoked;

• allowedValues: which are the values that the specific command accept;

• allowedCommands: the list of commands which can be invoked after the current
command invocation;

• allowedCommandGroups: the list of command groups and the included commands
that can be invoked after the current command invocation;

Inside the Endpoint model, the method property specifies the HTTP method of the
endpoint. Properties headers and body allow users to specify which are the allowed
HTTP headers and body that are accepted by the API’s endpoint. For this sub-model,
there are no groups as for the library model variation, because it is not usual to create
the same hierarchy that is created with commands. Endpoints can have hierarchy among
them, however, this happens in the context of the request path, which is out of themodel’s
scope and control. In the application’s prototype, although this model exists, it is purely
conceptual, because the client did not fully implement the API tool integration, as it was
chosen to invest and test more the containerized tool integration instead of the first one.

Workflow model

The workflow model, depicted in Figure 5.4 represents a workflow to be executed by
Apache Airflow.

This model is responsible to bind a workflow to the user who submitted it, as Apache
Airflow does not have a way to separate workflows for each user. Later in section 6.3, it
will be shown how Apache Airflow will extract the user created workflows, in order to
dynamically generate the Airflow DAGs to execute the workflow, using the ETL pipeline,
whichwill transform the user workflow, stored in the database, into an AirflowDSL script,
in order to be executable by the workflow system.

36

<Domain Model> Workflow
Workflow

+ name: String
+ description: String
+ username: String
+ dag: Dag

Dag

+ start_date: String
+ end_date: String
+ airflow_imports: Array<String>
+ tasks: Array<Task>
+ execution_order: String

Task

1

1..*

Keys:
Composition Generalization

Model

Model

Figure 5.4: Workflow domain model

User model

The user model, depicted by figure 5.5, just represents the FLOWViZ user, and it is
mainly used during the registration and login procedures.

<Domain Model> User

User

+ username: String
+ password: String

Keys:
Model

Model

Figure 5.5: User domain model

In the model implementation, the password field is always stored in the hashed form,
in order to be unusable in case of a data leak.

37

5.3 Use case implementation

Given the project main requirements and use cases, this section presents all the use
case implementations. As previously shown, this project has three functional modules,
each one can have one or more use cases: (i) tool integration, (ii) workflow building and
(iii) result production modules.

The (i) tool integration module allows users to integrate new tools with the framework;
the (ii) workflow building module allows them to build workflows with the previously
integrated tools; finally, (iii) the result production module delivers results associated with
workflows’ executions. The rest of this section will now detail each functional module.

Actor

Keys:

Component

<Message>

Synchronous
 invocation

<Message>

Asynchronous
 invocation

<Message>

Reply

Client

Setups new tool

Confirms and sends tool setup

Server
User

Sends new tool

Sends acknowledge

Fetches and updates available tools

Returns updated tools
Returns updated tools with acknowledge

Database

Validates and sends tool to be saved

Fetches tools

Returns updated tools

[Interaction] Integrate a new tool
with the framework

Figure 5.6: Tool integration module interaction model

Figure 5.6 shows the tool integration use case. During this use case, the user fills the
tool contract form, which corresponds to the previously presented tool contract model.
This is achieved by using the web client, that supplies a form divided into three steps:
general, access and rules, which correspond to the threemain properties inside the tool
contract model. The user must fill all the required fields in order to successfully integrate
a new tool with the framework and, also, needs to deploy its tool inside a docker container
or in a remote computing instance, that can be accessible by the FLOWViZ framework.

After the contract’s completion, the client sends it to the server, which will validate
and, if successful, will save the contract into the database. At this point, the tool is now
integrated with the framework and its documentation can be accessed in the web client.

38

When the necessary tools are integrated, the user can proceed to build workflowswith
them. The following Figure 5.7 explains how that procedure occurs.

Actor

Keys:

Component

<Message>

Synchronous
 invocation

<Message>

Asynchronous
 invocation

<Message>

Reply

Client

Setups new workflow

Confirms and sends workflow

Server
User

Sends new workflow

Sends acknowledge

Fetches workflow state

Returns workflow state
Returns workflow state

[Interaction] Create and add a
workflow

Workflow System

Validates and sends workflow

Sends acknowledge

Fetches workflow state

Database

Returns workflow

Get workflow for ETL pipeline

Acknowledge

Triggers ETL pipeline

Fetches workflow state

Returns workflow state

Figure 5.7: Workflow building module interaction model

Figure 5.7 shows the workflow building use case. This use case assumes that there are
tools already integrated, which is achieved by fulfilling the previously presented use case.

During the workflow building, the user draws the workflow using the graphical ed-
itor, labeled as the whiteboard, provided in the web client. By using a side drawer, each
integrated tool can be dragged and dropped into the editor. Here, each tool will be repre-
sented as a node inside the editor and can be configured as a task or step of the workflow.
The user must also connect the nodes, in order to let the framework infer the data flow
between each involved tool of the workflow being built.

When the user finishes the setup, the client will send theworkflow to the server. When
it reaches the HTTP server, the workflow will go through a validation and, if successful,
it will be saved into the database associated to the user that created it.

If the database save procedure executed successfully, the server will then trigger the
Airflow ETL pipeline, by sending an HTTP request to its REST API, which notifies that a
new user workflow was created. The ETL pipeline, as it will be detailed in section 6.3, will
transform the workflow contract into the Airflow DAG, allowing the workflow system to
recognize the workflow and execute it.

If all of these steps succeed, the workflow systemwill execute the workflow at the date
and time configured by the user and the execution’s results can be obtained later, after
the execution of the workflow.

39

Actor

Keys:

Component

<Message>

Synchronous
 invocation

<Message>

Asynchronous
 invocation

<Message>

Reply

Client

Fetches workflow result

Returns result

Server
User

[Interaction] Result production

Workflow SystemDatabase

Fetches workflow result

Returns result

Fetches workflow general
 data from MongoDB

Returns data

Fetches workflow DAG runs, task Instances, logs, source code, ...

Returns data

Figure 5.8: Result production module interaction model

Figure 5.8 shows the result production module that contains the last use case, which
assumes that the previous two were properly executed. This use case allows the user to
retrieve results from workflow executions, by using the web client.

By accessing the workflow list, the user can select one of its workflows and check
its execution logs and the dynamically generated DAG’s source code, created by the ETL
pipeline. It can also access output files or data generated in each step.

This is the final use case of FLOWViZ: after the user integrates the necessary tools and
builds a workflow with them, its execution will then produce results that can be obtained
via the web client.

5.4 Server architecture

This section presents and explains the software architecture of the HTTP server. The
HTTP server is the component that serves as a middleware between web client, and both
database and the workflow system. It provides the client with the necessary endpoints
that make the execution of the three functional modules possible, while providing user
authentication and accountmanagement. This system componentwas designed following
a three-layer design as depicted in Figure 5.9.

40

Keys:

Layer Module

Controller layer

AuthController

ToolController Workflow
Controller

Service layer

ToolService

AuthService

WorkflowService

Data source layer

ToolDb
DataSource

AuthDb
DataSource

WorkflowDb
DataSource

WorkflowAirflow
DataSource

Subsystems diagram

Figure 5.9: Server’s subsystem diagram

Each presented layer or subsystem has a specific task, as enumerated below:

• Controller layer: matches the HTTP routes with the correspondent express mid-
dleware functions, which, consequently, call the necessary services;

• Service layer: contains the model business logic and calls the correspondent data

41

sources;

• Data source layer: fetches data from the data sources, namely databases or APIs;

Controllers contain express middleware functions, which will then be bind with their
respective API routes. Controllers that have similar operations are also grouped inMod-
ules, so they can be selectively attached to Node.js express’s instance. This also provides
modularity to the HTTP server, which is a key factor, when implementing this framework
with other framework or application that shares common dependencies. For example, im-
plementing this framework with an application that is a npm package and uses common
dependencies.

This framework intends to extend the functionality of already existing phylogenetic
frameworks, by only providing workflow building, execution and logging. Many avail-
able phylogenetic web frameworks are also built using the npm environment and depen-
dencies, meaning that some executing dependencies can be shared with the FLOWViZ’s
server, such as: the express app containing all the includedmiddleware functions and con-
figurations and the authentication module. This avoids the FLOWViZ framework from
creating new instances, by allowing it to reuse the existent ones provided by the phylo-
genetic framework. This way, the developer that integrates FLOWViZ can also choose
which dependencies can be shared from the phylogenetic framework.

More details about the integration between FLOWViZ and phylogenetic framework
can be found in section 6.4.2.

42

5.5 Client architecture

This section presents and explains the software architecture of the React web client.
Like the HTTP server, the web client was also designed following a three-layer design as
shown in Figure 5.10.

Presentation layer

Pages Components

Service layer

ToolService

AuthService

WorkflowService

Data access layer

Request

useFetch

Use

Subsystems diagram

Keys:

Layer Module

package

Package

Figure 5.10: Client’s subsystem diagram

Each layer performs its own specific task, as follows:

• Presentation layer: is composed by React Components, each are available among
the Pages and Components packages. These components return HTML and create

43

the web client’s user interface;

• Service layer: contains classes that retrieve the required information, as example,
the ToolService only retrieves information from the HTTP server endpoints that
are related to tools.

• Data access layer: All services use the Request class, which in cooperation with
the useFetch custom React hook, creates the HTTP request to interact with the
server’s endpoints.

In particular, useFetch, from the Data access layer, is a custom hookmeant to simplify
HTTP requests, which use the JavaScript Fetch function. An HTTP request lifecycle can
be primarily divided into three phases: Starting, Loading and a Conclusion. As such,
useFetch uses an enumeration to easily identifies each phase of an HTTP request. For
this implementation, four values were used: Starting, Loading, Success and Error.
Figure 5.11 display a flowchart that illustrates the lifecycle of a simple and generic HTTP
request and how the client’s data access layer handles it.

Keys:
State Condition

Fetch HTTP request

Is loading?

Is
successful?

(Request Ok)

No

Success

Yes

Error
No

Starting

Loading
Yes

Figure 5.11: Flowchart of a generic HTTP request

44

Chapter 6

Implementation

This chapter displays the final results of the developed applications, according to the
previously presented architecture and requirements. Two applications were developed to
accomplish the project’s objectives: a web client, built with React and an HTTP express
server, built with Node.Js. Both written in JavaScript.

The implementation was made along with the chosen workflow system - Apache Air-
flow and a MongoDB database - a schemaless database. A schemaless database was chosen
over a schema database, as it was the simplest and most adequate database model for
this project. The database was not the focus of this project and, because of this, it was
chosen to integrate a database that complied with the project’s objectives and minimum
requirements.

Their specifications and details are shown during the sections 6.2 and 6.1, respectively.
Section 6.3 also states configurations and developed scripts needed to integrate the work-
flow systemwith the developed applications. Finally, section 6.4 presents details regarding
the solution’s deployment.

The implementation was developed under a Free and Open-Source Software (FOSS)
context and its source code is available in a public code repository∗.

6.1 Server

The HTTP server is a middleware application between: the client, theMongo database
and the workflow system. It is mainly responsible to: (1) receive, validate and save tool
contracts into the database toolmodel collection; (2) receive, validate and save user work-
flows into the database workflow model collection; (3) authenticate the user; (4) supply
the client with integrated phylogenetic tools, users’ created workflows and workflow ex-
ecution logs.

The HTTP server was also built to be extensible: it can be integrated as a dependency

∗github.com/mig07/FLOWViZ

45

https://github.com/mig07/FLOWViZ

along with another Node.js application that suffice the minimum requirements.
The current section presents all the used technologies and dependencies (subsection

6.1.1), used during development and a subsection regarding user authentication and se-
curity details (subsection 6.1.2).

Appendix E shows the table presenting all the implemented server’s REST API end-
points.

6.1.1 Used technologies

This subsectionmentions the technologies and dependencies used by theHTTP server.
Only the main ones are mentioned, as most dependencies used in the application only
complement these.

The first one is Node.js∗, it is an asynchronous event-driven JavaScript runtime to
build scalable network applications and HTTP servers and the primary used dependency.
Express.js† comes next, being a Node.js web application framework which provide a ro-
bust set of features to build web servers, it is the framework to establish and manage the
HTTP endpoints and their middleware functions. As the HTTP server has to establish a
connection with an external MongoDB‡ database,Mongoose§ is an ODM (Object Docu-
ment Mapping) for Node.js, that is used to modulate data objects and establish data vali-
dation for the MongoDB database. As user authentication is also a server’s requirement,
Passport.js¶ is an authentication middleware, providing a set of strategies to implement
user authentication and authorization in any Express-based web application.

6.1.2 Authentication

When the user is authenticated, workflows are associated with its username, so only
the user can manage its own workflows. This requires security measurements, as user
authentication and authorization are involved. Due to this, user credentials need to be
stored as secretly and safely as possible.

The adopted authentication strategy is passport-jwt, which requires the user to au-
thenticate using a signed and valid JSON Web Token (JWT)∥, priorly generated by the
server and sent inside the HTTP header. Figure 6.1 shows a generic and successful use
case of the JWT authentication and Figures 6.2 and 6.3 show the user sign up and sign in
server’s implementations.

∗nodejs.org
†expressjs.com
‡mongodb.com
§mongoosejs.com
¶passportjs.org
∥rfc-editor.org/rfc/rfc7519

46

https://nodejs.org/
https://expressjs.com/
https://www.mongodb.com/
https://mongoosejs.com/
https://www.passportjs.org/
https://www.rfc-editor.org/rfc/rfc7519

Client Server

Verifies if user exists,
and verifies the sent password with
the hashed one saved in the database

Verifies JWT validity

User sends credentials (username and password)

If successful, generates and returns the JSON Web Token

Tries access protect resource, while sending the JWT inside the header

If successful, returns the protected resource

...

[Interaction] Generic JWT workflow

Component

<Message>

Invocation

<Message>

Reply

Keys:

Figure 6.1: A generic and successful workflow of the JWT usage

Client AuthController

Sends user credentials

return JWT

AuthService

Hashes password

Returns hashed password

[Interaction] User sign
up

AuthUtils

Registers new user with the hashed password

return 201 ok and signs JWT

Register new user with the hashed password

return 409 conflict or 500 internal error
return error

alt
onSuccess

onError

Component

<Message>

Synchronous
 invocation

<Message>

Asynchronous
 invocation

<Message>

Reply

alt

Alternative

Keys:

Figure 6.2: User sign up (registration) with JWT strategy

47

[Interaction] User sign
in

Keys:

Component

<Message>

Synchronous
 invocation

<Message>

Asynchronous
 invocation

<Message>

Reply

alt

Alternative

Client AuthController

Sends user credentials

AuthServiceAuthUtils

Fetch user with username sent in credentials

return user details

return error code 404 not found or
500 internal error

Verifies sent password with hash

return true

return JWT
Verifies sent password with hash

return false
return code 401 unauthorized

Sends user credentials
Fetch user with username sent in credentials

return user not found

alt

onSuccess

onError

alt

onSuccess

onError

Figure 6.3: User sign in (login) with JWT strategy

Sensitive information, such as passwords, are safely stored into the database. This is
achieved by hashing users’ passwords. Contrary to encryption, hashing is an one-way
function, meaning that it only transforms plaintext into a hash and the reverse operation
is impossible to achieve. This is beneficial, because even if users passwords get leaked, an
attacker can not use the information to infiltrate users’ accounts.

The most popular hashing password dependencies available are: BCrypt[25] and Ar-
gon2[5]. The first one has been available for quite a long time, delivers excellent results,
and it is still widely used on legacy systems, however, Argon2 is more recent and delivers
the same as results as BCrypt, while using less computational resources, being this the
reason why Argon2 was chosen for this project. This library was also recommended by
OWASP∗.

6.2 Client

The web client is the middleware application between the user and the HTTP server,
which allows the user to: (i) integrate new phylogenetic tools; (ii) build, schedule and
manage workflows; (iii) check workflow executions’ results. This is achieved by allowing
the user to create contracts, where tools’ guidelines and rules are specified and sent to the
server; and by supplying an editor or whiteboard where the user can cast each previously

∗https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

48

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

integrated tool, configure it and connect with other integrated tools, using edges. This
way, the user can graphically draw its customized workflows, while configuring each tool
as desired.

The current section presents all the used technologies and dependencies (subsection
6.2.1), used during development, provides more details about the data layer implemen-
tation in subsection 6.2.2 and, finally, displays the developed application in subsections
6.2.3, 6.2.4, 6.2.5 and 6.2.6, while matching the implementations shown in the last three
subsections with the previously shown use case implementation diagrams 5.6, 5.7 and 5.8,
respectively.

6.2.1 Used technologies

As previously mentioned, the web application was built with React and written in
JavaScript. React was chosen due to its current abilities, performance and popularity.
A great feature provided by this framework is data state management, which is a fre-
quently used in the web application, from composing web pages to building HTTP re-
quests. Material-UIwas used for the client’s user interface. It is a CSS framework which
provides React with out-of-the-box components that follow the Google’s Material Design,
in order to seamlessly build the application’s graphical user interface, without needing to
write CSS from the ground up. One of the requirements of this application is to allow
the user to graphically build workflows. For this to be attainable, the application must
have a page that supplies an editor, where the user can input nodes and draw edges be-
tween them. In this implementation, nodes represent different integrated tools and edges
between nodes represent data dependencies and the flow of work. React Flow provides
a highly customizable React component for building node-based editors and interactive
diagrams, allowing the developer to build editors where users can graphically manage
nodes and their respective data dependencies.

6.2.2 Data layer implementation details

This subsection provides more details about the data layer implementation, namely
the useFetch custom hook and the request function. The first one was built according
to the previously presented flowchart in Figure 5.11. The useFetch returns an array that
contains three objects: data, request’s state and error. The request’s state shows in which
phase the HTTP request is, there are only four established phases: starting, fetching,
error and success. Listing 6.1 shows the code implementation of the previously shown
flowchart, with the custom hook return array.

∗reactjs.org
†mui.com
‡reactflow.dev

49

https://reactjs.org/
https://mui.com/
https://reactflow.dev/

Listing 6.1: useFetch custom hook useEffect operation
1 const [data , setData] = useState(null);
2 const [reqState , setReqState] = useState(null);
3 const [error , setError] = useState(null);
4
5 useEffect(async () => {
6 setReqState(RequestState.starting);
7
8 try {
9 setReqState(RequestState.fetching);
10
11 const response = await fetch(url , options);
12 const res = await response.json();
13
14 if (! response.ok) {
15 setError(res);
16 setReqState(RequestState.error);
17 return;
18 }
19
20 // Saving response data into state
21 setData(res);
22 setReqState(RequestState.success);
23 } catch (error) {
24 setError(error);
25 setReqState(RequestState.error);
26 }
27 }, [url]);
28
29 return [data , reqState , error];

Listing 6.2: Request function
1 function Request(url , options , onError , onSuccess , onLoading) {
2 const [data , requestState , error] = useFetch(url , options);
3
4 switch (requestState) {
5 case RequestState.fetching:
6 return onLoading;
7 case RequestState.error:
8 return onError(error);
9 case RequestState.success:
10 return onSuccess(data);
11 }
12 //...
13 }

The function depicted by Listing 6.2 allows React components from the client’s pre-
sentation layer to pass JSX code inside the callback arguments: the last three function’s
arguments. Depending on which state the HTTP request is, the request function will
execute and return the passed callback functions that matches with the ongoing HTTP
request state.

50

The service layer also abstracts the presentation layer from the request function, as
it already pre-configures the url and options arguments, which are only related to the
HTTP request. This way, the presentation layer only needs to call the desired service to
fetch specific information for a certain visual component, while only passing a function
for success, one for error and one to execute when the HTTP request is loading (fetching
state), that can be, as an example, a loading animation.

6.2.3 Application overview

This subsection provides an overview of the developed client application, by providing
images of the graphical user interface and explaining the application’s functionalities.

When FLOWViZ is integrated with another phylogenetic framework, the image de-
picted in Figure 6.4 will be the first page that the user will be redirected to.

Figure 6.4: FLOWViZ: home page

From the home page, the user can check the documentation, where all integrated tools
are displayed (Figure 6.5). It can also consult the about page, where all the technical
information can be consulted, such as the code repository, project issues can be consulted
and also some utilization tutorials, regarding the FLOWViZ framework.

51

Figure 6.5: FLOWViZ: documentation page

By clicking on a tool item, the user can access all the documentation about a tool,
which is automatically generated when integrating the tool with FLOWViZ (Figure 6.6).

Figure 6.6: FLOWViZ: specific tool documentation

From the home page, the user can also sign up or sign in (Figure 6.7). Being authenti-
cated is a requirement when consulting or adding workflows.

52

Figure 6.7: FLOWViZ: sign in and sign up buttons location (home page top-right corner)

Figure 6.8: FLOWViZ: sign in page

The following subsections 6.2.4, 6.2.5 and 6.2.6 detail how the use case implementa-
tions (section 5.3) are implemented in the client application.

53

6.2.4 Tool integration

As previously shown by the interaction diagram 5.6, the tool integration use case is
divided in three main steps: general (Figure 6.9), access (Figure 6.10) and rules (Figure
6.11).

Figure 6.9: FLOWViZ: tool integration general fragment

In the general fragment, depicted in Figure 6.9, the user only needs to specify the name
and description of the tool. The name is used as the tool’s primary key, meaning that no
other tool must have the name. Both attributes are just used for documentation proposes.

54

Figure 6.10: FLOWViZ: tool integration access fragment

It is assumed that the user must deploy its customized tool in a remote virtual machine
or in a container, that provides the conditions to allow the framework to remotely access
it.

In the access fragment, depicted in Figure 6.10, the user must specify the tool’s host
access parameters. There are only two possible ways to specify the tool’s access, either
the tool provides a CLI, where the commands can be specified, or a REST API, where the
endpoints rules can be specified. These specifications occur in the next and final fragment:
the rules fragment.

Figure 6.10 shows the access specification of a library hosted by remote docker con-
tainer.

55

Figure 6.11: FLOWViZ: tool integration rules fragment

Finally, Figure 6.11 displays the rules fragment of the tool integration. The depicted
figure, exemplifies the rules’ specification of a library that exposes a CLI. In this case,
the user must specify the group of commands and each command inside each created
group. This allows the user to implicitly create the command’s hierarchy, defining which
commands can be called after one’s invocation. This way, tasks’ configurations during
the workflow building will be easier to configure and less prone to human errors, as the
user implementing the tool has to strictly define the commands’ hierarchy and allowed
values.

56

6.2.5 Workflow building

This subsection represents the previously mentioned implemented use case displayed
by Figure 5.7, which assumes that the user has already completed the previous step and
integrated its desired tools. Figure 6.12 shows the application’s graphical editor where
users can build the customized workflows - thewhiteboard.

Figure 6.12: FLOWViZ: whiteboard

Inside whiteboard page the user will be supplied with a menu drawer, that contains
the previously integrated tools. From the drawer, the user can drag and drop a pretended
tool into the editor and the invoked tool will be part of the workflow, represented as task
and graphically shown as a node. The user can drag multiple tools and wire the nodes
with edges, which will implicitly infer the data workflow’s data dependencies. The user
can configure each involved task present inside the workflow, as presented by Figure 6.13.

57

Figure 6.13: FLOWViZ: configuration of a task inside the workflow

Figure 6.13 shows the configuration of task which uses the Phylolib library. For this
specific tool, the user can configure multiple commands for each task. The shown drop-
down menus are filled with values that come from the established tool contract, which
avoids the user from manually inputting information and, implicitly, reducing possible
human errors when configuring the task.

After the configuration of all tasks, the user can submit the workflow. By clicking the
bottom-right submission button, which will show the following form displayed by Figure
6.14.

58

Figure 6.14: FLOWViZ: workflow submission form

In this form, the user must register the workflow name, the description and the date
and time that it wants to be executed. The workflow will be sent to the HTTP server,
which will validate it and, if successful, save it into the database.

6.2.6 Result production

After the workflow’s submission, a new entry will appear in the client’s workflow list
page (Figure 6.15). The user can access each created workflow and its details by click-
ing on the respective list item. The details are then retrieved from two data sources: (i)
the database and (ii) the workflow system. At first, when the workflow is being created,
only the database’s information will be available, as the workflow system is parsing the
workflow into the Airflow DSL or the workflow is being or will be executed and no logs
were generated. In this time window, only the list entry and basic detail information, such
as workflow’s name and description, will appear as the information that comes from the
workflow system does not exist yet. Figure 6.16 shows an example of workflow execu-
tion’s log.

Figure 6.15: FLOWViZ: workflow list page

59

Figure 6.16: FLOWViZ: workflow execution log

In this workflow detail page, the user can filter the information by (i) DAG run, which
represents an execution instance of aworkflow inside theAirflow environment, by (ii) task
and by (iii) log of each involved task. This page also displays the source code, which rep-
resents the Airflow DSL code, parsed from the workflow which was saved in the database
(Figure 6.17).

60

Figure 6.17: FLOWViZ: workflow source code

All the information regarding the workflow, such as the DAG Runs, tasks, logs and
source code, comes from Airflow via its REST API, which makes this information avail-
able.

6.3 Workflow system

This section presents the features that were developed and implemented to integrate
the workflow system - Apache Airflow, with FLOWViZ.

The main goal of Apache Airflow is to schedule and execute users’ workflows, that are
sent from the server and saved into MongoDB. To this end, an ETL pipeline was created,
in order to retrieve users’ workflows from the database and transform them into Airflow
DAGs - Airflow DSL scripts, to be executable by the workflow system. An ETL pipeline
is a work pipeline concept that extracts information from a data source, namely, from
the MongoDB’s workflow collection, transforms the extracted information into another
format and, finally, loads the transformed information into a new DAG to be executed by
the workflow system. Figure 6.18 shows the use case of the developed ETL pipeline inside
the system architecture.

61

Keys:

Pipeline
step

Data flow
dependency

MongoDB
database

1. Saves workflow

2. Triggers ETL pipeline via
Airflow Rest API

3.Fetches workflow to
 transform into a DAG

Node.js HTTP
server

Extract workflow model
from

MongoDB

Transform model into
the

Airflow DSL script

Load file into
Airflow DAG

Airflow ETL Pipeline

Apache Airflow
workflow system

Figure 6.18: ETL pipeline

Observing Figure 6.18, when a client sends a workflow to the server, it will first go
through a validation and, if it succeeds, it will be saved into database (1.). If the workflow
was successfully saved, the server will then notify the workflow system that there is a new
user workflow to be parsed and executed at a certain date and time, that was previously
configured by the user (2.). This notification will trigger the Airflow’s ETL pipeline via
the workflow system’s REST API, which will retrieve the workflow from the database and
parse it to an Airflow DAG, in order to be executable by the workflow system (3.).

The ETL pipeline is a DAG executing insideAirflow, with only the three core functions:
extract, transform and load. The last two are performed in one function inside the DAG,
because it uses an auxiliary python file, which is an Airflow DSL script template, that
is used to replace the templated fields with the parsed information, which happens at
the same time, when dynamically generating the workflow’s DAG. By merging users’
workflow information from the Mongo database with the DAG template, it is possible to
dynamically generate Airflow DAGs with great flexibility. Its code is shown in appendix
D. The following Figure 6.19 details each step of the pipeline.

Transform model into the
Airflow DSL script

DAG template

generate_dag

Load file into Airflow

with DAG('PhylolibWorkflow', ...)
as dag:

 hamming = ...

 upgma = ...

hamming >> upgma

<use>

(Database) Workflow
Model

dag_id,
description,
user,
dag : {...}

Extract workflow model from
MongoDB

Figure 6.19: ETL pipeline detail

The workflow system starts by fetching the database, using the name of the workflow
and its user, which is metadata that is included with the HTTP request that performs the
ETL pipeline’s trigger. After the retrieval of the workflow, the extract method will extract

62

the dag property from the database’s workflow model and send it to next function. The
second pipeline’s function will transform the database workflow using the dag property
and the generate_dag function in cooperation with the DAG template will generate a
new Airflow DAG - an Airflow DSL script. Finally, Airflow will load the script into the
Airflow DAG collection, which will be recognized by the workflow system and executed
at the configured date and time. This method is also advised by Astronomer.io∗, which
is the first one that is presented in the Multiple-file methods’ section. None of the Single-
file methods were used, as the solution was not as versatile and would also compromise
security as generating DAGs from variables is not a good option, because these can be
globally available to any DAG.

The interaction between theworkflow system and database is possible due to a specific
Airflow provider. A provider† is a package that contains classes, such as operators, hooks
or sensors, to allow integration with another external systems and extend the Airflow
base functionalities. Although Airflow comes with most providers and operators, the
MongoDB provider‡ is not included in the Airflow’s base providers by default and has to
be explicitly installed.

During development, Airflowwas executed in containers and, because of this, a Dock-
erFile was made to explicitly install the MongoDB provider. The DockerFile is displayed
by Listing 6.3.

Listing 6.3: Airflow development DockerFile
1 FROM apache/airflow :2.2.1
2 RUN pip install apache -airflow -providers -mongo

In a local deployment solution, to install this provider it is only needed to execute the
last line on the displayed Listing 6.3 (install the provider via pip).

During development, Airflow and all its dependent modules were containerized, along
with the MongoDB database, which was separated container. To allow communication
between the database and the workflow system, not only it was required to install the
MongoDB provider, but it was also needed to create a docker network, to enable network
communications among the executing containers. The network’s creation and configura-
tion is displayed by Listing 6.4.

Listing 6.4: Docker network creation
1 docker network create flowviz -docker -network
2 # Connect every involved container to the created network (including

Airflow workers)
3 docker network connect flowviz -docker -network [name of container]

All Airflow containers involved in workflow executions must be included in this net-
work, along with the MongoDB container. When all Airflow and MongoDB containers
are finally included in the network, the MongoDB container network IP can be found by

∗astronomer.io/guides/dynamically-generating-dags/
†airflow.apache.org/docs/apache-airflow-providers/
‡airflow.apache.org/docs/apache-airflow-providers-mongo/stable/index.html

63

https://www.astronomer.io/guides/dynamically-generating-dags/
https://airflow.apache.org/docs/apache-airflow-providers/
https://airflow.apache.org/docs/apache-airflow-providers-mongo/stable/index.html

executing the command displayed by Listing 6.5. The IP address is available through a
field called IPv4Address, inside the respective mongo container JSON object.

Listing 6.5: Docker network inspect
1 docker network inspect flowviz -docker -network

With this IP address, a MongoDB connection inside Airflow can be established and,
therefore, the ETL pipeline can be executed, which will dynamically create new DAGs,
correspondent to the user workflows.

6.4 Deployment

This section shows the deployment details of the developed applications (subsection
6.4.1) and also provides details about the FLOWViZ integrationwith a phylogenetic frame-
work (subsection 6.4.2).

6.4.1 HTTP server and React client

The HTTP server and the React client are deployed along together in the same plat-
form. To achieve this some requirements need to be done: the first one is to create a
production build of the client, which produces a static version of the developed client,
minifying the code, optimizing the assets and creating a bundle which size is drastically
reduced compared to the development version. Listing 6.6 shows the command that cre-
ates the production build.

Listing 6.6: React client production build command
1 npm run build

After the command execution, a folder with name build/ will be created inside the
client’s main code directory, containing the production bundle.

To use this bundle, the HTTP server needs to link the static pages and assets. This can
be achieved by using the Express static function, which is a middleware function that
allows to serve static files from specified paths or folders. Listing 6.7 shows how that is
implemented in the FLOWViZ server’s entry point module (flowviz.js).

Listing 6.7: Server using client static assets (flowviz.js)
1 // Uses client build version if in production
2 if (production) {
3 const buildDirectory = "../../ client/build";
4 app.use(express.static(path.join(__dirname , buildDirectory)));
5 app.get("*", (req , res) => {
6 res.sendFile(path.join(__dirname , `${buildDirectory }/index.

html `));
7 });
8 }

64

To effectively use the HTTP server and the client simultaneously client pages’ ad-
dresses and server’s URIs must not collide. To do this, both server and client use path
prefixes.

The server needs to create an Express Router, which is a subset of the Express App
instance, and associate it with the path prefix, as shown in Listing 6.8.

Listing 6.8: Server path prefix
1 // Defining API route prefix
2 app.use("/ flowapi", router);

This procedure was also performed inside the client, were the prefix was associated
to the React-Router instance, as presented in Listing 6.9.

Listing 6.9: Client path prefix
1 <Router basename ="/ flowviz">
2 ...
3 <Router >

All client services were also updated, taking into account the path prefix of the server.
After the completion of all these steps, FLOWViZ could be finally published as a npm

package∗ and can be implemented PHYLOViZ and other phylogenetic frameworks alike.

6.4.2 Phylogenetic framework integration

There are three ways of importing FLOWViZ into the phylogenetic framework: two of
them require npm installed on the framework’s host machine and the third is a standalone
deployment.

If the phylogenetic tool is also a npm package, the developer can integrate FLOWViZ
by either installing its npm package or cloning the source code and linking it to phyloge-
netic framework’s package, as shown is Listings 6.10 and 6.11, respectively.

Listing 6.10: FLOWViZ npm package installation
1 npm i flowviz

Listing 6.11: FLOWViZ linking to phylogenetic framework
1 # In FLOWViZ source code main directory
2 npm link
3 # In the phylogenetic tool source code main directory
4 npm link flowviz

Either when installing the package or linking it, some errors related to dependency
versions might occur. The developer must fix it in order successfully integrate the FLOW-
ViZ package.

∗npmjs.com/package/flowviz

65

https://www.npmjs.com/package/flowviz

If the integration is successful, FLOWViZ is now a dependency that can be required
by the phylogenetic framework. FLOWViZ package’s entry point (flowviz.js) requires
a contract to be specified in the parameters when the dependency is required. This con-
tract allows the developer to pass object instances of common dependencies, such as:
express, passport or mongoose, already initialized by the phylogenetic framework. This
way, FLOWViZ reuses the dependencies already being used by the phylogenetic frame-
work. If some object instances are not specified in the contract, FLOWViZ starts them
itself.

This can happen for most required dependencies, however, it can not happen for the
express dependency. If this one is not provided by the phylogenetic framework, the de-
ployment of FLOWViZ must be standalone, as it will initialize a new server instance.
The same applies to passport: if this is not passed, FLOWViZ’s deployment does not need
to be standalone, but it will not reuse the phylogenetic framework’s authentication sys-
tem, requiring the users to create new accounts to use all the functionalities of FLOWViZ.
The authentication must also be stateless, meaning that the server must supply authen-
tication tokens to its authenticated clients, to allow them to access protected content.

If the phylogenetic framework is not a npm package and/or does not have the core
dependencies used by FLOWViZ, the latter one has to be deployed detached from the
phylogenetic framework’s execution environment (standalone).

Either way, FLOWViZ requires some environment variables, containing sensitive con-
tent, such as secrets, IP addresses and passwords related with (i) the required database
credentials, (ii) the Apache Airflow workflow system credentials and (iii) another meta-
data related to the HTTP server. The required environment variables’ configuration can
be found inside the source code repository’s readme∗.

If the FLOWViZ integration is done via npm package or npm link, a contract that
passes the phylogenetic framework’s dependencies instance objects must be specified in
order to successfully extend it with FLOWViZ. The contract is presented by listing 6.12.

Listing 6.12: FLOWViZ npm package required dependencies for framework extension
1 require (" flowviz ")({
2 express: express ,
3 app: app ,
4 ...
5 });

The dependencies shown in listing 6.12 are the required ones. The mongoose and
passport dependencies can also be passed, provided that the phylogenetic framework
uses aMongoDB database and the passport dependency for authentication. The database’s
credentials must also be added as environment variables. Other dependencies can also be
selectively passed. All the FLOWViZ dependencies and the full extension of the listing
6.12, can be found in the source code repository’s readme∗.

∗github.com/mig07/FLOWViZ/blob/main/README.md

66

https://github.com/mig07/FLOWViZ/blob/main/README.md

Chapter 7

Conclusion

This chapter closes this thesis report, by pointing out fulfilled objectives and surpassed
obstacles during the making of this project. The conclusion also states future work im-
plementations that could take place in a future extension of this project.

In the context of this project it was defined a system architecture, which primary
objectives were to allow seamless phylogenetic tool integration and provide workflow
building to existent phylogenetic frameworks. This architecture was materialized by the
creation of a system prototype called FLOWViZ, an integration framework composed by
a web client and an HTTP server, that serves as middleware between the phylogenetic
framework and the workflow system. The utilized workflow system was chosen through
a selection of workflow systems, which contained favorable characteristics to the devel-
oping framework. In the end, the workflow system of choice was Apache Airflow due to
its very complete set of features.

However, some difficulties arose during the project’s implementation, primarily due
to the chosen workflow system. The first difficulty was related to the REST API. Although
it provided a very completed and well-documented documentation, it lacked an endpoint
for DAG creation. This problem was solved with the implementation of the ETL pipeline
for dynamic DAG creation, which is an Airflow DSL script triggered by an HTTP request
that creates an Airflow DAG by crossing workflow information from the database with
a DSL script template. The second problem was related with tasks’ inputs and outputs.
Tasks in Airflow are isolated from each other inside workflows, meaning that the data flow
needs to be explicitly described, usually by the explicit execution order. Airflow provided
amechanism that allowed communication among the involved tasks, calledXComs∗ (short
for "cross-communications"), which is implicitly used by selected operators and can also be
explicitly used if the user desires. However, this mechanism only allows small amounts of
metadata, meaning that if some tools generate files or large quantities of text information
as output, they only can be sent with another solution of Airflow, that involves changing
the metadata’s database to other, such as: Google Cloud Storage†, to allow storing large
XComs blobs. Anotherway to circumvent this, is to deploy the necessary tools on the same

∗airflow.apache.org/docs/apache-airflow/stable/concepts/xcoms.html
†cloud.google.com/storage

67

https://airflow.apache.org/docs/apache-airflow/stable/concepts/xcoms.html
https://cloud.google.com/storage

container and only output the string paths of the generated files to next task(s) via XComs,
however, this can drastically limit some workflows. The third problem was related with
the CWL plugin that, unfortunately, was not implemented due to the plugin’s outdate and
also objectives’ incompatibility, as this plugin is only an extension to support the CWL
format and it is not meant to parse Airflow DSL scripts to the CWL format, but just the
inverse. Because of this, the FLOWViZ’s CWL support was considered a non-functional
requirement (section 4.2) and was not implemented in this iteration.

The project objectives were fulfilled, FLOWViZ is now a ready-to-use integration
framework that can be integratedwithmost phylogenetic frameworks, either by installing
the dependency via npm or source code, or by deploying a standalone version of it. How-
ever, there are also some features that could be implemented in the future, which would
improve either the current project’s features, but also the source code’s quality. The next
paragraphs enumerate and explain some of the features that could be part of a future
project’s iteration.

During the development of this project, most data requirements could be fulfilled by
using a schemaless database, which it is considered to still be a very valid approach. How-
ever, by the end of the project, some functionalities brought model generalization in the
project’s domain model, introducing data hierarchy, which requires a relational database
to support this. Using a relational database would also improve data saving and some
queries’ efficiency through database normalization. It should be taken in consideration
that, as previously stated, the database was not the project’s main feature, so it was cho-
sen to keep developing the project with a schemaless database.

The React web client also fulfills all the planned objectives and requirements, how-
ever, some client’s improvements could be made, when it comes to the state and data
management of the application. React already provides the necessary basic mechanisms
to manage component state through the useState and useContext hooks, however, the
provided mechanisms do not scale well when the state gets increasingly complex over
time. When this happens it is recommended to use the React-Redux∗ dependency, which
is a dependency that creates an application "global" state, that can be accessed by any
component.

During phylogenetic tools integrations, it is required to deploy the tool in a container
and specify how it can be accessed by the framework (access phase in tool contract),
where the user specifies the docker url for the tool’s container docker engine. This is good
because the developed system does not need to download and execute the tool containers
in its own container engine and allow users to have total control over their tools, however,
it is not practical. For future work it was also considered associating a docker engine
to Airflow, to allow users to only specify docker images that could be downloaded and
executed as containers by our engine.

Airflow also has mechanisms to notify users about workflows executions’ states via
email. This could be easily implemented, has the user model from the server can also
receive an email field to store users’ emails.

∗react-redux.js.org/

68

https://react-redux.js.org/

As the developed application is still a prototype, only a basic JWT authentication
mechanism was implemented, where users can create accounts by only specifying their
usernames and passwords. This does not provide enough safety to the system, as it can be
easily targeted by bots, that will create spam accounts and overload the system’s database
and workflow system. Email verification would help mitigate this problem and even open
up other possibilities and improvements for user security, such as two-factor authentica-
tion∗ (2FA).

It is also planned to implement the CWL plugin, if it suffers a new update, that does
not imply users to downgrade their Apache Airflow version to a supported one, and that
supports Airflow DSL scripts parsing to CWL.

∗authy.com/what-is-2fa/

69

https://authy.com/what-is-2fa/

Bibliography

[1] E. Afgan, D. Baker, B. Batut, M. van den Beek, D. Bouvier, M. Čech, J. Chilton,
D. Clements, N. Coraor, B. A. Grüning, A. Guerler, J. Hillman-Jackson, S. Hiltemann,
V. Jalili, H. Rasche, N. Soranzo, J. Goecks, J. Taylor, A. Nekrutenko, and D. Blanken-
berg. The Galaxy platform for accessible, reproducible and collaborative biomedical
analyses: 2018 update. Nucleic Acids Research, 46(W1):W537–W544, 05 2018. ISSN
0305-1048. doi: 10.1093/nar/gky379. URL https://doi.org/10.1093/nar/gky379.

[2] P. Amstutz, M. R. Crusoe, N. Tijanić, B. Chapman, J. Chilton, M. Heuer, A. Kartashov,
D. Leehr, H. Ménager, M. Nedeljkovich, et al. Common workflow language, v1. 0.
2016.

[3] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M.
Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, et al. Spades: a new genome assembly
algorithm and its applications to single-cell sequencing. Journal of computational
biology, 19(5):455–477, 2012.

[4] A. Barker and J. v. Hemert. Scientific workflow: a survey and research directions. In
International Conference on Parallel Processing and Applied Mathematics, pages 746–
753. Springer, 2007.

[5] A. Biryukov, D. Dinu, and D. Khovratovich. Argon2: new generation of memory-
hard functions for password hashing and other applications. In 2016 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 292–302. IEEE, 2016.

[6] A. Boc, A. B. Diallo, and V.Makarenkov. T-REX: a web server for inferring, validating
and visualizing phylogenetic trees and networks. Nucleic Acids Research, 40(W1):
W573–W579, 06 2012. ISSN 0305-1048. doi: 10.1093/nar/gks485. URL https://doi.
org/10.1093/nar/gks485.

[7] A. M. Bolger, M. Lohse, and B. Usadel. Trimmomatic: a flexible trimmer for illumina
sequence data. Bioinformatics, 30(15):2114–2120, 2014.

[8] J. A. Carriço, M. Crochemore, A. P. Francisco, S. P. Pissis, B. Ribeiro-Gonçalves, and
C. Vaz. Fast phylogenetic inference from typing data. Algorithms for Molecular
Biology, 13(1):1–2, 2018.

[9] B. Dantas, C. Fleitas, A. P. Francisco, J. Simão, and C. Vaz. Beyond ngs data sharing
and towards open science, 2017. URL https://arxiv.org/abs/1701.03507.

71

https://doi.org/10.1093/nar/gky379
https://doi.org/10.1093/nar/gks485
https://doi.org/10.1093/nar/gks485
https://arxiv.org/abs/1701.03507

[10] T. J. B. de Man, B. M. Limbago, and P. Dunman. Sstar, a stand-alone easy-to-
use antimicrobial resistance gene predictor. mSphere, 1(1):e00050–15, 2016. doi:
10.1128/mSphere.00050-15. URL https://journals.asm.org/doi/abs/10.1128/
mSphere.00050-15.

[11] P. Di Tommaso, E. W. Floden, C. Magis, E. Palumbo, and C. Notredame. Nextflow:
un outil efficace pour l’amélioration de la stabilité numérique des calculs en analyse
génomique. Biologie Aujourd’hui, 211(3):233–237, 2017.

[12] L. Finnigan and E. Toner. Building andmaintaining metadata aggregation workflows
using apache airflow. Temple University Libraries, 2021.

[13] M. Fowler. Domain-specific languages. Pearson Education, 2010.

[14] A. P. Francisco, C. Vaz, J. Melo-Cristino, M. Ramirez, and J. A. Carriço. Phyloviz:
Visualizing epidemiological information on phylogenetic relationships inferred by
goeburst algorithm.

[15] G. M. Kurtzer, V. Sochat, and M. W. Bauer. Singularity: Scientific containers for
mobility of compute. PLOS ONE, 12(5):1–20, 05 2017. doi: 10.1371/journal.pone.
0177459. URL https://doi.org/10.1371/journal.pone.0177459.

[16] J. Köster and S. Rahmann. Snakemake — a scalable bioinformatics workflow en-
gine. Bioinformatics, 28(19):2520–2522, 08 2012. ISSN 1367-4803. doi: 10.1093/
bioinformatics/bts480. URL https://doi.org/10.1093/bioinformatics/bts480.

[17] F. Lemoine, D. Correia, V. Lefort, O. Doppelt-Azeroual, F.Mareuil, S. Cohen-Boulakia,
and O. Gascuel. NGPhylogeny.fr: new generation phylogenetic services for non-
specialists. Nucleic Acids Research, 47(W1):W260–W265, 04 2019. ISSN 0305-1048.
doi: 10.1093/nar/gkz303. URL https://doi.org/10.1093/nar/gkz303.

[18] I. Letunic and P. Bork. Interactive Tree Of Life (iTOL) v5: an online tool for phylo-
genetic tree display and annotation. Nucleic Acids Research, 49(W1):W293–W296, 04
2021. ISSN 0305-1048. doi: 10.1093/nar/gkab301. URL https://doi.org/10.1093/
nar/gkab301.

[19] J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso. A survey of data-intensive scientific
workflow management. Journal of Grid Computing, 13(4):457–493, 2015.

[20] M. Luis and C. Vaz. Flowviz: Framework for phylogenetic processing, 2022. URL
https://arxiv.org/abs/2211.15282.

[21] D.-A. O.Mareuil F andM. H. A public galaxy platform at pasteur used as an execution
engine for web services. 2017. doi: https://doi.org/10.7490/f1000research.1114334.1.

[22] D. Merkel. Docker: lightweight linux containers for consistent development and
deployment. Linux journal, 2014(239):2, 2014.

72

https://journals.asm.org/doi/abs/10.1128/mSphere.00050-15
https://journals.asm.org/doi/abs/10.1128/mSphere.00050-15
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/nar/gkz303
https://doi.org/10.1093/nar/gkab301
https://doi.org/10.1093/nar/gkab301
https://arxiv.org/abs/2211.15282

[23] M. Nascimento, A. Sousa, M. Ramirez, A. P. Francisco, J. A. Carriço, and C. Vaz.
PHYLOViZ 2.0: providing scalable data integration and visualization for multi-
ple phylogenetic inference methods. Bioinformatics, 33(1):128–129, 09 2016. ISSN
1367-4803. doi: 10.1093/bioinformatics/btw582. URL https://doi.org/10.1093/
bioinformatics/btw582.

[24] C. Pan, G.McInnes, N. Deflaux, M. Snyder, J. Bingham, S. Datta, and P. S. Tsao. Cloud-
based interactive analytics for terabytes of genomic variants data. Bioinformatics, 33
(23):3709–3715, 07 2017. ISSN 1367-4803. doi: 10.1093/bioinformatics/btx468. URL
https://doi.org/10.1093/bioinformatics/btx468.

[25] N. Provos and D. Mazieres. A future-adaptable password scheme. In USENIX Annual
Technical Conference, FREENIX Track, pages 81–91, 1999.

[26] B. Ribeiro-Gonçalves, A. P. Francisco, C. Vaz, M. Ramirez, and J. A. Carriço. Phyloviz
online: web-based tool for visualization, phylogenetic inference, analysis and shar-
ing of minimum spanning trees. Nucleic acids research, 44(W1):W246–W251, 2016.

[27] T. Seemann. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14):
2068–2069, 2014.

[28] L. Silva. Library of efficient algorithms for phylogenetic analysis. CoRR,
abs/2012.12697, 2020. URL https://arxiv.org/abs/2012.12697.

[29] T. Stefan Van Dongen and B. Winnepenninckx. Multiple upgma and neighbor-
joining trees and the performance of some computer packages. Mol. Biol. Evol, 13(2):
309–313, 1996.

[30] D. Talia. Workflow systems for science: Concepts and tools. ISRN Software Engineer-
ing, 2013, 01 2013. doi: 10.1155/2013/404525.

[31] B. J. Walker, T. Abeel, T. Shea, M. Priest, A. Abouelliel, S. Sakthikumar, C. A. Cuomo,
Q. Zeng, J. Wortman, S. K. Young, et al. Pilon: an integrated tool for comprehensive
microbial variant detection and genome assembly improvement. PloS one, 9(11):
e112963, 2014.

[32] U. Yildiz, A. Guabtni, and A. H. Ngu. Business versus scientific workflows: A com-
parative study. In 2009 Congress on Services-I, pages 340–343. IEEE, 2009.

73

https://doi.org/10.1093/bioinformatics/btw582
https://doi.org/10.1093/bioinformatics/btw582
https://doi.org/10.1093/bioinformatics/btx468
https://arxiv.org/abs/2012.12697

Appendix A

Airflow workflow

1 from airflow import DAG
2 from datetime import datetime , timedelta
3 from airflow.providers.docker.operators.docker import DockerOperator
4
5 from docker.types import Mount
6
7 default_args = {
8 'owner ' : 'airflow ',
9 'description ' : 'Trimmomatic -> Spades -> Abricate

example pipeline ',
10 'depend_on_past ' : False ,
11 'start_date ' : datetime (2022, 2, 21),
12 'email_on_failure ' : False ,
13 'email_on_retry ' : False ,
14 'retries ' : 1,
15 'retry_delay ' : timedelta(minutes =5)
16 }
17
18 with DAG('Trimmomatic -Spades -Abricate -DockerOperators ', default_args=

default_args , schedule_interval ="5 * * * *", catchup=False) as
dag:

19
20 trimmomatic = DockerOperator(
21 task_id='trimmomatic ',
22 image='trimmomatic:latest ',
23 api_version='auto',
24 mounts =[Mount(target='/fastq', source='/opt/. fastqTest ', type

='bind')],
25 command='java -jar /NGStools/Trimmomatic -0.39/ trimmomatic.jar

\
26 PE -phred33 \
27 /fastq/sample1_1.fastq \
28 /fastq/sample1_2.fastq \
29 /fastq/sample1_R1_trimmed.fastq \
30 /fastq/sample1_R1_untrimmed.fastq \
31 /fastq/sample1_R2_trimmed.fastq \
32 /fastq/sample1_R2_untrimmed.fastq \

75

33 ILLUMINACLIP :/ NGStools/Trimmomatic -0.39/ adapters/
TruSeq3 -SE.fa :2:30:10 ',

34 auto_remove=True ,
35 docker_url='unix ://var/run/docker.sock',
36 network_mode='bridge '
37)
38
39 spades = DockerOperator(
40 task_id='spades ',
41 image='spades:latest ',
42 api_version='auto',
43 mounts =[Mount(target='/fastq', source='/opt/. fastqTest ', type

='bind')],
44 command='/NGStools/SPAdes -3.14.0 - Linux/bin/spades.py -k

21,33,55,77 --careful --only -assembler \
45 --pe1 -1 /fastq/sample1_R1_trimmed.fastq \
46 --pe1 -2 /fastq/sample1_R2_trimmed.fastq \
47 -o /fastq/fq_spades.fasta ',
48 auto_remove=True ,
49 docker_url='unix ://var/run/docker.sock',
50 network_mode='bridge '
51)
52
53 abricate = DockerOperator(
54 task_id='abricate ',
55 image='abricate:latest ',
56 api_version='auto',
57 mounts =[Mount(target='/fastq', source='/opt/. fastqTest ', type

='bind')],
58 command='abricate /fastq/fq_spades.fasta/contigs.fasta --db

card --csv',
59 auto_remove=True ,
60 docker_url='unix ://var/run/docker.sock',
61 network_mode='bridge '
62)
63
64 trimmomatic >> spades >> abricate

76

Appendix B

Nextflow workflow

1 #!/usr/bin/env nextflow
2
3 params.saveMode = 'copy'
4 params.filePattern = '../../../ res/trimmomatic_spades_abricate/fastq

/*_{1,2}. fastq '
5 params.resultsDir = '.results '
6
7 Channel.fromPath(params.filePattern)
8 .set { ch_in_trimmomatic }
9
10 process trimmomatic {
11 container 'trimmomatic:latest '
12
13 input:
14 file 'inFastq ' from ch_in_trimmomatic
15
16 output:
17 tuple path(fq_1_trimmed), path(fq_2_trimmed) into

ch_out_trimmomatic
18
19 script:
20
21 fq_1_trimmed = 'sample1_R1_trimmed.fastq '
22 fq_1_untrimmed = 'sample1_R1_untrimmed.fastq'
23 fq_2_trimmed = 'sample1_R2_trimmed.fastq '
24 fq_2_untrimmed = 'sample1_R2_untrimmed.fastq'
25
26 '''
27 java -jar /NGStools/Trimmomatic -0.39/ trimmomatic.jar \
28 PE -phred33 \
29 inFastq \
30 inFastq \
31 sample1_R1_trimmed.fastq \
32 sample1_R1_untrimmed.fastq \
33 sample1_R2_trimmed.fastq \
34 sample1_R2_untrimmed.fastq \

77

35 ILLUMINACLIP :/ NGStools/Trimmomatic -0.39/ adapters/TruSeq3 -SE.fa
:2:30:10

36 '''
37 }
38
39 process spades {
40 container 'spades:latest '
41
42 input:
43 tuple 'fq_1_paired.fastq ', 'fq_2_paired.fastq ' from

ch_out_trimmomatic
44
45 output:
46 path 'fq_spades.fasta' into ch_out_spades
47
48 script:
49 '''
50 /NGStools/SPAdes -3.14.0 - Linux/bin/spades.py -k 21,33,55,77 \
51 --careful --only -assembler \
52 --pe1 -1 fq_1_paired.fastq \
53 --pe1 -2 fq_2_paired.fastq \
54 -o fq_spades.fasta \
55 '''
56 }
57
58 process abricate {
59 container 'abricate:latest '
60 publishDir params.resultsDir , mode: params.saveMode
61
62 input:
63 path 'fq_spades.fasta' from ch_out_spades
64
65 output:
66 path 'abricate_result.csv' into ch_out_abricate
67
68 script:
69 '''
70 abricate fq_spades.fasta/contigs.fasta --db card --csv >

abricate_result.csv
71 '''
72 }

78

Appendix C

Snakemake workflow

1 rule Trimmomatic:
2 shell:
3 """
4 docker run -v $HOME/. fastqTest :/fastq --workdir /fastq

trimmomatic:latest \
5 java -jar /NGStools/Trimmomatic -0.39/ trimmomatic.jar \
6 PE -phred33 \
7 /fastq/sample1_1.fastq \
8 /fastq/sample1_2.fastq \
9 sample1_R1_trimmed.fastq \
10 sample1_R1_untrimmed.fastq \
11 sample1_R2_trimmed.fastq \
12 sample1_R2_untrimmed.fastq \
13 ILLUMINACLIP :/ NGStools/Trimmomatic -0.39/ adapters/TruSeq3 -SE.

fa :2:30:10
14 """
15
16 rule Spades:
17 shell:
18 """
19 docker run -v $HOME/. fastqTest :/fastq --workdir /fastq spades

:latest \
20 /NGStools/SPAdes -3.14.0 - Linux/bin/spades.py -k 21,33,55,77 \
21 --careful --only -assembler \
22 --pe1 -1 /fastq/sample1_R1_trimmed.fastq \
23 --pe1 -2 /fastq/sample1_R2_trimmed.fastq \
24 -o fq_spades.fasta \
25 """
26
27 rule Abricate:
28 output:
29 abricate_result='abricate_result.csv'
30 shell:
31 """
32 docker run -v $HOME/. fastqTest :/fastq --workdir /fastq

abricate:latest \

79

33 abricate /fastq/fq_spades.fasta/contigs.fasta --db card --csv
> abricate_result.csv

34 """

80

Appendix D

ETL pipeline

1 from airflow import DAG
2 from airflow.operators.python_operator import PythonOperator
3 from airflow.providers.mongo.hooks.mongo import MongoHook
4 from airflow.providers.mongo.sensors.mongo import MongoSensor
5 from datetime import datetime
6 import json
7 import shutil
8 import fileinput
9 import os
10
11 from docker.types import Mount
12
13 DAG_PATH = 'dags/'
14 PYTHON_EXT = '.py'
15 MONGO_CONN_ID = 'mongodb_flowviz '
16 DAG_UTILS = 'include/dag_utils.py'
17 DAG_TEMPLATE_FILENAME = 'include/dag_template.py'
18 MONGO_DB = 'test'
19
20 default_args = {
21 'owner ' : 'airflow ',
22 'description ' : 'An ETL pipeline for DAG generation ',
23 'start_date ' : datetime.today(),
24 }
25
26 mongo_hook = MongoHook(conn_id = MONGO_CONN_ID)
27
28 # Extracts dag from mongodb , provided a dag_id ,
29 # sent via HTTP to the REST API
30 def extract_dag_from_mongo(ti=None , ** kwargs):
31 conf=kwargs['params ']
32 dag_id=conf['dag_id ']
33 username=conf['username ']
34
35 workflow = mongo_hook.find(
36 mongo_collection = "workflows",
37 mongo_db = MONGO_DB ,

81

38 query = {'dag_id ': dag_id , 'username ': username},
39 find_one = True
40)
41
42 wflow = {
43 'dag_id ': workflow['dag_id '],
44 'description ': workflow['description '],
45 'username ': workflow['username '],
46 'dag': workflow['dag']
47 }
48
49 ti.xcom_push(key='workflow ', value=wflow)
50
51 # Transform the stored DAG into an Airflow DAG
52 def transform_and_load_data_into_airflow_dag(ti=None , ** kwargs):
53 workflow = ti.xcom_pull(task_ids =" extract_dag_from_mongo", key="

workflow ")
54 dag_id = workflow['dag_id ']
55 description = workflow['description ']
56 dag = workflow['dag']
57
58 # Create file from template in include/ directory
59 new_filename = str(DAG_PATH + dag_id + PYTHON_EXT)
60 shutil.copyfile(DAG_TEMPLATE_FILENAME , new_filename)
61 generate_dag(dag_id , description , dag , new_filename)
62
63 dag_id = 'dag_generator '
64 schedule = '@once '
65 with DAG(dag_id , schedule_interval=None , default_args=default_args)

as dag:
66
67 extract_dag_from_mongo = PythonOperator(
68 task_id='extract_dag_from_mongo ',
69 python_callable=extract_dag_from_mongo ,
70 provide_context=True)
71
72 transform_and_load_data_into_airflow_dag = PythonOperator(
73 task_id='transform_and_load_data_into_airflow_dag ',
74 python_callable=transform_and_load_data_into_airflow_dag ,
75 provide_context=True)
76
77 extract_dag_from_mongo >>

transform_and_load_data_into_airflow_dag
78
79 # Generate the imports for the involved operators
80 def generate_imports(imports):
81 imps = ""
82 for imp in imports:
83 imps += str(imp + "\n")
84 return imps
85
86 # Generates the operator with the respective task
87 def generate_task(task):
88 t=""

82

89 operator_type = task['operator_type ']
90 operator = str(str(operator_type) + "(paramsToReplace)")
91 operator_params = task['operator_params ']
92
93 t += "task_id" + " = " + "'" + str(task['task_id ']) + "',"
94
95 for key , value in operator_params.items():
96 if isinstance(value , str):
97 t += str("\n\t\t" + str(key) + " = " + str(value)+",")
98 else:
99 t += str("\n\t\t" + str(key) + " = " + str(value['

operator_params ']).replace ("\"", "")+",")
100
101 operator = operator.replace (" paramsToReplace", t)
102 return operator
103
104 # Generate the DAG's tasks
105 def generate_tasks(tasks):
106 tks=""
107 for task in tasks:
108 tks += str("\t" + str(task['task_id ']) + " = " + str(

generate_task(task)) + "\n\n")
109
110 return tks
111
112 # Generates the DAG
113 def generate_dag(dag_id , description , dagraph , filename):
114 tasks = dagraph['tasks ']
115 execution_order = dagraph['execution_order ']
116
117 # Replace necessary fields with the passed configurations
118 for line in fileinput.input(filename , inplace=True):
119 line = line.replace (" dagIdToReplace", "'"+ dag_id +"'")
120 line = line.replace (" descriptionToReplace", "'"+ description +"

'")
121 line = line.replace (" startDateToReplace", dagraph['start_date

'])
122 line = line.replace (" importsToReplace", generate_imports(

dagraph['airflow_imports ']))
123 line = line.replace (" operatorsToReplace", generate_tasks(

tasks))
124 line = line.replace (" executionOrderToReplace",

execution_order)
125 print(line , end ="")

83

Appendix E

HTTP server’s REST API endpoints

Method Path Description
GET /tool Gets all the available integrated tools.
GET /tool/:name Gets all the details about an integrated tool.
POST /tool/ Integrates a new tool.
GET /workflow Gets all workflows for a specific user.
GET /workflow/:name Gets all workflow’s details.
GET /workflow/:name/:dagRunId Gets a DAG Run for a specific workflow.

GET /workflow/:name/:dagRunId/
tasks/:taskInstanceId

Gets details about an executed
task inside a DAG Run.

GET
/workflow/:name/:dagRunId
/tasks/:taskInstanceId
/logs/:logNumber

Gets a detailed log for a specific
executed task inside a workflow’s
DAG Run.

POST /workflow Creates a workflow.
GET /profile Gets user’s profile information.
POST /register Creates a new user.
POST /login Signs in an user.
POST /logout Signs out an user.

85

	Introduction
	Objective
	Document Structure

	Case Studies
	Pipelines for phylogenetic analysis
	Pipelines for genomics processing

	State of the art
	Workflow Systems
	Airflow
	Nextflow
	Snakemake
	Systems comparison

	Web Frameworks
	PHYLOViZ
	NGPhylogeny
	Other web frameworks
	Observations

	Requirements
	Functional requirements
	FLOWViZ Framework
	Workflow System
	Database
	Phylogenetic framework

	Non-functional requirements
	FLOWViZ Framework
	Workflow System
	Database

	Proposed solution
	General use cases

	Solution
	System architecture
	Domain model
	Use case implementation
	Server architecture
	Client architecture

	Implementation
	Server
	Used technologies
	Authentication

	Client
	Used technologies
	Data layer implementation details
	Application overview
	Tool integration
	Workflow building
	Result production

	Workflow system
	Deployment
	HTTP server and React client
	Phylogenetic framework integration

	Conclusion
	Airflow workflow
	Nextflow workflow
	Snakemake workflow
	ETL pipeline
	HTTP server's REST API endpoints

		2022-12-12T19:46:01+0000

